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ABSTRACT

The utilization of mechanical-bearing-based precision mo-
tion stages (MBMS) is prevalent in the advanced manufacturing
industries. However, the productivity of the MBMS is plagued by
friction-induced vibrations, which can be controlled to a certain
extent using a friction isolator. Earlier works investigating the
dynamics of MBMS with a friction isolator considered a linear
friction isolator, and the source of nonlinearity in the system was
realized through the friction model only. In this work, we present
the nonlinear analysis of the MBMS with a nonlinear friction
isolator for the first time. We consider a two-degree-of-freedom
spring-mass-damper system to model the servo-controlled mo-
tion stage with a nonlinear friction isolator. The characteristic
of the dynamical friction in the system is captured using the Lu-
Gre friction model. The system’s stability and nonlinear analysis
are carried out using analytical methods. More specifically, the
method of multiple scales is used to determine the nature of Hopf
bifurcation on the stability lobe. The analytical results indicate
the existence of subcritical and supercritical Hopf bifurcations in
the system, which are later validated through numerical bifurca-
tion. This observation implies that the nonlinearity in the system
can be stabilizing or destabilizing in nature, depending on the
choice of operating parameters.
Keywords: Precision motion stage, LuGre model, method of
multiple scales, Hopf bifurcation, Nonlinear friction isolator.
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INTRODUCTION

Precision motion stages are used for high-speed precision
positioning in advanced manufacturing and metrology-related
processes (advanced machining, additive manufacturing, and
semiconductor fabrications). Due to their wide range of mo-
tions, easy installation, cost-effectiveness, and high off-axis stiff-
ness, the mechanical-bearing- based motion stages (MBMS) are
more popular than their counterpart motion stages [1]. One or a
combination of proportional (P), integral (I), and derivative (D)
controllers are utilized to control the motion of MBMS [2, 3].
However, the application of servo controller in MBMS leads to
the problem of self-excited limit cycles, also known as friction-
induced vibrations (FIV), which further causes long settlings
times, oscillations of tracking errors, and stick-slip phenom-
ena [2,4,5]. Therefore, to mitigate the tracking error oscilla-
tion, which leads to better motion stage performance, it is vital
to understand the dynamics of self-excited FIV under different
conditions.

To mitigate or control the FIV, different controllers have
been proposed; (1) model-based controllers, (2) high-gain con-
trollers, and (3) advanced controllers (adaptive, model predic-
tive, etc) [6-9]. Nevertheless, there can be certain limitations
in the performance of these controllers. For instance, sur-
rounding noise can limit high-gain controllers, model inaccuracy
in the model-based controller, and low-performance computa-
tional/actuator hardware in the case of advanced controllers.

Recent studies [10, 11] developed a robust mechanical de-
vice known as the friction isolator (FI) to mitigate self-excited
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FIV in MBMS control systems. Since the compliant motion
stages adopt FI as a motion-compliant joint between the bear-
ings and the table, it efficiently isolates the table from the non-
linear effects of friction. Following these works, a detailed lin-
ear and nonlinear analysis was performed to identify key de-
sign parameters and operating conditions for stable operation
of MBMS [12-14]. However, we emphasize that the above-
mentioned studies investigate the dynamics of motion stages with
linear FI, and did not consider the nonlinear dynamical compo-
nents of FIL. In practice, nonetheless, the mechanical design of FI
can introduce nonlinear components that can be significant com-
pared to the linear components. Therefore, we need to consider
the nonlinearities from FI to understand the dynamics of compli-
ant motion stages.

To the author’s best knowledge, although the application of
linear FI in MBMS is established, the nonlinear components of
FI have not been considered in the analysis. Therefore, this study
is believed to be the first to examine the dynamics of the mo-
tion stage with nonlinear FI. The LuGre friction model [15] is
used to describe the friction dynamics between contact surfaces.
The nonlinear analysis is performed using the method of multi-
ple scales (MMS). The study shows that linear FI underestimates
the linearly stable regime of operation. Also, we observe the ex-
istence of supercritical and subcritical Hopf bifurcations in the
system depending on the selection of control parameters.

MATHEMATICAL MODEL OF MOTION STAGE

The mathematical model of the MBMS with nonlinear FI is
briefly presented in this section. The current model is an exten-
sion of the model discussed in [14] and shown in Fig. 1. The
motion stage is modeled as a rigid mass m;,, whereas the com-
bined mass of the bearing and FI is modeled as m;. The nonlin-
ear spring with a stiffness function g(.), and a linear damper with
damping coefficient cs; represent the interaction forces between
my, and m;. Moreover, the input reference signal and output feed-
back control forces from the PD controller are denoted by r(¢)
and u, respectively. Consequently, if X;(¢) and X;(¢) represent
the position of precision motion stage and FI, respectively, then
the governing equations of motion for the system can be written
as

mXi+ g (X1 —Xa) +c5i (X1 —X2) =y, (la)
thz—g(Xl—X2)+Cfi (XQ—X])Z—Ff. (1b)

where feedback force u; is defined as
up = —kje—kye. 2)
In the above equation, k), and k}; represent the proportional and
differential gains, respectively, and the tracking error, e, is de-
fined as the difference between the position and reference input.

Moreover, in the governing equations of motion, the frictional
force between the support platform and the bearing is denoted
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by Fy, and is modeled using the LuGre friction model [15]. In
the LuGre model,

- Xi(t)
q(.)
VYV
o

FIGURE 1: Schematic of PD controlled precision motion stage
with nonlinear FI

microscopic degrees of freedom are incorporated by modeling
asperities of the contact surfaces as elastic bristles with linear
stiffness and viscous damping. Therefore, if z represents the av-
erage bristle deflection, the friction force in the LuGre model can
be defined as

Fr =042+ 0{2+ 03V, 3

where o; and o} are the contact stiffness and the micro-damping
of the bristle, respectively, o5 is the macroscopic viscous friction
between the contact surfaces, and V, is the relative velocity be-
tween the two moving surfaces. In addition, the evolution of the
average bristle deflection z with time is governed by [15, 16]:

o; |Vl < o; sgn(Vy) )
=V,— 2 =V, (11—, 4
AR V) @

where g(V,) > 0 describes the Stribeck effect. For the analytical
study of the system under investigation, we choose g(V,) > 0
as [16],

g(V)) = fe+ (f5 — fe)e /W7, 5)
where f is the Coulomb friction, f is the static friction, and &
is the slope parameter. Since earlier studies suggest that the non-
linearities involved with the LuGre friction model are primarily
the combination of quadratic and cubic terms, we assume that
stiffness function involved with friction isolator has similar non-
linear restoring force characteristic as our primary system, i.e.,
the combination of quadratic and cubic terms [17,18]. Therefore,
provided that k}l, k}q, and k}c represent the linear, quadratic, and
cubic stiffness of FI, respectively, Eq. (1) can be written as

mé +Kye+kje+kjy (e —ep) + Ky, (e —ep)” + k. (e — )’
+cyi (é — éb) = —mé,

. * * 2 * 3 . (6§)
myéy +kyy (e —e) —kp, (ep —e)” +kye(ep—e€)” +cpi(ép—e

= —(opz+ 02+ 05 V,) —mpéy.
(6b)

where ¢, is defined as e, = X, —r. We emphasize here that
Egs. (3), (4), (5), and (6) together govern the complete dynamics
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of the system. Consequently, to nondimensionalize the system,
we define the following nondimensional parameters and scales:

e ep Z g k
X ) b*77Z:77X07723w]1 l,T—(D,;I,
X Xo Xo (Dp niy
* * * *
k V, 0 _ O _ %
2m; ) Xow,’ my a),% m o, m o,
% %
Cf,'
C S
Jfe= y Js = ,a apr07 K= )
m:Xo (0,2, m:Xo a),% 2m; @,
2
i ki m k7 Xo krXo
r— 7 My = sKrg = y o fre — -
% = =

Using the aforementioned non-dimensional scales and parame-
ters with the assumption of constant reference velocity (i = 0),,
the nondimensional governing equations of motion can be rewrit-
ten compactly in state-space form as

xl = xz, (73)
sy = =20 —x1 — ke (x1 = X3) — kg (31 — x3) (7b)
— ke (x1 —x3)* — 2K (X2 — x4)
x3 =Xx4, (70)
X4 = —2Kmy (x4 — x2) — ke (x3 —x1)
+ kpgmy (x3 — X1 )2 — Kyerny (3 —x1)° (7d)

Opx
—m, <60x5 + o1, (1 - gé)vssgn(v,)) + 0'2vr> ,

r

X5 =V, (1 - gGE):C,S) sgn(v,)) ) (7e)
with [x1,x2,x3,x4,%5] = [x(T),%(7),x5(7T), % (7),Z(7)]. If v, rep-
resents the non-dimensional constant reference velocity, the non-
dimensional relative velocity v, will be v, = X + v,y = X4+ Vpy.
We expand 1/g(v,) in a Taylor series for small amplitude motion
and keep terms till third order for the analytical treatment of our
system with nonlinear FI to get

1
g(vr)

where g; are the same as defined in [16]. Next, a small parameter
€ (¢ << 1) is introduced in the governing equations by shifting
origin of the solution to the equilibrium state as

xi(T) = xis + €yi(7), (fori=1,2,...,5), ©)

where y;(7)’s are the shifted coordinates. Thus, the equations of
motion for our system in shifted coordinates can be written as

(10a)

1
= 2Om T x3) = g0+ 81x4+ gox3 +g3x3 . ®)

y1=y2,
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Y2 ==y1—kr (y1 —y3) = 28y2 — 2K (y2 —ya) + b2 (y1

—v3) + 3hikey (y1 — y3) — € (y3ha — 2y3y1ha (10b)
+)’%h2) - 82kr¢(yl _}’3)3 )
V3 =ya, (10c)

V4 =0 yshs+80ys0 01 vy, O+ 2K & (y2 —ya) +yikr
—y3k,a —ys0 0y + (3)’106/112 - 3y3ah12) kre
(72)/106}11 +2y3(xh1)qu

+€ (yzzx (—0 61 G2V 7 4+ h ) — 3kye (v3 —y1)> ahy
Hhrg (v3—1)° 0+ yay500 0 O'Ohs) + &% (—yiaoi hohg

—y3y50 Gy G 7+ kye 0 (y3 — Y1 )3) :
(10d)

V5 ==V, 80005 — &1 VrvYaho
— & (80Y5Y400 + Y5y4vr 81 00 +yivgaho +yigi ho)

— €2 (y5¥300 Vv 82 + ViV g3 ho + ysy100 81 + 382 ho)
(10e)

where hy = $7 hy = hy+x3 + 02V, ho = =3k, chy —I—qu, hy =

hi — X3 — O2Vpy, hg = —0p + 018173V, hs = go + V&1, he =
ooy (h —x3), h7 = vrg2 + &1, and hg = g2 + g3v,,. We em-
phasize that Eq. (10) has been divided by & throughout to get
the above perturbed nonlinear equations. Since nonlinearities in
these equations appear as coefficients of higher orders of &, the
unperturbed system can be obtained by setting € = 0 in Eq. (10)
for the linear stability analysis.

LINEAR AND NONLINEAR ANALYSIS

In this section, we present the linear and nonlinear analy-
ses of our system. We first start with the linear stability, which
provides the dynamical behavior of the system under small per-
turbation around the steady-states and the solution basis for the
nonlinear analysis of the system.

Linear Analysis
The linearized system of equations can be obtained by set-
ting € = 0 1in (10) to get

Y1I=Yy2, (1Ta)

v2=—y1—k(y1 —y3) —28y2 — 2K (y2 — y4) (11b)
+hihy (y1 —y3) +3hikey (y1 —y3)

V3 =Y4, (11c)
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Y4 =m,ysha + g0 ysm, Oy vy, 6o +2Km, (y2 — y4)

+yikemy — yskem, = ysm, 6o+ (3yim, hi® (11d)
—=3y3m, 11?) kye + (=2 y1my hy +2y3m, by ) kg
V5 = —Vn 80005 — &1 VrvYaho - (11e)

The characteristic equation for the system is obtained by as-
suming the synchronous solution for y; (for i = 1,2,3,4,5) and
accordingly, substituting y;(t) = yjoe** in Eq. (11). Eventually,
the solvability condition (the determinant of the coefficient ma-
trix must vanish) leads to the system’s characteristic equation.
The roots of the characteristic equation determine the system’s
stability in the space of control parameters. If all roots lie in the
left half of the complex plane, i.e., if all roots have a negative real
part, then the system is linearly stable; otherwise, the system is
linearly unstable.

Furthermore, if the system loses its stability due to the
change in any of the control parameter values, a pair of com-
plex conjugate roots cross the imaginary axis, i.e., (R(A = 0))
and Hopf bifurcation occurs. Therefore, in the occurrence of
Hopf bifurcation, we let A = i for @ > 0 in the characteristic
equation, and accordingly, we separate real and imaginary parts
as two algebraic equations. We solve for the nondimensional set
point velocity signal, v,,, and nondimensional differential gain §
in terms of other parameters and frequency . The appearance
of exponential functions in v,, makes them as transcendental si-
multaneous equations and difficult to get the analytical closed-
form for {; ., and v, ... Therefore, these algebraic equations are
solved numerically to get the critical values of nondimensional
differential gain and reference velocity signal at the Hopf point.

Since the solution of the linearized equations of the system
Eq. (11) will be a periodic solution at the Hopf point, it can be
represented in terms of the eigenvectors as

y(T) = Aire®" + Aoroe 7 (12)

where y(7) = [y1(7),y2(7),y3(7),y4(7),y5(7)]", A1 and A are
the arbitrary complex conjugate constants, and r; and r; are the
right eigenvectors of the characteristic matrix for the system cor-
responding to eigenvalues A = i@ and A = —i® respectively.
Next, the nonlinear analysis for our system using the method of
multiple scales is presented.

Nonlinear Analysis Using The Method of Multiple
Scales

The linear stability analysis of our system presented in the
preceding subsection only helps us determine the time evolution
of very small perturbations in stable and unstable regimes. Nev-
ertheless, the existing nonlinearities in the system truly deter-
mine the sensitivity of steady states towards initial perturbations
in a locally stable region and its time evolution. If all pertur-
bations die out with time irrespective of their magnitude, then
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a locally stable region is considered a stable global region for
the steady-states. If small perturbation dies out, nonetheless, and
large perturbation settles down to the limit cycle, then the steady-
states lose global stability. Therefore, the nature of the nonlin-
earity affects the dynamical characteristics of the system, and the
nonlinear analysis of the system is an essential step towards un-
derstanding the system.

With the introduction of multiple time scales (7p, T, 77) in
the system, the solution of our perturbed nonlinear equation
(Eq. (10)) can be assumed to be a series in powers of € till & (82)
and written as

y(7) =yo (10, T, T2) + €y1 (To, T, T2) + €%y (To, T1, T>)

, (13)
=Yot+E€y1+E€7Yy2.

where y(7) = [y1(7), 2(7), 3(7), ¥4(7), ¥5(7)]". In a next step,
we perturb one of the control parameters from its critical value.
This is done to understand the nature of nonlinearity and hence,
the nature of Hopf bifurcation. In the current work, the nondi-
mensional reference velocity, v, has been chosen as our bifurca-
tion parameter, and accordingly, we perturb v,, from its critical
value as

Vry = Vpyer + 82k1 5 (14)

where vy, is the value of v,, at the Hopf point with § = &,
Next, we substitute, Egs. (13)-(14) in Eq. (10), and expand it in
Taylor series for smaller values of €. We get coupled ordinary
differential equations by equating the coefficients of different or-
ders of €. For the sake of brevity and space constraints, these
equations are not reported here.

Furthermore, we note that the equations corresponding to
the order £° are identical to the linearized unperturbed equations
(Eq. (11)) with the control parameters at the Hopf point. There-
fore, the solution for the equations at the order of £° can be for-
mulated as

Yo (To, Ti, o) = Ay (Ty o) 11 ®T0 + Ay (Ty Ty rpe 70, (15)
Notice that unlike the solutions for the linearized unperturbed
equations, i.e., Eq. (11) where A; and A, complex numbers, A
and A; in Eq. (15) are now complex conjugate functions of slow
time scales. Next, on substitution of the assumed form of the
solution for yj in the equations corresponding to &' and follow-
ing [16] we get the slow flow equations as

L;gz) L;gz) =gk +qnR*, (16)
where g1, q12, g21, and gy are functions of system and control
parameters at the Hopf-point, and frequency. In addition, these
equations serve as a tool to determine the nature of the Hopf-
bifurcation. A detailed discussion on these slow flow equations
and verification of our analytical approach with numerical simu-
lation is presented in the next section.

=qukiR+qnR*,
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RESULTS AND DISCUSSION

This section presents the results b:
linear analysis of the system based on t
the previous sections. For the numeric
sis, we have used the parameter values
fore proceeding further and determininy
furcation using MMS, it is required to v.
sults (Eq. (16)). To validate our analyti
the results from MMS, i.e., slow flow
merical simulation of the system using
‘oded5’. For this, we choose two differ
Cer = 0.11873, vy, = 0.0495 < vy o = |
Vi = 0.09 < vy = 0.1, both in the ur
to the Hopf point. These comparisons ar
Fig. 3, it can be easily observed that the
of the system from MMS matches ver
cal time response counterpart and hence
approach.

TABLE 1: Dimensional and non-dimens
the simulation.

my [kg] 1.5 k,
my, [N-s/m] | 0.75 Xo [m]
o [N'm] | 2.2¢° 0;,0;
fiIN] 5.1 £ IN]
y [rad/s] 115.5 K
(o)) 110 (oJ]
(o7} 0.0823 fs
fe 0.35 a

Having established the analytical

next present the criticality of Hopf bif

curves, i.e., the nature of Hopf bifurcatic

ent values of critical control parameters.

of Hopf bifurcation, we utilize the slow-

as it determines the amplitude of limit ¢

Hopf point. More specifically, if stabl¢

point exist in the unstable regime only

supercritical in nature. The existence of

cation further implies that the system i _ )

nonlinearity in the system is stabilizing in nature. However, if
small-amplitude unstable limit cycles exist in the linearly stable
regime, and then the Hopf bifurcation is considered subcritical,
eventually resulting in loss of global stability. Hence, to deter-
mine the nature of Hopf bifurcation and the global stability of
steady states, we need to determine the steady-state amplitude of
limit cycles emerging from the Hopf point. These amplitudes of
limit cycles can be determined by the nontrivial fixed points of

. [—qi1k
the slow-flow equations (R = 0) and given by R = —ant
q12

V009T09A023-5

0.03

- -MMS
—Numerical simulation| |

0.025 |

0.02

0.015

0.01F

0.005 1

331(’7')

-0.005

-0.01 |

-0.015 |

_0.02 L L L
0 10 20 30 40
(@)

0.01

= -MMS
—Numerical simulation| |

0.008

0.006

0.004

0.002 }

x1(7)

-0.002

-0.004

-0.006

-0.008

-0.01
0

T

(b)
FIGURE 2: Comparison of time response of the system obtained

from the MMS (dashed line) and numerical simulation (solid
line) with (a) {. = 0.11873, v,, = 0.04945 < v,y = 0.05, (b)
&r =0.09502, v, = 0.088 < Vrer = 0.1, for the dynamics of PD
controlled motion stage with nonlinear friction isolator. Other
parameters are oy = 110, o1 = 1.37, op = 0.0823, f; = 0.44,
fe =035, k=0.001, a =25, m, =2, kyy = 0.22, k,. = 0.22,
and k, =0.5.
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——Supercritical Hopf Bifurcation
——Subcritical Hopf Bifurcation
0.25F
0.2F
S0.15¢
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¢
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== Subcritical Hopf Bifurcauon |
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0.2
£0.15¢
0.1t
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0 I
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¢
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FIGURE 3: Criticality of Hopf bifurcation in thi
with (a) linear FI, and (b) nonlinear FI. Other
op = 110, o7 = 1.37, 0, = 0.0823, f, =0.44, f. =0.35, k =
0.001,a=2.5,m, =2, and k, = 0.5, k. = 0.22, and k., = 0.22.

Note that the quantity gj1k; is always positive in the linear un-
stable regime and negative in the linear stable regime, hence, the
nature of Hopf-bifurcation is only governed by the sign of gi;.

V009T09A023-6

This observation implies that if g, is negative, then limit cycles
will exist in linearly unstable regimes only and the Hopf bifurca-

» Downward Sweep
» Upward Sweep
0.2+ b
g 04+ . R
-0.6F et B
0.184 0.186 0.188 0.19 0.192 0.194 0.196 0.198 0.2
Uy
(@)
-0.43 T
* Downward Sweep
* Upward Sweep
. . * '
-0.435 1 . b

] LR A

Ty
.

04451 1
-045F 1
0 1 2 3 4 5 6
Uro %107

(b)

FIGURE 4: Numerical bifurcation diagram of motion stage with
nonlinear FI with v,, as bifurcation parameter showing (a) sub-
critical Hopf bifurcation, and (b) supercritical hopf bifurcation.
Other parameters are oy = 110, o7 = 1.37, 0, = 0.0823, f; =
0.44, f. =0.35, k =0.001, a = 2.5, m, = 2, kyy = 0.22, k. =
0.22, and k, = 0.5.
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tion will be supercritical in nature. However, if gj» becomes
positive, then the limit cycles will also exist in the linear stable
regimes, and the Hopf-bifurcation will be subcritical in nature.
Therefore, the set of control parameters on the stability boundary
corresponding to transition point from subcritical to supercritical
or vice-versa can be found by setting g1 = 0.

Using this information, we plot the criticality of Hopf bi-
furcation on the stability plot in the parametric space of § —v,,
and shown in Fig. 3. The stable regime is marked by ‘S’ in the
stability plot, while the unstable regime is marked by ‘U’. Also,
supercritical and subcritical Hopf bifurcations on these curves
are marked with magenta and black colors, respectively. Figure 3
shows the criticality of Hopf bifurcation on the stability curve for
the system with linear(Fig. 3a) and nonlinear FI(Fig. 3b). From
Fig. 3, we can observe that for the given values of system param-
eters and nonlinear values of stiffness parameters, the inclusion
of nonlinearity in the FI increases the local stability of the sys-
tem significantly. However, nonlinear FI does not seem to im-
prove the global stability of the system. For both systems, we
observe that at low values of v,,, supercritical Hopf bifurcations
occur while steady states lose stability through subcritical Hopf
bifurcations for high values of v,,.

We employ and present the numerical bifurcation analysis to
further validate our analytical findings of supercritical and sub-
critical bifurcations. For this numerical bifurcation analysis pur-
pose, we have used built-in MATLAB routine ‘ode45’ with a
high value of relative and absolute tolerance of ‘le-13’ to solve
the five first-order systems of odes (Eq. (7)). These bifurcations
diagrams, show the extrema of the error amplitude of motion
stage, x1 (corresponding to x»=0), for motion stage with non-
linear FI and are shown in Fig. 4. These diagrams are plotted
by fixing ¢ and varying v,, over a specified range in upward (in-
creasing) and downward (decreasing) directions. From Fig. 4,
we can observe that for a given value of {, at higher values of
v,y the stable limit cycles with steady-state solutions exist in the
linearly stable regime, which implies that the Hopf bifurcation
is subcritical in nature. On the other hand, for lower values of
vy, Stable limit cycles exist in the unstable region only, which
indicates supercritical bifurcation. Both of the above-drawn ob-
servations are consistent with our analytical findings using MMS
and further verify our analytical results.

We emphasize here that for a given value of primary system
parameters, the inclusion of nonlinearity in dynamics of FI in-
creases the local stability, while the global stability of the system
does not change significantly. However, for other values of the
system parameters and nonlinearities, it is possible to observe an
enhanced region of global stability of the system is left for future
work.
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CONCLUSION

This work examined the nonlinear dynamics of a PD-
controlled MBMS stage with a FI using analytical and numerical
methods. The effects of nonlinearity from the friction isolator on
the dynamics of motion stage were accounted for in this work
for the first time, contrary to the earlier studies where the non-
linearity in the friction isolator was ignored entirely. The LuGre
friction model was used to describe the dynamic effect of fric-
tion between the surfaces. Nonlinear analysis of the system was
carried out using MMS. The analytical results showed an excel-
lent match with the numerical simulation, hence, signifying the
validity of the analytical approach. The criticality of Hopf bi-
furcation was plotted on the stability curves for given values of
system and nonlinear parameters. We observed that the inclu-
sion of nonlinearity increases the local stability of steady-states
while global stability remains almost unchanged. Furthermore,
we observed a transition of Hopf bifurcation from subcritical to
supercritical or vice versa depending on the change in the value
of the operating parameters for both systems, i.e., with linear FI
and nonlinear FI. The validation of this criticality of Hopf bifur-
cation was done by performing numerical bifurcation analysis.
We observed the existence of subcritical and supercritical Hopf
bifurcation for higher and lower values of reference velocity sig-
nal and is consistent with analytical findings. A more detailed
linear and nonlinear analysis of the system, which includes para-
metric analysis, exploration of the dynamics away from the Hopf
point are left for future work.
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