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ABSTRACT: We report the Sonogashira cross-coupling of aryl ammonium salts catalyzed by air- and moisture-stable
[Pd(NHC)(3-CF3-An)Cl2] (An = aniline). This highly active Pd(II)–NHC complex features broad scope and excellent C–N acti-
vation selectivity in the challenging alkynylative cross-coupling of aryl ammonium salts. Full structural characterization and
computational studies demonstrate the effect of pyridine to aniline replacement as highly effective stabilizing ancillary lig-
and in well-defined Pd(II)–NHCs. Considering the high reactivity and the recent commercialization of [Pd(NHC)(3-CF3-
An)Cl2] (Millipore Sigma, no 915165), this catalyst represents an attractive approach to the activation of C–N bonds of broad
synthetic interest.

Activation of N–C bonds has recently emerged as an at-
tractive approach in transition metal catalysis.1 In this con-
text, over the years, a plethora of electrophilic coupling
partners have been developed, predominantly focused on
halides and phenolic electrophiles,2,3 while more recent
studies have begun to address the cross-coupling of aryl
sulfur and aryl phosphorous bonds.4,5 With respect to aro-
matic carbon–nitrogen bonds, this mode of oxidative addi-
tion is severely underdeveloped despite the prominent
role of aromatic carbon–nitrogen bonds in organic synthe-
sis and drug discovery.6 Out of several classes of C–N elec-
trophiles, including the recent surge of interest in amide
bond C–N activation,7 the use of trialkyl ammonium salts
as readily available, safe and benign C–N electrophiles is
highly desirable.8,9 Following the pioneering studies by
Wenkert and MacMillan on Ni-catalyzed Kumada and Su-
zuki cross-coupling of aryltrimethyl ammonium salts10,

recent advances have been made by using specifically de-
signed ligands and substrate classes for activation of C–N
bonds in aryl ammonium salts.9,11

The use of well-defined Pd(II)–NHC complexes has led to
major developments in advancing cross-coupling reactions
in academia and industry owing to high nucleophilicity of
strongly s-donating NHC ligands, superb bench-stability
and facile activation to mono-ligated Pd(0)–NHCs.12,13

These collective features of Pd–NHCs enable facile oxida-
tive addition of less reactive bonds, while the mild activa-
tion allows for user-friendly handling and operational-
simplicity in using Pd(II)–NHC complexes.14,15 The key as-
pect of developing new Pd(II)–NHCs is the stabilizing ancil-
lary ligand, with several classes reported to date, such as
[Pd(NHC)(allyl)Cl] complexes,16

chloro     dimers     [Pd(NHC)(µ-Cl)Cl]2,17       heterocyclic     Pd-
PEPPSI systems18     or palladacycle-supported SingaCycle



catalysts.19 Recently, we have introduced
[(NHC)PdCl2(An)] complexes, which take advantage of
anilines as an unexplored class of ancillary ligands for Pd–
NHCs.20 These catalysts are based on the mechanistic hy-
pothesis that activation of aniline-ligated Pd(II)–NHCs is
facile compared with related heterocyclic Pd–PEPPSI com-
plexes.14,15

The [(NHC)PdCl2(aniline)] complexes have been com-
mercialized in collaboration with Millipore Sigma to enable
broad access for researchers for reaction screening and
optimization (no 916161; no 915165). In our initial study
we reported the reactivity of the parent [Pd(IPr)(An)Cl2]
(An = Aniline) complex.20 Now, we report that a meta-
substituted analogue, [Pd(NHC)(3-CF3-An)Cl2] (An = ani-
line), is a highly active Pd(II)–NHC complex for the So-
nogashira cross-coupling of aryl ammonium salts by selec-
tive C–N bond activation. This catalyst offers substantial
improvement over other Pd(II)–NHC complexes in the
challenging alkynylative cross-coupling of aryl ammonium
salts.9a Considering the high reactivity and commercial
availability of [Pd(NHC)(3-CF3-An)Cl2] (An = aniline), the
complex represents an attractive approach to the activa-
tion of C–N bonds of broad synthetic interest.

Based on our previous work on C–N activation,14,15 our
study commenced with evaluating the reaction conditions
for the cross-coupling of phenyltrimethylammonium (1a)
with 4-methylphenylacetylene (2a) according to Cao (Ta-
ble 1).9a Under optimized conditions (entry 1), the cross-
coupling proceeded in excellent 92% yield ([Pd(NHC)(3-

Table 1. Optimization of the Reaction Conditionsa,b

entry base solvent T (°C) yield (%)
1               t-BuONa                  THF                           45                            92
2 NaOH THF 45 <5
3 K2CO3 THF 45 <5
4 K3PO4 THF 45                             7
5               LiHMDS THF 45                             6
6                t-BuOK THF 45 15
7c                        t-BuONa THF 45                             7
8               t-BuONa THF 30 32
9               t-BuONa THF 60 58
10              t-BuONa             2-MeTHF                      45                            50
11              t-BuONa                CPME                         45                            25
12              t-BuONa              i-PrOAc                        45                            43
13              t-BuONa            p-cymene                      45                            19
14              t-BuONa                  DEC                           45                             5
15              t-BuONa                MTBE                         45                            28
16              t-BuONa                   EA                            45                            32
17              t-BuONa               anisole                        45                            16
18d                    t-BuONa                  THF                           45                            25
19e                    t-BuONa                  THF                           45                            <2
20                     -                         THF                           45                            <2

aConditions: 1 (1.0 equiv), 2 (1.0 equiv), [Pd(IPr)(3-CF3-An)Cl2] (10
mol%), t-BuONa (2.0 equiv), THF (0.20 M), 45 °C, 4 h. bGC/1H NMR
yields. cH2O (3.0 equiv). dt-BuONa (1.0 equiv). et-BuONa (0.2 equiv).

CF3-An)Cl2], 10 mol%; t-BuONa, 2 equiv; THF, 45 °C). As
expected, the choice of base was critical to the reaction
efficiency, with t-BuONa providing the optimal results (en-
tries 1-6). Interestingly, the addition of water proved det-
rimental (entry 7). The reaction temperature was also a

key variable, with the efficient conversion observed at 45
°C, while lower or elevated temperatures resulted in di-
minished yields due to incomplete conversions or alkyne
dimerization (entries 8-9). Finally, out of various solvents
screened, THF was identified as the most suitable solvent
(entries 10-17). Reactions without additional base indicat-
ed that base is required in this coupling (entries 18-20).

Next, we screened Pd(II)-NHC precatalysts with various
ancillary ligands (Table 2). Our catalyst selection involved
variation of the ancillary ligand in the imidazolyl-2-ylidene
IPr and saturated imidazolinyl-2-ylidene SIPr series. As
shown in Table 2, [Pd(IPr)(3-CF3-An)Cl2] showed the high-
est efficiency (entry 1). Furthermore, the aniline supported
[Pd(IPr)(An)Cl2] was less effective, consistent with the
ease of activation of the [Pd(IPr)(3-CF3-An)Cl2] catalyst to
monoligated Pd(0) (entry 2). Furthermore, catalysts based
on the SIPr scaffold, [Pd(SIPr)(3-CF3-An)Cl2] and
[Pd(SIPr)(An)Cl2], were generally less effective (entries 3-
4). Moreover, the heterocyclic PEPPSI-based catalysts,
[Pd(IPr)(3-Cl-Py)Cl2] and [Pd(SIPr)(3-Cl-Py)Cl2], were less
effective (entries 5-6). Finally, the established allyl-
supported and chloro-dimer complexes, [Pd(IPr)(cin)Cl]
and [Pd(IPr)(µ-Cl)Cl]2,16,17 showed significantly lower effi-
ciency in the cross-coupling (entries 7-8).

Table 2. Screening of Pd–NHC Precatalystsa,b

entry catalyst yield (%)
1                                 [Pd(IPr)(3-CF3-An)Cl2]                                     92
2 [Pd(IPr)(An)Cl2] 64
3                                [Pd(SIPr)(3-CF3-An)Cl2] 62
4                                      [Pd(SIPr)(An)Cl2] 72
5                                   [Pd(IPr)(3-ClPy)Cl2] 77
6                                  [Pd(SIPr)(3-ClPy)Cl2] 68
7 [Pd(IPr)(cin)Cl] 27
8                                      [Pd(IPr)(μ-Cl)Cl]2 29

aConditions: 1 (1.0 equiv), 2 (1.0 equiv), [Pd] (10 mol%), t-BuONa (2.0 equiv),
THF (0.20 M), 45 °C, 4 h. bGC/1H NMR yields.

Kinetic studies were conducted to examine the effect of
aniline-based     [Pd(IPr)(3-CF3-An)Cl2]     vs.     [Pd(IPr)(3-Cl-
py)Cl2] on the cross-coupling (Scheme 1). As shown, the
use of [Pd(IPr)(3-CF3-An)Cl2] results in faster activation,
which enables for a faster conversion under the reaction
conditions. Overall, [Pd(NHC)(3-CF3-An)Cl2] is a highly
active Pd(II)–NHC complex, where the 3-CF3-An ancillary
ligand enables high air- and bench-stability, while permit-
ting fast activation under the reaction conditions.

Having identified optimal conditions for the Sonogashira
cross-coupling     using     [Pd(IPr)(3-CF3-An)Cl2],     we     next
sought to define the scope of this N–C activation (Scheme
2). For comparison, the scope was examined using a simi-
lar set of substrates cf. Cao.9a As shown, a series of differ-
ently substituted alkynes and ammonium
Scheme 1. Kinetic Profile in the Sonogashira Cross-
Coupling of Aryl Trimethylammonium Saltsa



aConditions: PhNMe3OTf (1a) (1.0 equiv), 4-methylphenylacetylene (2a) (1.0
equiv), [Pd] (10 mol%), t-BuONa (2.0 equiv), THF (0.20 M), 45 °C, 0-300 min.
[Pd] = [Pd(IPr)(3-CF3-An)Cl2], [Pd(IPr)(3-Cl-Py)Cl2].

Scheme 2. Scope of the Sonogashira Cross-Coupling of
Aryl Trimethylammonium Salts Catalyzed by
[Pd(IPr)(3-CF3-An)Cl2]a,b

aConditions: 1 (1.0 equiv), 2 (1.0 equiv), [Pd(IPr)(3-CF3-An)Cl2] (10 mol%), t-
BuONa (2.0 equiv), THF (0.20 M), 45 °C, 4 h. bIsolated yields. c2 (2.0 equiv). d2
(2.0 equiv), 80 °C, 15 h. e2 (2.0 equiv), t-BuONa (5.0 equiv), 15 h. f2 (2.0 equiv), 80
°C. g2 (2.0 equiv), 15 h

salts readily underwent cross-coupling using [Pd(IPr)(3-
CF3-An)Cl2]. Electron-neutral tolyl-acetylenes with system-
atic variation of the substitution at the para- (3a), meta-
(3b) and ortho- (3c) positions gave high yields of the
cross-coupled products. Furthermore, electronically-
neutral phenylacetylene (3d) as well as both electron-
deficient (3e) and electron-rich (3f) arylacetylenes served
as viable cross-coupling partners. Moreover, aliphatic al-
kynes are also productive cross-coupling partners, includ-
ing simple aliphatic (3g), phenyl substituted (3h) and tert-
butyl-acetylene (3i). Likewise, heterocyclic alkynes are
well-accommodated, as represented by 3-thienyl (3j) and
2-theinyl (3k) substitution, affording the products in good

yields. Furthermore, the present protocol allows to use
electronically-unactivated arylacetylenes, such as 3l. This
protocol is also advantageous in providing good reaction
efficiency with electron-rich phenylacetylenes (3m). Pleas-
ingly, halide substitution on the aryl ammonium compo-
nent were also tolerated (3n-3o), providing handles for
further functionalization. Several additional substrates
were tested, including meta-tolylammonium (3p),
branched tert-butyl substitution on the arylalkyne compo-
nent (3q) and the challenging cyclopropyl acetylene that is
prone to ring opening/isomerization (3r). A final survey
established that functionalized acetylenes with amide (3s),
aryl halide (3t) and alkyl halide (3u) functional groups
that have propensity to undergo side-reactions serve as
suitable coupling partners. Preliminary studies with 4-
iodo- and 4-bromophenylammonium salts indicated that
these substrates are not compatible with the coupling.
Overall, it is noteworthy that the 3-CF3-An catalyst outper-
forms other catalyst systems as the preferred Pd-catalyst
for this cross-coupling.9 A feature of this protocol is high
reaction efficiency using electronically-unbiased sub-
strates in the challenging C–N bond activation of aryl am-
monium salts.

Studies were conducted to gain insight into the reaction
mechanism using [Pd(IPr)(3-CF3-An)Cl2] (Scheme 3). (1)
Intermolecular competitions with differently substituted
aryl ammonium salts showed that electron-deficient
arenes are significantly more reactive (4-Cl:4-Me >98:2);
(2) Further competitions with differently substituted phe-
nylacetylenes showed that electron-donating alkynes are
more reactive (4-MeO:4-F = 58:42). These results are con-
sistent with oxidative addition as the kinetically important
step in the cross-coupling. The same experiments were
conducted using [Pd(IPr)(3-Cl-Py)Cl2], and revealed (4-
Cl:4-Me = 70:30) and (4-MeO:4-F = 82:18), consistent with
the fast activation of [Pd(IPr)(3-CF3-An)Cl2].

Scheme 3. Mechanistic Studies

Moreover, the counterion effect of the aryl ammonium
salt was examined (Table 3). We found that triflate is the
preferred counterion, while I, BF4, OMs and OTs gave lower
yields. This trend is similar to other cross-couplings of aryl
ammoniums and benefit from the facile methylation of
dialkyl anilines with MeOTf.9a



Table 3. Effect of the Counterion of Ammonium Saltsa,b

entry X yield (%)
1                                     OTf                                              92
2c I 30
3d                                                         BF4 54
4e                                                        OMs 34
5d                                                         OTs 50

aConditions: 1 (1.0 equiv), 2 (1.0 equiv), [Pd(IPr)(3-CF3-An)Cl2] (10 mol%), t-
BuONa (2.0 equiv), THF (0.20 M), 45 °C, 4 h. bGC/1H NMR yields. c2 (2.0 equiv), 80
°C, 15 h. d2 (2.0 equiv), 80 °C. e2 (2.0 equiv).

Furthermore, one-pot telescoped N–C activation of dial-
kyl anilines by in situ quaternization and cross-coupling is
feasible, showing compatibility of [Pd(IPr)(3-CF3-An)Cl2]
with this tandem process (Scheme 4).

Scheme 4. One-Pot Alkylation/C–N Cross-Coupling

To gain insight into the structure of this new [Pd(IPr)(3-
CF3-An)Cl2] catalyst, crystal suitable for X-ray diffraction
was obtained by slow diffusion of hexane into a saturated
dichloromethane solution of the complex (Figure 1A). The
Pd–C(carbene) and Pd–N bond lengths of 1.969 Å and 2.123 Å
can be compared with the analogous bond lengths of 1.973
Å and 2.110 Å for the [Pd(IPr)(An)Cl2] catalyst. Further-
more, HOMO and LUMO as well as NBO distribution of
[Pd(IPr)(3-CF3-An)Cl2] were determined (Figure 1B).
HOMO (-6.23 eV) and LUMO (-1.95 eV) of [Pd(IPr)(3-CF3-
An)Cl2] can be compared with [Pd(IPr)(An)Cl2] (-6.08 eV, -
1.76 eV) and [Pd(IPr)(3-Cl-py)Cl2] (-6.07 eV, -1.75 eV). The
Wiberg

Figure 1. (A) X-ray crystal structure of [Pd(IPr)(3-CF3-An)Cl2]. Two
views: front (left); side (right). Hydrogen atoms have been omitted for
clarity. Crystallographic data have been deposited with the CCDC
(2191722). (B) HOMO and LUMO and energies (eV) of [Pd(IPr)(3-
CF3-An)Cl2] calculated at B3LYP 6-311++g(d,p). See SI for details.

bond orders for the Pd–C(carbene)     and Pd–N bonds in
[Pd(IPr)(3-CF3-An)Cl2] are 0.6838 and 0.3031 (Pd–Cl1,
0.6341: Pd–Cl2, 0.6312); cf. [Pd(IPr)(An)Cl2] of 0.6776 and
0.3142 and [Pd(IPr)(3-Cl-py)Cl2] of 0.6871 and 0.3267.
Overall, the data show a strong Pd–C(carbene) and less coor-

dinating Pd–N bond in [Pd(IPr)(3-CF3-An)Cl2], with the net
effect of stabilizing the metal center and facilitating activa-
tion to Pd(0).

In conclusion, we have reported the Sonogashira cross-
coupling of aryl ammonium salts catalyzed by air- and
moisture-stable [Pd(NHC)(3-CF3-An)Cl2] (An = aniline).
This catalyst shows high activity and broad scope in the
alkynylative cross-coupling by challenging C–N bond acti-
vation. The favorable features of [Pd(NHC)(3-CF3-An)Cl2]
combined with its commercial availability (Millipore Sig-
ma, no 915165) offer an attractive approach to activation
of C–N bonds.
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