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Abstract: Benzylic alcohols are among the most important intermediates in organic synthesis. Re- 11 
cently, the use of abundant metals has attracted significant attention due to the issues with the scar- 12 
city of platinum group metals. Herein, we report a sequential method for the synthesis of benzylic 13 
alcohols by a merger of iron catalyzed cross-coupling and highly chemoselective reduction of ben- 14 
zamides promoted by sodium dispersion in the presence of alcoholic donors. The method has been 15 
further extended to the synthesis of deuterated benzylic alcohols. The iron-catalyzed Kumada cross- 16 
coupling exploits the high stability of benzamide bonds, enabling challenging C(sp2)–C(sp3) cross- 17 
coupling with alkyl Grignard reagents that are prone to dimerization and b-hydride elimination. 18 
The subsequent sodium dispersion promoted reduction of carboxamides proceeds with full 19 
chemoselectivity for the C–N bond cleavage of the carbinolamine intermediate. The method pro- 20 
vides access to valuable benzylic alcohols, including deuterium-labelled benzylic alcohols, which 21 
are widely used as synthetic intermediates and pharmacokinetic probes in organic synthesis and 22 
medicinal chemistry. The combination of two benign metals by complementary reaction mecha- 23 
nisms enables to exploit underexplored avenues for organic synthesis.  24 

Keywords: sequential catalysis; amides; iron; sodium; cross-coupling; chemoselective reduction; N– 25 
C cleavage; iron catalysis; benzylic alcohols; deuterated compounds 26 
 27 

1. Introduction 28 
Iron catalysis has found a major interest in organic synthesis owing to the issues as- 29 

sociated with the limited supply and toxicity of platinum group metals [1-5]. The high 30 
abundance of iron as the most abundant transition metal in the Earth’s crust combined 31 
with the low biotoxicity is particularly attractive for the reaction development from the 32 
point of view of sustainability and global economy. Among cross-coupling catalysis, iron 33 
is one of the few metals that have found large scale industrial applications owing to the 34 
complementary reaction scope and compatibility to the palladium catalysis [6]. In this 35 
context, iron catalysis is a particularly attractive platform for the cross-coupling of alkyl 36 
Grignard reagents that feature b-hydrogens that are challenging using palladium catalysis 37 
[7-9].  38 

Simultaneously, reduction of carboxamides represents one of the most important 39 
processes in organic synthesis [10]. This process uses amides as bench-stable precursors 40 
to afford downstream reduction products with high utility in medicinal chemistry, or- 41 
ganic materials and agrochemistry [11]. Mechanistically, after the formation of the carbin- 42 
olamine intermediate, C–O collapse leads to the formation of amine products, while C–N 43 
bond cleavage results in the formation of alcohols. In contrast to the typical metal 44 
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hydrides, such as Al–H, B–H, which produce amines, amide reduction by C–N bond scis- 45 
sion is much less common [12]. Furthermore, most reductants that lead to C–N collapse, 46 
give low chemoselectivity of the C–N scission [10,12], which is a major limitation consid- 47 
ering a significant role of amides as bench-stable intermediates in organic synthesis.  48 

Benzylic alcohols are among the most important intermediates in organic synthesis. 49 
and valuable target compounds in their own right due to potent antimicrobial activity 50 
[11]. Selected synthetic applications of benzylic alcohols are presented in Figure 1.  51 

 52 
Figure 1. Synthetic applications of benzylic alcohols.  53 

 54 
Herein, we report a sequential method for the synthesis of benzylic alcohols by a 55 

merger of iron catalyzed cross-coupling and highly chemoselective reduction of ben- 56 
zamides promoted by sodium dispersion in the presence of alcoholic donors (Scheme 1). 57 
The following features of our study are noteworthy: (1) the iron-catalyzed Kumada cross- 58 
coupling exploits the high stability of benzamide bonds, enabling challenging C(sp2)– 59 
C(sp3) cross-coupling with alkyl Grignard reagents that are prone to dimerization and b- 60 
hydride elimination. (2) The subsequent sodium dispersion promoted reduction of car- 61 
boxamides proceeds with full chemoselectivity for the C–N bond cleavage (cf. C–O) of the 62 
carbinolamine intermediate. (3) The method has been extended to the synthesis of deuter- 63 
ated benzylic alcohols with high deuterium incorporation (<90% D2). (4) The method is 64 
operationally-simple, uses cheap, commercially-available reagents and proton donors, 65 
and is performed with sustainable metals. Overall, the method provides access to valuable 66 
benzylic alcohols and deuterium-labelled benzylic alcohols, which are widely used as syn- 67 
thetic intermediates and pharmacokinetic probes in organic synthesis and medicinal 68 
chemistry. In a broader context, the combination of two abundant metals, Fe and Na, by 69 
complementary reaction mechanisms bodes significant potential for exploring new ave- 70 
nues in organic synthesis.        71 

 72 
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 73 
Scheme 1. Sequential iron-catalyzed C(sp2)–C(sp3) Kumada cross-coupling of chlorobenzamides/ 74 
chemoselective reduction and reductive deuteration to benzylic alcohols (this study). 75 

2. Results 76 
As a part of our program in amide bonds [13] and iron catalysis [14], we considered 77 

a merger of the iron-catalyzed cross-coupling of amides with the subsequent chemoselec- 78 
tive amide bond reduction. We hypothesized that the high stability of amide bonds would 79 
enable operationally-simple access to the historically-challenging C(sp2)–C(sp3) Kumada 80 
cross-coupling with alkyl Grignard reagents [7-9]. Furthermore, we became cognizant of 81 
the recent progress in chemoselective amide reduction by SET processes [15]. The method 82 
enables to exploit high stability of the N–C(O) amide bond by amidic resonance in iron- 83 
catalyzed cross-coupling, and chemoselectively tune the amide bond for SET reduction. 84 
The usage of sequential processes permits to generate value-added benzylic alcohols with 85 
high atom economy under sustainable and benign reaction conditions. 86 

Our study commenced with an evaluation of the reaction conditions for the cross- 87 
coupling of a model 4-chloro-N,N-dimethylbenzamide with n-hexylmagnesium chloride. 88 
To date, the most synthetically useful system for iron-catalyzed cross-coupling has been 89 
established by Fürstner using NMP as an additive (NMP = N-methyl-2-pyrrolidone) [16]. 90 
However, due to mutagenicity of NMP and a major concern for the future use [17], several 91 
alternative and more benign promoters have been developed that feature similar arrange- 92 
ment of the O-coordination through Nlp → p* delocalization [1-5, 14]. After experimenta- 93 
tion, we found that although no reaction took place in the absence of iron catalyst (Table 94 
1, entry 1) and the reaction was inefficient in the absence of additives (Table 1, entry 2), 95 
the addition of DMI (DMI = 1,3-dimethyl-2-imidazolidinone) resulted in 90% yield of the 96 
cross-coupling product (Table 1, entry 3). It is worthwhile to note that this reaction pro- 97 
ceeded at low catalyst loading (0.10 mol%) in renewable 2-MeTHF as a solvent [18]. This 98 
solvent is slightly preferred over THF, most likely due to improved solubility of the rea- 99 
gents under these reaction conditions (Table 1, entry 4). Furthermore, we established that 100 
the cross-coupling is very facile, proceeding even at -78 °C. This is rare in iron-catalyzed 101 
cross-coupling and highlights the activating effect of the amide bond on cross-coupling. 102 
Finally, we determined that the yield could be further improved by changing the stoichi- 103 
ometry of the Grignard reagent, resulting in close to quantitative yield under these condi- 104 
tions (Table 1, entry 6).    105 

Table 1. Optimization of Iron-Catalyzed Cross-Coupling.1. 106 
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Entry Fe(acac)3  
(mol%) Ligand Ligand  

(mol %) 
Time 

(h) 
Yield2  

(%) 
1 - - - 18 <2 
2 0.10 - - 18 48 
3 0.10 DMI 200 18 90 
43 0.10 DMI 200 18 88 
54 0.10 DMI 200 18 76 
65 0.10 DMI 200 18 95 

1Conditions: 1 (0.50 mmol), Fe(acac)3 (0.10 mol%), 2-MeTHF (1.0 M), C6H13MgCl (1.20 equiv, 2.0 M, 108 
THF), 0 °C, 18 h. C6H13MgCl added dropwise over 1-2 s. 2Yield determined by 1H NMR and/or 109 
GC-MS. 3THF instead of 2-MeTHF. 4C6H13MgCl added at -78 °C. 5C6H13MgCl (1.05 equiv). 110 

With the optimized conditions in hand, we next evaluated the scope of this Kumada 111 
C(sp2)–C(sp3) cross-coupling (Table 2). With regard to the amide bond component, the 112 
reaction is very broad and accommodates various amides as activating groups. As such, 113 
cyclic amides, such as N-morpholinyl (2a), N-piperidinyl (2b), N-pyrrolidinyl (2c) and 114 
even highly strained N-azetidinyl (2d) are readily compatible (Table 2, entries 1-4). These 115 
examples demonstrated that the iron-catalyzed conditions can accommodate various am- 116 
ides, such as chelating N-morpholinyl (Table 1, entry 1) and reactive amides, such as N- 117 
azetidinyl (Table 1, entry 4), without addition of the Grignard reagent to the C(acyl)–N 118 
bond or cleavage of the alternative N–C bond. Furthermore, aliphatic amides with varia- 119 
ble sterics, such as N,N-dimethyl (2e), N,N-diethyl (2f) and even highly hindered N,N- 120 
diisopropyl (2g) were compatible and afforded the corresponding products in high yields 121 
(Table 1, entries 5-7). Moreover, anilides featuring decreased amide N–C(O) conjugation 122 
due to Nlp delocalization onto the N-aromatic ring, such as 2h, are compatible (Table 1, 123 
entry 8), attesting to the mild conditions of the present approach. Furthermore, benzylic 124 
amides also undergo cross-coupling in high yields (2i) (Table 1, entry 9), while the cleav- 125 
age of the weak N–Bn bond is not observed under these mild iron-catalyzed conditions. 126 
Next, we briefly evaluated the scope of Grignard reagents. Importantly, we found that 127 
Grignard reagents featuring sterically-demanding secondary substitution, such as cyclo- 128 
hexyl (2j) and isopropyl (2k) are compatible (Table 2, entries 10-11). The latter example is 129 
particularly noteworthy as the isomerization to the linear product was not observed, at- 130 
testing to the fast cross-coupling vs. isomerization. Note that isomerization of secondary 131 
Grignard reagents is commonly observed using other iron-catalyzed cross-coupling meth- 132 
ods, highlighting the mild nature of the present protocol. Finally, the reaction is also com- 133 
patible with meta-chlorobenzamides (2l) (Table 2, entry 12). At present, the method is not 134 
compatible with ortho-chlorobenzamides, which are recovered unchanged due to the ste- 135 
ric demand of the amide bond (not shown). At this stage, bulky Grignard reagents are not 136 
tolerated. An ongoing project is aimed at cross-coupling of bulky Grignards. At present, 137 
heteroaromatic substrates are not tolerated. An ongoing project addresses cross-coupling 138 
of heterocyclic substrates. These studies will be published in due course.   139 

 140 

Table 2. Iron-Catalyzed C(sp2)–C(sp3) Cross-Coupling of Chlorobenzamides with Alkyl Grignards.1. 141 
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Entry 2 Product Yield (%) 

1 2a 

 

92 

2 2b 

 

92 

32 2c 

 

88 

4 2d 

 

73 

5 2e 

 

95 

62 2f 

 

98 

72 2g 

 

98 

8 2h 

 

85 

9 2i 

 

95 

103 2j 

 

80 
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113 2k 

 

56 

12 2l 

s 

68 

1Conditions: 1 (0.50 mmol), Fe(acac)3 (0.10 mol%), 2-MeTHF (1.0 M), DMI (200 mol%), RMgX (1.05 143 
equiv, THF), 0 °C, 18 h. 2RMgX (1.20 equiv). 3RMgX (2.0 equiv). See the Experimental Section for 144 
details. 145 

Having determined the scope of iron-catalyzed cross-coupling, we next moved on to 146 
establish the amide bond reduction as the second step of the sequential protocol. For this 147 
process, we selected the conditions using sodium dispersion and ethanol as a proton do- 148 
nor due to the high selectivity of amide bond cleavage, operational simplicity in the ab- 149 
sence of pyrophoric metal hydrides and availability of the reagents [15]. Screening of the 150 
reaction conditions revealed that the ratio of sodium to EtOH of 1:3 is preferred (Table 3, 151 
entry 1), while the lower (Table 3, entry 2) or higher ratio (Table 3, entries 3-4) gave de- 152 
creased yields. This reaction uses 4 equiv of sodium as a single electron donor. The reduc- 153 
tion using close to a stoichiometric amount of sodium (Table 3, entry 5) is also feasible, 154 
albeit in lower yield. The optimized conditions give full selectivity for C–N/C–O cleavage.  155 

The reduction proceeds via a SET mechanism with single electrons as reductants, and 156 
the first electron transfer as the rate determining step. Benzaldehyde is typically not de- 157 
tected in these reactions since its reduction is faster than amide reduction [15]. 158 

With the optimized reduction conditions in hand, we next evaluated the scope of the 159 
benzamide reduction using alkyl-benzamides prepared by the iron-catalyzed cross-cou- 160 
pling (Table 4). We found that this amide reduction is very general and accommodates 161 
various amide substrates in high yields. As shown, cyclic alkyl-benzamides, such as N- 162 
morpholinyl (2a), N-piperidinyl (2b), N-pyrrolidinyl (2c) and N-azetidinyl (2d) furnished 163 
the reduction products in 80-90% yields. Furthermore, aliphatic amides, such as N,N-di- 164 
methyl (2e), N,N-diethyl (2f) and N,N-diisopropyl (2g) were well-compatible, despite 165 
larger hindrance of the amide bond. Furthermore, anilides (2h) and N-benzylic amides 166 
(2i) can be successfully reduced. Finally, different substitution on the para (2j–2k) and 167 
meta position (2l) of the aromatic ring is compatible. Overall, this reduction processes tol- 168 
erates a variety of substrates prepared by the iron-catalyzed cross-coupling, providing 169 
alkylated-benzylic alcohols with substantial utility as synthetic intermediates and antimi- 170 
crobial agents [19].  171 

 172 

Table 3. Optimization of Sodium Dispersion Mediated Reduction of Aromatic Amides.1. 173 

 174 

Entry Na  
(equiv) 

EtOH  
(equiv) 

Time 
(min) 

Yield2  
(%) 

1 10 30 20 81 
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2 10 20 20 72 
3 10 40 20 75 
4 10 50 20 65 
5 5 15 20 68 

1Conditions: sodium dispersion (34.5 wt%, particle size 5-10 µm, 10 equiv), 2 (0.30 mmol), EtOH 175 
(15-50 equiv), hexane, 0 °C, 20 min. Na dispersion added dropwise to a solution of 2 and EtOH. 176 
2Yield determined by 1H NMR.  177 

 178 

Table 4. Conditions: sodium dispersion (34.5 wt%, particle size 5-10 µm, 10 equiv), 2 (0.30 mmol), 179 
EtOH (30 equiv), hexane, 0 °C, 20 min. Sodium dispersion added dropwise to a solution of 2 and 180 
EtOH. 181 

Considering the recent interest in the synthesis of deuterium-labelled compounds as 182 
probes in pharmaceutical and agrochemical industry [20], we then became intrigued by 183 
the potential to extend the present sequential method to the synthesis of deuterated ben- 184 
zylic alcohols. The use of sodium dispersion in combination with a proton donor enables 185 
to readily incorporate deuterium label at the benzylic position. As shown in Table 5, these 186 
conditions are compatible with a range of alkyl-benzamides prepared by the iron-cata- 187 
lyzed cross-coupling to afford deuterated benzyl alcohols with >90% deuterium incorpo- 188 
ration. The yields obtained in the reductive deuteration are comparable with the efficiency 189 
of the reduction. As such, this process is equally effective for N-cyclic benzamides, N- 190 
morpholinyl (2a), N-piperidinyl (2b), N-pyrrolidinyl (2c) and N-azetidinyl (2d) as well as 191 
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N-aliphatic benzamides, N,N-dimethyl (2e), N,N-diethyl (2f) and N,N-diisopropyl (2g), 192 
affording the products in 59-97% yields with 93-96% D2-incorporation. Similarly, anilides 193 
(2h), N-benzylic amides (2i) and different substitution (2j–2l) is tolerated, affording the 194 
products in 50-90% yields with 93-95% D2-incorporation. Overall, the reaction represents 195 
an operationally-simple and cost-effective synthesis of deuterated benzylic alcohols, 196 
which are of interest as labelled probes. It is important to note that these reductions typi- 197 
cally do not show significant isotope effect. SET is typically rate determining step [15]. 198 

Table 5. Chemoselective Sodium Dispersion Mediated Reductive Deuteration of Aromatic Amides 199 
to [D2]-Benzyl Alcohols.1. 200 

 201 
1Conditions: sodium dispersion (34.5 wt%, particle size 5-10 µm, 10 equiv), 2 (0.30 mmol), EtOH-d1 202 
(30 equiv), hexane, 0 °C, 20 min. Na dispersion added dropwise to a solution of 2 and EtOH-d1. 203 
[D2]-incorporation is shown in brackets.  204 

Finally, to demonstrate the utility of this iron-catalyzed cross-coupling/chemoselec- 205 
tive amide reduction, we performed a one-pot sequential process (Scheme 2). As shown, 206 
the iron-catalyzed cross-coupling under standard conditions, followed by solvent ex- 207 
change, and sodium dispersion mediated chemoselective reduction enables the synthesis 208 
of benzylic alcohols in the same pot. This reaction highlights the utility of completing the 209 
tandem cross-coupling/reduction process by combining two sustainable metals in a one- 210 
pot procedure. Work is currently in progress to develop in situ sequential processes 211 
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involving iron-catalyzed cross-coupling as a key step. These studies will be published in 212 
due course.  213 

 214 

 215 
Scheme 2. One-pot iron-catalyzed C(sp2)–C(sp3) Kumada cross-coupling/chemoselective 216 
reduction.  217 

3. Discussion 218 
In summary, we have reported a sequential synthesis of benzylic alcohols by a mer- 219 

ger of iron catalyzed cross-coupling and highly chemoselective reduction of benzamides 220 
promoted by sodium dispersion in the presence of alcoholic donors. Important aspects of 221 
this approach include iron-catalyzed Kumada cross-coupling that exploits the high stabil- 222 
ity of benzamide bonds, enabling challenging C(sp2)–C(sp3) cross-coupling with alkyl Gri- 223 
gnard reagents that are prone to dimerization and b-hydride elimination and highly 224 
chemoselective, sodium dispersion promoted reduction of carboxamides that proceeds 225 
with full selectivity for the C–N bond cleavage. Moreover, this approach has been further 226 
extended to the synthesis of deuterated benzylic alcohols with high D2 incorporation. This 227 
study clearly indicates that the combination of abundant metals by complementary reac- 228 
tion mechanisms provides an attractive method for modular construction of important 229 
building blocks and pharmaceutical labels in organic synthesis. Our future studies are 230 
focused on developing sequential approaches for catalysis that would address the global 231 
issue of limited resources of transition metals.    232 

4. Materials and Methods 233 
General Procedure for Iron-Catalyzed C(sp2)–C(sp3) Cross-Coupling of Chloroben- 234 
zamides. An oven-dried vial equipped with a stir bar was charged with an amide sub- 235 
strate (neat, typically, 0.50 mmol, 1.0 equiv) and Fe(acac)3 (0.1 mol%), placed under a pos- 236 
itive pressure of argon and subjected to three evacuation/backfilling cycles under vacuum. 237 
2-Methyltetrahydrofuran (1.0 M) and DMI (neat, 200 mol%) were sequentially added with 238 
vigorous stirring at room temperature, the reaction mixture was cooled to 0 °C, a solution 239 
of Grignard reagent (typically, 1.05 equiv) was added dropwise with vigorous stirring and 240 
the reaction mixture was stirred for 18 h at 0 °C. After the indicated time, the reaction 241 
mixture was diluted with HCl (1.0 N, 1.0 mL) and EtOAc (1 x 30 mL), the organic layer 242 
was extracted with HCl (1.0 N, 2 x 10 mL), dried and concentrated. The sample was ana- 243 
lyzed by 1H NMR (CDCl3, 400 MHz) to obtain conversion, yield and selectivity using in- 244 
ternal standard and comparison with authentic samples. Analytical sample was purified 245 
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by chromatography on silica gel (EtOAc/hexanes). Note that all reactions have been car- 246 
ried out using new glassware. Control reactions have been carried out using new glass- 247 
ware, stir bars, spatulas. It is worthwhile to note that palladium cannot easily catalyze the 248 
Kumada cross-coupling with alkyl Grignards due to fast b-hydride elimination [8,9]. All 249 
products are oils. 250 

Characterization Data of Cross-Coupling Products. 251 
(4-Hexylphenyl)(morpholino)methanone (Table 2, 2a). Prepared according to the 252 

general procedure using (4-chlorophenyl)(morpholino)methanone (0.50 mmol), Fe(acac)3 253 
(0.1 mol%), DMI (200 mol%), 2-MeTHF (1.0 M), and C6H13MgCl (2.0 M in THF, 1.05 equiv). 254 
The reaction mixture was stirred for 18 h at 0 °C. Yield 92% (126.5 mg). Colorless oil. 1H 255 
NMR (400 MHz, CDCl3) δ 7.32 (d, J = 8.2 Hz, 2H), 7.21 (d, J = 8.2 Hz, 2H), 3.93–3.36 (m, 256 
8H), 2.62 (t, J = 7.7 Hz, 2H), 1.65–1.55 (m, 2H), 1.37–1.25 (m, 6H), 0.88 (t, J = 6.8 Hz, 3H). 13C 257 
NMR (100 MHz, CDCl3) δ 170.7, 145.1, 132.5, 128.5, 127.2, 77.4, 77.1, 76.8, 66.9, 48.3, 42.6, 258 
35.8, 31.7, 31.3, 28.9, 22.6, 14.1. Spectroscopic properties matched those described previ- 259 
ously.14d 260 

(4-Hexylphenyl)(piperidin-1-yl)methanone (Table 2, 2b). Prepared according to the 261 
general procedure using (4-chlorophenyl)(piperidin-1-yl)methanone (0.50 mmol), 262 
Fe(acac)3 (0.1 mol%), DMI (200 mol%), 2-MeTHF (1.0 M), and C6H13MgCl (2.0 M in THF, 263 
1.05 equiv). The reaction mixture was stirred for 18 h at 0 °C. Yield 92% (125.9 mg). Col- 264 
orless oil. 1H NMR (400 MHz, CDCl3) δ 7.30 (d, J = 8.2 Hz, 2H), 7.19 (d, J = 8.3 Hz, 2H), 3.69 265 
(brs, 2H), 3.36 (brs, 2H), 2.61 (t, J = 7.7 Hz, 2H), 1.71–1.44 (m, 8H), 1.37–1.24 (m, 6H), 0.88 266 
(t, J = 6.7 Hz, 3H). 13C NMR (100 MHz, CDCl3) δ 170.6, 144.5, 133.7, 128.4, 126.9, 77.4, 77.1, 267 
76.8, 48.8, 43.2, 35.8, 31.7, 31.3, 29.0, 26.6, 25.7, 24.7, 22.6, 14.1. Spectroscopic properties 268 
matched those described previously.14d 269 

(4-Hexylphenyl)(pyrrolidin-1-yl)methanone (Table 2, 2c). Prepared according to 270 
the general procedure using (4-chlorophenyl)(pyrrolidin-1-yl)methanone (0.50 mmol), 271 
Fe(acac)3 (0.1 mol%), DMI (200 mol%), 2-MeTHF (1.0 M), and C6H13MgCl (2.0 M in THF, 272 
1.20 equiv). The reaction mixture was stirred for 18 h at 0 °C. Yield 88% (114.1 mg). Col- 273 
orless oil. 1H NMR (400 MHz, CDCl3) δ 7.44 (d, J = 8.2 Hz, 2H), 7.19 (d, J = 8.3 Hz, 2H), 3.64 274 
(t, J = 7.0 Hz, 2H), 3.45 (t, J = 6.6 Hz, 2H), 2.62 (t, J = 7.7 Hz, 2H), 2.00–1.91 (m, 2H), 1.90– 275 
1.82 (m, 2H), 1.64–1.56 (m, 2H), 1.35–1.25 (m, 6H), 0.88 (t, J = 6.8 Hz, 3H). 13C NMR (100 276 
MHz, CDCl3) δ 169.9, 144.9, 134.5, 128.2, 127.2, 77.2, 77.1, 76.7, 49.6, 46.2, 35.8, 31.7, 31.2, 277 
28.9, 26.4, 24.4, 22.6, 14.1. Spectroscopic properties matched those described previously.21 278 

Azetidin-1-yl(4-hexylphenyl)methanone (Table 2, 2d). Prepared according to the 279 
general procedure using azetidin-1-yl(4-chlorophenyl)methanone (0.50 mmol), Fe(acac)3 280 
(0.1 mol%), DMI (200 mol%), 2-MeTHF (1.0 M), and C6H13MgCl (2.0 M in THF, 1.05 equiv). 281 
The reaction mixture was stirred for 18 h at 0 °C. Yield 73% (89.6 mg). Colorless oil. New 282 
compound. 1H NMR (400 MHz, CDCl3) δ 7.55 (d, J = 8.3 Hz, 2H), 7.20 (d, J = 8.4 Hz, 2H), 4.31 283 
(t, J = 7.5 Hz, 2H), 4.22 (t, J = 7.7 Hz, 2H), 2.62 (t, J = 7.7 Hz, 2H), 2.37–2.29 (m, 2H), 1.64– 284 
1.56 (m, 2H), 1.35–1.25 (m, 6H), 0.88 (t, J = 6.8 Hz, 3H). 13C NMR (100 MHz, CDCl3) δ 170.4, 285 
146.1, 130.6, 128.3, 127.9, 77.4, 77.1, 76.7, 53.4, 48.9, 35.9, 31.7, 31.2, 28.9, 22.6, 16.1, 14.14. 286 
HRMS (ESI/Q-TOF) m/z: [M + Na]+ calcd for C16H23NONa 268.1677 found 268.1673. 287 

4-Hexyl-N,N-dimethylbenzamide (Table 2, 2e). Prepared according to the general 288 
procedure using 4-chloro-N,N-dimethylbenzamide (0.50 mmol), Fe(acac)3 (0.1 mol%), 289 
DMI (200 mol%), 2-MeTHF (1.0 M), and C6H13MgCl (2.0 M in THF, 1.05 equiv). The reac- 290 
tion mixture was stirred for 18 h at 0 °C. Yield 95% (110.9 mg). Colorless oil. 1H NMR (400 291 
MHz, CDCl3) δ 7.33 (d, J = 8.1 Hz, 2H), 7.19 (d, J = 8.1 Hz, 2H), 3.10 (brs, 3H), 2.99 (brs, 3H), 292 
2.61 (t, J = 7.7 Hz, 2H), 1.65–1.55 (m, 2H), 1.37–1.25 (m, 6H), 0.88 (t, J = 6.8 Hz, 3H). 13C 293 
NMR (100 MHz, CDCl3) δ 171.8, 144.5, 133.5, 128.2, 127.1, 77.4, 77.1, 76.7, 39.6, 35.7, 35.3, 294 
31.6, 31.2, 28.8, 22.5, 14.0. Spectroscopic properties matched those described previously.14d 295 

N,N-Diethyl-4-hexylbenzamide (Table 2, 2f). Prepared according to the general pro- 296 
cedure using 4-chloro-N,N-diethylbenzamide (0.50 mmol), Fe(acac)3 (0.1 mol%), DMI (200 297 
mol%), 2-MeTHF (1.0 M), and C6H13MgCl (2.0 M in THF, 1.20 equiv). The reaction mixture 298 
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was stirred for 18 h at 0 °C. Yield 98% (128.3 mg). Colorless oil. New compound. 1H NMR 299 
(400 MHz, CDCl3) δ 7.28 (d, J = 8.1 Hz, 2H), 7.19 (d, J = 8.2 Hz, 2H), 3.54 (brs, 2H), 3.28 (brs, 300 
2H), 2.61 (t, J = 7.7 Hz, 2H), 1.65–1.55 (m, 2H), 1.36–1.06 (m, 12H), 0.88 (t, J = 6.8 Hz, 3H). 301 
13C NMR (100 MHz, CDCl3) δ 171.5, 144.1, 134.5, 128.3, 126.3, 77.4, 77.1, 76.7, 43.3, 39.2, 302 
35.8, 31.7, 31.3, 28.9, 22.6, 14.2, 14.1, 12.9. HRMS (ESI/Q-TOF) m/z: [M + Na]+ calcd for 303 
C17H27NONa 284.1990 found 284.1985. 304 

4-Hexyl-N,N-diisopropylbenzamide (Table 2, 2g). Prepared according to the gen- 305 
eral procedure using 4-chloro-N,N-diisopropylbenzamide (0.50 mmol), Fe(acac)3 (0.1 306 
mol%), DMI (200 mol%), 2-MeTHF (1.0 M), and C6H13MgCl (2.0 M in THF, 1.20 equiv). 307 
The reaction mixture was stirred for 18 h at 0 °C. Yield 98% (141.7 mg). Colorless oil. New 308 
compound. 1H NMR (400 MHz, CDCl3) δ 7.22 (d, J = 8.2 Hz, 2H), 7.17 (d, J = 8.3 Hz, 2H), 309 
4.11–3.27 (m, 2H), 2.60 (t, J = 7.7 Hz, 2H), 1.65–1.07 (m, 20H), 0.88 (t, J = 6.8 Hz, 3H). 13C 310 
NMR (100 MHz, CDCl3) δ 171.3, 143.6, 136.2, 128.4, 125.7, 50.8, 45.8, 35.8, 31.7, 31.3, 28.9, 311 
22.6, 20.8, 14.1. HRMS (ESI/Q-TOF) m/z: [M + Na]+ calcd for C19H31NONa 312.2303 found 312 
312.2295. 313 

4-Hexyl-N-methyl-N-phenylbenzamide (Table 2, 2h). Prepared according to the 314 
general procedure using 4-chloro-N-methyl-N-phenylbenzamide (0.50 mmol), Fe(acac)3 315 
(0.1 mol%), DMI (200 mol%), 2-MeTHF (1.0 M), and C6H13MgCl (2.0 M in THF, 1.05 equiv). 316 
The reaction mixture was stirred for 18 h at 0 °C. Yield 85% (125.7 mg). Colorless oil. New 317 
compound. 1H NMR (400 MHz, CDCl3) δ 7.24–7.18 (m, 4H), 7.15–7.09 (m, 1H), 7.06–7.01 (m, 318 
2H), 6.95 (d, J = 8.3 Hz, 2H), 3.49 (s, 3H), 2.49 (t, J = 7.7 Hz, 2H), 1.55–1.46 (m, 2H), 1.28– 319 
1.20 (m, 6H), 0.85 (t, J = 6.9 Hz, 3H). 13C NMR (100 MHz, CDCl3) δ 170.7, 145.1, 144.7, 133.0, 320 
129.0, 128.8, 127.6, 126.8, 126.2, 77.4, 77.1, 76.7, 38.4, 35.6, 31.5, 30.9, 28.7, 22.5, 14.0. HRMS 321 
(ESI/Q-TOF) m/z: [M + Na]+ calcd for C20H25NONa 318.1834 found 318.1825. 322 

N-Benzyl-4-hexyl-N-methylbenzamide (Table 2, 2i). Prepared according to the gen- 323 
eral procedure using N-benzyl-4-chloro-N-methylbenzamide (0.50 mmol), Fe(acac)3 (0.1 324 
mol%), DMI (200 mol%), 2-MeTHF (1.0 M), and C6H13MgCl (2.0 M in THF, 1.05 equiv). 325 
The reaction mixture was stirred for 18 h at 0 °C. Yield 95% (147.2 mg). Colorless oil. New 326 
compound. 1H NMR (400 MHz, CDCl3) δ 7.42–7.13 (m, 9H), 4.75 (brs, 1H), 4.54 (brs, 1H), 327 
3.10–2.80 (m, 3H), 2.60 (brs, 2H), 1.59 (brs, 2H), 1.29 (brs, 6H), 0.87 (t, J = 6.8 Hz, 3H). 13C 328 
NMR (100 MHz, CDCl3) (mixture of two rotamers) δ 172.6, 171.8, 144.7, 137.1, 136.7, 133.3, 329 
128.7, 128.4, 128.1, 127.5, 127.1, 126.9, 126.7, 77.4, 77.1, 76.7, 55.2, 50.8, 37.1, 35.8, 33.2, 31.7, 330 
31.2, 28.9, 22.6, 14.1. HRMS (ESI/Q-TOF) m/z: [M + Na]+ calcd for C21H27NONa 332.1990 331 
found 332.1975. 332 

(4-Cyclohexylphenyl)(morpholino)methanone (Table 2, 2j). Prepared according to 333 
the general procedure using (4-chlorophenyl)(morpholino)methanone (0.50 mmol), 334 
Fe(acac)3 (0.1 mol%), DMI (200 mol%), 2-MeTHF (1.0 M), and c-C6H11MgCl (1.0 M in 2- 335 
MeTHF, 2.00 equiv). The reaction mixture was stirred for 18 h at 0 °C. Yield 80% (109.5 336 
mg). White solid. 1H NMR (400 MHz, CDCl3) δ 7.33 (d, J = 8.3 Hz, 2H), 7.24 (d, J = 8.0 Hz, 337 
2H), 3.89–3.40 (m, 8H), 2.58–2.46 (m, 1H), 1.92–1.80 (m, 4H), 1.80–1.71 (m, 1H), 1.48–1.32 338 
(m, 4H), 1.32–1.17 (m, 1H). 13C NMR (100 MHz, CDCl3) δ 170.6, 150.1, 132.6, 127.2, 127.0, 339 
77.4, 77.1, 76.7, 66.9, 48.4, 44.4, 42.6, 34.2, 26.7, 26.0. Spectroscopic properties matched those 340 
described previously.14d 341 

(4-Isopropylphenyl)(morpholino)methanone (Table 2, 2k). Prepared according to 342 
the general procedure using (4-chlorophenyl)(morpholino)methanone (0.50 mmol), 343 
Fe(acac)3 (0.1 mol%), DMI (200 mol%), 2-MeTHF (1.0 M), and i-PrMgBr (0.6 M in THF, 2.0 344 
equiv). The reaction mixture was stirred for 18 h at 0 °C. Yield 56% (65.4 mg). Colorless 345 
oil. 1H NMR (400 MHz, CDCl3) δ 7.34 (d, J = 8.3 Hz, 2H), 7.26 (d, J = 8.0 Hz, 2H), 3.85–3.44 346 
(m, 8H), 2.99–2.85 (m, 1H), 1.25 (d, J = 6.9 Hz, 6H). 13C NMR (100 MHz, CDCl3) δ 170.7, 347 
151.0, 132.7, 127.3, 126.6, 77.4, 77.1, 76.7, 66.9, 34.1, 23.8. Spectroscopic properties matched 348 
those described previously.22 349 

(3-Hexylphenyl)(morpholino)methanone (Table 2, 2l). Prepared according to the 350 
general procedure using (3-chlorophenyl)(morpholino)methanone (0.50 mmol), Fe(acac)3 351 
(0.1 mol%), DMI (200 mol%), 2-MeTHF (1.0 M), and C6H13MgCl (2.0 M in THF, 1.05 equiv). 352 
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The reaction mixture was stirred for 18 h at 0 °C. Yield 68% (93.5 mg). Colorless oil. New 353 
compound. 1H NMR(400 MHz, CDCl3) δ 7.34–7.28 (m, 1H), 7.25–7.16 (m, 3H), 3.90–3.37 (m, 354 
8H), 2.62 (t, J = 7.7 Hz, 2H), 1.65–1.55 (m, 2H), 1.35–1.24 (m, 6H), 0.88 (t, J = 6.9 Hz, 3H). 13C 355 
NMR (101 MHz, CDCl3) δ 170.7, 143.4, 135.2, 129.9, 128.3, 127.0, 124.2, 77.4, 77.1, 76.7, 66.9, 356 
48.1, 42.5, 35.7, 31.6, 31.2, 28.9, 22.5, 14.0. HRMS (ESI/Q-TOF) m/z: [M + Na]+ calcd for 357 
C17H25NO2Na 298.1783 found 298.1777. 358 

Optimization Studies for the Reduction of Amides. To a solution of (4-cyclohex- 359 
ylphenyl)(morpholino)methanone (0.30 mmol) in solvent (2.5 mL), EtOH (4.5-15 mmol) 360 
was added, followed by sodium dispersions in oil (1.5-3.0 mmol) under Ar at 0 ℃ and the 361 
resulting solution was stirred vigorously. After 20 min the reaction mixture was quenched 362 
by an aqueous solution of NaHCO3 (5.0 mL, saturated) and the reaction mixture was di- 363 
luted with EtOAc (10 mL) and brine (10 mL). The aqueous layer was extracted with EtOAc 364 
(2 x 10 mL), the organic layers were combined, dried over MgSO4, filtered and concen- 365 
trated. Then the sample was analyzed by 1H NMR (CDCl3, 300 MHz) to obtain the deuter- 366 
ium incorporation and yield using internal standard and comparison with authentic sam- 367 
ples. 368 

General Procedure for the Reduction of Amides by Na/EtOH. To a solution of am- 369 
ide substrate (0.30 mmol) in hexane (2.5 mL), EtOH (9.0 mmol) was added, followed by 370 
sodium dispersions in oil (34 wt %, 3.0 mmol) under Ar at 0 ℃ and the resulting solution 371 
was stirred vigorously. After 20 min, the reaction mixture was quenched by an aqueous 372 
solution of NaHCO3 (5.0 mL, saturated) and the reaction mixture was diluted with EtOAc 373 
(10 mL) and brine (10 mL). The aqueous layer was extracted with EtOAc (2 x 10 mL), the 374 
organic layers were combined, dried over MgSO4, filtered and concentrated. The crude 375 
product was purified by flash chromatography on silica gel (EtOAc/petroleum ether). 376 

Characterization Data of Reduction Products. 377 
(4-Hexylphenyl)methanol (Table 4, 3a). According to the general procedure, the re- 378 

action of (4-hexylphenyl)(morpholino)methanone (0.30 mmol), EtOH (9.0 mmol) and Na 379 
dispersion in oil (3.0 mmol), after chromatography (0-25% EtOAc/petroleum ether), af- 380 
forded 3a, 51.9 mg, 90% yield as a colorless oil. 1H NMR (300 MHz, CDCl3) δ 7.27 (d, J = 381 
7.9 Hz, 2H), 7.17 (d, J = 7.9 Hz, 2H), 4.62 (s, 2H), 2.59 (t, J = 7.7 Hz ,2H), 1.89 (br, 1H), 1.60 382 
(m, 2H), 1.37–1.23 (m, 6H), 0.88 (t, J = 6.8 Hz, 3H); 13C NMR (75 MHz, CDCl3) δ 142.6, 138.2, 383 
128.7, 127.2, 65.4, 35.8, 31.8, 31.6, 29.1, 22.7, 14.2. Spectroscopic properties matched those 384 
described previously.23 385 

(4-Hexylphenyl)methanol (Table 4, 3a). According to the general procedure, the re- 386 
action of (4-hexylphenyl)(piperidin-1-yl)methanone (0.30 mmol), EtOH (9.0 mmol) and 387 
Na dispersion in oil (3.0 mmol), after chromatography (0-25% EtOAc/petroleum ether), 388 
afforded 3a, 46.7 mg, 81% yield as a colorless oil. Spectroscopic properties matched those 389 
described previously.23 390 

(4-Hexylphenyl)methanol (Table 4, 3a). According to the general procedure, the re- 391 
action of (4-hexylphenyl)(pyrrolidin-1-yl)methanone (0.30 mmol), EtOH (9.0 mmol) and 392 
Na dispersion in oil (3.0 mmol), after chromatography (0-25% EtOAc/petroleum ether), 393 
afforded 3a, 51.9 mg, 90% yield as a colorless oil. Spectroscopic properties matched those 394 
described previously.23 395 

(4-Hexylphenyl)methanol (Table 4, 3a). According to the general procedure, the re- 396 
action of azetidin-1-yl(4-hexylphenyl)methanone (0.30 mmol), EtOH (9.0 mmol) and Na 397 
dispersion in oil (3.0 mmol), after chromatography (0-25% EtOAc/petroleum ether), af- 398 
forded 3a, 46.2 mg, 80% yield as a colorless oil. Spectroscopic properties matched those 399 
described previously.23 400 

(4-Hexylphenyl)methanol (Table 4, 3a). According to the general procedure, the re- 401 
action of 4-hexyl-N,N-dimethylbenzamide (0.30 mmol), EtOH (9.0 mmol) and Na disper- 402 
sion in oil (3.0 mmol), after chromatography (0-25% EtOAc/petroleum ether), afforded 3a, 403 
43.3 mg, 75% yield as a colorless oil. Spectroscopic properties matched those described 404 
previously.23 405 
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(4-Hexylphenyl)methanol (Table 4, 3a). According to the general procedure, the re- 406 
action of N,N-diethyl-4-hexylbenzamide (0.30 mmol), EtOH (9.0 mmol) and Na dispersion 407 
in oil (3.0 mmol), after chromatography (0-25% EtOAc/petroleum ether), afforded 3a, 42.1 408 
mg, 73% yield as a colorless oil. Spectroscopic properties matched those described previ- 409 
ously.23 410 

(4-Hexylphenyl)methanol (Table 4, 3a). According to the general procedure, the re- 411 
action of 4-hexyl-N,N-diisopropylbenzamide (0.30 mmol), EtOH (9.0 mmol) and Na dis- 412 
persion in oil (3.0 mmol), after chromatography (0-25% EtOAc/petroleum ether), afforded 413 
3a, 42.2 mg, 73% yield as a colorless oil. Spectroscopic properties matched those described 414 
previously.23 415 

(4-Hexylphenyl)methanol (Table 4, 3a). According to the general procedure, the re- 416 
action of 4-hexyl-N-methyl-N-phenylbenzamide (0.30 mmol), EtOH (9.0 mmol) and Na 417 
dispersion in oil (3.0 mmol), after chromatography (0-25% EtOAc/petroleum ether), af- 418 
forded 3a, 46.7 mg, 81% yield as a colorless oil. Spectroscopic properties matched those 419 
described previously.23 420 

(4-Hexylphenyl)methanol (Table 4, 3a). According to the general procedure, the re- 421 
action of N-benzyl-4-hexyl-N-methylbenzamide (0.30 mmol), EtOH (9.0 mmol) and Na 422 
dispersion in oil (3.0 mmol), after chromatography (0-25% EtOAc/petroleum ether), af- 423 
forded 3a, 36.9 mg, 64% yield as a colorless oil. Spectroscopic properties matched those 424 
described previously.23 425 

(4-Cyclohexylphenyl)methanol (Table 4, 3b). According to the general procedure, the 426 
reaction of (4-cyclohexylphenyl)(morpholino)methanone (0.30 mmol), EtOH (9.0 mmol) 427 
and Na dispersion in oil (3.0 mmol), after chromatography (0-25% EtOAc/petroleum 428 
ether), afforded 3b, 49.7 mg, 87% yield as a white solid. 1H NMR (300 MHz, CDCl3) δ 7.29 429 
(m, 2H), 7.20 (m, 2H), 4.64 (s, 2H), 2.49 (m, 1H), 1.93–1.60 (m, 7H), 1.49–1.33 (m, 4H); 13C 430 
NMR (75 MHz, CDCl3) δ 147.8, 138.4, 127.2, 127.1, 65.4, 44.4, 34.6, 27.0, 26.3. Spectroscopic 431 
properties matched those described previously.24 432 

(4-Isopropylphenyl)methanol (Table 4, 3c). According to the general procedure, the 433 
reaction of (4-isopropylphenyl)(morpholino)methanone (0.30 mmol), EtOH (9.0 mmol) 434 
and Na dispersion in oil (3.0 mmol), after chromatography (0-25% EtOAc/petroleum 435 
ether), afforded 3c, 33.8 mg, 75% yield as a white solid. 1H NMR (300 MHz, CDCl3) δ 7.29 436 
(m, 2H), 7.22 (m, 2H), 4.62 (s, 2H), 2.90 (m, 1H), 1.98 (br, 1H), 1.24 (d, J = 6.9 Hz, 6H); 13C 437 
NMR (75 MHz, CDCl3) δ 148.5, 138.4, 127.3, 126.7, 65.3, 34.0, 24.1. Spectroscopic properties 438 
matched those described previously.25 439 

(3-Hexylphenyl)methanol (Table 4, 3d). According to the general procedure, the re- 440 
action of (3-hexylphenyl)(morpholino)methanone (0.30 mmol), EtOH (9.0 mmol) and Na 441 
dispersion in oil (3.0 mmol), after chromatography (0-25% EtOAc/petroleum ether), af- 442 
forded 3d, 30.6 mg, 53% yield as a colorless oil. New compound. 1H NMR (400 MHz, CDCl3) 443 
δ 7.30–7.25 (m, 1H), 7.21–7.15 (m, 2H), 7.14–7.10 (m, 2H), 4.67 (s, 2H), 2.61 (t, J = 7.7 Hz, 444 
2H), 1.69–1.57 (m, 3H), 1.35–1.25 (m, 6H), 0.88 (t, J = 6.8 Hz, 3H). 13C NMR (100 MHz, 445 
CDCl3) δ 143.4, 140.8, 128.5, 127.8, 127.1, 124.3, 77.4, 77.1, 76.7, 65.5, 36.0, 31.8, 31.5, 29.1, 446 
22.6, 14.1. HRMS (ESI/Q-TOF) m/z: [M + Na]+ calcd for C13H20ONa 215.1412 found 447 
215.1403. 448 

General Procedure for the Reductive Deuteration of Amides by Na/EtOD-d1. To a 449 
solution of an amide substrate (0.30 mmol) in hexane (2.5 mL), EtOH (9.0 mmol) was 450 
added, followed by sodium dispersions in oil (34 wt %, 3.0 mmol) under Ar at 0 ℃ and 451 
the resulted solution was stirred vigorously. After 20 min, the reaction mixture was 452 
quenched by an aqueous solution of NaHCO3 (5.0 mL, saturated) and the reaction mixture 453 
was diluted with EtOAc (10 mL) and brine (10 mL). The aqueous layer was extracted with 454 
EtOAc (2 x 10 mL), the organic layers were combined, dried over MgSO4, filtered and 455 
concentrated. The crude product was purified by flash chromatography on slica gel 456 
(EtOAc/petroleum ether). 457 

Characterization Data of Reductive Deuteration Products. 458 
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(4-Hexylphenyl)methan-d2-ol (Table 5, 4a). According to the general procedure, the 459 
reaction of (4-hexylphenyl)(morpholino)methanone (0.30 mmol), EtOD-d1 (9.0 mmol) and 460 
Na dispersion in oil (3.0 mmol), after chromatography (0%-25% EtOAc/petroleum ether), 461 
afforded 4a, 44.3 mg, 76% yield as a colorless oil. 1H NMR (300 MHz, CDCl3) δ 7.26 (d, J = 462 
8.1 Hz, 2H), 7.17 (d, J = 8.1 Hz, 2H), 2.60 (t, J = 7.7 Hz ,2H), 1.67 (br, 1H), 1.60 (m, 2H), 1.37– 463 
1.25 (m, 6H), 0.88 (t, J = 6.9 Hz, 3H); 13C NMR (75 MHz, CDCl3) δ 142.6, 138.2 (m), 128.7, 464 
127.2, 65.0 (m), 35.8, 31.8, 31.6, 29.1, 22.7, 14.2. Spectroscopic properties matched those 465 
described previously.23 466 

(4-Hexylphenyl)methan-d2-ol (Table 5, 4a). According to the general procedure, the 467 
reaction of (4-hexylphenyl)(piperidin-1-yl)methanone (0.30 mmol), EtOD-d1 (9.0 mmol) 468 
and Na dispersion in oil (3.0 mmol), after chromatography (0%-25% EtOAc/petroleum 469 
ether), afforded 4a, 56.5 mg, 97% yield as a colorless oil. Spectroscopic properties matched 470 
those described previously.23 471 

(4-Hexylphenyl)methan-d2-ol (Table 5, 4a). According to the general procedure, the 472 
reaction of (4-hexylphenyl)(pyrrolidin-1-yl)methanone (0.30 mmol), EtOD-d1 (9.0 mmol) 473 
and Na dispersion in oil (3.0 mmol), after chromatography (0%-25% EtOAc/petroleum 474 
ether), afforded 4a, 50.7 mg, 87% yield as a colorless oil. Spectroscopic properties matched 475 
those described previously.23 476 

(4-Hexylphenyl)methan-d2-ol (Table 5, 4a). According to the general procedure, the 477 
reaction of azetidin-1-yl(4-hexylphenyl)methanone (0.30 mmol), EtOD-d1 (9.0 mmol) and 478 
Na dispersion in oil (3.0 mmol), after chromatography (0%-25% EtOAc/petroleum ether), 479 
afforded 4a, 42.6 mg, 73% yield as a colorless oil. Spectroscopic properties matched those 480 
described previously.23 481 

(4-Hexylphenyl)methan-d2-ol (Table 5, 4a). According to the general procedure, the 482 
reaction of 4-hexyl-N,N-dimethylbenzamide (0.30 mmol), EtOD-d1 (9.0 mmol) and Na dis- 483 
persion in oil (3.0 mmol), after chromatography (0%-25% EtOAc/petroleum ether), af- 484 
forded 4a, 42.0 mg, 72% yield as a colorless oil. Spectroscopic properties matched those 485 
described previously.23 486 

(4-Hexylphenyl)methan-d2-ol (Table 5, 4a). According to the general procedure, the 487 
reaction of N,N-diethyl-4-hexylbenzamide (0.30 mmol), EtOD-d1 (9.0 mmol) and Na dis- 488 
persion in oil (3.0 mmol), after chromatography (0%-25% EtOAc/petroleum ether), af- 489 
forded 4a, 44.9 mg, 77% yield as a colorless oil. Spectroscopic properties matched those 490 
described previously.23 491 

(4-Hexylphenyl)methan-d2-ol (Table 5, 4a). According to the general procedure, the 492 
reaction of 4-hexyl-N,N-diisopropylbenzamide (0.30 mmol), EtOD-d1 (9.0 mmol) and Na 493 
dispersion in oil (3.0 mmol), after chromatography (0%-25% EtOAc/petroleum ether), af- 494 
forded 4a, 34.4 mg, 59% yield as a colorless oil. Spectroscopic properties matched those 495 
described previously.23 496 

(4-Hexylphenyl)methan-d2-ol (Table 5, 4a). According to the general procedure, the 497 
reaction of 4-hexyl-N-methyl-N-phenylbenzamide (0.30 mmol), EtOD-d1 (9.0 mmol) and 498 
Na dispersion in oil (3.0 mmol), after chromatography (0%-25% EtOAc/petroleum ether), 499 
afforded 4a, 52.5 mg, 90% yield as a colorless oil. Spectroscopic properties matched those 500 
described previously.23 501 

(4-Hexylphenyl)methan-d2-ol (Table 5, 4a). According to the general procedure, the 502 
reaction of N-benzyl-4-hexyl-N-methylbenzamide (0.30 mmol), EtOD-d1 (9.0 mmol) and 503 
Na dispersion in oil (3.0 mmol), after chromatography (0%-25% EtOAc/petroleum ether), 504 
afforded 4a, 39.1 mg, 67% yield as a colorless oil. Spectroscopic properties matched those 505 
described previously.23 506 

(4-Cyclohexylphenyl)methan-d2-ol (Table 5, 4b). According to the general procedure, 507 
the reaction of (4-cyclohexylphenyl)(morpholino)methanone (0.30 mmol), EtOD-d1 (9.0 508 
mmol) and Na dispersion in oil (3.0 mmol), after chromatography (0-20% EtOAc/petro- 509 
leum ether), afforded 4b, 46.1 mg, 80% yield as a white solid. 1H NMR (300 MHz, CDCl3) 510 
δ 7.28 (m, 2H), 7.20 (m, 2H), 2.50 (m, 1H), 1.93–1.64 (m, 7H), 1.48–1.33 (m, 4H). 13C NMR 511 
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(75 MHz, CDCl3) δ 147.8, 138.3, 127.3, 127.1, 64.8 (m), 44.4, 34.6, 27.0, 26.3. Spectroscopic 512 
properties matched those described previously.24 513 

(4-Isopropylphenyl)methan-d2-ol (Table 5, 4c). According to the general procedure, 514 
the reaction of (4-isopropylphenyl)(morpholino)methanone (0.30 mmol), EtOD-d1 (9.0 515 
mmol) and Na dispersion in oil (3.0 mmol), after chromatography (0-25% EtOAc/petro- 516 
leum ether), afforded 4c, 32.0 mg, 70% yield as a white solid. 1H NMR (300 MHz, CDCl3) 517 
δ 7.29 (m, 2H), 7.22 (m, 2H), 2.91 (m, 1H), 1.70 (br, 1H), 1.25 (d, J = 7.0 Hz, 6H). 13C NMR 518 
(75 MHz, CDCl3) δ 148.6, 138.3, 127.3, 126.7, 65.0 (m), 34.0, 24.1. Spectroscopic properties 519 
matched those described previously.25 520 

(3-Hexylphenyl)methan- d2-ol (Table 5, 4d). According to the general procedure, the 521 
reaction of (3-hexylphenyl)(morpholino)methanone (0.30 mmol), EtOD-d1 (9.0 mmol) and 522 
Na dispersion in oil (3.0 mmol), after chromatography (0-25% EtOAc/petroleum ether), 523 
afforded 4d, 29.3 mg, 50% yield as a colorless oil. New compound. 1H NMR (400 MHz, 524 
CDCl3) δ 7.30–7.25 (m, 1H), 7.21–7.15 (m, 2H), 7.14–7.10 (m, 2H), 2.61 (t, J = 7.7 Hz, 2H), 525 
1.67–1.56 (m, 3H), 1.35–1.25 (m, 6H), 0.88 (t, J = 6.8 Hz, 3H). 13C NMR (100 MHz, CDCl3) δ 526 
143.4, 140.7, 128.5, 127.9, 127.2, 124.4, 77.4, 77.1, 76.7, 36.0, 31.8, 31.5, 29.1, 22.6, 14.2. HRMS 527 
(ESI/Q-TOF) m/z: [M + Na]+ calcd for C13H18D2ONa 217.1537 found 217.1526. 528 

Supplementary Materials: 1H and 13C NMR spectra are available online at www.mdpi.com/xxx/s1. 529 
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