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Abstract
Atomically thin transition metal dichalcogenides (TMDs), like MoS2 with high carrier mobilities
and tunable electron dispersions, are unique active material candidates for next generation opto-
electronic devices. Previous studies on ion irradiation show great potential applications when
applied to two-dimensional (2D) materials, yet have been limited to micron size exfoliated flakes
or smaller. To demonstrate the scalability of this method for industrial applications, we report the
application of relatively low power (50 keV) 4He+ ion irradiation towards tuning the
optoelectronic properties of an epitaxially grown continuous film of MoS2 at the wafer scale, and
demonstrate that precise manipulation of atomistic defects can be achieved in TMD films using
ion implanters. The effect of 4He+ ion fluence on the PL and Raman signatures of the irradiated
film provides new insights into the type and concentration of defects formed in the MoS2 lattice,
which are quantified through ion beam analysis. PL and Raman spectroscopy indicate that point
defects are generated without causing disruption to the underlying lattice structure of the 2D
films and hence, this technique can prove to be an effective way to achieve defect-mediated
control over the opto-electronic properties of MoS2 and other 2D materials.
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Introduction

Graphene and analogous two-dimensional (2D) materials,
including, hexagonal boron nitrides, transition metal dichal-
cogenides (TMDs), and MXenes, are ideal candidates for a
plethora of applications such as lithium-ion batteries [1,2],
flexible transistors [3,4], solar cells [5], catalysis [6], photo
detectors [7], active optical components [8–16], and pressure
and strain sensors [17,18] due to their unique electrical and
optical properties [19–21]. Among these, MoS2 [22] is a
widely studied TMD owing to wide availability of molyb-
denite ore [23], high in-plane mechanical strength [24] and
tunability of band gap with number of layers [25]. The phy-
sical features of MoS2 can be further manipulated by con-
trolling the defect type and density to obtain superior device
performance [26–30]. Defects can be introduced in MoS2 in
the growth stage. By adjusting the deposition parameters, Xie
et al regulated the S and Mo vacancies in MoS2 grown using
pulsed laser deposition [31]. Wu et al presented a scheme to
control the defect level by introducing hydrogen flow during
the chemical vapor deposition process [32]. Several post
synthesis techniques have also been employed to introduce
defects in MoS2. Nan et al demonstrated significant
enhancement of photoluminescence (PL) of monolayer MoS2
through defect engineering and oxygen bonding [27]. They
achieved precise control over the PL signature by annealing
the sample in the presence of O2. Ye et al explored the effects
of O2 plasma, as well as H2 treatment at elevated temperatures
on the concentration of edge defects in MoS2 [33]. Fox et al
used ultrafine helium ion microscopy to achieve localized
tuning of resistivity [34]. Ma et al tuned the bandgap of
monolayer MoS2 by substituting S with Se atoms via sput-
tering process [35], and removed S ions by irradiating the
material with Ar+ ion beam and followed it by introduction of
Se precursors. Kwon et al demonstrated that the work func-
tion of monolayer MoS2 can be controlled by proton influx
[36]. Wang et al provided evidence for indirect to direct band
gap transition of few layer MoS2 by proton irradiation [37].

Among these explored techniques, ion irradiation pre-
sents the most promising opportunity for wafer-scale control
over the process of defect introduction by precise modulation
of ion type, accelerating voltage, fluence, etc [38]. He et al
showed that S vacancy in MoS2 can be finely tuned
by modulating the Au+ ion fluence between 5 × 1011 to
1014 ions cm−2. In another work, Mathew et al observed
magnetic ordering in MoS2 flakes upon proton irradiation
[39]. This showcased the possibility of using ion irradiation
technique for fabrication of spintronic devices by creating
magnetic regions in a diamagnetic lattice. Ion irradiation has
also been shown as an effective method for reversible
amorphization of MoS2 flakes [40]. Chen et al noted the
formation of atomistic defects during Ar+ irradiation of MoS2
that controlled the band alignment in heterostructures of
MoS2. They combined experiments with simulations to
identify the type of point defects formed. Theoretical studies
have also revealed the possibility of tuning the properties of

TMDs, primarily, by modulating the defect densities, in 2D
materials [28,41,42]. More recently, Han et al desulphurized
the top S layer in monolayer MoS2 by He+ ion irradiation
[43]. This method yields great potential towards stabilization
of metallic phases as well as synthesis of Janus structures of
TMDs; MXY, where M is a transition metal, X and Y are
chalcogens (S, Se, Te). Overall, these studies indicate that ion
irradiation can be effectively used to tune the properties of
single or few layers of 2D materials, or their heterostructures,
by precise control of the density of defects, and without
significant disruption of the film.

Though previous studies on ion irradiation show great
potential applications, they are mostly limited to micron size
exfoliated flakes or smaller. To demonstrate the scalability of
this method for industrial applications, we report the appli-
cation of ion irradiation towards tuning of the optoelectronic
properties of an epitaxially grown continuous film of MoS2
and demonstrate that precise manipulation of atomistic
defects can be achieved even in a wafer scale TMD film using
ion implanters, which are routinely used in the semiconductor
industry [44,45]. The effect of fluence of 4He+ ions on the PL
and Raman signatures of the irradiated film provides new
insights into the type and concentration of defects formed in
the MoS2 lattice. Post treatment PL and Raman spectroscopy
indicate that point defects are generated without causing
disruption to the lattice structure of the thin films and hence,
this technique can prove to be an effective way to achieve
defect-mediated control over the opto-electronic properties of
MoS2 and other 2D materials.

Methods

Metal organic chemical vapor deposition (MOCVD) growth of
monolayer epitaxial MoS2

Molybdenum disulfide films were synthesized using molyb-
denum hexacarbonyl [Mo(CO)6, Sigma-Aldrich, >99.9%
purity] and hydrogen sulfide (H2S, Praxair, 99.5% purity) on
2-inch diameter c-plane sapphire substrates (Cryoscore
Optoelectronic Ltd) in a cold-wall horizontal reactor with an
inductively heated SiC-coated graphite susceptor. The MoS2
growth was carried out at 1000 °C and 50 Torr reactor
pressure using UHP hydrogen as the carrier gas. The
Mo(CO)6 powder was contained inside a stainless-steel bub-
bler held at 10 °C and 950 Torr and hydrogen carrier gas was
passed through the bubbler at a flow rate of 10 sccm which
resulted in a Mo(CO)6 flow rate of 3.6 × 10–2 sccm out of the
bubbler. The H2S flow rate was maintained at 400 sccm
throughout the entire growth which was carried out for
18 min.

Ion irradiation

Controllable irradiation was performed using the Danfysik
200 kV research ion implanter at the Ion Beam Materials
Laboratory (IBML) at LANL. The chamber pressure was
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maintained at 2.1 × 10–7 Torr and MoS2 on c-sapphire was
irradiated with 4He+ (50 keV). Ion fluences for 4He+ irra-
diation was varied from 1.36 × 1015 to 2.72 × 1016 ions
cm−2. Scanning electron microscope (SEM) images were
taken of the irradiated samples using a Thermo Fisher Sci-
entific Apreo SEM operated at 1 kV, 12.5 pA beam current,
T2 detector, and immersion use case.

Optical characterization

The spatial PL emission and Raman spectra of as-grown and
irradiated MoS2 were performed in reflection mode using the
488.0 nm continuous wave emission line of an Argon ion
laser (LEXEL Quantum 8 SHG, Cambridge Laser Labora-
tories Inc.) and 532.3 nm continuous wave excitation (Oxxius
LCX-532S-100, single longitudinal mode diode pumped solid

state laser), in a Horiba LabRAM HR Evolution high reso-
lution confocal Raman microscope fitted with volume Bragg
gratings. The experiment was configured using a 600 mm−1

holographic grating blazed at 500 nm and 300 μm confocal
hole diameter for PL and a 2400 mm−1 holographic grating
blazed at 250 nm and 50 μm confocal hole diameter for
Raman. Room temperature measurements conducted in air
used an achromat 100×, 0.9 numerical aperture (N.A.)
objective (MPLN100X, Olympus). For data collected at 4 K,
samples were placed in a variable temperature optical cryostat
system (Microstat HiRes, Oxford Instruments) fitted with a 1
mm thick Spectrosil WF window, and used a semi-apoc-
hromat 60×, 0.7 N.A. glass corrected objective
(LUCPLFLN60X, Olympus). Spectral calibration was per-
formed using the 1332.5 cm−1 band [46] of a synthetic Type
IIa diamond, and spectral intensity was calibrated using a

Figure 1. Room temperature as-grown properties of wafer-scale, nominally monolayer epitaxial MoS2 synthesized on c-plane sapphire.
(a) Photoluminescence (PL) demonstrates a strong luminescent peak at 1.85 eV and an absence of the indirect transition peak at ∼1.5 eV
suggesting a monolayer film. (b) Raman peak relative intensities suggest formation of a monolayer film. Raman and PL were obtained under
532 nm excitation. (c) Atomic force microscopy (AFM) analysis showing large-area coalesced and uniform coverage of predominantly one-
layer (1L)MoS2. Small multilayer regions appear as bright features. (d) In-plane x-ray diffraction f scan demonstrates texture in the epitaxial
MoS2-on-Al2O3 film.
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VIS-halogen light source (NIST test no. 685/289682–17).
Instrumental linewidth broadening was measured using a Hg
(Ar) calibration lamp (model 6035, Oriel Instruments) to be
∼0.69–1.00 cm−1 for Raman and ∼0.03 nm for PL in the
configurations used here.

For time resolved photoluminescence (TRPL), the sam-
ple was confocally excited by a 60 ps, 405 nm laser pulses at
3–10 MHz repetition rate through a 50×, 0.7 N.A. objective.
The excitation power was ∼100 μW. The collected PL was
spectrally filtered using a 620 nm long-pass filter and a 690
nm short-pass filter and detected by an avalanche photodiode

with 16 ps time resolution. Time response statistics were
obtained with a HydraHarp 400 time-correlated single photon
counting system.

Mass spectrometry of MOCVD MoS2

Rutherford backscattering spectrometry (RBS) was conducted
on a National Electrostatics Corporation 3 MV tandem
accelerator using a 2 MeV 4He+ ion beam. A solid-state
silicon detector located at 167° from the beam direction was
used to detect the scattered He particles. A bismuth-implanted
silicon standard was used as a reference to minimize uncer-
tainty in the charge collection and the solid angle determi-
nation, and 2 MeV was found to work well for this sample.

Quantum mechanical simulations

First principles quantum mechanical simulations were per-
formed within the density functional theory (DFT) framework
using Vienna Ab initio Simulation Package [47]. The wave
function was described by a basis set of plane waves with
energy cut-off of 500 eV. The generalized gradient approx-
imation formulated by Perdew–Burke–Ernzerhof was used to
represent electronic exchange correlation [48]. Electron-ion
interaction was described by the projector augmented-wave
method [49]. The reciprocal lattice was sampled using
14 × 14 × 1 grid and 15 Å vacuum was introduced to
minimize interlayer interactions. The cell parameters were
optimized by using the conjugate gradient scheme such that
forces in each direction were below 0.1 eV Å−1. A defected
MoS2 structure was created by removing one S atom in a
2 × 2 × 1 supercell of MoS2 (figure S1, supporting infor-
mation) and relaxing the resultant structure. This results in the
stoichiometry of MoS1.75. The band structures and the Raman
spectroscopy were plotted using the Phonopy package [50].

Figure 2. Scanning electron microscope (SEM) images comparing (a) unirradiated and (b)–(e) 50 kV 4He+ irradiated epitaxial MoS2 on c-
sapphire. Fluences and corresponding displacements per atom (dpa) are listed in each panel.

Figure 3. 50 keV He ion energy partitioning in MoS2 and Al2O3

interface region where >87% of the He energy is transferred to
target electrons based on our Monte Carlo based stopping and range
of ions in matter (SRIM) simulation. We used 10 nm MoS2 layer
(instead of 1 nm monolayer) to get more data points for the 2D layer
in SRIM simulations. SRIM simulations (not shown) indicate
negligible surface sputtering and helium doping in the 2D layer. In
fact, 50 keV He ions fly pass the 2D layer and then rest at 235 nm
deep in Al2O3 substrate.
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Results and discussion

Wafer scale MoS2 was grown epitaxially on a c-Al2O3

(c-sapphire) substrate using MOCVD. Figure 1(a) demon-
strates a strong PL peak at 1.9 eV and was absent of a peak at
1.5 eV which indicated that the sample was primarily
monolayer 2H-MoS2. RBS was performed to quantify defects
and impurities present in the sample as it has been shown to
be very sensitive to stoichiometry [10,11,51], as shown in
(figure S2, supporting information). Upon analyzing the
scattering yield ratio of Mo and S, the Mo:S ratio of the un-
irradiated sample was obtained to be 1:2.11. This indicates a
fairly defect free MoS2 with the possibility of presence of
either a few Mo vacancies (∼5.2% Mo vacancies) or excess S
atoms in the lattice. The latter is more likely since the film
was grown in a highly S-rich condition. Previous studies have
suggested that the ratio of intensity of the longitudinal
acoustic phonon at the Brillouin zone edge [M-point, LA(M)]
peak to the first order peaks at the Brillouin zone center
(Γ-point) gives insights into the extent of defects present in
the sample, where a higher ratio is associated with more
defects [52]. The Raman spectra of figure 1(b) shows the
intensity of the 2LA(M) peak is quite weak compared to the
first order peaks [A ( )¢ G and E1( )¢ G ] which further provides
evidence that the wafer scale MoS2 sample was relatively
homogenous and defect free. Figure 1(c) presents AFM
characterization showing that the sample was mostly mono-
layer with some small bi-layer crystals nucleated on the sur-
face. The crystallinity and epitaxial nature of the as-grown
sample was confirmed by the sharp peaks seen in the XRD
shown in figure 1(d).

Irradiation of the monolayer MoS2 film with 4He+ ions
can lead to defect generation and a swelling of the substrate,
the nature of which would depend on the type fluence of the
ions used. To investigate this phenomenon, the MoS2 samples

were irradiated with 50 kV 4He+ at different fluences to study
the effect of ion dosage: 1.36 × 1015 ionsc−1 m−1−2 [0.01
displacements per atom (dpa)], 4.08 × 1015 ionsc−1 m−1−2

(0.03 dpa), 6.80 × 1015 ionsc−1 m−1−2 (0.05 dpa), and
2.72 × 1016 ionsc−1 m−1−2 (0.20 dpa). Figure 2 shows SEM
images of the post irradiated samples showing that the
morphology MoS2 film remains intact after ion irradiation but
at higher irradiations, sub-micron sized voids can be seen in
the film. Additionally, figure 3 presents Monte Carlo simu-
lations were performed to understand the energy loss profile
of the incident ions as they travel through the MoS2 film. The
analysis shows that at 50 keV, very little energy would be
transferred from the ions to the film resulting in minimal
damage to the surface.

At 4 K, the un-irradiated MoS2 sample showed a PL peak
at 688 nm [figure 4(a)] corresponding to the monolayer MoS2
band gap of 1.9 eV. In monolayer MoS2, direct electronic
transition is possible at the K-point of the Brillouin zone, and
this results in two excitonic peaks: A (around 1.9 eV) and B
(around 2.1 eV). The splitting of the transition peak is due to
spin–orbit coupling. In a defect free MoS2 sample, the B peak
is almost non-existent when compared the A peak, as seen in
figure 4(a). Upon ion irradiation, the B peak becomes more
prominent, and this can be attributed to formation of defects.
Previous studies have suggested that a higher B/A peak
intensity ratio indicates high defect density in the sample [53].
Additionally, a prominent Xb peak is seen around 1.75 eV
which can be attributed to bound excitons formed due to
generation of point defects [38]. A previous DFT study
showed that the Xb peak is primarily attributed to the for-
mation of di-sulfur vacancy defects [26]. The formation of
defects creates additional states for electron occupancy in the
band gap and thus can facilitate electronic transitions and
consequent formation of bound electron–hole pairs at lower
energies. The sample irradiated at 0.05 dpa 4He+,

Figure 4. (a) PL spectra of MoS2 irradiated by 4He+ ion beams with different fluences given in displacements per atom (dpa) show
emergence of the bound exciton, Xb, peak at ∼1.7 eV upon irradiation attributed to generation of point lattice defects. Spectra are shown
normalized to the intensity of sapphire peaks and were recorded at 4 K. (b) Time resolved PL of pristine and irradiated MoS2. The fast exciton
decay time increases orders of magnitude upon ion irradiation owing to exciton localization at defect sites.
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Figure 5. (a) Room temperature Stokes and anti-Stokes Raman spectroscopy of MoS2 irradiated by 4He+ ions with different fluences show
the increase in intensities of defect peaks upon ion irradiation. The spectra are normalized to the A1¢ for comparison with defect peaks, the c-
Al2O3 peak is denoted by an asterisk. (b) Calculated phonon dispersion of pristine MoS2. The optical and acoustic phonon modes that
become Raman active upon introduction of defects are denoted. Calculated Raman spectra for (c) pristine strained MoS2 and (d)MoS2 with a
S vacancy concentration of 2.7 × 1014 cm−2., corresponding to MoS1.75.

Figure 6. (a) Dependence of the ratio of Raman scattering intensities of the LA and A1¢ modes (green circles) on the ion beam fluence. The
fluence at 0.05 dpa 4He+ shows in abnormally high intensity of both defect peaks and PL emission which could be result of unique ordering
of defects. The evolution of the separation between the fitted A1¢ and E′ peak positions (blue triangles) with increase in incident beam fluence.
In unirradiated sample, the separation between the two peaks is 18.7 cm−1 (close to the values reported by other groups [62,63]) and the
separation increases with an increase in incident ion fluence. (b) Dependence of S:Mo ratio on the fluence obtained by RBS. The ratio
monotonically decreases with increase in ion fluence indicating that primarily, S vacancies would be generated by the incident beam.
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corresponding to a beam fluence of 6.80 × 1015 ions cm−2,
showed exceedingly high PL intensity on the order of
200–600 times higher than the other irradiated samples (figure
S3, supporting information). This broad PL peak (around 1.7
eV) may indicate an inhomogeneous distribution of a very
high density of point defects which results in high amounts of
radiative recombination centers for excitons. Large (several
orders of magnitude) PL intensity increases have been seen
for 2H-phase MoS2 after chemical conversion to 1T-phase
[54]. In our sensitive Raman characterization we are not able
to distinguish the expected 1T-phase modes [55] from the
defect-activated acoustic modes as could be the case for a
trace 1T phases inside a defective 2H matrix. Additionally,
previous studies on Carbon nanotubes also showed great
increase in PL intensity due to formation of point defects. The
point defects are believed to localize excitons and reduce non-
radiative recombination [56,57]. Similarly, the creation of
point defects could be reducing the probability of non-
radiative recombination in the 0.05 dpa irradiated MoS2 as
well. Further combined theoretical and experimental studies
on quantum states of defects with very gradual increase in the
ion beam fluence are necessary to shed light on this topic.

Figure 4(b) gives the room-temperature TRPL analysis of
both pristine and irradiated MoS2 (0.05 dpa

4He+) was carried
out to investigate the carrier recombination dynamics. For the
pristine sample, the initial fast decay component was within
the 500 ps resolution limited by the instrument response
function (479 ± 2 ps), which was consistent with previous
reports claiming lifetime of intrinsic MoS2 is below 100 ps
[58,59]. Exciton-phonon scattering at room temperature leads
to the observed slow decay component [60,61], which we
obtain as 6.0 ± 0.2 ns for un-irradiated MoS2. For the irra-
diated sample, a similar slow decay component with slightly
increased lifetime of 7.7 ± 0.1 ns was observed. Surprisingly
though, the initial fast decay time was significantly increased
to 1.86 ± 0.02 ns, 1–2 orders slower than the PL decay of
excitons in intrinsic MoS2. The extended PL lifetime is
attributed to exciton localization at the defect sites created by
ion irradiation [60].

Figure 5(a) compares the Raman spectra of the pristine
and irradiated MoS2 samples taken at room temperature. A
systematic increase in the intensity of acoustic (LA, TA, and
ZA) and optical (TO and LO) peak intensities at the M-point
of the Brillouin zone was seen with increasing ion fluence, as
well as a blue shift of the A1¢ peak and red shift of the E′ peak
indicating the MoS2 becomes increasingly tensile strained
with increasing fluence. The changes in Raman spectra can be
attributed to two factors: generation of defects and lattice
straining. We have performed DFT calculations to differ-
entiate the contribution of these two factors on the Raman
spectra [figures 5(b)–(d)]. These calculations suggest that
biaxial lattice straining would result in a shift of the A1¢ and E1
peaks but would not result in emergence of new peaks since
straining does not lead to changes in vibrational symmetry.
We did notice a slight blue-shift of the A1¢ peak with fluence as
can be seen in figure 4(a). On the other hand, introduction of
lattice defects would result in drastic changes in the existing
symmetry leading to more vibrational modes becoming

Raman active. The optical and acoustic modes are inactive in
defect free MoS2 but are activated by generation of point
defects due to ion irradiation. The ratio of LA to A1¢ peak
intensities is expected to increase linearly with defect density
as [52]:
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here, I(LA) and I A1( )¢ are the scattering intensities of the LA
and A1¢ peaks respectively, C1 and C2 are proportionality
constants, LD is the average inter-defect distance, and σ is the
ion irradiation fluence.

Upon plotting the ratio of intensities of defect-enabled
LA peak and A1¢ peak as a function of irradiation fluence, a
strong linear dependence is observed [figure 6(a)]. As seen
from the PL spectra, irradiation at 0.05 dpa 4He+ gives rise to
very high intensity of defect peak and is considered an outlier.
The other intensity ratios of the other three fluences fall in a
straight line with R2 value of 0.99. Since ratio of peak
intensity is directly correlated with defect density, this strong
correlation between fluence and ratios of peak intensities is
also indicative of the strong correlation between the fluence of
irradiated ion beam and the resultant defect density. Thus, it
can be inferred that precise defect engineering in wafers of 2D
materials can be attained using this novel low power ion
irradiation technique. The distance between the positions of
A1¢ and E′ peaks is indicative of the strain in the lattice [64].
Separation of the two peaks, in wavenumber space, was found
to increase as the ion fluence increased indicating that the
strain in the sample increases proportionally to the ion flu-
ence. RBS measurements of the stoichiometry of the irra-
diated samples [figure 6(b)] show that upon increasing the ion
fluence, the S:Mo ratio steadily decreases. This indicates that
irradiation primarily knocks out the S atoms, potentially
creating S vacancy sites consistent with previous
reports [38,65].

Conclusion

This study demonstrates that controllable defect generation in
2D materials can be achieved using a low power ion irra-
diation technique to control the optical emission properties
while retaining underlying crystallinity without inducing
phase changes. It is shown that small modification in the ion
fluence can result in precise modulation of defect density in
the sample; defect density being inversely correlated to square
root of ion fluence. Optical spectra of defect free versus
irradiated MoS2 were explored to establish links between the
changes in peak position and intensity with defect densities.
Increasing fluence results in systematically increasing the
intensity of defect peaks in the Raman spectra, the ratio of
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defect peak to A1¢ peak is established to be a good indicator of
inter-defect distances. The photoluminescence spectra show
emergence of bound exciton peaks upon ion irradiation. The
exceedingly bright PL peak at beam fluence of 6.80 ×
1015 ions cm−2 may be the result of unique synergistic effects
between lattice defect, warranting further studies on the
interplay between defects and exciton localization, and can
shed light on interesting emergent phenomena owing defect
engineering in the 2D lattice.
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