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ABSTRACT: We report a combined experimental and mechanistic study on the Buchwald–Hartwig amination and C–S/S–H me-
tathesis of aryl sulfides by selective activation of C–S bonds mediated by well-defined, air- and moisture-stable Pd(II)–NHC precat-
alysts, [Pd(NHC)(-Cl)Cl]2. This class of Pd(II)–NHC precatalysts displays excellent activity in the cross-coupling of aryl sulfides.
Most crucially, we unravel the unified mechanism for activation of C–S bonds in the C–N cross-coupling and C–S metathesis mani-
folds, where the inert C–S bond serves as a precursor to valuable amine or thioether products.

Transition-metal-catalyzed cross-couplings have had a
tremendous impact on organic synthesis and catalysis in the
past decades.1-4 The transformative effect of cross-coupling
reactions is highlighted by the abundance of daily applications
in the fields ranging from fine chemical synthesis, polymers
and functional materials to medicinal chemistry and drug
discovery.3     The predictable nature of palladium-catalyzed
cross-couplings, with well-defined two electron catalytic
cycles and well-characterized reactivity trends, has presented
an immense opportunity for organic chemists to incorporate
cross-couplings as an indispensable tool in synthetic planning
and this impact was recognized by the 2010 Nobel Prize in
Chemistry.4

However, despite major developments in cross-coupling of
halides and pseudohalides, the cross-coupling of inert bonds
remains underdeveloped (Figure 1A).5-9     The comparative
scarcity of efficient and modular methods for the catalytic
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cross-coupling     of     inert     bonds     is     particularly     striking
considering that (1) many functional groups are inherently
present in late-stage intermediates; thus their activation may
facilitate the development of more active therapeutics and
compound libraries for activity screening; (2) many bonds are
as readily accessed from chemical feedstocks as aryl halides
and pseudohalides; (3) the capacity to predictably activate
inert bonds may be exploited in highly valuable orthogonal
couplings owing to different bond dissociation energies that
determine the rate of oxidative addition in well-defined
catalytic cycles. New mechanistic insights that generalize
coupling manifolds are essential to provide pathways for
broad applications across substrates classes. 5-9

In this context, aryl sulfides represent a highly attractive
class of inert bond electrophiles owing to the privileged role
of     sulfur     in     medicinal     chemistry.10        Recent     progress
notwithstanding, the cross-coupling of aryl sulfides by



Figure 1. (a) Cross-coupling of classical and C–S electrophiles; (b)
Buchwald-Hartwig amination and C–S metathesis of aryl sulfides:
unified mechanism for C–S activation.

palladium catalysis is severely underdeveloped, despite the
obvious benefits that this activation may offer,11 and with the
advantage that in certain cases C-S bonds are more reactive
than C-N and C-O bonds.11 It is worth noting that C-S bonds
are significantly more difficult to activate through oxidative
addition than aryl chlorides.11,12 In continuation of our studies
on catalyst development, we were intrigued to leverage
potential of well-defined, air- and moisture-stable Pd(II)–NHC
chloro dimers, [Pd(NHC)(-Cl)Cl]2, as a general class of
catalysts for C–S bond activation.13      In particular, the
straightforward, one-step synthesis, high bench-stability,
operational-simplicity, fast activation and superior atom-
economic profile of Pd(II)–NHC chloro dimers render these
catalysts a privileged class in the arsenal of Pd catalysts for
cross-coupling reactions, while (1) benefiting from strong
electronic -donation and umbrella-type steric arrangement
of NHC ligands that are distinct from tertiary phosphines; and
(2) avoiding problems associated with palladacycle, allyl and
heterocycle-type throw-away ligands in catalyst activation to
monoligated Pd(0) in well-defined and air-stable Pd(II)–NHC
catalysis.12,13

Herein,     we     report     a     combined     experimental     and
mechanistic study on the Buchwald–Hartwig amination14,15

and C–S/S–H metathesis16 involving aryl sulfides by selective
activation of C–S bonds (C(sp2)–S vs. C(sp3)–S) mediated by
well-defined, air- and moisture-stable Pd(II)–NHC chloro
dimers (Figure 1B).13     We demonstrate that this class of
Pd(II)–NHC pre-catalysts exhibits excellent activity in the
cross-coupling of aryl sulfides by selective oxidative addition
of the C–S bond.17 Most crucially, we unravel the mechanism
for activation of C–S bonds in C–N cross-coupling and C–S
metathesis, where the inert C–S bond serves as a precursor to
valuable amine or thioether products. We anticipate that
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versatile [Pd(NHC)(-Cl)Cl]2     pre-catalysts will find broad
application for C–S bond activation in organic synthesis and
catalysis.

Buchwald–Hartwig Amination. From the outset, we
were attracted to Buchwald–Hartwig amination of aryl
sulfides owing to the fundamental role of this reaction in the
synthesis of aryl amines in medicinal chemistry. Our study
commenced by evaluating the reaction conditions using
[Pd(IPr)(-Cl)Cl]2 as      a      catalyst      (IPr     =     1,3-bis(2,6-
diisopropylphenyl)imidazol-2-ylidene) (Table S1 and Chart
S1). We established that this catalyst is highly effective for the
cross-coupling using KHMDS as a base. Having established the
capacity of [Pd(IPr)(-Cl)Cl]2 as a highly effective catalyst for
the C–S activation, we next evaluated the performance of
different Pd(II)–NHC halo dimers and benchmarked their
reactivity against other well-established Pd(II)–NHC catalysts
(Table S2), where [Pd(IPr)(-Cl)Cl]2 proved most effective.
There are several key advantages of [Pd(IPr)(-Cl)Cl]2

catalysts: (1) the catalyst is easier to synthesize than all other
Pd(II)-NHC catalysts reported to date;13d (2) it is the fastest
activating Pd(II)-NHC catalyst reported to date due to ease of
dimer to monomer dissociation;13d (3) the catalyst is more
environmentally-friendly than other Pd(II)-NHCs reported to
date since there are no sacrificial heterocycles, allyl fragments
or cyclometallated fragments.12 Furthermore, in the present
C–S amination, [Pd(NHC)Cl2]2 show superior reactivity to Pd-
NHC supported by palladacycles.

Next, we sought to investigate the generality of the C–S
cross-coupling mediated by the well-defined [Pd(IPr)(-
Cl)Cl]2 (Scheme 1). As shown in Scheme 1, the reaction is
compatible with electronically-neutral (3a), electronically-
donating (3b–3f) and electron-withdrawing (3g–3i) anilines.
Steric substitution is well-tolerated (3d–3e). The cleavage of
the ether group (3f), nucleophilic SNAr addition to aryl
fluoride (3g) and benzylic defluorination (3h) were not
observed under these conditions. Furthermore, the capacity to
use heterocyclic anilines (3i) is a noteworthy feature of this
protocol. The scope of the aryl sulfide component was next
investigated. We found that electron-rich (3j–3k), sterically-
hindered (3l) and polyaromatic sulfides, such as naphthyl
(3m) and phenanthrenyl (3n) are compatible. Furthermore,
meta-substituted (3o) and heterocyclic sulfides (3p) coupled
with good efficiency. Overall, the scope study establishes
[Pd(IPr)(-Cl)Cl]2 as an effective catalyst for the synthesis of
amines via this challenging C–S coupling (see SI for additional
discussion). While the present study was focused on the
synthesis of diaryl amines, preliminary results indicate that
cross-coupling of morpholine proceeds in 40% yield under the
standard conditions.15b

C–S/S–H Metathesis of Aryl Sulfides. Having established
Pd(II)–NHC chloro dimers as versatile catalysts for C–S
activation, we were intrigued by the capacity of these catalysts
to mediate C–S/S–H metathesis of aryl sulfides. This attractive
protocol allows for the synthesis of valuable aryl thioethers by
reversible arylation. We hypothesized that the elementary C–S
oxidative addition at the core of this process could lead to the
identification of common features for C–S activation by
[Pd(NHC)(-Cl)Cl]2 catalysts. With this hypothesis in hand,
we first examined the cross-metathesis of thioanisole with
cyclohexanethiol using [Pd(IPr)(-Cl)Cl]2 as a catalyst (Table
S3). Exploratory studies revealed that the chloro-dimer
[Pd(IPr)(-Cl)Cl]2 is indeed a viable catalyst for this cross-
coupling. Extensive studies of the catalyst effect established



Scheme 1. Scope of Buchwald-Hartwig Cross-Coupling of
Aryl Sulfides Catalyzed by [Pd(IPr)(-Cl)Cl]2a

Scheme 3. Derivatization of Thioridazine via Buchwald-
Hartwig Cross-Coupling and C–S/S–H Metathesis of Aryl
Sulfides Catalyzed by [Pd(IPr)(-Cl)Cl]2a

aConditions: aryl sulfide (1.0 equiv), Ar-NH2 (1.2 equiv), KHMDS (2.5
equiv), [Pd(IPr)(-Cl)Cl]2 (1.25 mol%), toluene (1.0 M), 100 °C, 12 h.
b[Pd(IPr)(-Cl)Cl]2 (2.5 mol%). c120 °C.

Scheme 2. Scope of S–C/S–H Metathesis of Aryl Sulfides
Catalyzed by [Pd(IPr)(-Cl)Cl]2a

aConditions: aryl sulfide (1.0 equiv), alkyl-SH (2.0 equiv), LiHMDS (2.5
equiv), [Pd(IPr)(-Cl)Cl]2 (0.31 mol%), toluene (1.0 M), 100 °C, 12 h.
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aConditions: thioridazine (1.0 equiv), Ar-NH2 (1.2 equiv) or alkyl-SH
(2.0 equiv), KHMDS (3.5 equiv) or LiHMDS (3.5 equiv), [Pd(IPr)(-
Cl)Cl]2 (0.31-1.25 mol%), toluene (1.0 M), 100-120 °C, 12 h.

that [Pd(IPr)(-Cl)Cl]2 is the preferred catalyst (Table S4). It
is worth noting that In the present C–S metathesis,
[Pd(NHC)Cl2]2 show superior reactivity to Pd-NHC supported
by palladacycles.16a The [Pd(NHC)Cl2]2 class of catalysts is
superior in activation to give the same mono-ligated Pd(0)-
NHC in the catalytic pathway.13d The key advantage of the
latter is to activate the leaving group trans to the NHC ligand.

With the optimized conditions in hand, the scope of C–
S/S–H metathesis catalyzed by [Pd(IPr)(-Cl)Cl]2 was next
examined (Scheme 2). This metathesis is successful with a
range of electronically-differentiated thioanisoles, such as
neutral (5a), electron-rich (5b–5e) and electron-withdrawing
(5f–5g). Steric hindrance is well-tolerated (5c). Cleavage of
the C–O (5d), C–N (5e) and C–F bonds (5f–5g) was not
observed     under     these     conditions.     Medicinally     relevant
functional groups, such as trifluoromethyl ethers (5h), and
functional handles, such as TMS (5i) are also compatible.
Importantly, heterocyclic thioanisoles may be employed to
generate medicinally relevant thioethers (5j) (vide infra). We
were also pleased to find that different cyclic and aliphatic
thiols, such as cyclopentylthiol (5k) and decanethiol (5l)
deliver excellent levels of efficiency. The effect of different S-
leaving groups was also optimized (Table S5). We found that
various S–alkyl and S–Ph electrophiles are compatible. In our
studies, we utilized C–S/S–H metathesis driven by the release
of the alkyl thiol. We also investigated the effect of Pd(II)–
NHCs on the reversible arylation of aryl sulfides (Table S6).

Late-Stage Functionalization. Next, we applied this
catalysis manifold to the late-stage functionalization of
thioridazine,     an     antipsychotic     used     for     treatment     of
schizophrenia (Scheme 3). The common presence of the
privileged C–S motif in drugs and advanced pharmaceutical
intermediates renders the C–S activation platform especially
useful for rapid generation of libraries of compounds for
biological testing. Gratifyingly, we found that this [Pd(IPr)(-
Cl)Cl]2 mediated technology could readily generate C–N and
C–S cross-coupling products in excellent yields for amination
(3q) and thiolation (5m–5q) under standard reaction
conditions. We also used this advanced cross-coupling to



elaborate the scope of thiols; pleasingly, the scope was found
to be compatible with cyclic (5m-5n), aliphatic (5o), benzylic
(5p) and activated thiols prone to -hydride elimination
(5q),11a attesting to the generality of the protocol in complex
settings.

Density Functional Theory Studies. To gain insight into
the mechanism of these intriguing C–S amination and C–S
metathesis processes and to establish a unified mechanism for
C–S bond activation, extensive DFT studies were conducted.
Firstly, the reaction profile that leads to the catalytic active
Pd(0) species was calculated and results are shown in Figure
2. For both RH agents involved, either R = NHPh(pMe) or SCy,
the reaction is the same qualitatively. It consists of a series of
dissociative/associative steps. Once the [Pd(IPr)(-Cl)Cl]2

dimer is cleaved, two KHDMS molecules dispose of both
chlorides at the metal. Initially with the release of a KCl
molecule, capturing then the proton on the R group and thus
finally facilitating the release of a HHDMS molecule. Note that
the thermodynamics are significantly favored when R = SCy,
since the acidity of NH2Ph(pMe) is significantly lower than
that of HSCy, quantitatively the cost to remove a proton from
HSCy is lower by 18.9 kcal/mol.

On the other hand, kinetically all steps are facile, and the
most kinetically demanding step of the initiation is the
protonation of the N(SiMe3)2 moiety by the substrate via a
direct H-transfer, with an overall kinetic cost due to the
transition state (TS) i→j of 22.1 and 19.4 kcal/mol with
NH2Ph(pMe) and HSCy, respectively, taking intermediate g as
reference. Thus, the activation is significantly less kinetically
demanding than with [Pd(IPr)Cl(allyl)] analogous complexes,
by roughly 10 kcal/mol.13d,18 Figure 3 displays a simple but
kinetically demanding catalytic pathway. Additional
discussion in presented in SI.19-22

Figure 2. Reaction pathway of the initiation of the Pd-catalyzed
Buchwald-Hartwig cross-coupling of aryl sulfides (in black) and C–
S/S–H metathesis of aryl sulfides (in red), calculated at the
M06/Def2TZVP~SDD//BP86-d3(PCM,THF)/SVP~SDD level (relative
Gibbs energies at 373.15 K with respect to with respect to the dimer
[Pd(IPr)(-Cl)Cl]2).
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Figure 3. Catalytic pathway of the Pd-catalyzed Buchwald-Hartwig
cross-coupling of aryl sulfides (in black) and C–S/S–H metathesis of
aryl sulfides (in red), calculated at the M06/Def2TZVP~SDD//BP86-
d3(PCM,THF)/SVP~SDD level (relative Gibbs energies at 373.15 K
with respect to the catalytic active species NHC-Pd(0)). In the middle
included are the thermodynamic values of the catalytic cycle.

In summary, we have reported a combined experimental
and computational study on the Buchwald–Hartwig amination
and C–S/S–H metathesis of aryl sulfides by selective activation
of C–S bonds mediated by well-defined, air- and moisture-
stable Pd(II)–NHC chloro dimer precatalysts, [Pd(NHC)(-
Cl)Cl]2. These catalysts show excellent reactivity in the cross-
coupling of aryl sulfides by a process involving oxidation
addition of the aryl C–S bond. The experimental and
mechanistic studies unraveled the unified mechanism for
activation of C–S bonds.
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