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Abstract— Estimation and diagnostics of system states
and parameters is ubiquitous in industrial applications.
Estimation is often performed using input and output data,
and the quality of input excitation has critical impact on the
accuracy of the results. Therefore, optimal input excitation
design has been receiving increasing research attention.
Previously, input design is formulated as an optimization
problem to find a sequence of excitation, which maximizes
a certain criterion associated with estimation accuracy,
e.g., the information content of the data. However, the
practice suffers from several major drawbacks, including
the susceptibility to uncertainty (especially that in target
parameter) and tractability of solution. In this research, a re-
inforcement learning (RL) framework is proposed as a new
approach for input design. We envision the input generation
procedure as a Markov Decision Process, and leverage
reinforcement learning to learn an optimal policy for gener-
ating the input excitation. The new approach improves the
robustness of the generated input sequence through the
feedback mechanism of the policy, and tractability through
the learning mechanism of RL. The methodology is applied
to optimal excitation design for estimating critical lithium-
ion battery electrochemical parameters in simulation and
experiments. Results show that the new RL-based frame-
work significantly outperforms the conventional direct op-
timization approach (with one order-of-magnitude higher
information level) under the presence of uncertainty in the
target parameter for estimation, and achieves substantially
smaller estimation error compared with other profiles in ex-
periment. The obtained RL policy could be used for battery
health diagnostics and testing of second-life batteries for
repurposing applications.

Index Terms— lithium-ion battery, parameter estimation,
information content of data, excitation optimization, rein-
forcement learning.

[. INTRODUCTION

STIMATION of unknown system internal variables, such

as states and parameters, is an important topic in mod-
eling and control research. Model parameter estimation, in
particular, is critical for system monitoring, diagnostics and
control, as the accuracy of parameters is essential to guarantee
the fidelity of the model and the effectiveness of the model-
based practice of the above functionalities. For example, in the
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area of battery management and control [1], [2], parameter
estimation has been widely applied to state of health moni-
toring [3], [4], and model calibration [5]-[7] to enable real-
time state estimation [8], [9] and optimal control [10], [11]
among others. The practice of estimation typically determines
the values of parameters by fitting a model to the measured
input-output data using a certain algorithm. The topic has
been studied extensively with the primary focus on the model
development and algorithm design, while the importance of
data has been less investigated [2]. However, the quality of
data has a significant impact on parameter estimation, as
data containing low information about the target parameter
may impose a fundamental limit on the estimation accuracy
[12], while data with undesirable structures could substantially
amplify the errors caused by system uncertainties [13].

The critical role of data has motivated the research on the
design of input excitation to generate the optimal data for
estimation. In statistics, input excitation design is a particular
case of optimal experimental design (OED), which aims at
determining experiment conditions/settings that maximizes a
certain criterion related to the data quality. Commonly used
criteria in OED include information content of the data, e.g.,
Fisher information (FI) [14], and information gain by using
data for estimation, such as the Kullback-Leibler divergence
[15], [16] among others. One challenge with input excitation
design is the large number of optimization variables (typically
> 1000) due to the long input sequence. Take the field of
battery management and control as an example, FI (or its
variant) is commonly used in input optimization for battery
parameter estimation due to its more favorable (yet still
high) computational complexity compared with other criteria.
Existing research in this area includes early works on the
battery equivalent circuit model [7], [17] and later ones on
electrochemical model [5], [18]. These works considered input
current excitation subject to a certain pattern, such as sinu-
soidal, pulse, and (piece-wise) constant current, and optimized
the features of the patterns, e.g., frequency and magnitude.
Alternative objective such as the global sensitivity index has
also been considered [18]. Recent works have explored optimal
current excitation with no imposed pattern for estimating
battery electrochemical parameters [19]-[21], enabled by effi-
cient sensitivity computation technique [20]. Similar study was
performed in [19], with sensitivity computed by perturbation
and input sequence divided into smaller segments to facilitate
computation. Most recently, the study was further extended to
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design inputs that could mitigate the propagation of system
uncertainties to the estimation error [13].

In the state of art, input excitation design is typically
formulated as an optimization problem to determine an optimal
input sequence based on the selected design criterion and
the underlying system dynamics. Such approach, however,
suffers from several notable drawbacks. First, the practice
faces an intrinsic dilemma regarding the values of the target
parameter to be estimated. Specifically, the design criterion,
e.g., F1, is typically dependent on system parameters, including
the target parameter, whose value is the goal of estimation
and remains unknown during the input design stage. As a
result, a certain a priori value needs to be assumed, which
would inevitably deviate from the true value. In fact, a small
deviation of the apriori parameter value could lead to input
sequences that are far from optimal under the actual parameter
value, which will be demonstrated with an example later in
this paper. Fundamentally, this reflects the susceptibility of
input (time) sequence optimization to system uncertainties
and disturbances. Second, the optimization procedures are
computationally intensive, involving iterative computation and
inversion of the design criterion and system dynamics, as well
as their Jacobian/gradient. This issue is especially prominent
for optimization with no imposed pattern, where the optimiza-
tion variables consist of the input at each instant of the time
sequence, yielding a high dimension. For instance, in order
to make the optimization tractable for battery electrochemical
models (single particle model [20] or reduced order Doyle-
Fuller-Newman (DFN) model [21]), significant efforts have
been made to simplify and reformulate the model and the prob-
lem. Nevertheless, extension to more complicated full-order
battery models still appears to be intractable [5]. In addition,
global minimum/optimality is always difficult to guarantee for
conventional gradient-driven optimization, especially for the
highly non-convex input design problems involving nonlinear
models and objectives.

To overcome the limitations of the conventional approach,
in this paper, input excitation design is formulated as an
optimal control problem with the goal of finding a closed-loop
control policy for input excitation generation. We envision
input generation as a Markov Decision Process (MDP) with
dynamics characterized by certain state(s), which are directly
related to battery physics. The objective is then to derive an
optimal control policy that can maximize the design criterion,
e.g., FI, over the considered time horizon. The reinforcement
learning method is used to learn the policy, which is guided
by rewards specified based on the design criterion. The contri-
butions and advantages of the proposed new method include
the following aspects. First, the derived control policy could
significantly reduce the impact of system uncertainties on the
performance of the designed input excitation. At each time
instant, the policy generates an input (current) action based on
certain states of the system. Compared with the conventional
practice of simply giving a time sequence of inputs at the
beginning [20], the feedback of states in real time would
correct for the deviation caused by system uncertainties and
disturbances. A recent work also leveraged RL to generate
current to improve the identifiability of battery stoichiometric

. ©2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.or
Authorized licensed use limited to: Univ of Calif Davis. Downloaded on April 24,2023 at 17:07:13 UTC from IEEE

parameters [22]. However, instead of using battery physical
states, they adopted the past current and voltage trajectories
as the RL states, yielding a very high dimensional state space
(200 total for both policy and value functions). This leads
to substantially higher computational and memory load for
training and implementation of the policy, compared to our
approach where only 1-2 states are needed for RL. In addition,
there also lacks the benefit of using physical state feedback
to counter uncertainties. We will demonstrate a case where an
input control policy informed by the state estimates of an ob-
server could generate an input control sequence that is robust
to the deviation in the assumed a prior: value of the target
parameter for estimation, hence resolving the aforementioned
dilemma facing the conventional approach. Second, the use
of reinforcement learning could also substantially improve the
tractability of input excitation design. Specifically, the policy
is learned using the reward generated at each time instant,
and the procedures only involve the forward computation of
the rewards and states based on the model. The associated
computational complexity is much more favorable than both
the direct optimization of the time sequence and the traditional
optimal control, which essentially needs to not only compute
but also invert the system dynamics and the Jacobians of
the design objective. Therefore, the reinforcement learning-
based approach provides a promising solution to enable input
optimization for nonlinear systems with complicated and high-
dimensional dynamics. The proposed framework is applied to
excitation design for the single-variate estimation of critical
lithium-ion battery electrochemical parameters in simulation
and experiments, showing one order-of-magnitude higher FI
under the presence of uncertainty in the target parameter for
estimation, compared with the sequence obtained by conven-
tional direct optimization. Detailed analysis is provided to
explain the improvement enabled by the proposed framework.
Experimental results are presented to validate the accuracy
of estimation using the optimized input excitation. To the
best of the authors’ knowledge, this research is the first to
explore input optimization for system parameter estimation by
combining reinforcement learning with system dynamics.

Il. INPUT EXCITATION DESIGN

In this section, the input design problem is first formulated
by using FI as the criterion. Under this formulation, we intro-
duce the general procedure of the conventional input excitation
design and, more importantly, the proposed reinforcement
learning-based excitation optimization framework.

A. Design Criterion
Consider a single-input-single-output discrete-time system
with dynamics modeled as
xy = fr(Tr—1,0,up-1) 0
Yk = gk (Tk, 0, u),

in which @ = [z1, 9, - ,x,] are the states of the model,
and v and y are the scalar input and output of the model
respectively. In this work, we consider the estimation of a
single parameter 6 of the system. The output sensitivity of
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TABLE |
NOMENCLATURE

Action of RL agent

Electrode area
Ce Electrolyte lithium concentration
Cse Electrode particle surface lithium concentration
Dg Electrode lithium diffusion coefficient
F Faraday constant

Finfo  Fisher information

Current

Reward of RL

Lumped battery ohmic resistance

Radius of electrode particle

RL states

System input

Open circuit potential

Battery voltage

System physical states

System output

Learning rate of RL

Electrode lithium stoichiometry

Decaying factor of RL reward

Electrode thickness

Greedy factor of RL exploration

Active material volume fraction

Overpotential

Model parameters

o Measurement noise variance

Pe Electrolyte potential

o

T~

nemeR 8 e W»

>3

the parameter 6 is the partial derivative of the output y to
0, gg, which reflects the impact of parameter change on the
output variation. High sensitivity indicates strong correlation
between y and 6, and hence the easiness of detecting parameter
change from output measurement. The output sensitivity could
also formally define the quality of data through the FI [14],
which is a metric to evaluate the information content about
contained in a data series y1,--- , Yk, - ,yn measured over
time. Under i.i.d. Gaussian output measurement noise, FI takes
the form [23]

1 <L /0
1nfoo_22< yk) (2)
Yy

k=1

where o2 is the variance of the measurement error in y. FI
is directly related to the accuracy of the estimation results.
Specifically, the inverse of FI gives the Crarher-Rao bound,
which quantifies a lower bound of the estimation error variance
of an unbiased estimator of 6 [24],

o*(0) > F.p,- 3)

Due to its correlation with data quality and estimation ac-
curacy, FI has been frequently adopted as the “gold standard”
for the optimization of input excitation.

B. Conventional Approach for Input Excitation Design

The conventional approach aims at designing the input
excitation sequence directly by maximizing the FI

N 2
WYk
(%) @

k=1

min
[u,uz,...un]
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subject to the constraints imposed by system dynamics, and
the bounds on state variables, input and output. The variables
to be optimized are the series of inputs uy’s applied to the
system over discrete time instances k’s, which will change
the state trajectory and parameter sensitivity, and hence the
FI (to be discussed in more details in the next section). The
formulated excitation optimization problem needs to be solved
by nonlinear optimization methods, such as in the practice of
lithium-ion battery parameter estimation [13], [20]. However,
as discussed previously, there are several major drawbacks
with the conventional approach. First, in order to maximize
the objective (4), an a priori value of the target parameter 0
needs to be assumed, as the FI typically depends on 6. A small
deviation of the a priori value could significantly affect the
optimality of the designed excitation sequence when applied to
the actual system with a different parameter value. An example
will be provided in Section IV for illustration. In addition,
conventional nonlinear optimization approaches, especially the
gradient-based algorithms, are computationally intensive due
to the need of iterative evaluation and inversion of system
dynamics and Jacobians during the optimization procedure.
This is especially challenging for the input optimization prob-
lem, where the number of optimization variables, i.e., input
instances, is typically very large (>1000). Consequently, the
practice would be intractable for complicated systems with
high order, nonlinearity, and complexity. The drawbacks of
the conventional approach inspires the exploration for a new
methodology for input excitation optimization in this work.

C. Formulation of Reinforcement Learning Framework

As an emerging alternative to the conventional optimization
approach, a RL-based optimization framework is proposed that
can offer a fundamentally different and innovative way to
address the drawbacks and challenges facing the former. In this
framework, the generation of input excitation is considered as
a Markov Decision Process (MDP) with dynamics described
by certain state(s) .S, which can be (some of) the physical
states of the system or information states related to the
estimation/learning process, e.g., sensitivity. The goal is then
to find an optimal policy 7 that generates the optimal action
a* at every time step: a* = 7(.5), to maximize the objective
of the excitation design over the whole data sequence, e.g.,
FI. Reinforcement learning learns the policy 7 by exploring
the state-action space to solve the Bellman Equation [25],
in the form of which most optimal control problems can be
formulated. In this work, the classic Q-learning scheme is
adopted as the basic RL algorithm as a demonstration due to
its simplicity [26], while other RL algorithms can be adopted
alternatively under the framework. Specifically, a state-action
value function, known as the @ function Q(S,a), is used to
represent the maximum expected total return of the sequence
when taking action a at state S, where the expected return
is the objective of input generation (e.g., maximal FI). The
purpose of learning is to train the accurate () function. During
the training phase, learning is performed in episodes, which
consist of a series of time steps. At each time step k, an action
ay is taken with the state at Sy, and the @ function is updated
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Fig. 1. Proposed RL-based excitation optimization and generation

framework

according to

Q(Sk, ar) < Q(Sk, ar) + afrp+ 5
ymax Q(Sis1,0) — QS an)],

which is derived from the Bellman Equation [26]. In (5), 7 is
the reward that is directly related to the learning objective. In
the case of FI in (2), which is the sum of the squared output
sensitivity over time steps, the single-step reward r; can be
conveniently formulated as:

|

in which a negative reward (penalty) is applied when the
constraints on states and output are violated to enforce the
safety limits. Additionally, regarding the updating rule in (5),
« is the learning rate governing the learning speed, and
is the decaying factor accounting for the discounting effect
of rewards over time. Meanwhile, during training, the action
ay, is chosen based on the e-greedy policy in (7), which has
a probability of 1 — e to take the action that exploits the
maximum return based on the @ function, and a probability
of € to explore a random action for learning purpose:

ak<—{

After the training is finished, the obtained () function is used to
generate the excitation in the implementation stage, i.e., aj, =
m(Sk) = argmax, Q(Sk, a) to maximize the return, based on
the feedback of the states or state estimates by an observer.
The schematic of the RL-based excitation optimization and
generation framework is shown in Fig. 1. In the context of
input design for battery parameter estimation, the action a
is the current I, and a reduced-order battery electrochemical
model is used to compute the state transition and the reward
(output sensitivity) for reinforcement learning. The state S is
chosen as a certain physical battery state and/or information
state, e.g., sensitivity. A brief discussion of the model and
battery physics will be included in the next section.

( Ay )2
20 /) >
negative penalty,

normal condition
constraint violation

(6)

with probability 1 — ¢
with probability e

argmax, Q(Sk,a)
a random action

)

[1l. BATTERY MODEL AND SENSITIVITY COMPUTATION

This section first introduces the battery model used for
optimization and reinforcement learning. The computation of
parameter sensitivity will be discussed next, which is needed
for evaluating the FI as the objective of input optimization and
the reward for reinforcement learning.
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A. SPMe Battery Model

A reduced-order electrochemical model, i.e., the single
particle model with electrolyte dynamics (SPMe) [8], is used
for describing battery physics in this work. The model captures
the key electrochemical processes occurring in the anode, sep-
arator, cathode, and electrolyte of the battery during operation,
including the diffusion of lithium ions in the electrode and
the electrolyte, and the intercalation/deintercalation kinetics
of lithium ion between the electrode and the electrolyte. The
model is a simplification of the full-order DFN model based on
the single particle assumption, which assumes uniform current
density across the electrode and uses one single particle in
each electrode to represent the storage and transfer of lithium
ion. The SPMe offers adequate balance of model fidelity and
complexity, and therefore has been widely used in battery
control research [13], [18], [19], [27].

In the context of SPMe, the output is the voltage, and input
is the current, i.e., y = V and u = I. The terminal voltage V'
consists of 4 different parts as described in (8),

V =Up(cse,p) = Un(csen)) + (Pe,p(Cep) = denlcen))

®)
+ (np(cse,pa Ce,p) - 77n<cse,na Ce,n)) - IR[,

where the subscripts p and n denote the positive and negative
electrode respectively. The first part is the difference between
the two electrodes in the open circuit potential (OCP) U,
which is a nonlinear function of the particle surface lithium
concentration c,. and reflects the equilibrium potential of the
electrodes. The second part represents the potential difference
in electrolyte (¢.) due to the gradient in electrolyte lithium
concentration ¢, caused by diffusion. The third part is the
difference in the overpotential 1 at the electrode particle
surface and electrolyte interface, which drives the lithium flux
at the particle surface due to the intercalation/deintercalation
reaction. Finally, I?; accounts for the lumped ohmic resis-
tance, including that of the electrolyte, SEI film, and current
collectors. The model further includes diffusion equations
to describe the evolution of ¢, and c., and a nonlinear
Butler-Vollmer equation to capture 7. Procedures including
Laplace transform and Padé approximation have been applied
to convert the original diffusion equations in the form of PDE
to a low-order rational transfer function to facilitate control
and optimization. For example, the transfer function for c,
from the input current I is obtained as

TRYs% + 420D, R%s + 3465D2  I(s)
s(R1s? + 189D, R2s + 3465D2) Fe AJ’

where R, is the radius of the electrode particle, Dy is the
diffusion coefficient, F' is the Faraday constant, €5 is the
active material volume fraction, and A and § are the area and
thickness of the electrode respectively. A detailed description
of the model can be found in [28].

(€))

Cse(s) =

B. Parameter Sensitivity Computation

Based on SPMe, a methodology has been derived to ef-
ficiently calculate the sensitivity of battery parameters [28].
Specifically, the sensitivity of the battery voltage to a certain
parameter can be obtained by applying the chain rule of
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differentiation to the voltage equation in (8). In this work,
the parameters targeted for input excitation optimization are
€s and D; respectively, which are the key parameters related
to the battery state of health [3], [29], [30]. Among them, &,
represents the portion of the electrode material that could ac-
tively store and transport Li-ion, and is an electrode parameter
affecting cs.. Therefore, the sensitivity of ¢ is

th_@ <8n+8U>.8cse
Ocse

92,0 = 2z, T\ e 9z, D
where 2 06 , B‘Z" and aU are nonlinear coefficients dependent
on current I that can be easily obtained based on the model.
Meanwhile, ‘%;f’ is dynamic and will change over time even
under constant Sinput, posing major difficulties for sensitivity
calculation. To characterize the dynamic nature of this term,
a sensitivity transfer function (STF) can be derived by taking
the derivative of ¢, in (9) to €4,

Ocse (s) = TRis* + 420D R%s + 3465D%  I(s)
des ) s(RYs2 +189D,R2%s + 3465D2) Fe2Ab

The obtained STF can be easily implemented in time domain,
e.g., through the state space representation, and used to com-
pute the sensitivity under arbitrary input or for optimization of
input [13], [20]. Same approach can be applied to compute the
sensitivity for other parameters. For example, the sensitivity
of Dy can be derived as

(10)

(1)

0.0~ (7 7o) o5 09
with a STF
Ocse 43R1s® + 1980D, R2s + 38115D% 21R2I(s)
ap, ) = (R%s? + 189D, R2s + 3465D2)2 FesAczB)

[V. OPTIMIZATION RESULTS AND SIMULATION
VERIFICATION

In this section, the current excitations optimized for esti-
mating €, and D, of the cathode, i.e., €5, and D; ,, using
the proposed RL-based approach are presented and analyzed.
The optimization task aims at maximizing the FI of the
target parameters with a battery starting SOC of 0.5 over a
1800s time horizon. Comparison to the results of conventional
optimization is also discussed to demonstrate the efficacy and
robustness of the new approach.

For the RL-based approach, each training episode starts
at 0.5 SOC and terminates after 1800 steps or violating
constraints, with a step size of 1 second. Training has been
attempted with various number of episodes ranging from 0.1
to 1 million. A single particle battery model with parameters
adopted from [31] is used for data generation and simulation
study. To account for the physical constraints of the considered
battery, the current and voltage are bounded according to the
specifications. The input/output ranges, penalty for constraint
violation, and algorithmic hyper-parameters of RL are shown
in Table II. The negative penalty is set by analyzing the scale
of the reward (()y’“) and tuning in sumulation trials. Noted
that the exploration probability e decays linearly over episodes
to prioritize exploration at the beginning and exploitation at
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TABLE Il
SETUP AND HYPERPARAMETERS OF RL

Input Range [-77A,77A]

Output Range [2.75V,4.4V]

Penalty for Constraint Violation -1

Learning Rate 0.5

Decaying Factor ~ 0.999

Greedy Factor € [1,0]

RL States S(k) For &s,p For Ds.p
SOC(k)  [SOC(k), §55= (k)]

the end. For e5,, the RL state S is the battery state of
charge (SOC) defined based on the cathode particle surface
concentration Cge p,

B — Bow
Broows — Bos’
where 3 is the lithium stoichiometry ratio of ¢, to the
maximum allowed lithium concentration ¢g’;* by the cathode
material, i.e., 5 = z;fai, and fByy, and 5100% are the lithium
stoichiometry at 0% ‘and 100% SOC. The state and input
are digitized to discrete values to index the @ function.
Specifically, the state SOC is discretized to 101 intervals
between 0% and 100%, and the input current is discretized
to 45 between —77 A and 77 A (-3 C and 3 C) respectively.
The states S for D, , learning will be discussed later.

As benchmark, the conventional direct optimization is im-
plemented using the General Purpose OPtimal Control Soft-
ware (GPOPS) package under same settings.

SOC = (14)

A. Analysis of Nominal Optimization Results

We will first evaluate the optimization results of the new
and conventional approaches under the nominal conditions.
Specifically, we will demonstrate the optimized current exci-
tation, analyze and explain the observed patterns, and compare
the FI of the obtained policy/sequence under the nominal
training/optimization conditions.

1) Optimization Results for es,: The current excitation for
estimating €, ,, generated by using the RL-trained policy and
that optimized by the conventional approach, along with the
resultant battery voltage V' and SOC evolution, are shown in
Fig. 2.

As shown in Fig. 2-1 and 2-2, similar patterns in cur-
rent excitation can be observed between the two approaches.
Qualitatively, both current profiles consist of three stages as
labeled. The first one is high-current charging, during which
the battery SOC rises rapidly. The second stage is reduced-
current charging after the voltage limit is reached, featured
by decreased terminal voltage and near-constant SOC. The
last stage is the SOC-sustaining pulse current, where SOC
maintains at around 0.78 under alternating charging and dis-
charging pulses. Explanation can be provided for the presented
excitation pattern by correlating to physics underlying the
dynamic equations that govern the parameter sensitivity, which
is related to the reward/objective of learning/optimization.
As shown in (10), the output voltage sensitivity of &4 is
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Fig. 3. Slope of cathode OCP curve versus SOC

comprised by the non-dynamic term 68 and the dynamic term

(6?:1 8‘1(5]&) . %CES:, where aa(ge . %CE*: is the dominant part
dependent on both the slope of cathode open circuit potential
aaU and the state sensitivity < 6“*8 . The slope of cathode OCP
with respect to SOC is plotted in Fig. 3, which achieves
the maximum in magnitude at SOC = 0.78. For %“’“, as
characterized by (11), its transfer function features a pole at
s = 0, representing an integrator 1/s. Therefore, its magnitude
will increase under continuous charging/discharging current,
and remain steady under zero or alternating excitation. As a
result, intuitively the optimal current excitation is to charge
the battery and accumulate %C“ until the SOC reaches the
highest OCP slope, i.e., SOC = 0.78, to yield the highest
6(1[5]6 %C;:, and then stay around the SOC to maintain high
sensitivity, which is as exactly the three-stage pattern of both
the RL-based and conventional optimization results. It is noted
that the pulse in the last stage marginally contributes to the
output sensitivity by increasing the non-dynamic term g—e’i
while keeping the SOC around 0.78.

For quantitative comparison, as shown in Table III, the
optimal current learned by RL yields a normalized FI of 282,
which is very close to that of the conventional method at 300.
The learning curve of RL is presented in Fig. 4, with two
subplots showing the evolution of the return per episode and
the value of one () table entry Q(50,22), i.e., the expected
total return when taking the 22nd action (I = —3.5A) at
the 50th state (SOC = 0.49) as an example. It is seen
that the return shows a rising trend over episodes until the
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Fig. 5. Optimized current, resultant voltage and SOC for Ds, , by RL
(1-a,b,c) and conventional approach (2-a,b,c)

end due to the exploration for the optimal policy at the
beginning with high exploration rate €, and the exploitation
of the refined policy at the end as e is gradually reduced to 0.
The convergence of the RL policy is further demonstrated by
the evolution of the () table entry, represented by Q(50,22),
which reaches a constant value over training process. Both
qualitative/quantitative analyses and the convergence of the
learning curve show that the proposed RL-based approach is
capable of finding the optimal excitation.

2) Optimization Results for Ds: The excitation optimized
for the estimation of another battery electrochemical parame-
ter, i.e., cathode diffusion coefficient Dy ,, is also explored
using the proposed RL-based approach. The RL states S
consist of two terms. The first one is the battery SOC, same
as in the case of ¢, 5, and the second one is the sensitivity of
the diffusion state cg,, i.e., chsz , representing the information
state. The inclusion of the second state is because of the non-
unique mapping from SOC alone to the optimal policy due
to the critical role of ac“ in sensitivity dynamics, as detailed
in the subsequent analys1s The optimized current excitation,
resulting terminal voltage and battery SOC of both the RL-
based and the conventional approach are shown in Fig. 5.

Similar patterns in current can be observed between the two
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methods, which is most evident in the SOC evolution shown
in (I-c) and (2-c) of Fig. 5. Both the excitations from the
RL-trained policy and conventional optimization feature mul-
tiple stages of alternating charging/discharging current, during
which the SOC swings between different levels, as marked
by color boxes, corresponding to different peak locations of
OCP slope labeled in Fig. 3. Analysis can be performed by
examining the dynamics of the sensitivity of D, to explain the
patterns of the excitation and the difference from the case of
€s. The output sensitivity of Dg shown in (12) is dominated
by aac[i . g%z, which is the product of cathode OCP slope
B%Je and the state sensitivity g‘gz. The dynamics of chsz , of
which the STF is given in (13), are stable with all negative
poles. As a result, the state sensitivity will die out under zero
excitation, and persistent input excitation is needed to maintain
a certain level of state sensitivity. Therefore, in order to achieve
high OCP slope and state sensitivity concurrently to maximize
the sensitivity and FI over the data sequence, the input policy
should apply continuous current over the time horizon to drive
the battery SOC to different peak locations of the OCP slope,
which explain the difference from the patterns of £, whose
STF has an integrator. Regarding the quantitative performance,
the RL policy is able to yield a normalized FI of 1.12, which is
better than that of the conventional approach at 0.831, showing
that the RL-based approach is able to generate qualitative
similar but quantitatively even better performance compared
with the direct optimization counterpart. The reason for the
better performance of RL is that it manages to consistently
drive the SOC to the OCP peak with the largest magnitude
(marked with the magenta dashed box), while the conventional
approach sometimes drives the SOC to the smallest peak
(marked with the green dashed box).

B. Performance under Uncertainty in Parameter

In order to evaluate the performance of the optimized
current excitation in practical scenario, another simulation
was conducted under the uncertainty in the target and other
parameters. The case of estimating &, , is shown here for
illustration. Specifically, the previous RL policy and open-loop
sequence trained/optimized for €, , under the nominal €, , =
0.5 and D;, = 10713 are applied to a battery (simulated by
SPMe) with actual €5, = 0.4 and D, = 1.2 x 1073, both
with 20% deviation (uncertainty) from the nominal values.
It is noted that the 20% variation of ¢, , reflects the same
amount of deviation in the cathode capacity, which can be
caused by either degradation or manufacturing variability.
This mismatch emulates the aforementioned uncertainty in the
target and other parameters, which are not known exactly at the
input optimization phase. For the conventional optimization
approach, the excitation sequence is applied directly, while
the RL-trained policy generates the excitation based on the
feedback of battery SOC as shown in the implementation
part of Fig. 1. The battery SOC is estimated based on the
SPMe and the current and voltage measurement using an
Extended Kalman Filter, which is a standard practice in battery
management [9], [32].

The resultant FI of €, , is summarized in Table III. It is
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shown that the RL-trained policy gives a FI of 284 when
evaluated at the actual €5, = 0.4 and D, = 1.2 x 10713,
which is close to that under the nominal €, j, and D; ,, while
the FI of the open-loop sequence drops substantially to only
51. In addition, we further applied the optimized excitations
to batteries with a series of €, ;, values in simulation, ranging
from 0.4 to 0.6 (-20% to +20% around the nominal value). The
resultant FI of the excitations obtained by the two approaches
is shown in Fig. 6. It is seen that the conventional approach
yields slightly higher FI when the actual e, ), is close to
the nominal €,, = 0.5. However, the FI drops significantly
when the actual €,, deviates from the nominal. The RL-
based method, on the other hand, maintains a high FI over
the whole range of actual €, ;. The significant difference in
performance can be explained by the SOC evolution under the
two excitations, shown in Fig. 7, for the case when applying
to estimate £,, = 0.4. It is seen that the RL-trained policy
still manages to drive the SOC to the desired peak of the
OCP slope, i.e., SOC = 0.78, while the open-loop sequence
reaches SOC = (.85 instead, where the OCP slope is much
smaller according to Fig. 3. The SOC deviation of the latter
is caused by the fact that the open-loop sequence simply
applies the pre-determined current values without referring to
the actual battery states, especially the SOC which is important
for maximizing sensitivity/FI. The battery SOC is proportional
to the stoichiometry ratio 5 as shown in (14), which is defined
based on the particle surface concentration cg.. According
to (9), the transfer function of cs. has a pole at s = 0,
representing an integrator, and is (inversely) proportional to
€s. Therefore, during optimization, SOC is projected to reach
0.78 under the nominal €, , driven by the designed current
sequence. However, when applied to battery with a different
€s,p> the actual SOC will drift, causing the miss of the OCP
slope peak and substantial reduction in FI. The RL policy, on
the contrary, establishes a mapping between the SOC (state)
and current (action), and uses the estimate of the actual SOC
as feedback to inform the generation of current excitation.
Therefore, the policy is valid for different values of actual
€s,p> as long as the estimated SOC is accurate. By using a
closed-loop observer with voltage as feedback, the impact of
the imprecise knowledge of ¢ ;, in the model can be mitigated
to yield accurate estimate of SOC [33].

The advantage of the RL-based approach is further demon-
strated by applying the designed input excitation to parameter
estimation in simulation. Specifically, estimation is conducted
using the designed current and the generated voltage output
based on the least squares method. To emulate the practical
measurement uncertainties, the current excitation data are
added with a Gaussian white noise of 0 mean and 0.1A
standard deviation, and the voltage output is injected with a
Gaussian white noise of 0.01 V mean bias and 0.01V standard
deviation. The resultant €, , estimation errors are shown in
Table III. It is seen that under the nominal conditions with
no uncertainty in 5, and D ,, the RL and the conventional
approaches yield similar errors, i.e., —2.50% vs. —2.38%,
which is in accordance with their similar FI. However, when
subject to the 20% uncertainty in €, ,, and D; ;, the estimation
error by RL slightly increases to —2.95%, while that of the
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Fig. 7. Actual SOC evolution when current excitations obtained by RL
policy and conventional direct sequence optimization (under nominal
€s,p = 0.5, Ds p, = 10~13) are applied to battery with e5,, = 0.4,
Ds,p = 1.2 x 10713

conventional approach grows substantially to —7.08%, due to
the significant decrease in FI evaluated at the actual battery
parameters. These results demonstrate that the proposed RL-
based input excitation optimization is fundamentally more
robust to the model uncertainty, and could address the intrinsic
dilemma facing the conventional excitation design regarding
the uncertainty of the target parameter.

Regarding the computational complexity of the two meth-
ods, on one hand, RL takes more time in training compared
with the conventional direct sequence optimization (17000 s
versus 500 s on the same computing platform) due to the need
for exploration. On the other hand, during implementation,
the computation load for applying the RL policy is light and
comparable to that of applying the open-loop sequence (0.1s
versus 0.07s), as it only involves reading the state feedback
and looking up the optimal action. However, it is noted that
due to its robustness to parameter uncertainty, the RL policy
trained under one parameter (set) can be applied to batteries
with different parameters, while the conventional optimization
requires re-generating the sequence under different parame-
ter values. Therefore, in this sense, the proposed RL-based
method is much more efficient. The robustness of the direct
sequence optimization could also be improved by adopting the
Model Predictive Control (MPC), which solves the sequence
optimization problem online repeatedly over receding horizon
and uses the feedback of output/states. The associated com-
putational and memory load, however, are substantial for the
real-time implementation phase, which makes it less appealing
compared to the RL policy.
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OBTAINED BY TWO APPROACHES UNDER NOMINAL/ACTUAL €5, AND
Ds,p IN SIMULATION

at nominal €5, = 0.5, at gs,p = 0.4,

Approach Dsp=10"13 Dsp=12x10713
FI Est. Err. FI Est. Err.
Conventional 300 -2.38% 51 -7.08%
RL 282 -2.50% 284 -2.95%

V. EXPERIMENTAL VALIDATION

In this section, the RL methodology is applied to generate
current excitation for estimating the parameter of a physical
battery. The results are validated by applying the learned
policy to the actual battery in experiment and conducting
parameter estimation with current and voltage measurements.
The battery used for experimental validation is a LG50M Li
Nickle-Manganese-Cobalt (NMC) battery, with most parame-
ters measured in [34] (using a series of invasive measurement
techniques) as reference for validation. The OCP-related pa-
rameters are identified using low current testing data from the
actual battery following procedures in [35]. The battery model
with the identified (reference) parameters has been shown to
achieve accurate voltage prediction, exemplified by the small
model errors shown in Table IV, which is computed as the
difference between the measured voltage and the prediction
of the model using the reference parameters. Specifically, the
mean absolute error (MAE) of voltage prediction under the
Federal Urban Driving Schedule (FUDS) and 1C Pulse profile
are 5.7 mV and 20.4 mV respectively. It is noted that the
reference parameters established this way may still not be
the “ground-truth”. Nevertheless, they provide an adequate
benchmark for evaluating the estimation errors as the param-
eter values are obtained from an approach different from data
fitting. These results, combined with the simulation results
discussed in Section IV where the true parameter values are
controlled and known, provide comprehensive validation of the
proposed methodology. The bounds for current and voltage
are [—5A,5A] and [2.6V,4.16V] respectively in accordance
with this specific battery chemistry. The target parameter for
estimation is €, ;. In order to emulate the actual estimation
scenario, the €5, used in the SPMe for training/optimizing
the excitations via RL and the conventional approach deviates
from the reference value by 20%, while other parameters use
the reference values. The current optimized for estimating € ,
using the two approaches are shown in Fig. 8.

It is seen that the optimal excitation for the experimental
battery resembles that for the simulated one previously shown
in Fig. 2. Both profiles feature 3 major stages, and the resul-
tant SOC converges to similar values, due to the underlying
sensitivity dynamics analyzed in Section IV.

The performance of the obtained current excitation is eval-
uated in terms of the FI and the error when applying to esti-
mate the parameter of the battery in experiment. Specifically,
the FI was first computed using the SPMe model with the

ore. Restrictions apply.



This article has been accepted for publication in IEEE Transactions on Industrial Informatics. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/T11.2023.3244342

AUTHOR et al.: TITLE

(1-a) Current by RL (2-a) Current by Conventional Opt.

5 5
<
5o 0
5 ﬂ
o

5 5

0 500 1000 1500 0 500 1000 1500
(1-b) SOC evolution (2-b) SOC evolution

0.8 0.8
(&}
b 0.7 0.7
7]

0.6 0.6

0.5 0.5

0 500 1000 1500 0 500 1000 1500
Time (s) Time (s)

Fig. 8. Optimized current for estimating e5,, and resultant SOC by RL
(1-a,b) and conventional approach (2-a,b) for experimental battery

TABLE IV
MODELING ERROR, Fl AND e5,;, ESTIMATION ERROR OF VARIOUS
EXCITATIONS IN EXPERIMENT

RL Conventional ~ FUDS 1C CC 1C Pulse
Model Err.
(MAE, mV) 7.0 8.0 5.7 44 .4 20.4
FI 94.5 94.2 2.3 94.0 0.6
Esti. Err. 1.05% 2.48% 291%  -9.00% -37.4%

actual/reference parameters. The current excitation was then
applied to the battery using an Arbin LBT 21084 cycler,
and the measured voltage was collected and used to estimate
the parameter based on SPMe. The least squares algorithm,
which is one of the most widely used methods for parameter
estimation, is adopted for estimation under all excitations to
ensure a fair comparison. The performance is also compared
to those of several other current profiles, including FUDS, 1C
constant current (CC) discharging, and 1C pulse current, which
have been frequently used for battery parameter estimation in
current practice. The results are summarized in Table IV.

As shown in the table, the RL-based current excitation
yields the highest FI of around 95 and the lowest &,
estimation error of 1.05% when applied to the actual battery.
The error is less than 1/2 of that under the profile optimized by
conventional approach (2.48%) and that under FUDS (2.91%),
and around one order of magnitude smaller than that under 1C
pulse (37%) and 1C CC (9%). The excellent estimation error of
the proposed approach can be explained by correlating to the
FI and an estimation error formula derived in Eqn. (10) of [13].
Specifically, estimation errors are caused by the inevitable
system uncertainties in the estimation process, including mea-
surement noises, model uncertainty (e.g., unmodeled/neglected
system dynamics), and parameter mismatch (imprecise knowl-
edge of other model parameters). The error formula quantifies
the estimation error of the least squares algorithm caused by
these uncertainties. It is noted that FI is the denominator of the
error formula, meaning that higher FI could effectively reduce
the errors. This explains the larger error under the 1C pulse
and FUDS current, whose FI is significantly smaller than that
of the current optimized by RL as shown in Table IV. For
the current optimized by the conventional method and 1C CC
current, on the other hand, although their FI is comparable
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to that of the RL-optimized current, the model uncertainty,
which depends on operating conditions, are larger (MAE of
8 mV and 44 mV vs. 7 mV). According to Eqn. (10) in
[13], the modeling uncertainty shows up as a term in the
numerator of the error formula (multiplied with sensitivity),
and hence results in larger estimation error. The substantially
smaller estimation error demonstrates the advantage of using
the current excitation optimized by the RL approach for
estimating battery electrochemical parameter.

VI. CONCLUSION

In this paper, we study the optimization of input excitation
for parameter estimation by proposing a new reinforcement
learning framework, which addresses the drawbacks of the
conventional direct optimization in robustness and tractability.
The objective is to obtain an optimal policy for input excitation
generation by learning through rewards, which are related to
the design criterion, i.e., FI of the data, and computed based
on battery physics. The developed RL framework has been
applied to estimate two critical battery parameters, i.e., the
cathode active material volume fraction ¢, and electrode
lithium diffusion coefficient D, ,. It is shown that the RL
approach manages to learn a unique set of input patterns that
would yield maximum FI, which can be explained by the un-
derlying dynamics of parameter sensitivity. More importantly,
by using the state estimate as feedback for input generation,
the RL policy could maintain high FI when applied to systems
(batteries) with a target parameter (¢, ;) different from the one
used for training, whereas the open-loop sequence optimized
by the conventional approach sees significant drop in FL.
These results demonstrate the robustness of the RL approach
to the uncertainty in target parameter, which is an intrinsic
dilemma facing the conventional direct sequence optimization.
Experiment validation has also been performed with a physical
battery, where the current excitation optimized by the RL
approach shows significantly smaller estimation error over
other baseline profiles thanks to the higher FI. The obtained
RL policy could be used for battery health diagnostics, as well
as testing of retired electric vehicle batteries before second-life
applications, since the designed excitation could enable more
accurate estimation results of battery health-related parameter
(e.g., €5) under a short testing time as compared to the current
practice relying mostly on empirical testing profiles. Such
capability is critical for enabling battery repurposing at a large
scale. In future works, we plan to apply the methodology to
input optimization for multi-parameter joint estimation and
subject to more types of system uncertainties, where the design
objective is more complicated to evaluate and optimize. We
will also apply the framework to more complicated high-order
systems, e.g., the full-order DFN model for batteries, for which
input optimization using the conventional direct optimization
is intractable, and explore the benefits of using other RL
algorithms, e.g., the Actor-Critic method.
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