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Abstract: The bis(2-pyridylthio)methyl ligand, [Bptm], has been employed in the
synthesis of {[Bptm]Zn(u-F)},, a rare example of an organozinc fluoride compound.
The dimeric nature of {[Bptm]Zn(u-F)},, which possesses an uncommon [Zn(u-F)],
motif, contrasts with the monomeric structures reported for the other halide derivatives,
[Bptm]ZnX (X = Cl, Br, I); this difference is supported by density functional theory
calculations which indicate that the fluoride derivative favors a dimeric form with
bridging fluoride ligands, whereas the other derivatives favor monomeric structures
with terminal halide ligands. {[Bptm]Zn(u-F)}, reacts with Me,SiCF; to afford the
organozinc trifluoromethyl complex, namely [Bptm]ZnCF;. The Zn—CF; bond in this
complex is longer than the Zn-CH; bond of the previously reported methyl derivative
[Bptm]ZnMe, an observation that is precedented in related zinc compounds, but
counter to other metal complexes. The infrared frequency corresponding to the
asymmetric C-F stretch of [Bptm]ZnCeF,; is unusually low for a metal trifluoromethyl

species, but is comparable to that for other zinc and cadmium complexes.




INTRODUCTION

The chemistry of fluorine is often distinctly different from that of the other halogens as
a consequence of its small size, high electronegativity and low polarisability." Interest
in fluorine chemistry has also risen dramatically over recent years, in part owing to the
ubiquity of fluorine compounds in agrochemical® and pharmaceutical® industries. In
addition, metal fluoride compounds, which often exhibit novel structures and
reactivity,*” have also attracted attention and have found applications in homogeneous
and heterogeneous catalysis," battery construction,' and optical materials.” Despite
such interest, however, fluoride chemistry remains severely underexplored compared
to that for the other halides. For example, with respect to zinc, the number of Zn—F
bonds in compounds listed in the Cambridge Structural Database (CSD)" is only 1.5 %
of the total number of zinc-halide interactions.'*"> Moreover, notwithstanding that
organozinc halides have played a prominent role as reagents in organic syntheses,'®
there is only a single mononuclear organozinc fluoride compound listed in the CSD,
namely the tris(2-pyridylthio)methyl complex, [Tptm]ZnF."**"” Similar to fluoride
compounds, trifluoromethyl zinc compounds have also received little attention,
especially by comparison to transition metal derivatives.”® As an illustration, there is
only a single structurally characterized compound possessing a Zn—-CF; bond that is
listed in the CSD."” Therefore, we describe here the use of the bis(2-pyridylthio)methyl
ligand to afford rare examples of structurally characterized organozinc fluoride and

trifluoromethyl compounds, namely {[Bptm]Zn(u-F)}, and [Bptm]ZnCF,.

RESULTS AND DISCUSSION

1. Synthesis and Structural Characterization of {[Bptm]Zn(u-F)},

One factor that has been proposed for the paucity of metal fluoride compounds,
compared to the other halide derivatives, is a dearth of suitable reagents to introduce
the fluoride ligand. In this regard, it is pertinent to note that metal fluoride

compounds are often obtained (sometimes serendipitously) as a result of decomposition



of counterions such as [BF,]"** One reason for the scarcity of conventional reagents for
the synthesis of metal fluoride compounds is presumably a consequence of the
thermodynamics and/ or kinetics for introducing fluorine being unfavorable compared
to corresponding reactions for the other halogens. For example, while we previously
reported that the chloride, bromide and iodide complexes, [Tptm]ZnX (X = Cl, Br, I),
can be obtained via the reactions of [Tptm]Li with ZnX,, the fluoride complex
[Tptm]ZnF is not obtained from ZnF, under comparable conditions."** Furthermore,
while [Tptm]ZnOSiMe; reacts with Me,SiX (X = Cl, Br, I) to afford the corresponding
halide derivative, [Tptm]ZnX, the fluoride counterpart [Tptm]ZnF is not obtained upon
treatment of [Tptm]ZnOSiMe; with Me,SiF."** Therefore, it is noteworthy that we
discovered that the tin reagent, Me,SnF,* could be employed to synthesize the fluoride
counterpart, [Tptm]ZnF."** As such, we considered that Me,SnF could also be used as a
reagent for other zinc fluoride compounds.

Significantly, [Bptm]ZnH? reacts with Me,SnF at room temperature to yield the
fluoride complex, {[Bptm]Zn(u-F)}, (Scheme 1). In addition, {[Bptm]Zn(u-F)}, can also
be obtained by the corresponding reaction between [Bptm]ZnN(SiMe;), and Me,SnF.
{[Bptm]Zn(u-F)}, has been characterized both spectroscopically and structurally by
using X-ray diffraction. For example, {[Bptm]Zn(u-F)}, exhibits a signal in the ’"F NMR
spectrum at 8 -196.8 ppm,* and the molecular structure as determined by using X-ray
diffraction is illustrated in Figure 1, with selected bond lengths and ang]les listed in

Table 1.
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Figure 1. Molecular structure of {[Bptm]Zn(u-F)},



Table 1. Selected metrical data for {[Bptm]Zn(p-F)},

{[Bptm]Zn(p-F)},

d(Zn-F)/ A 1.9533(19)

d(Zn-F)/ A 2.0888(18)
d(Zn-N1)/ A 2.084(3)
d(Zn-N2)/ A 2.102(3)
d(Zn-C1)/ A 2.097(3)

C1—Zn—F/° 107.11(12)

Cl—Zn—F'/° 174.77(12)

N1—Zn—N2/° 118.94(11)
Zn—F—Z7Zn'/° 101.95(8)
F—Zn—F'/° 78.05(8)

The structure of {[Bptm]Zn(u—F)}, exhibits several interesting features. Firstly, in
marked contrast to the other halide derivatives, [Bptm]ZnX (X = Cl, Br, I),* the fluoride
complex {[Bptm]Zn(u-F)}, is a dimer with bridging fluoride ligands.* Secondly, the
dinuclear nature of {[Bptm]Zn(u-F)}, is also distinct from the [Tptm]ZnF counterpart
that is monomeric with a terminal fluoride ligand."** Thirdly, the [Zn(u—F)], motif is not
common, with there being only four discrete dinuclear compounds with this motif

listed in the CSD (Table 2).



Table 2. Comparison of structural parameters in complexes that possess a [Zn(u-F)],

moiety.

d(Zn-F)/A Zn-F-Zn/° Ref

{[Bptm]Zn(u-F)}, 1.9533(19), 2.0888(18) 101.95(8) This work
[{HC(CMeNAr),}Zn(u-F)],* 1.9473(12), 2.0034(11) 97.72(5) 15a
[(CssHaN){Zn(u-F)},]1(BE,), 1.938(2), 2.063(2) 104.53(11) 15b
[Zn,(L™),F,](BF,),’ 1.9860(15), 2.0581(14) 101.26(6) 15¢

1.9485(15), 2.1027(14) 104.17(6)

[Zn,(u-F),(Pr-bpa),](BF,),* 1.9313(11), 2.0462(12) 98.51(5) 15d

(a) Ar = 2,6-Me,C,H,.

(b) L™ = 4,6-bis[N,N-bis(2'pyridylethyl)aminomethyl]-2-phenylpyrimidine.

(c) Pr-bpa = isopropyl-bis(2-picolyl)amine.

The Zn-F bond lengths of centrosymmetric {[Bptm]Zn(u-F)}, [1.9533(19) A and

2.0888(18) A] are slightly different, which is in accord with that observed in other

structurally characterized examples of compounds that possess a [Zn(u-F)], moiety

(Table 2). Of these interactions, the longer Zn-F bond corresponds to the fluorine that

is trans to the carbon atom. Interestingly, the shorter Zn—F bond is only slightly longer

than the terminal Zn-F bond in the terminal fluoride counterpart, [Tptm]ZnF [1.944(1)

A]. With respect to these Zn-F bond lengths, it is pertinent to note that the average

values for terminal and w,-bridging complexes listed in the CSD are 2.008 A and 2.017

A, respectively.

In addition to the Zn—F bond lengths, it is also relevant to compare the Zn-C and

Zn-N bond lengths of {[Bptm]Zn(u-F)}, with those of [Tptm]ZnF (Table 3). The most

significant difference is that the Zn—C bond length of {[Bptm]Zn(u-F)}, is 0.12 A shorter

than that in [Tptm]ZnF. This difference may be accounted by the fact that trigonal

bipyramidal carbatrane motifs such as [Tptm]ZnX, [Titm]ZnX and [Titm" HBens] Zn X




possess 3c-4e hypervalent C—Zn—X interactions, such that the coordination of the atrane

is flexible.”*

Table 3. Comparison of Zn-X bond lengths in {[Bptm]Zn(u-F)}, and [Tptm]ZnF

d(Zn-F)/A d(Zn-C1)/A d(Zn-N)/A
{[Bptm]Zn(u-F)}, 1.9533(19) 2.097(3) 2.084(3)
2.0888(18) 2.102(3)
[Tptm]ZnF 1.9443(10) 2.2207(16) 2.0782(10)
2.0782(10)
2.0911(14)

In view of the fact that the structure of fluoride complex {[Bptm]Zn(u-F)}, is

distinct from the monomeric structures of the other halide derivatives, the structures of

both monomeric and dimeric forms of the complete series of halide derivatives were

evaluated by using density functional theory (DFT) calculations. The geometry

optimized structures of [Bptm]ZnX and {[Bptm]Zn(u-X)}, (X =F, Cl, Br, I) are illustrated

in Figure 2 and Figure 3, respectively.




Figure 2. DFT Geometry optimized structures of [Bptm]ZnX (X = F, Cl, Br, I)

o



Figure 3. DFT Geometry optimized structures of {[Bptm]Zn(u-X)}, (X =F, Cl, Br, I)

The Zn—X bond lengths for geometry optimized [Bptm]ZnX and {[Bptm]Zn(u-
X)}, are summarized in Table 4. In each case, the Zn—X bond lengths for the dinuclear
structure are longer than the corresponding terminal Zn-X bond, but the most
interesting aspect is that the difference in Zn—X bond length between the dimer and the

monomer increases considerably in the sequence Zn-F < Zn-Cl < Zn-Br < Zn-1.
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Table 4. Zn—X bond lengths for geometry optimized [Bptm]ZnX and {[Bptm]Zn(u-X)},

[Bptm]ZnX {[Bptm]Zn(n-X)}, AJA

F 1.836 1.991 0.155

2.067 0.231

Cl 2.266 2.488 0.222
2.585 0.319

Br 2.460 2.713 0.259
2.837 0.377

I 2.647 2972 0.325

3.042 0.395

Correspondingly, the energies associated with dimerization of [Bptm]ZnX to
form [Bptm]Zn(u-X)}, (Table 5) indicate that there is a much greater preference for the
fluoride derivative to exist in its dimeric form compared to the other halide derivatives.
In this regard, the preferential formation of a dimeric fluoride derivative and
monomeric chloride, bromide, and iodide derivatives is precedented for other metal

halide series, including magnesium,* aluminum,* and gallium.”

Table 5. AG for association of [Bptm]ZnX to form {[Bptm]Zn(u-X)}, at 25°C

X AGJ/kcal mol™*
F -30.5

Cl 4.3

Br 8.7
I 17.5

(a) AG = G[{[Bptm]Zn(u-X)},] - 2G[[Bptm]ZnX]

A simple rationalization for the preference of fluoride to serve as a bridging

ligand is a consequence of the Zn—F bond being the most polar,* since it is well-
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established that a bond with greater polarity is more likely to form aggregated
molecules.*” Therefore, it is not surprising that {[Bptm]Zn(u-F)}, is dimeric in the solid
state, while the other [Bptm]ZnX (X = Cl, Br, I) derivatives are monomeric.

The different structures of {[Bptm]Zn(u-F)}, and [Tptm]ZnF provide a means to
compare the properties of bridging and terminal fluoride ligands in two closely related
compounds. In this regard, metal fluoride compounds are known to participate in
hydrogen bonding interactions,* and we previously demonstrated that [Tptm]ZnF
exhibits hydrogen bonding interactions with indole (Scheme 2)."** Therefore, we
examined the ability of {[Bptm]Zn(u-F)}, to serve as a hydrogen bond acceptor for
indole. Significantly, a solution of a mixture of {[Bptm]Zn(u-F)}, and indole exhibits
little perturbation in the "H NMR spectroscopic signals, which indicates that hydrogen
bonding interactions with the bridging fluoride ligand are negligible compared to that
of the terminal fluoride complex, [Tptm]ZnF (Scheme 2).*! This observation is in accord
with structural studies on terminal and bridging fluoride compounds which indicate
that bridging fluoride ligands show a lower tendency to participate in hydrogen
bonding interactions. For example, analysis of metal fluoride compounds that are
listed in the CSD indicates that whereas 54 % of terminal metal fluoride ligands
participate in hydrogen bonding interactions, only 16 % of w,-bridging fluoride ligands

exhibit such interactions.*
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Scheme 2.

2. Synthesis and Structural Characterization of [Bptm]ZnCF,
Trifluoromethyl groups are widespread in pharmaceuticals® and agrochemicals® and
the formation of organic trifluoromethyl compounds often utilize trifluoromethyl-metal
complexes as CF; sources.®**** In this regard, trifluoromethyl zinc complexes have
been employed for the trifluoromethylation of azinium salts,”” aromatic compounds,***!
alkynes,* alkenes,” carboxamides,* sulfonamides,* cycloalkanone oximes,* and
arylcyclopropanes.**¥

Despite this interest in trifluoromethyl zinc chemistry, however, trifluoromethyl
zinc complexes are largely restricted to Zn(CF;), and CF;ZnX derivatives, and their

adducts. For example, the first report of zinc-trifluoromethyl complexes pertained to

the use of NMR spectroscopy to identify the formation of Zn(CF,), and MeZnCF; upon
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the reaction of Me,Zn with Hg(CF,),.*® Adducts of Zn(CF,),, e.g. py,Zn(CF,),**
(glyme)Zn(CF,),,” (diglyme)Zn(CF,),,* (dmpu),Zn(CF,),* (bpy)Zn(CF,),,*
(DMF)Zn(CF,),,*" and (tmeda)Zn(CF,;)," have also been synthesized via the reactions of
R,Zn (R = Me, Et) with CF.l in the presence of the corresponding ligand. Furthermore,
halide derivatives, e.g. (DMF),Zn(CF;)Br****** and (MeCN),Zn(CF,)Br,”"** have been
synthesized via the reactions of Zn dust with CF,Br.** In addition to these chemical
methods, L,Zn(CF;), and L,Zn(CF,)X (X = Br, I) derivatives have also been obtained by
the electrolysis of CF,X using a zinc anode.”*

In view of the paucity of trifluoromethyl zinc compounds, it is relevant to
synthesize classes of trifluoromethyl zinc compounds that expand on Zn(CF;), and
CF,ZnX derivatives. In this regard, a useful approach for obtaining trifluoromethyl-
metal compounds involves the reaction between a metal fluoride complex and Me,SiCF,
(the Ruppert-Prakash reagent).”**” As such, the above synthesis of the zinc fluoride
compound {[Bptm]Zn(u-F)}, provides a means to obtain the trifluoromethyl derivative

[Bptm]ZnCF,; via reaction with Me,SiCF; (Scheme 3), which has been characterized both

spectroscopically and by using X-ray diffraction (Figure 4).

|

‘.

Zn

s
H
<

Scheme 3.



14

///ﬂ D %

F2
N1

\ )
\/ / lrl /,5 J
ll;
= 1) Zn
i\ )
oL N2

! R O
B '

S2

Figure 4. Molecular structure of [Bptm]ZnCF, (only one of the conformations of the CF,
group is shown for clarity).

The structural characterization of [Bptm]ZnCF; is particularly noteworthy
because there is very little metrical data pertaining to trifluoromethyl zinc compounds.
19,60

Indeed, the CSD lists only one trifluoromethyl zinc compound, namely py,Zn(CF;),.

Examination of this structure, nevertheless, indicates that the Zn—CF, bond of
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[Bptm]ZnCF; [2.016(3) Al is short by comparison to those in py,Zn(CF;), [2.056(3) A and
2.069(4) A].®

Another important aspect of the structure of [Bptm]ZnCF; is that comparison
with that of the methyl derivative, [Bptm]ZnMe,* provides a means to assess how the
Zn—CF; bond length compares with the Zn-CH; bond length in two structurally related
molecules. The structural data for [Bptm]ZnCF; and [Bptm]ZnMe are presented in
Table 6, from which it is evident that the Zn-CF, bond length [2.016(3) A]is 0.032 A
longer than the corresponding Zn-CH, bond length [1.984(3) A]. Significantly, a similar
difference in Zn-CF, and Zn-CH, bond lengths (0.033 A) is also observed for the DFT

geometry optimized structures of [Bptm]ZnCF, and [Bptm]ZnMe (Figure 5).

Table 6. Comparison of metrical data for [Bptm]ZnCF; and [Bptm]ZnMe.

[Bptm]ZnCF, [Bptm]ZnMe*
d(Zn—C2)/ A 2.016(3) 1.984(3)
d(Zn—N1)/A 2.054(2) 2.120(3)
d(Zn—N2)/A 2.086(2) 2.119(3)
d(Zn—C1)/ A 2.028(3) 2.057(4)
C1—Zn—C2/° 142.93(11) 146.09(16)
N1—Zn—N2/° 107.27(8) 99.51(10)
C1—Zn—N1/° 91.81(10) 89.50(15)
C1—Zn—N2/° 90.88(9) 87.69(14)
C2—Zn—N1/° 112.78(9) 110.27(14)
C2—Zn—N2/° 106.52(9) 114.45(14)

(a) Data taken from reference 22.
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Figure 5. DFT geometry optimized structures of [Bptm]ZnCF; (left) and [Bptm]ZnMe
(right).

While this difference is not large, the observation is significant because M—C
bond lengths in fluoroalkyl compounds M-CF; are often expected to be shorter than
metal-alkyl counterparts.”® As an illustration, an early example was provided by the
comparison of the Mn-CF; and Mn-CH, bond lengths in Mn(CO);CF,*' and
Mn(CO);Me,* as determined by gas phase electron diffraction, which indicates that the
Mn—CF, bond is 0.13 A shorter than the Mn—CH, bond (Table 6). The fact that the Zn—
CF, bond is longer than the Zn—-CH, bond in [Bptm]ZnX is, nevertheless, supported by
related studies on pyridine adducts, (py®),ZnX,. Thus, although the compounds
possess different pyridine substituents, the Zn-CF; bond lengths in (py),Zn(CF,)," are
longer than the Zn—CH, bond lengths in (4-Bu'py),ZnMe,*” and (4-Me,Npy),ZnMe,.** For
example, the average Zn-CF, bond length in (py),Zn(CF,), is 0.064 A longer than the
average Zn—CH, bond length in (4-Bu'py),ZnMe,.

Although there are no structurally characterized trifluoromethyl cadmium

compounds, there are two structurally characterized trifluoromethyl mercury
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compounds for which the methyl counterparts are known, namely Hg(CF;), and
CF,HgN,. With respect to the former, the Hg—C bond in Hg(CF,), is 0.026 A longer than
that in HgMe,,*>**” which is in accord with the above zinc compounds. Despite this
agreement, however, the Hg-C bond in CF;HgN; is 0.010 A shorter than that in
MeHgN,.**

To place these observations in more context, the M-CF; and M-CH, bond lengths
in structurally related metal complexes are presented in Table 7.”* In addition,
average M—CF; and M-CHj, bond lengths for elements that possess structurally
characterized trifluoromethyl compounds are summarized in Table 8. Examination of
these data indicate that the notion that M—CF; bonds are shorter than corresponding M-
CHj; bonds is not universally observed. For example, with respect to metals of the first
transition series, it has been noted that Ti-CF, bonds are longer than Ti-CH, bonds in
titanocene compounds,”* while the Ni-CF; and Ni-CH, bond lengths in
(dippe)Ni(CF;), and (dippe)NiMe, are virtually identical.*® The direct structural
comparison of [Bptm]ZnCF; and [Bptm]ZnMe thus provides further evidence that the
difference in M—CF; and M—-CHj, bond lengths is very dependent on the nature of the
metal center. In this regard, it is also pertinent to note that, with respect to nonmetals, it
has been observed that X-CF, (X = F, Cl, Br) bond lengths® are shorter than the
corresponding values in X—~CH; bond lengths and that the difference increases with the
electronegativity of X, with a difference of 0.066 A for the fluoride derivative.*™
Consistent with this trend, the C-H bond in CF,-H is slightly longer (0.003 A) than that
in CH,-H.*"* Likewise, a similar trend in the difference in CF,~E and CH,-E bond
lengths has been observed for (i) E(CF;),/E(CH,), (E = O, S, Se) and (ii) E(CF;);/ E(CH,),
(E =N, P, As), with the more electronegative atoms having shorter E-CF; bonds (E = N,
O), and the less electronegative congeners having longer E-CF, bonds (E =S, Se, P,
As).B



18

Table 7. Comparison of M-CF; and M-CH, bond lengths in structurally related

compounds.
L,MCF, L,MCH, d(M-CF,)/A d(M- A [A® CF, CH,
CH,)/A Ref Ref
Cp,Ti(CF;)N, Cp,TiMe, 2.239(1) 2.176(av) 0.063 57d 70
Cp,Ti(CF,)Cl Cp,TiMe, 2.301(6) 2.176(av) 0.125 57d 70
Cp,Ti(CF,)F Cp,TiMe, 2.221(3) 2.176(av) 0.045 57¢ 70
Cp*Cr(CO);CF; | (Cp™3)Cr(CO);Me 2.129(2) 2.2663(15) | -0.137 71 72
Cp*W(CO),CF, | Cp™sW(CO);Me 2.189(19) 2.288(5) -0.099 71 73
Mn(CO),CF, Mn(CO)sMe 2.056+0.005" | 2.185+0.011° | -0.13 61, 62
2.067(3) 74
(dippe)Ni(CF;), (dippe)NiMe, 1.971(3) 1.975(3) -0.004 59b 59b
(BOXAM)NICF; | (BOXAM)NiMe* 2.040(4) 2.077(4) -0.037 59¢ 59¢
(SP)Pt(CF,)," (SP)PtMe," 2.032(5) 2.166(5) -0.052 75 75
2.082(5) 2.052(6)
[Ph,(CF,)P],Pt- | (Ph,MeP),PtMeCl 2.09 2.081(6) 0.01 76 76
(CF;)Cl
[PPh,][Au(CF;),] | [NBu"][AuMe,] 2.033(2) 2.075(av) -0.042 77 78
Hg(CF;)N, HgMeN; 1.96(2) 2.058(15) -0.10 68 69
Hg(CF,), HgMe, 2.109(16) 2.083" 0.026 65 66
[Bptm]ZnCF; [Bptm]ZnMe 2.016(3) 1.984(3) 0.032 this 22
work
(py)-Zn(CF;), (4-Bu'py),ZnMe, 2.063(av) 1.999(av) 0.064 19 63
(py)-Zn(CF;), (4-Me,Npy),- 2.063(av) 2.0221(18) 0.046 19 64
ZnMe,
Sn(CF,), SnMe, 2.201+0.003" | 2.144+0.003° | 0.057 79 80

(a) A = d(M—-CF,;) — d(M—-CH,); average values given where appropriate. (b) GED values.

(c) BOXAM = bis(4-isopropyl-4,5-dihydrooxazol-2-yl)phenyl)amine). (d) SP = (2-

vinylphenyl)diphenylphosphine.
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Table 8. Comparison of average M-CF,; and M-CH, bond lengths for structurally
characterized compounds listed in the CSD.

Metal | d(M-CH,)/A d(M-CF,)/A A/A®
Ti 2.129 2.235 0.106
Cr 2.081 2.090 0.009
Mn 2.126 2.067 -0.059
Co 2.001 1.938 -0.063
Ni 1.957 1.933 -0.024
Cu 1.941 1.955 0.014
Zn 1.967 2.047" 0.080
Ge 1.949 1.998 0.049
Mo 2.215 2.226 0.011
Rh 2.088 2.082 -0.006
Pd 2.050 2.052 0.002
Ag 2.097 2.092 -0.005
W 2.197 2.189 -0.008
Ir 2.131 2.121 -0.01
Pt 2.067 2.058 -0.009
Au 2.064 2.069 0.005
Hg 2.059 2.124 0.065

(a) A = dM-CF;) — d(M-CH,)
(b) includes the value for [Bptm]ZnCF,

In addition to the structure determination, the CF; moiety of [Bptm]ZnCeF,; is
characterized spectroscopically by "F and >C NMR spectroscopic signals at —-39.7 and
146.1 ppm respectively, with a 'J_; coupling constant of 355 Hz. These spectroscopic
data are in accord with the corresponding values reported for the trifluoromethyl

moiety in other zinc compounds (Table 9).** It is also pertinent to note that the "F NMR
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signal for the [Bptm]Zn"CF, isotopologue (-39.81 ppm) exhibits a secondary isotope
shift, i.e. "A”F("*'*C),® of -0.14 ppm relative to the [Bptm]Zn'*CF, isotopologue. For
reference, a comparable value of 'A"F(****C) is observed for CF;H (-0.13 ppm),*

83b,c

(CF,),CO (-0.13 ppm),* and other organofluorine compounds.

Table 9. °C and “F NMR spectroscopic data for trifluoromethyl zinc compounds.

d °C/lppm | 8 “F/ppm | 'J./Hz Ref
[Bptm]ZnCF, 146.1 -39.7 355 This work

py,Zn(CF), 146.7 36.0° - 19
MeZn(CF,), - 445 - 50
Zn(CF.), - 43.7 - 50
EtZn(CF,), - 44.0 - 50
(dmpu),Zn(CF,), 146.2 -43.5 359 40
(bpy),Zn(CF,), 147.7 428 359 41
(MeCN),Zn(CF,)Br 145.5 426 355 51
(DMF),Zn(CE.)Br - 47.9 358 51

(a) See reference 82.

[Bptm]ZnCF; has also been investigated by using IR spectroscopy. In this
regard, trifluoromethyl compounds, CF,-X, typically exhibit two bands in the region ca.
950 cm™ - 1250 cm™ associated with the symmetric and asymmetric C-F stretches of the
CF, moiety, as illustrated in Table 10. The assignment of the symmetric and
asymmetric bands, however, depends critically on the system. Thus, while the higher
frequency band is often considered to be the symmetric stretch for trifluoromethyl-
metal compounds,* the order may sometimes be reversed. For example, the symmetric
stretch for (CO),CoCF, is of lower energy than the asymmetric stretch.*”” As another
illustration, whereas the symmetric stretch of CF,SiHj is of higher energy than the

1.88

asymmetric stretch, the opposite order is observed for CF,PH,, CF,SH and CF,C
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Furthermore, it is pertinent to note that the original assignment of the symmetric and
asymmetric stretches of Hg(CF;), has been reversed; for the new assignment, the
symmetric stretch is of higher energy than the asymmetric stretch.*” The relative change
in energies of the symmetric and asymmetric stretches of CF;X compounds as a function
of the system is undoubtedly associated with the fact that the C—F motion is coupled to
the C—X motion.

With respect to [Bptm]ZnCEF;, the bands associated with the C-F stretches are
observed at 1140 cm™ and 958 cm™. In accord with other trifluoromethyl-metal
compounds,” these absorptions are at lower energies than typical nonmetal derivatives
such as CF;X (X = Cl, Br, I) and Me;SiCF; (Table 10). More interestingly, however, while
the symmetric C-F stretch of [Bptm]ZnCF; is comparable to that of halide derivatives,
CF,X (X = Cl, Br, I), the asymmetric stretch is of considerably lower energy (Table 10).
Precedent for the observed C-F stretches of [Bptm]ZnCF; is, nevertheless, provided by
the zinc and cadmium derivatives, py,Zn(CF,),” and Cd(CF,),** as summarized in Table
10.2™M* Although the observation of low energy C-F stretching frequencies in transition
metal trifluoromethyl compounds was once considered to be a consequence of -

118

backbonding,"® it is now recognized that such changes are associated with the o-
bonding framework.">"%1"

By direct comparison of the symmetric and asymmetric stretches, the data in
Table 10 also illustrate the more pronounced effect of X on the asymmetric stretch than
the symmetric stretch of CF,X compounds."® Recognizing that the symmetric and
asymmetric stretches may have a different order (vide supra) is important because it
could otherwise appear that substitution of X results in little effect. For example, while
the C-F stretching frequencies of CF;Cl (1210 cm™ and 1102 cm™)* and CF,SiH, (1223

cm™ and 1110 cm ™)1

are similar, they have opposite assignments, with the high
energy band corresponding to the asymmetric stretch for CF,Cl, but the symmetric

stretch for CF,SiH,.
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Compound vJem? v,Jem™ Ref
CF,C1 1102 1210 93
1107 1217 94
1106 1217 95
CF;Br 1087 1207 93
1081 1209 96
CF;l 1076 1185 93
CF;SH 1137 1199/1166 88
CF;SeH 1125 1170 96
CF,PH, 1154 1187 88
CF,AsH, 1144 1160 96
CF,SiH, 1223 1110 88,110
MeSiCF, 1227 1085 97
Me:GeCF, (1194) (1098) 98
CF,GeF, 1180 1166 96
CF,GeCl, 1165 1157 96
CF,GeBr, 1147 1153 96
[HNMe;][Ge(CFs),] 1056 1172 99
Me-SnCF, (1152) (1066) 101
Me,PbCF, (1170) (1040) 86
F,BCF, (1190) (1080) 102
[Bptm]ZnCF, 1140 958 this
work
py2Zn(CF,), (1144, 1130) (960, 945) 100
Cd(CF,), (1157, 1135) (980, 960) 103
Hg(CF;), 1148, 1133 1045 89
Cp,Ti(CF,)F (1081) ; 104
Cp,Ti(CF,)N, (1065) - 104
Cp,Ti(CF,)Cl (1077) ; 104
Cp,Ti(CF,)Br (1074) ; 104
Cp,Ti(CF,)I (1061) ; 104
Cp,Ti(CF,)OSO,CF, (1082) - 104
CpCr(NO),CF, (1071) (994) 105
CpMo(CO),CF, (1073) (1006) 106
Mn(CO).CF, 1063 1045 107
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Compound vJem? v,Jem™ Ref
CpFe(CF,)(CO), (1068, 1042) (1015) 106
Ru(CO),(PPh,),(CF;)Cl (1073) (1006) 108
Co(CO),CF, 1057 1096 87
Co(PPh,)(CO),CF, (1050) (1029) 109
CpCo(CO)(CF;)I (1067) (1053) 110
CpRh(CO)(CF;)I (1073) (1040) 112
Ir(PPh;),(CO),CF, (1088) (1005) 113
CpNi(CO)CF; (1069) (1024) 114
Pd(PPh,),(CF;)I (1068) (1024) 86
PtI(PPh,),CF, (1085) (1022) 86

(a) For situations in which v, and v,, assignments have not been reported, the data are
listed in parentheses with the higher value being arbitrarily placed in the column

associated with v..

CONCLUSIONS

In summary, [Bptm]ZnH and [Bptm]ZnN(SiMe,), react with Me,SnF to afford the
dinuclear zinc fluoride complex, {[Bptm]Zn(u-F)},. The dimeric nature of {[Bptm]Zn(u-
F)}, contrasts with the monomeric structures of the other zinc halides [Bptm]ZnX (X =
Cl, Br, I), a difference that is supported by DFT calculations. Significantly, {{[Bptm]Zn(u-
F)}, undergoes metathesis with Me,SiCF; to form the first organozinc trifluoromethyl
complex, namely [Bptm]ZnCF;. An interesting feature of [Bptm]ZnCeF, is that the Zn—
CF, bond is longer than the corresponding Zn-CH; bond in the methyl counterpart,
[Bptm]ZnMe, a difference that is of relevance because the opposite trend is often
observed, with M—CF; bonds being shorter than corresponding M—CH;, bonds.
[Bptm]ZnCF; has also been characterized spectroscopically and a noteworthy aspect is
that the asymmetric C-F stretch, while comparable to those of similar zinc and

cadmium species, is of low energy relative to transition metal counterparts.
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EXPERIMENTAL SECTION

General considerations

All manipulations were performed by using a combination of glovebox, high vacuum,
and Schlenk techniques under an argon atmosphere unless otherwise specified."’
Solvents were purified and degassed by using standard procedures. '"H NMR spectra
were measured on Bruker AVIII 300, and Bruker 500 DMX spectrometers. 'H chemical
shifts are reported in ppm relative to SiMe, (6 = 0) and were referenced internally with
respect to the protio solvent impurity (8 7.16 for C;D;H)."*® C NMR spectra are
reported in ppm relative to SiMe, (8 = 0) and were referenced internally with respect to
the solvent (8 128.06 for C,D,)."*” "F NMR chemical shifts are reported in ppm relative to
CFCl, (8 = 0.0) and were obtained by using the Z/100% value of 94.094011."*' Coupling
constants are given in hertz. Infrared spectra were recorded on a Perkin Elmer
Spectrum Two spectrometer in attenuated total reflectance (ATR) mode, and are
reported in reciprocal centimeters. [Bptm]ZnH and [Bptm]ZnN(SiMe,), were prepared

by the literature methods.”

X-ray Structure Determinations

X-ray diffraction data were collected on a Bruker Apex II diffractometer. The structures
were solved by using direct methods and standard difference map techniques, and
were refined by full-matrix least-squares procedures on F* with SHELXTL (Version
2014/7)."** Crystallographic data have been deposited with the Cambridge
Crystallographic Data Centre (CCDC 2198748-2198749).

Computational Details

Calculations were carried out by using DFT as implemented in the Jaguar 8.9 (release

123

15) suite of ab initio quantum chemistry programs.'” Geometry optimizations were

performed with the B3LYP density functional using the LACVP** basis sets that were
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also used for obtaining thermodynamic data. Cartesian coordinates are provided in the

Supporting Information.

Synthesis of {[Bptm]Zn(u-F)},

(i) A solution of [Bptm]ZnN(SiMe;), (51 mg, 0.111 mmol) in benzene (ca. 1 mL) was
treated with Me;SnF (21 mg, 0.115 mmol), resulting in the deposition of colorless
crystals suitable for X-ray diffraction over a period of 4 days. The crystals were isolated
by decantation, washed with pentane (2 x 1 mL), and dried in vacuo to give {[Bptm]Zn(
u-F)},. Yield: 30 mg (85 %). 'H NMR (C(Dy): 3.69 [s, 2H, {(C;H,NS),HCZnF},], 6.02 [m,
4H, {(C;H,NS),HCZnF},], 6.44 [m, 4H, {(C;H,NS),HCZnF},], 6.69 [m, 4H,
{(C;H,NS),HCZnF},], 8.95 [m, 4H, {(C;H,NS),HCZnF},]. "C{'H} NMR (C(Dy): 13.2
[{(C:H,NS),HCZnF},] (identified by HSQC), 118.6 [4C, {(C;H,NS),HCZnF},], 121.6 [4C,
{(C;H,NS),HCZnF},], 137.5 [4C, {(C;H,NS),HCZnF},], 148.9 [4C, {(C;H,NS),HCZnF},],
164.6 [4C, {(C;H,NS),HCZnF},]. "F NMR (C¢Dy): -196.8. IR data (ATR, cm™): 2914 (w),
1590 (m), 1556 (m), 1451 (m), 1416 (m), 1280 (m), 1188 (m), 1130 (m), 1043 (m), 765 (s),
721 (m), 683 (m), 553 (vs), 484 (m).

(if) A solution of [Bptm]ZnH (3 mg, 0.010 mmol) in CDj (ca. 0.5 mL) was treated with
Me;SnF (2 mg, 0.011 mmol) in an NMR tube equipped with a J. Young valve. The
solution was monitored by '"H NMR spectroscopy over the course of 1 day, thereby

demonstrating quantitative formation of {[Bptm]Zn(u-F)},.

Synthesis of [Bptm]ZnCF,

A suspension of {[Bptm]Zn(u-F)}, (9 mg, 0.028 mmol) in C,D; (ca. 0.5 mL) was treated
with Me;SiCF; (30 mg, 0.211 mmol) in an NMR tube equipped with a J. Young valve.
The solution was heated at 90°C for 24 hours and monitored by 'H and "F NMR
spectroscopy, thereby demonstrating quantitative conversion to [Bptm]ZnCF; and
Me;SiF. The solution was lyophilized to afford [Bptm]ZnCF; as a white solid. Colorless

crystals suitable for X-ray diffraction were obtained via slow evaporation from a
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solution in benzene. '"H NMR (C,D,): 3.23 [s, 1H, (C;H,NS),HCZnCF,], 6.07 [m, 2H,
(C.H,NS),HCZnCF,], 6.40 [m, 2H, (C;H,NS),HCZnCF,], 6.53 [m, 2H,
(C.H,NS),HCZnCF,], 8.24 [m, 2H, (C;H,NS),HCZnCF,]. “C{'H} NMR (C,D,): 18.1 [s, 1C,
(C.H,NS),HCZnCF,], 119.4 [s, 2C, (C.:H,NS),HCZnCF,], 121.9 [s, 2C,
(C,H,NS),HCZnCF,], 137.9 [s, 2C, (C;H,NS),HCZnCF,], 146.1 [q, Jer = 355 Hz, 1C,
(C.H,NS),HCZnCF,], 147.0 [s, 2C, (C;H,NS),HCZnCF,], 165.9 [s, 2C,
(C.H,NS),HCZnCF,]. “F NMR (C,D,): -39.7 [Jo.s = 355 Hz]. IR data (ATR, cm™): 2842
(w), 1594 (s), 1554 (m), 1463 (m), 1417 (vs), 1285 (m), 1199 (w), 1140 (vs), 1098 (w), 1047
(w), 1012 (w), 958 (vs), 903 (s), 881 (w), 766 (vs), 757 (s), 722 (m), 674 (m), 646 (w), 483

(w).

Comparison of the reactivity of {[Bptm]Zn(u-F)}, and [Tptm]ZnF towards indole

A suspension of {[Bptm]Zn(u-F)}, (2 mg, 0.003 mmol) in C,D; (ca. 0.5 mL) was treated
with indole (1 mg, 0.009 mmol) in an NMR tube equipped with a J. Young valve. The
sample was monitored by 'H NMR spectroscopy over the course of 1 day, thereby
demonstrating negligible perturbation of the chemical shifts of either species. The
solution was subsequently treated with [Tptm]ZnF (2 mg, 0.005 mmol) and monitored
by "H NMR spectroscopy, thereby demonstrating an immediate change in the chemical
shifts of both [Tptm]ZnF and indole.
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