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Stability and Bifurcation Analysis
of Precision Motion Stage With
Nonlinear Friction Isolator

The application of servocontrolled mechanical-bearing-based precision motion stages
(MBMS) is well-established in advanced manufacturing, semiconductor industries, and
metrological applications. Nevertheless, the performance of the motion stage is plagued by
self-excited friction-induced vibrations. Recently, a passive mechanical friction isolator (FI)
has been introduced to reduce the adverse impact of friction in MBMS, and accordingly, the
dynamics of MBMS with FI were analyzed in the previous works. However, in the previous
works, the nonlinear dynamics components of FI were not considered for the dynamical
analysis of MBMS. This work presents a comprehensive, thorough analysis of an MBMS with
a nonlinear FI. A servocontrolled MBMS with a nonlinear FI is modeled as a two DOF
spring-mass-damper lumped parameter system. The linear stability analysis in the
parametric space of reference velocity signal and differential gain reveals that including
nonlinearity in FI significantly increases the local stability of the system’s fixed-points. This

further allows the implementation of larger differential gains in the servocontrolled motion

stage. Furthermore, we perform a nonlinear analysis of the system and observe the existence
of sub and supercritical Hopf bifurcation with or without any nonlinearity in the friction
isolator. However, the region of sub and supercritical Hopf bifurcation on stability curves
depends on the nonlinearity in FI. These observations are further verified by a detailed
numerical bifurcation, which reveals the existence of nonlinear attractors in the system.
[DOL: 10.1115/1.4062266]

Keywords: the LuGre friction model, precision motion stage, nonlinear friction isolator,

stability analysis, Hopf bifurcation

1 Introduction

Motion stages provide high-speed and high-precision positioning
in manufacturing and metrology-related processes, which include
machining, additive manufacturing, and semiconductor fabrications
[1-4]. Among magnetic-based, flexural-based, fluidic-based, and
mechanical-bearing-based motion stages (MBMS), MBMS are
more prominent in the industries due to their cost-effectiveness, high
off-axis stiffness, wide ranges of motions, and easy-to-install feature
[5]. The motion control of MBMS in different applications is
commonly realized by using different servocontrollers [6-8].
However, it can lead to the problem of self-excited limit cycles in
the tracking error caused by the sliding friction between contact
surfaces, which is also known as friction-induced vibrations (FIV)
[6,9—14]. The adverse effects of friction on the control performance
include oscillations of stick-slip phenomena tracking errors and long
settling times. Therefore, understanding the dynamics of self-
excited friction-induced vibrations under different conditions is
essential to mitigate tracking error oscillation, which leads to better
motion stage performances.

Different controllers have been proposed to eliminate friction-
induced vibrations. The fundamental concept of these controllers to
suppress FIV is to counteract the friction force by providing an equal
and opposite force and suppress these FIV. These controllers can be
divided into three categories as (1) high-gain controllers, (2) model-
based controllers, and (3) advanced controllers. The use of these
controllers in compensating for the effect of friction is well-
established in the literature [11,13,15-18]. However, the perform-
ance of these controllers can be limited by environmental noise in
the case of high-gain controllers, model inaccuracy in the case of
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model-based controllers, and low-performance computational/
actuator hardware in the case of advanced controllers.

Recently, a mechanical device known as the friction isolator (FI)
was proposed as a more robust and efficient approach to mitigating
self-excited friction-induced vibrations in the MBMS system
[19,20]. Unlike conventional motion stages in which the bearings
are rigidly installed to the table, the compliant motion stages adopt
FI as motion-compliant joints between the bearings and the table,
isolating the table from nonlinear frictional effects. For more design
details of FI, readers are referred to Refs. [19,20]. Furthermore,
parametric analyses on the motion stage with FI showed that with
optimum design parameter selections, FI could increase the fixed-
point stability region to allow the use of higher control gains and
reduce the amplitudes of the control error limit cycles [21,22].
However, the above-mentioned studies analyzed the dynamics of an
MBMS with linear FI only. Nevertheless, the mechanical design of
FI can introduce nonlinear elements, which are significantly
compared to the linear elements [19] and hence, need to be
considered in the dynamics of compliant motion stages for optimum
selection of control parameters. The present paper examines this
problem and provides a framework for further analysis. For this, we
extend the model proposed in Refs. [22] by introducing a nonlinear
element in the system to take into account nonlinear FI. The
preliminary linear stability analysis reveals that linear FI under-
estimates the stability regime, and hence, it is desirable to consider
nonlinearity in FI for a better selection of control parameters for
steady operations. Furthermore, the nonlinear analysis using the
analytical method, more specifically the method of multiple scales,
reveals the existence of super and subcritical Hopf bifurcation in the
system regardless of the presence of nonlinearity in FI. However, for
the given value of system parameters, the region corresponding to
supercritical bifurcation can be increased by properly selecting the
nonlinear parameters.

The paper is arranged as follows. We outline the extended model
of MBMS with nonlinear FI in Sec. 2. Later on, the linear stability
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analysis of fixed-points is investigated in Sec. 3. This is followed by
a detailed analysis of the current system in Sec. 4. Results and
detailed discussions from the previous sections are presented in
Sec. 5. Finally, some conclusions are drawn in Sec. 6.

2 Mathematical Formulation

To establish the effect of nonlinearity in the friction isolator and
the contribution of various system parameters to linear and nonlinear
instability of PD-controlled MBMS, a nonlinear two DOF model,
illustrated in Fig. 1, is obtained by extending the linear model
discussed in Ref. [22]. In this model, the precision motion stage is
modeled as a rigid mass m,, whereas the combined mass of the
friction isolator and bearing is modeled as my,. The nonlinear
interactionsbetween m, and m;, are represented by a nonlinear spring
with a stiffness function KS) andalinear damper withdamping
coefficientcg;. Also, in this model, u; and r(¢) represent the output
feedback control force from the PD controller and input reference/
set-point signal to the PD controller, respectively. Therefore, if X1 (¢)
and X, (¢) represent the position of MBMS and FI, respectively, then
the equations of motion for the system are given by

mX +K(Xi —X») +Cﬁ(X1 —Xz) =u (la)

. ) . b
th2—K(X1—X2)+Cﬁ(X2—X1):—Ff ( )

In the above governing equations, the feedback force u; is defined as
u =~k — ki, @)

where k[’j is the proportional gain, &, is the differential gain, f§ is the
tracking error defined as the difference between the position and
reference input, i.e., f = X| — r and, Fy represents the friction force
between the bearing and the support platform. For the current
analysis, we use the LuGre friction model to represent the friction
force between the surfaces as it incorporates hysteresis effects,
premotion friction, and viscous friction altogether. Furthermore, the
frictional force in the LuGre friction model relates to the relative
velocity between the surfaces and on an internal state variable z,
which can be interpreted as the average transverse deflection of
microscopic asperities/bristles of the contact surfaces [23-26]. The
friction force in the LuGre friction model is described by the
following equation [23]:

Fr =03z + 0y2+ 05V, 3)

whereas z, the average asperity/bristle deflection, is determined by
the following equation [23,27]:

_y _%lVil _y () _oosen(Vy)
=V, G(Vr)zf\/,.(l A z> @)

In the above equations, V, is the relative velocity between the
contact surfaces, o; is the asperity/bristle’s stiffness, o7 is the
damping coefficient of the asperity/bristle, whereas a7 is the friction
due to viscosity between the contact surfaces, and G(V,) > 0 is a
positive valued function to define the Stribeck effect. In the current
work, this positive valued function of relative velocity is chosen in
the form of the following equation [27,28]:

b Xo(t)
[, O
& o e T s

Cri

m
Fr

Fig.1 Schematic of the MBMS with nonlinear friction isolator
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G(V,) =fi+ (f§ —f2)e ™ (5)

where a is the slope parameter. Now with the definition of friction
force, Eq. (1) can be rewritten in terms of e as

mifp kB + kg + g(B = By) + (B — By) = —min  (60)

thh —8&(B—Bp) +cs (/3/; - ﬁ) = _(USZ + 0z + Uzvr) — MpVry
(6D)

In the above-modified equations of motion, f5, is defined as
B, = X, — r. Since earlier studies suggest that the nonlinearities
involved with the LuGre friction model are primarily the
combination of quadratic and cubic terms, we assume that the
stiffness function involved with the friction isolator has a similar
nonlinear restoring force characteristic as our primary system, i.e.,
the combination of quadratic and cubic terms [29,30]. Therefore,
provided that k;ﬁ s k_;q, and k;ﬁ( represent the linear, quadratic, and cubic
stiffness of FI, respectively, Eq. (6) can be written as

A A I AR A
+ k(B = B) + (B = B) = —mib
ol + K3 (B — B) — KBy — B+ K (B — B D)
+calby = B) =~ (o2 + o1z + 03V,) = mi,

Next, we define the following scales and nondimensional param-
eters in the system.

%
ﬁ ﬁb = z 8 kp
X=—, Xp=—, ZI=—, XO:T’ wp =],
Xo Xo Xo (j)p my
kY V.,
d T
T =wpt,{ , =
2m;w, Xow,
* * * s
_ 0 _ 9 &) _ I
a0 5 = > O = 5
1on m;w), m; ), m,Xowp
Iy
. N
fi=—S—, a=awyXo,
m,Xowf;
2
< ki m ki Xo kre X
= , k=, m=—, qu: . c — -
2m;w, ky, my k,', kp
)

In the above nondimensional scales, g is the acceleration due to
gravity. Using the above-mentioned scales and nondimensional
parameters, the governing equations of motion (Egs. (7), (4), and
(5)) can be nondimensionalized for the case of constant reference
velocity, i.e., v,, = 0, to get

X+ 200+ x + k(X — xp) + kg (x — x;,)2

. 9a)
+ ke (x = xp)° 4 26(X — %) = 0
T+ ke (X — X) — kg (X — x)2
bk (=) =g (50— on
+ ke (Xp — X)7 + 26m, (X — X)
- <(;02+ o1Vy <1 - %(s;g(il()vl)§> + GZVr)
9¢)

F=v.[1 _Mg
' G(vr)
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For ease of analysis of the current system, Eq. (9) can be rewritten
compactly in the state space form as

)-Cl = X2 (lOa)
Yo = =200 —x1 — ke (X1 — X3) — kg (X1 — x3)2
— kye(x1 — X3)° — 2K(x2 — x4) (10b)
f(} = X4 (10(;)
X4 = —2Kmy (x4 — x2) — kymy (X3 — xq)

+ qumr(x3 - X1)2 - krcmr(x3 - xl)3

—m, (aoxs + oV, (1 — GO-(():C’S) sgn(v,.)) + ozv,.> (10d)

wor(=gpee)

with [x1,x2,%3, X4, %5] = [x(1),%(1), Xp(7), %5(7), Z(7)]. Next, if vy
represents the nondimensional constant reference velocity, v, can be
rewritten as v, = Xp + vy = X4 + V. For the analytical treatment of
the current system, we follow the procedure outlined in Refs. [22,27]
and, accordingly, modify Eq. (10) for the case of pure slipping
motion sgn(v,) = 1 as

X =X (11a)
0 = —keeXy — Xk + 3XkeeXs — X1k, — X1 + 2x1Kig 3 — 3x1keeX]
Xy = reX] X1Krq + X1 Kre X3 X1Ky X1+ 2x; 1qX3 X1 Kre X3

— 2xK — 2x0( — qu)é + 2Kkx4 + kyx3 + kmxg
(11b)

X3 =14 (11c)

X4 = rCm,.)cf + x%qumr — 3xfkmm,AX3 + x1k.m,
— 2x1kegmyx3 + 3x1krcm,.x§
+ m,0y o-ox5g3xj + Ximrdf vy ooxs583 + Ximrfﬁ 00X582
+ ximr‘o-lvrvUOXSgZ
=+ xim,.al ooXs581 — 2X4KM, + X4M,G100X5 20
— X4Mp G + XqMy G ViyO0X581
+ MGV G0X580 — MpG2Vey + qum,»xg
+ 2Km,xy — M0y, — kmxy — kmm,.xg

— My00X5 — X4M, 01
(11d)

. 4 3 3
X5 = —00X583Xy — X300X582 — Xy Vrv00X583

2 2
— XgVr00X582 — X;00Xs581 + X4 — X4VryO0X581 (I1e)

— X400X580 + Vrv — Viv00X580- S

where g; for i =0,1,2,3 are defined in Appendix A. Before
proceeding further, we need to determine the fixed-points of
Eq. (11), and are given by

_gOUZVrv +1
80

1
X5 = X5 = 0,x45 = 0, x5, = —— (12)
008
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whereas x3, is governed by the roots of the following cubic equation
Ax}, + Bx3, + Cx3, + D =0 (13)

where A, B, C, D are the function of system parameters and vy, # 0,
and are defined as

A= krcg?), B = 3krco-2vrvg?) + 3krcg(Q) - qug?)’
C = 6kicgo 269V — 2qug(2) + 3kmg8<7%vrv 2

+ kg + 3kre0 — 2kiqo02Vrvs (14)

D = (O'ZVrng + 1) (krcggaZ 2‘)3\7 - qug562vrv + k!'gg

+g(2) + 2krc(72vrvg0 - qug() + krv)
Therefore, depending on the coefficients of the cubic equation, we
may have either only one set of fixed-points (one real with two
complex conjugates roots of Eq. (13)) or three sets of fixed-points
(three distinct real roots of Eq. (13)). For simplicity, we consider the
scenario where Eq. (13) has only one real and two complex roots, or
three repeated roots so that the analytical analysis will be carried out
based on a set of unique real fixed-points. To ensure that Eq. (13) will
have only one real root, the discriminant of polynomials should be

less than zero. The discriminant for the cubic equation (Eq. (13)) is
defined as

Ds = —27A’D? + 18ABCD — 4AC® — 4B°D + B*C*>  (15)

This solvability condition further puts the restriction on the ranges of
kig, ke to get unique real fixed-points for the given value of k,.
Therefore, we have ensured that the numerical values of k;q and &
are chosen such that we get unique real fixed-points of the system.

Next, a small parameter e(e < 1) is introduced in Eq. (11)
through following transformation

xi(t) = x5 + €yi(n), (fori = 1,2,...,5) (16)
where y;(t)s are O(1) perturbations. Thus, Eq. (11) can be written as
Y= (17a)
Y2 ==y1 —ke(y1 —y3) = 20y2 — 2K(y2 — ya) + iha(y1 — y3)
+ 3hikeg(y1 = y3) = €(y3h2 = 2y3y1/0 + yiho)
- Ezkr(?(yl - )’3)3
(17b)
V3 =4 (17¢)
V4 = oayaha + 80Y5001 V00 + ZKOC(yz - y4)
+yikyot — y3kyo — ysaoo + (3yroht — 3ysahi) ke
+ (—2y10thy + 2y30hy kg + ey (—aa102vhy + hehy)
= 3kye(y3 — 1) 0k
+ krg(y3 — y1)70 + yaysaoi6ohs
+é (—yifmlhohx — Y3¥500100h7 + Kyeot(y3 — y1 )3)
(17d)

V5 = —Vn8000Ys — &1VnYaho
— €(goysy400 + ysyavig100 + Yivngaho + yigiho)
— & (y5y300v82 + Yivigsho + ysyio0g1 + yigaho) (17e)

where hy = gloshl = ho + X3 + 02V, o = =3kchy + kg b3 =
h — X3 — 62V, hy = —02 + 0181h3Vn,

AUGUST 2023, Vol. 18 / 081005-3

d-s|o1e/JeauljuouleuoneINdwod/B10° swse: uonoa||0oepbipawse//:dny woly papeojumoq

80 8L0 PUO/EZ/|10L/SO0L80/8/8L/IP!

€20z AeN 0} uo eydng Jewny| Jung ‘AusieAlun sjels pue sinjiisu| oluydsiAjod eiubiia Aq ypd-Go0180



hs = g0+ ving&i, he = a1 (hy — x3),h7 = vigo + g1, and hg = g»
+g3v,». Since nonlinearities in these equations appear as coefficients
of higher orders of €(> 0), the unperturbed system can be obtained
by setting e = 0 in Eq. (17) for the linear stability analysis.

3 Linear Stability of Fixed-Points and Existence of

Critical Points

The fixed-point’s linear stability, along with the existence of Hopf
bifurcation in the system, is investigated in this section. As
mentioned earlier, The linearized system of equations can be
obtained by setting e = 0 in Eq. (17) to get

V1= (18a)

Y2 =—=y1 — k(1 —y3) — 20y2 — 2(y2 — ya) + iha (y1 — ¥3)
+3h1qu(yl —)7%)

(18h)
V3= Y4 (18¢)
Y4 = myyahy + goysmy G100 + 2Kmy (y2 — y4)
+ y1k,~mr - y3krmr — Ysm,oqo + 3)’1m/~h% (lgd)
— 3y3m,.h%kn. + (—2yimphy + 2yzm.hy )k,
X5 = —V8000Y5 — &1VrYaho (18e)

Accordingly, the characteristic equation for the system is obtained
by substituting the synchronous solution for y; (for i =1.5) in the
form of

yi(t) Y10
y2(7) Y20
y3(@) | = | y30 |€” (19)
ya(1) Y40
ys(t) Y50

into Eq. (18) and focusing on the nontrivial solutions for the system
to get

B+ P+ 2+ +f=0 (20)

wheref;(i = 1,2,...,5) are defined in Appendix-B and are functions
of control gain parameters, the reference signal, and the primary
system’s characteristics. Note that the fixed-point’s stability
depends on the roots of the above characteristic equation for the
given set of operational and system parameters. If all five roots of the
above characteristic equation have a negative real part, the system is
considered stable in a linear regime otherwise unstable. Since we
can only vary the gain parameters and the reference signal for a
given set of system parameters, the system’s stability depends on
these operational parameters. Therefore, there is a threshold/critical
value for these operational parameters, which corresponds to a
change in the system’s stability. These threshold/critical points
correspond to the Hopf bifurcation in the system and can be
identified by setting A =iw with @ >0 in the- characteristic
equation (Eq. (20)). This substitution leads to a set of two algebraic
equations by equating real and imaginary parts to zero,

fio' —fr0* +f5=0 1)
@ — o +fro=0 (22)

For the current study, we select { (differential gain) and v,,, (velocity
signal) as our operational parameters. Accordingly, we solve the

081005-4 / Vol. 18, AUGUST 2023

above simultaneous equations for { and v,,. Due to the complexity
involved in f/s(i=1,2,3,4,5), we solve these two equations
numerically to get the threshold/critical values of { and v, i.e., {; o
and vy . Furthermore, the solution of the linearized equations
(Eq. (18)) at the critical point is given by

y(‘L') :Alrleimr +A2rge”"’” (23)

In Eq. (23),y(7) = [y1(7),2(7),¥3(7), ya(7),y5(7)]" and r; and r,
are the complex conjugate right eigenvectors of the characteristic
matrix corresponding to eigenvalues 2 = i® and 1 = —iw, respec-
tively. Also, it should be noted that for y(7) to be a real-valued
vector, A; and A, have to be complex conjugate constants. The right
eigenvector r; corresponding to 4 = iw is defined as

1
iw
ry = Rel + im1 (24)
Re, + imy
Res + imjy

Since the expressions for Re,, and Im,,,(m = 1,2, 3) are lengthy, and
hence, not reported in the work for the sake of brevity. In the next
step, we analyze the system using the perturbation method, more
specifically, the method of multiple scales (MMS).

4 The Method of Multiple Scales

The linear stability analysis of our system in Sec. 3 determines the
fixed-points’ local stability for a given set of operational and system
parameters. For a given set of parameters, if a small perturbation to a
fixed-point dies out with time, then it is locally stable; however, if it
increases with time, then it is globally unstable. The sensitivity of
fixed-points toward initial perturbation in a locally stable point and
its time evolution depends on the nature of the existing system’s
nonlinearity. If all perturbations die out with time, irrespective of
their magnitude, then a locally stable point is considered as a
globally stable point for the fixed-point. However, the small
perturbation dies out, and the large perturbation settles down to a
limit cycle close to the critical point in a locally stable point. A
globally stable point is different from a locally stable point, which
further leads to the existence of bistable regions. Since such a
phenomenon relies on the system’s nonlinearity, linear stability
analysis is insufficient to analyze the bistable regime. Therefore, we
perform a thorough nonlinear analysis of the system at Hopf points
to establish the globally stable region of the fixed-points.

For the current analysis, we use a perturbation method, more
specifically, the method of multiple scales, to determine the
amplitudes and locations of limit cycles along with the nature of
the Hopf bifurcation at the Hopf point. To begin, we first define
different time scales as

To=17T =e¢t, T, = ezr, 25)

Accordingly, the time-derivative operators also get modified to

d

S =DoteDi+ D,y + 0(&) (26)
d? 27
@ :D0’0+2€D0,1 +62(2D0,2 +D1’]) +O(€3) ( )

_ 0 __>
where D,, =T, and Dm,,, = o1, 0T,"

solution for Eq. (17) as a series of € tillO(e?) as

In the next step, we assume the

¥(1) = ¥o(To, T1, T2) + €y, (To, T1, T2) + €2y,(To, T1, T2)
=y, +ey, +€y, (28)
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with

[ y1(7) 7] [ Y1 (T0. T1. T>) |
¥2(7) y2m(To, T1, T2)
y(©) = | »(0) |, ¥(To,T1.T2) = | y3u(To, T1,T2) | j=0,1,2 (29)
¥a(1) Yam(To, T1, T2)
Lys(7)] | Ysn(To, T1,T2) |

Next, we select the nondimensional reference velocity v,, as our bifurcation parameter, and perturb v,, as

Viy = Viyer + 62kl (30)

where v,,, ., is the value of v,, at the Hpof/critical point with { = {,,..k; is O(1) quantity and is chosen such that perturbed v,,, remains in the
unstable region. Also, due to the perturbation in v,,, the terms depending on v,, will get perturbed as well in the form of

hi(viy) = hi(v”,,(.,,) +é (“f‘h’w:‘>k1 + O(e*) ~ hier + ezh,‘,pkl . Next, we substitute Egs. (26)—(30) in Eq. (17), expand in Taylor series for
smaller values of ¢, and equate the coefficients of different orders of e to zero to get O(e”)

Dox1,p —x21 =0 (3la)

Doxa,1 + 2(x21 — x41)K — (X301 — X1,10)kr + Arer (Y31 — X110 kng + X101+ (531 — X01)Aerhaer + 2001 =0 (31b)

Doxz1 —x41 =0 (3lc)

Doxay — 2my (x2,0 = Xa,1)K + my (31 — X1,0)ke — 2mphy or (X310 — X1,1 )king

3 2 2
+ my0oXs1 — M0} GOXS,Iv,-v’c,-glcr + m, 0 O-O-XS,IVrv,(,'rhS,(,'r - 3’nl'kr('xl,l hl.('i* + 3ml'kr('x3,l h],yr (3 ld)
2
+ mpxg 1ha o +mpo100xs51Vy, h7er =0
D0x5,l + x4,1Vrv,('rgl,rrh(),u' + 00X5,1Vrv,cr80,cr = 0 (316)
O(e")
Dox1p —x20 = —Dixy (32a)
Doxap +2(x2p — Xap)k — (X32 — X12)kr & Mier(X32 — X12)kig + X12 328)
2
+ (B2 = X12) oo + 2000 = =Dixg) + hoer(X1,1 — X3,1)
Dox3p — x40 = —D1x3 (32¢)
Doxap = 2my(x20 — Xa2)ic + my (X320 — X12)ky — 2mphy e (X302 — X12)kig
2 3
+my00Xs2 + M0y O—Oxizvrv,crhll‘l‘ — My0100X52V,, o 82,cr + mro—l00X5,2Vrv,frh5,cr (32d)
2 2 2
= 3mykyexi2hy o + 3mpkiexsphy  + mpxapha o = mp(X11 — X31) kg — D1Xa ) — mpG100X4,1X51 /1501
2 2 2
- X4’1m,-0'] O—Zvrv,u‘h7,(‘r + x4’1h7,crh6,cr - 3mrkn'hl,('r (x?a,l - xl,l)
D + ho e + Gox =2 hoer — GoXg1X
0X5,2 X42Vrv,er81,erN0,cr 0X52Vrv,cr80,cr = 4’1V7‘\r*,c'7‘g2,cr 0,cr 0X4,1X5,180,cr (32 )
e
' ) 2
- Dl)‘il = 00X41X5,1Vrv,cr81,er — x4,1g1,z'rh0,z'r
o(e)
Dox13 — x23 = —Doxy1 — Dixip (33a)
Doxa3 4+ 2(x23 —x43)K — (X33 — X13)kr + hier (X33 — X13)kig +X13 + (X33 — X13) 1M er
’ 3 ’
+2005 = (X110 — x30)kihipkeg — 3kie(x11 — X31)7 + (X110 — X310 erkihay + 2x1 2031 hagy (33b)
= Dixap — Doxoy (X110 — X3,0)k1hi phoer — 203103200, ¢0 — 2X11X1 2R, + 2001103 211,61
Dox33z — x43 = Daxszy — D1x3p (33c¢)
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Doxaz — 2my(x23 — Xa3)K + my (X33 — X13)ky — 2mphy e (X33 — X13)kng + My 00X53 + mpXa3ha e

2 3
+ m, 0 G()x5,3V,<v,C,~h7,z'r — myay G()x5,3V,v,c,~g2,m'+m, TV OOX5 3uyy o N5 cr —3m,.k“,\']_3h%“_

+ 3mrkrcX3,3hif,. = 2x4.1X4207 e he o + M0y U()Xi,lxs,lhnr —Dix4p — Doxgy — Xilhx,cr
+ kyemy (x1,1 — X3,1)3 +2my(X31X30 — X11X32 — X1 2X31 + X1,1X10 — X101k hyp 4 23,1k Ry )k (33d)
- mr01¢70X4,1X5,2h5,(»r - mr¢7100X4,2X5,|h5,a- + 3m,~61ons,lv,z.v,f,.klgz,pr —2m,0, ons,lvrv,crklh7,cr
—m,o 100X5,1V§,crk1h7,p +m,o 10'0X5,1V?-v,<,-,-k1g2,p — My G100X51Viyerkihs p — 6m kX1 1X1 201 ¢
+ 6m,kyexy 1 X320 ¢ + OM kX1 2X3 1h o — OMLKp X3 1X3 001 o — MG 00X5 1K1 D5
- 6mrkrcx3,lhl,crk1hl,p + 6mrkr(xl,lhl,crk1hl,p - 2)54,1)(4,2"7)‘0-—1 1021}7‘\7,(‘7‘]17,(‘1‘ - mrx4,1klh4,cr
Doxs3 + X43Vry.cr&1.crho.cr + 00X53Vicr80.cr = —00X42X5,180,cr — D2Xs51 — 00X41X5280.cr
— D1x5p — Xa1Vpv.erk181ph0.cr — 00X5,1K180,er — oni,lxs,lgl,ur — 2x41%4281.crho.cr
- a()xilxi,lV/'v,cz"gZ,cr - x?;’]glrrh(),ur - 2x4,lx4,2Vrv,('r82,('rh0,(‘r - GOXS,IVrl',L'rklgO,p (336)

3
— 00X4,1X52Vrv.er81,er — x4,1Vrv,(?rg3,('rh0,cr — 00X42X51Vrv.cr81.,cr

— X4, kl gl.('rh(),cr — X4, Vrv,crgl,crkl h(),p

Since the equations corresponding to O(e?) (Eq. (31)) are similar to
the linearized equations, i.e., Eq. (18) with critical/Hopf control
parameters, the solution for Eq. (31) can be written in the form of the
generalized right-eigen vector as

Yooy = A1(T1, Ta)rie " + Ay (Ty, Ty)rpe 0 (34

In the above-assumed solution form, A; and A, are complex and
conjugate functions. To get the closed form solution for A (T4, 7,)
and Ay (T}, ng, we proceed to the higher order of e. Substitution of
Eq. (34) in O(¢') equations, i.e., Eq. (32) leads to the appearance of
e?0To o=20To oioTo and ¢~/@To in the resultant equations. However,
the appearance of secular terms ¢/’ and e~"T0 give rise to linear
growth in the solution for y,, and have to be eliminated from the
corresponding equations to get a bounded solution for y,. In
particular, this step requires that the dot product of the vector
consisting of the coefficients of 70 (¢~*T0) with the generalized
left eigenvectors corresponding to 1 = iw(1 = —iw) should be zero
[31]. The generalized left eigenvectors 1; for the characteristic
matrix corresponding to ™70 is

1} = [1 Lrey + iLimy Lrey + iLimy Lres + iLims Lres + iLimy.]
(35)

Since the expressions for the components of left eigenvectors are
lengthy and involved, these are not reported here for the sake of
brevity. Furthermore, the left-eigen vector 1, for the eigenvalue 4 =
—iw is the complex conjugate of l;, and hence, not reported in paper.
The coefficient vectors u; and u, corresponding to ¢’*To and e=/“To,
respectively are

1 1
iw —iw
0A(T,, T 0AL (T, T .
wy = T ey iy |y = PRIV e, i,
! Rez + img ! Rez - im2
Re; + imj3 Re; — imgy

(36)

It can be easily observed that u; and u, are complex conjugates of
each other and have the same coefficients as the generalized right
eigenvector. This observation can be further justified by the
appearance of only quadratic nonlinear terms in O(e') equations.
These quadratic nonlinear terms further give rise to either

081005-6 / Vol. 18, AUGUST 2023

e@To(e=10To) or constant terms, and hence, do not contribute to
secular terms. As discussed above, to remove secular terms
corresponding to ¢T at O(e') we use the solvability condition

I; - u; = 0, which further implies

0A(T1,T)
oT,
+ Lre3Re; — LimzIm, + LresRe; — LimyIms] (37)
+i(wLrey + LrepIm; + LimyRe; + LresImy
+Lim3Re; + LresIms + LimgRe;)] = 0

[1 — wLim; + Lre;Re; — Limy Im

0A\(T),T,)
—F—==0. 38

T, (38)
Equation (38) follows from Eq. (37) as the term inside the bracket in
Eq. (37) will not be zero for the given values of parameters at the
Hopf point. Furthermore, the removal of secular terms correspond-
ing to T using the solubility condition also leads to

8/42 (Tl N Tz)
o 0 39)
However, these results (Egs. (38) and (39)) suggest that A; and A, do
not depend on 7'} and are only the functions of 7,. Furthermore, to
obtain the nonzero solutions of A} and A,, we proceed to the next
order of e, i.e., equations corresponding to O(e?), for which the
solution at the O(e!), i.e., ¥, isneeded (as evident from Eq. (33)). To
get the solution fory,, we substitute 2%: = 0Oand g‘;: = 0, along with
the assumed form of solution for y,, (Eq. (34)) in Eq. (32), and use the
Harmonic balance method. For this, we assume the following form
of the solution for y,

¥, (To, Ty, T2) = A2(T,) By, %70 + A3(T,)Byye 270
+A1(T2)A2(T2)B12, (40)

where coefficient vector B, B>, and B, are defined as

b b b3
b1z b b3
Bii= |bi3|,Bxn=|by|,and Biy = | b33 41)
bia boa b3
bis bas bss
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We are substituting Eq. (40) in Eq. (32) and collecting ¢*“T0, ¢ ~2To
and constant terms, we get 15 simultaneous algebraic equations in
terms of b, (for m = 1,2,3 and n = 1.5) . Since the closed-form
expressions for b, are lengthy, we do not report these expressions
for brevity. We substitute y, and y, in terms of A;(T%) and A, (75 ) in
o) equations (Eq. (33)) and collecting the coefficients of secular
terms, i.e., e®T0 and e =0 If V; and V, are the secular coefficient
vectors corresponding to e/®70 and e =70, respectively, then secular
terms from Eq. (33) can be removed by l; - V; =0andl, - V, = 0.
These solvability conditions lead to two first-order complex
conjugate differential equations governing the slow time evolution
of A; and A,. Therefore, we switch to polar coordinates by
substituting

R(T,)e! () R(T,)e ()

A(T,) = >

, and Ay(T,) = 42)

into the complex differential equation resulting from 1; - V; = 0.
We separate the resultant equation into real and imaginary parts and
solve for OR(T>) /AT, and d¢(T,)/IT as

IR(T>)

_ 3
ar, =pukiR +ppR (43)
op(T
‘g(T S (44)
2

where pi1,pi2.p21, and py are functions of system parameters,
Cers Viver and . As 11, p12, pa1, and po, are very long expressions of
the above-mentioned parameters, we do not report these in the
current work for brevity. The equations governing the R and ¢ in the
original time scale (7) can be expressed using Eq. (26) as

Table 1 Numerical values of system’s parameters [32]

my(kg) 1.5 ky 2¢*
my(N — s/m) 0.75 Xo(m) 0.0007353
o5(N/m) 2.2¢° a},05(N —s/m) 237,14.25
£1(N) 5.1 £7(N) 6.5

o (rad/s) 115.5 K 0.001
ao 110 (] 1.37

02 0.0823 I 0.44

fe 0.35 a 2.5

0.257

0.2
>

£0.15¢

0.1t

0.05f

0 0.05 0.1 0.15 0.2 0.25 1.3

¢
(@)

dR  OR ,0R

2 3
— =ec—+¢€ =€ kiR R 45
I 68T1 € T E(prikiR +piR?) (45a)

0p_ 00 00

ot o 8T1 8T2

= E(paiky + pnR?) (45b)

Further, x;(7) can be obtained by utilizing Egs. (16), (28), (34), (42),
and (45).

5 Results and Discussions

In this section, we examine the analytical results presented in
Secs. 3 and 4 through numerical simulations. For our numerical
simulation, we use the parameter values listed in Table 1 . We first
analyze the linear stability of the system in the parametric space of {
and v,, followed by the validation of our analytical formulation.
Later on, by utilizing our analytical findings, we present the different
regions of sub and supercritical Hopf bifurcation on linear stability
boundaries. Finally, a detailed bifurcation analysis is presented.

5.1 Linear Stability Curves. In this section, we present the
effect of the nonlinear components of friction isolator on the linear
stability of the system. For this step, we plot the stability curves for
different combinations of k,q and k. on the operational parameter
region of { — v, and are shown in Figs. 2-4. For ease of
understanding, the unstable and stable regions are denoted by “U”
and “S,” respectively.

As mentioned earlier, it is mathematically challenging to get
analytical expressions for v, and {.,, hence, we obtain stability
boundaries numerically by solving Eqgs. (21) and (22) along with
Eq. (13) for the varying values of frequency w in a range w&E(w;,
wy). Since @; and @, are functions of system parameters, their
numerical values vary from one case to another. On solving Egs. (21)
and (22) along with Eq. (13), for a given range of frequency, we get
negative values of { and vrv. However, as negative values of the
control gain and the reference signal are not feasible, we plot the
stability curves for the positive values of parameters.

From Figs. 2—4, we can easily observe that, compared to the case
of linear FI, the inclusion of quadratic and cubic nonlinearities in the
FI increases the fixed-point’s stability significantly. This observa-
tion further implies that the nonlinearities in FI support a wider range
of stable operating conditions. However, the relative effects of
quadratic/cubic nonlinearity on the stability region for a given value

0.25¢

0.2f
>

£0.15

0.1f

0.05¢

0 0.05 0.1 0.15 02 025 0.3

¢
(b)

Fig.2 Comparison of stability region (a) for different values of cubic nonlinearity and k.= 0.2, and (b) for different values
of quadratic nonlinearity and k:=0.2 in nonlinear Fl with linear Fl. Other parameters are 6¢9=110,61=1.37,
62=0.0823, fs=0.44, f-=0.35,x=0.001,a=2.5, k,=0.5, k;q=0.2 and m,=2.
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of cubic/quadratic nonlinearity in various scenarios are different.
For example, Fig. 2 shows the stability boundaries for different
values of cubic/quadratic nonlinearity for a given nonzero value of
quadratic/cubic and linear stiffness whereas Fig. 3 shows the
stability boundaries with different values of cubic/quadratic
nonlinearity in the absence of quadratic/cubic nonlinearities and
nonzero linear stiffness, and Fig. 4 shows stability boundaries for
different values of cubic/quadratic nonlinearity in the absence of
quadratic/cubic and linear stiffness. From Figs. 2 and 3, it can be
observed that the relative effects of cubic and quadratic non-
linearities on the fixed-point’s stability are almost identical with or
without the other component of nonlinearity. This further implies
that the rate of increase in stability with the increase in cubic
nonlinearity is approximately the same as with the increase in
quadratic nonlinearity. However, we emphasize that the overall
stability at the given value of cubic nonlinearity (Fig. 3(@)) is higher
than that at quadratic nonlinearity (Fig. 3(b)). Furthermore, from
Fig. 4, it can be observed that although the rate of increase in stability
with quadratic nonlinearity (Fig. 4(b)) is much higher than cubic

— TLinear
—k.e=0.2
—k,.=0.3
0.25¢ —ky. =04
—ky.=0.5
0.2f
S
5 0.15]
0.1}
0.05¢
0

0 0.05 0.1 0.15 0.2 0.25 0.3

¢
(@)

nonlinearity, the overall stability boundary for a given value of cubic
nonlinearity is significantly larger than the case of quadratic
nonlinearity. These observations further suggest that increasing
the cubic stiffness of FI is more beneficial than increasing the
quadratic stiffness. Having established the effect of nonlinear
stiffness on the fixed-point’s stability, we analyze the Hopf
bifurcation on the stability curves using analytical results obtained
by MMS. However, before this step, we must validate our analytical
results, which can be done by comparing them with numerical
simulations and presented next.

5.2 Validation of Method of Multiple Scales. To evaluate the
accuracy of the MMS, we compare the solution of the system
obtained from the slow-flow equations to the one obtained from
Eq. (11) using the MATLAB ODE solver “ode45.” We first present the
time response of the motion stage with nonlinear FI for two sets of
operational parameters close to the Hopf point. In particular, we
respectively choose two nondimensional reference velocities with a
smaller and a larger value, ie., v, =0.0495 <wv, . =0.05,

‘ —Lihear
03
025} R ol
— kg =05

0.2f
>

£0.15

0.1f

0.05¢

0 0.05 0.1 0.15 02 025 0.3

¢
(b)

Fig. 3 Comparison of stability region (a) in the absence of quadratic stiffness (kq=0) for different values of cubic
nonlinearity (b) in the absence of cubic stiffness (k..=0) for different values of cubic nonlinearity in nonlinear FI with
linear Fl. Other parameters are 6o=110,61=1.37,65,=0.0823, f;=0.44, f,.=0.35, k =0.001,2a= 2.5, kK, = 0.5, and m, = 2.

0.25¢

0.2f
£0.15
0.1}

0.05¢

0 0.05 0.1 0.15 0.2 0.25 0.3

¢
(@)

—Linear

krg = 0.1

0.25} krg=0.2

krg=0.3

ko = 0.4

0.2} o
£0.15
0.1
U

0.05}
0

0 0.05 0.1 0.15 02 025 0.3

¢
(b)

Fig.4 Comparison of stability region (a) in the absence of cubic and linear stiffness (k.. =k,=0) for different values of
quadratic nonlinearity and (b) in the absence of quadratic and linear stiffness k.q=k,= 0) for different values of cubic
nonlinearity in nonlinear FlI with linear Fl. Other parameters are 60=110, ¢1=1.37,02,=0.0823, f;=0.44, f.=0.35,

x¥=0.001,2a=2.5, and m,=2.
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(., =0.11873, and v, = 0.09 < v, = 0.1, = 0.09502. Since
both sets of parameters are in the unstable regime, we obtain a
gradually increasing periodic response of different amplitudes as
shown in Fig. 5. We emphasize that these time responses are shifted to
the origin set at the fixed-point (Eq. (12)). From Fig. 5, it can be easily
observed that the analytical solution of the system from MMS exhibits
an excellent match with the numerical solution of the system. We
repeat the same steps for the motion stage with linear FI and two sets of
operational parameters, viz., v, = 0.0495 < v, = 0.05,(,, =
0.24562 and v, =0.09 < v =0.1, {, =0.19082117. The
results are shown in Fig. 6 and we observe a good match between
the two approaches for the motion stage with linear FI. Hence, our
analytical solutions (Eq. (45)) are valid.

5.3 Hopf Bifurcation. In this section, we analyze the different
regions of super and subcritical Hopf bifurcation on the stability
lobes. When the system changes its stability through the Hopf

0.02 . i
---MMS
0.015¢ — Numerical simulation {

0.01}
0.005}
© 0

S _0.005

-0.017

—0.015¢

-0.02¢ -

8
10 105 11

0 20 40 - 60 80 100

(@)

bifurcation, the fixed-points settle down to a limit cycle close to
Hopf point. Furthermore, the location of a limit cycle with respect to
the Hopf point decides the nature of Hopf bifurcation. More
specifically, in the case of supercritical Hopf bifurcation, these limit
cycles exist in the unstable region only, whereas the existence of
limit cycles close to the Hopf point in the stable regime signifies
subcritical Hopf bifurcation. We emphasize that the presence of
supercritical Hopf bifurcation leads to the fixed-point’s global
stability of the stable region, whereas subcritical bifurcation leads to
a bistable region in the system. Therefore, it is an essential step
toward the understanding of the criticality of Hopf bifurcation on the
stable curves.

From Figs. 2—4, we can observe that the location of an unstable
region with respect to a Hopf point is not uniform in case of
perturbation in v, ., i.e., the unstable v,, is higher for v,, ., of low
values and lower for v,,, .- of high values. This further implies that the
sign of k; in Eq. (30) will vary, i.e., positive for low values of v, .,

[---MMS
0.02+ — Numerical simulation(]
0.011
A 07
=
& -0.01}
'
~0.02| N‘i
-0.015
-0.03¢
-0.016
8 85 9
-0.04 : . : g
0.0 0 20 40 - 60 80 100
(b)

Fig. 5 Comparison of analytical and numerical simulation for (a) (., =0.11873, v;,=0.0495<v,, ,= 0.05,
(b) {=0.09502, v;, =0.09<V,, -=0.1, PD controlled motion stage with nonlinear friction isolator. Other parameters are
60=110,01=1.37,02,=0.0823, fs=0.44, f.=0.35,xk=0.001, a=2.5, m;=2, k;q=0.2, k;c=0.2, and k,=0.5.

0.02

“--MMS
0.015¢ — Numerical simulation |{

0.01y,
0.005

~0.005}
—0.01f V [V] 10°

-0.015} 5
-0.02}

-0.025¢ ‘ ‘ 14 16 . 1
0 20 40 60 80 100

(a)

-3

x 10 ‘
---MMS
— Numerical simulation
5
0 L
S
8
=5¢ u _
x 107
-5
-10¢ -5.2
30.2 31.2
0 20 40 60 80 100
T
(b)

Fig. 6 Comparison of analytical and numerical simulation for (a) (., =0.24562, v,,=0.0495<V,y - =0.05,
(b) ¢.,=0.19082117, v;, =0.09<Vv,, ., =0.1, PD controlled motion stage with linear friction isolator. Other parameters are
60=110,061=1.37,06,=0.0823, f;=0.44, f.=0.35,x=0.001, a=2.5, m,=2, and k,=0.5.
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and negative for high values of v,, .. However, in the case of
perturbation in (., the unstable region always lies on the left of the
Hopf point, which further leads to a consistent sign (-ve) for k.
Therefore, for the sake of simplicity in determining the transition
points from super to subcritical Hopf bifurcation or vice versa, we
perturb { as { = {,, — €’k;, and follow the procedure mentioned in
Sec. 4 to get

dR

e E(qrkiR + q1R?) (46a)
0 46b
ai(f = &(quki + gnR?) (460)

where ¢q11,4q12,¢21, and gy, depend on the system characteristics,
critical operational parameters, and @. Furthermore, the amplitude
of the periodic solutions near the Hopf points can be estimated by
setting R = 0 in Eq. (46a), i.e., the nontrivial solution of Eq. (46a)
and is given by

— Supercritical Hopf Bifurcation
— Subcritical Hopf Bifurcation
0.257
0.27
Zo.1s S
0.17
0.05¢
0

0 0.05 0.1 0.15 02 025 0.3

¢
(a)

[—qi1k
R— qi1ki 47)
q12

Equation (47) plays an essential role in determining the criticality of
Hopf bifurcation. In Eq. (47), if f—:; is negative then for R to be a real
quantity k; should be positive. This further implies that limit cycles
will exist in a linearly unstable region only, and the Hopf bifurcation
will be supercritical. However, if for another set of critical parameter
values % get positive then for a real value of R,k should be
negative. Hence, limit cycles exist in the linear stable region, and the
Hopf-bifurcation will be subcritical. After determining the criteria
for subcritical and supercritical Hopf bifurcations, we evaluate "—:i at
every Hopf point on the stability curve and decide the characteristic
of Hopf bifurcation. Figures 7(a) and 7(b) show the characteristic of
Hopf bifurcation on the stability boundary for the MBMS with
nonlinear and linear FI, respectively. From both figures, we can
observe that supercritical Hopf bifurcations occur at low values of
vry. At the same time, fixed-points lose stability through subcritical
Hopf bifurcations for high values of v,,.

— Supercritical Hopf Bifurcation
— Subcritical Hopf Bifurcation

025}
0.2
£0.15
0.1}

0.057

0 0.05 0.1 0.15 02 025 0.3

¢
(b)

Fig. 7 Criticality of Hopf bifurcation in the motion stage with (a) with nonlinear FI (k,,;=0.2, k,q=0.2) and (b) linear FI
(k,c=k,q=0). Other parameters are 6o=110, 61=1.37,5,=0.0823, f;=0.44, f.=0.35,x=0.001, a=2.5, m,=2, and k,=0.5.
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Fig. 8 Variation of g11/q12 with (a) {,, and (b) v for different values of k., and k,.. Other parameters are
60=110,01=1.37,6,=0.0823, fs=0.44, f,=0.35,x=0.001, a=2.5, m,=2, and k,=0.5.
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At first glance on Figs. 7(a) and 7(b), it appears that there is no
effect of nonlinearity of FI on the subcritical and supercritical Hopf
bifurcation regions on the stability curve, and transition point
remains the same with nonlinear and linear FI. Therefore, to
demonstrate the effect of nonlinear parameters of FI (k,4, k) on the
criticality of Hopf bifurcation, we plot ‘% with different values of { .,
and v,, ., for different sets of k,, and k., and the results are shown in
Figs. 8(a) and 8(b), respectively.

From Fig. 8(a), it can be noted that the inclusion of nonlinearity in
FI reduces the range of (. corresponding to supercritical Hopf
bifurcation. However, this can be further justified by the fact that the
nonlinearity shrinks the unstable region by decreasing (.. values
which lead to a decrease in the effective range of (., for supercritical
Hopf bifurcation. Instead, Figs. 8(a) and 8(b) provide more
information about the effect of k,, and k.. on the criticality of
Hopf bifurcation. From Figs. 8(«a) and 8(b), we can easily observe
that the inclusion of nonlinearity in FI can decrease or increase the
region of supercritical Hopf bifurcation depending on the numerical
values of k,, and k,.. The optimization of these values for a larger
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region of supercritical Hopf bifurcation and globally stable region is
left for future work.

We emphasize that these analytical findings only provide the
amplitude of limit cycles close to the Hopf point and characteristics
of Hopf bifurcation on the stability boundaries. Therefore, to
observe the global behavior of the system in the unstable region, we
employ the numerical bifurcation analysis and present in the
Sec. 5.4. Note that this step not only provides information about the
large amplitude response of the system but also further verifies our
analytical findings.

5.4 Bifurcation Analysis. To perform the numerical bifurca-
tion analysis for the motion stage with nonlinear and linear FI, we
solve the system of ODEs given by Eq. (10) using MATLAB ODE solver
“ode45.” The bifurcation plots, showing the extreme points of xy, i.
e., the error amplitude of the motion stage (corresponding to x, = 0),
for the motion stage with nonlinear and linear FI have been shown in
Figs. 9 and 10, respectively. The numerical bifurcation analysis can
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Fig. 9 Numerical bifurcation diagram of motion stage with nonlinear Fl with v, as bifurcation parameter for (a) {=0.06
and (b) {(=0.1. Other parameters are ¢o=110,01=1.37,0,=0.0823, f;=0.44, f.=0.35,x=0.001,a=2.5, m,=2, k;,q=0.2,

krc=0.2, and k,=0.5.
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Fig. 10 Numerical bifurcation diagram of motion stage with linear Fl with v,, as bifurcation parameter for (a) {=0.06 and
(b) {=0.1. Other parameters are 69=110,61=1.37,6,=0.0823, f;=0.44, f,=0.35,x=0.001, a=2.5, m,=2, and k,=0.5.
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be performed by making either of the operational parameters a
constant and varying the another. However, to show the existence of
super- and subcritical Hopf bifurcations for lower and higher values
of v,,, respectively, as observed in Sec. 5.3, we have fixed { and
varied v,,.. To plot these numerical bifurcation diagrams, we vary v,,
in upward and downward directions so that the system loses and
gains stability through Hopf bifurcation. For completeness, we have
also plotted these numerical bifurcation diagrams for two different
values of (. To get a better picture of the dynamics of the motion
stage with nonlinear and linear FI, the bifurcation diagrams close to
the Hopf points are shown in the inset of Figs. 9 and 10. From these
numerical bifurcation diagrams, we can easily observe the existence
of stable limit cycles with fixed-point solutions at higher values of
v, for a given value of {, which implies Hopf bifurcation is
subcritical by nature. However, for lower values of v,,, stable limit
cycles exist in the unstable region only, which indicates supercritical
bifurcation. Both of these observations are consistent with our
analytical findings in Sec. 5.3. Furthermore, in the case of the motion
stage with nonlinear

FI, the response amplitude for higher values of v,, is relatively
smaller than the ones corresponding to the motion stage with linear
FIL. For a better understanding of the dynamics of a PD-controlled
motion stage with nonlinear and linear FI, the zoomed views of
Figs. 9 and 10 have been shown in Figs. 11 and 12, respectively. For
the sake of brevity, we only present these zoomed views for
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differential gains of higher values, i.e., { = 0.1. The corresponding
representative phase portraits for different values of v,, have been
shown inside these zoomed figures. From Figs. 11 and 12, we can
easily observe that in both cases, close to Hopf points, stable period-
1 solutions lose stability through period-doubling bifurcation. This
further leads to the appearance of period-2 solutions, which can also
be observed from the phase portraits (Figs. 11(a) and 11(d) and 12(a)
and 12(d)). Furthermore, in the case of nonlinear FI, the system
exhibits only period-4 solutions away from the Hopf points, and
there is no exchange in the stability of limit cycles away from the
Hopf points (Figs. 11(b) and 11(c)). However, in the case of linear
FI, apart from the coexistence of period-1 and period-2 solutions (as
can be seen by phase portraits for v,, = 0.02 in Fig. 12(a)), there is a
continuous exchange of stability between period-1 and period-2
solutions as shown in Figs. 12(a)-12(d). Also, when comparing
Figs. 11 and 12 in terms of subplots (i) and (ii), we observe that the
branch of stable period1 solutions close to Hopf point is significantly
smaller in case of linear FI when compared to the case of nonlinear
FI. This observation further signifies the importance of nonlinear FI
over linear FI.

We perform the quantitative match between MMS results and
numerical simulations for completeness. For this step, we use the
fixed-arc-length continuation scheme [33] to get the branch of limit
cycles close to the Hopf point and later compare it with the branch of
limit cycles obtained using the slow-flow equation emerging from
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Fig. 11 Zoomed view of Fig. 9(b) for different range of v,,. Other parameters are 5o=110,01=1.37, 6,=0.0823,
fs=0.44, f.=0.35,x=0.001,a=2.5, m;=2, k;4=0.2, k,c=0.2, and k;=0.5.
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Fig.13 Comparison of bifurcation diagram from numerical simulation and MMS with v,, as bifurcation parameter for the
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the Hopf point. These results are shown in Figs. 13(a) and 13(b) for
MBMS with nonlinear and linear FI, respectively. Since the analysis
has been performed close to the Hopf points, we can observe an
excellent match between MMS and numerical simulations close to
the Hopf point, which further verifies our analytical approach.

6 Conclusion

In this study, we analyzed the linear and nonlinear dynamics of a
PD-controlled MBMS with a FI using analytical and numerical
methods. Contrary to earlier studies where the nonlinearity in the
friction isolator was ignored, the effects of nonlinearity from the
friction isolator on the dynamics of the motion stage have been
explored in this work. The dynamical effect of friction was captured
through the LuGre friction model. A parametric study on the linear
stability analysis revealed that compared to the linear friction
isolator, the nonlinearity in the friction isolator increases the fixed-
points’ local stability in the operating parameter space of reference
signal and differential gain. This further implied that the system’s
stability is underestimated when using the linear FI model. The
nonlinearity in the FI should be considered in the modeling for a
better prediction of steady operating conditions. The nonlinear
analysis of MBMS with FI was performed analytically using MMS
and numerical simulations. The analytical findings were verified by
comparing them against numerical solutions, and a good match was
observed. Both analytical and numerical simulations revealed the
existence of supercritical and subcritical Hopf bifurcation. Fur-
thermore, the parametric analysis on the criticality of Hopf
bifurcation revealed the sensitivities of subcritical and supercritical

Appendix A: Mathematical Model
A.1 Expression Used in Eq. (11)

I 1 0g 71(65))
& gvw) & &l 2ov, 27 g \ov,

Appendix B: Linear Stability Analysis

B.1 Expressions Used in Eq. (20)

fi = (vwoogo + 20 + 2km, + 2K + mhy)

g a[(mY s 2o
20vZ | 3 gt | \ov,, vy V2, 6 O3

Hopf bifurcation regions in terms of the nonlinearities of the friction
isolator. On exploring the dynamics of MBMS with nonlinear FI in
the unstable regime, we observed period-doubling bifurcations,
period-4 solutions, and quasi-periodic solutions.

Finally, these findings suggest that the consideration of non-
linearity in the FI model is an essential step to get an accurate picture
of global dynamics of the motion stage with a FI.
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