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AbstractÐWith the rapid evolution of the IC supply chain, circuit IP
protection has become a critical realistic issue for the semiconductor
industry. One promising technique to resolve the issue is logic locking.
It adds key inputs to the original circuit such that only authorized users
can get the correct function, and it modifies the circuit to obfuscate it
against structural analysis. However, there is a trilemma among locking,
obfuscation, and efficiency within all existing logic locking methods that
at most two of the objectives can be achieved. In this work, we propose
ObfusLock, the first logic locking method that simultaneously achieves
all three objectives: locking security, obfuscation safety, and locking
efficiency. ObfusLock is based on solid mathematical proofs, incurs small
overheads (<5% on average), and has passed experimental tests of
various existing attacks.

Index TermsÐIP piracy, logic locking, SAT attack, hardware obfusca-
tion, logic synthesis

I. INTRODUCTION

The IC supply chain is susceptible to security and privacy chal-

lenges, including IP piracy, counterfeiting, reverse engineering, and

the insertion of hardware Trojans. Various countermeasures such as

hardware metering [1], split manufacturing [2], IC camouflaging [3],

watermarking [4], and logic locking are developed to tackle these

challenges. Among those, logic locking can defend from both reverse

engineering and unauthorized activities within the supply chain.

Logic locking techniques embed protection logic controlled by key

bits to the gate-level netlist of the original circuit. The resulting circuit

can operate adequately only in the presence of a correct key.

Early logic locking techniques [5], [6] insert additional key-

controlled gates to the original circuit. They are susceptible to I/O

attacks, such as the sensitization attack [7] and the SAT attack [8],

[9]. In specific, the SAT attack incrementally prunes out incorrect

keys and automatically solve for a correct key. In each iteration, it

calls a SAT solver to find a distinguishing input pattern (DIP). The

algorithm then queries an oracle circuit for the correct output pattern

and adds the correct input/output pair as a constraint. It terminates

when no more DIPs can be found.

To thwart I/O attacks, various single-flip defences [10], [11] were

proposed. They add a dedicated logic to flip the primary outputs

when an incorrect key is inserted. Single-flip defences defeat SAT

attacks by ensuring that every DIP can prune out only a small

set of incorrect keys, thus requiring an exponential number of

SAT calls to find a correct key. Nevertheless, the existence of a

unique flip node makes single-flip defences vulnerable to structural

analysis on the encrypted netlist. Among others, the signal probability

skewness (SPS) attack [12] locates the flip node by computing the

skewness values for all nodes. Once identified, the flip node can be

removed [13] or bypassed [14].

Double-flip defences are proposed subsequently. They aim at

resisting both the SAT attacks and structural attacks. The original

circuit is first flipped by the corrupt unit. It is then flipped by the
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key-protected restoring unit, whose functionality is identical to the

corrupt unit when a correct key is applied. The original circuit is

obfuscated with the corrupt unit, and the resultant circuit is referred

to as the functionality stripped circuit. Launching a structural attack

on the restoring unit alone does not fully recover the functionality of

the original circuit. Due to obfuscation, identifying the critical node

driven by the corrupt unit is non-trivial. Double-flip defences achieve

resilience to SAT attacks in a similar way as single-flip defences.

Early double-flip defences corrupt the original circuit by inserting

hard-coded structures [15], [16]. SFLLhd [14] flips the output for any

input patterns with a certain Hamming Distance from the key pattern.

SFLLflex [14] corrupts a set of user-specified input patterns, and the

key bits consist of a lookup table that restores the circuit’s function-

ality. SFLLfault [17] and SFLLrem [18] construct the functionality

stripped circuit by injecting faults or removing nodes from the

original circuit. Afterward, they utilize ATPG tools and equivalence

checking tools to find all input cubes whose corresponding outputs

deviate from the correct ones. These input cubes are referred to as

protected input cubes. This way, they can build a lookup table to

restore outputs for the protected input cubes.

A. Common Limitations in Existing Double-flip defences

• Several defences, including TTLock [15], SFLLhd [14] and

MCAS [19], have very specific designs. Knowing the details of

the defences, attackers can devise dedicated algorithms to defeat

them [9], [20]±[22]. Other defences are still vulnerable to machine

learning attacks. GNNUnlock [23], OMLA [24] and SAIL [25]

extract local structural characteristics of a node as learning features.

They can discover critical nodes if the defence method exhibits

deterministic structural patterns statistically.

• Attackers can still exploit structural vulnerabilities to defeat those

defences that add additional logic as the corrupt unit [20], [26]. Re-

synthesis is not effective on those defences even after correlations

are added in between the corrupt unit and the original circuit. It is

due to the fact that the behaviours of the two parts are fundamentally

distinct. Furthermore, although re-synthesis techniques can usually

mix up the flip nodes with the original circuit, equivalent nodes

usually still exist. As long as the critical nodes exist, attackers can

figure out a way to discover them. For instance, Valkyrie [27] disables

two nodes simultaneously and checks if the resulting circuit has an

equivalent behaviour to the oracle.

• The authors of [28] pointed out that almost all structural stripping

techniques proposed so far can be easily discovered and recovered.

Because a synthesized netlist is highly optimized and free of re-

dundancy, injecting constant-0 or constant-1 faults to a node in the

netlist or modifying a few cubes with a point function can always be

observed with EDA tools.

• Fault-based defences, including SFLLfault and SFLLrem, remove

logic instead. While they are more robust to structural attacks, they

have to find all affected input patterns of the injected faults to

achieve a full restoration. The restoration process relies on testing and

formal equivalence checking, and that takes several hours for circuit
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Fig. 1: An overview of ObfusLock.

benchmarks with a few thousand logic gates [17]. Moreover, these

defences lack key efficiency: the length of the key is proportional to

the number of protected input cubes. As a result, they can protect

only one or a limited number of input cubes due to the cost of the

tamper-proof memory.

B. Novelties and Contributions

All the discussions above suggest the necessity of a new logic

encryption scheme satisfying these requirements: i) has an exponen-

tial complexity against I/O attacks in key size; ii) produces fully

randomized locking patterns; iii) eliminates critical nodes; iv) allows

high flexibility in constructing the locking circuit to counter synthesis-

based attacks; v) incurs minimum power, performance and area (PPA)

overheads; and vi) is efficient in key size and runtime. As far as we are

aware, none of the existing works can fulfill all these requirements.

ObfusLock addresses all the challenges in a comprehensive frame-

work. It adopts input permutation encryption on skewed locking

circuits to guarantee robustness against I/O attacks. The process

of constructing a locking circuit is inherently randomized. It is

also highly flexible so that a defender can first choose behaviour

for the locking circuit and then implement that behaviour within

the framework. ObfusLock utilizes structural rewriting to split and

eliminate critical nodes. Because of logic sharing, PPA overheads

incurred by logic locking are minimized. The overall workflow is

systematic and it is efficient in execution time.

The workflow of ObfusLock is illustrated in Fig. 1. It starts by

assessing the skewness of the original circuit C. If the skewness

is within the desired range, ObfusLock applies input permutation

encryption directly. Otherwise, ObfusLock incrementally constructs

a highly skewed locking circuit L using the nodes in the original

circuit as building components. The same locking circuit constitutes

both the corrupt unit and the restoring unit in a double-flip scheme.

Particularly, L is obfuscated and merged with C through a sequence

of automatic rewriting processes, while C as the restoring unit is

encrypted by key-controlled input permutation and randomization.

ObfusLock has strong security guarantees against any known attacks

on logic locking.

The contributions of this work are summarized as follows:

• We formally establish the security of input permutation encryption

on skewed circuits.

• We develop a general scheme, ObfusLock, to lock any given netlist.

In specific, we propose a method to construct a highly skewed locking

circuit from the nodes in the original circuit. Such a locking circuit

can be adapted into the double-flip locking framework.

• We present the rewriting rules and procedures to obfuscate the

locking circuit with the original circuit with assurance.

• We conduct detailed analyses for ObfusLock to evaluate its security

and overhead.
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Fig. 2: (a) the input permutation encryption; (b) the architecture of

double-flip ObfusLock.

II. THREAT MODEL

Our threat model is consistent with the previous works in logic

encryption. The attacker is either an untrustworthy foundry or a

reverse engineering house and thus has access to the encrypted netlist

Cenc. Apart from that, the attacker can purchase a working chip from

the open market as the oracle Co. It can query the oracle by applying a

specific input pattern and observing the corresponding output pattern.

Nevertheless, the attacker cannot read the secret key as it is stored

in a tamper-proof memory [29]. The objective of the attacker is to

determine the secret key and thereby defeat logic locking.

III. IDEAL LOGIC LOCKING FOR SKEWED CIRCUITS

A. Preliminaries

We denote as C the netlist of a combinational circuit or the

combinational part of a sequential circuit. C implements a Boolean

function f(x) : {0, 1}m → {0, 1}n, where m, n are the lengths of

the inputs and the outputs, respectively. The logic encrypted netlist

Cenc(x, k), k ∈ {0, 1}l is the encrypted version of C. A key k∗ is

correct if ∀x ∈ {0, 1}m : Cenc(x, k
∗) = C(x), and it is incorrect

otherwise. The attacker’s objective is to find a correct key and thus

recover the functionality of the encrypted circuit.

The on-set of node p, denoted as f1
p , is the set of all input patterns

for which p evaluates to 1. Let hp denote the smaller one between f1
p

and its complement. The skewness of node p is defined as hp/2
m,

and p is said to be highly skewed if hp ≪ 2m.

The error matrix of an encrypted circuit is given by

E(xi, kj) ≜ Cenc(xi, kj) ̸= C(xi). (1)

Each row in the matrix represents an input pattern from 0 to 2m−1
and each column represents a key pattern from 0 to 2l−1. The error

number of xi is defined as the number of 1s on the ith row. A key

kj is correct if and only if all elements are 0 on the jth column.

An input cube is either a full or a partial assignment to the input

variables. It contains all input patterns satisfying the assignment.

B. Input Permutation Encryption for Skewed Circuits

Ideal logic locking can be achieved by placing key-controlled

XOR gates to all primary inputs if the circuit has only one output

bit and is highly skewed. Bubbles (inverters) are added at random

to the primary inputs of C to randomize the key polarities. Logic

simplifications are then performed to hide those bubbles and yield

C# [30]. The encrypted circuit is thus Cenc(x, k) = C#(x ⊕ k), as

shown in Fig. 2(a). Fundamentally, a key represents a permutation

in the input space, and a correct key restores the effects of all

bubbles. The idea of adding XOR gates to the primary inputs has

been mentioned in [31] but without any in-depth analyses or proofs.

Besides, that work neither discusses how to ensure security when the

original circuit does not satisfy the required conditions, nor does it

provide a solution to control the overhead on industrial benchmarks.

In this section, we formally establish the security of such a scheme.

Section IV describes how this can facilitate the construction of a

provably secure logic locking framework for general circuits.



1) SAT Attack Resilience: Launching an SAT attack on an en-

crypted circuit can be viewed as solving a covering problem on

the error matrix. The objective of the attacker is to find a column

with no errors. For this purpose, an exact attacking algorithm has

to select a subset of rows, covering all columns with at least one

error. An approximate attack [32] may terminate before all columns

with an error have been covered and could return any keys whose

corresponding columns have not yet been covered.

The error matrix of an input permutation encrypted circuit is given

by the following lemma. We omit the proof due to space limit.

Lemma 1. Let f(x) : {0, 1}m → {0, 1} be a Boolean function,

|f1| = M . The error matrix of the encrypted function fenc(x, k) =
f#(x⊕ k) has M rows each containing exactly 2n −M errors, and

2n −M rows each containing exactly M errors.

A row is zero-dominant if most of its elements are 0s or one-

dominant if most of them are 1s. Lemma 1 implies that at most

h = min(M, 2m − M) key patterns could be correct, as stated in

the following lemma.

Lemma 2. The number of correct keys is always equal to or less

than h for the encrypted function fenc(x, k) = f#(x⊕ k).

The following analysis assumes the underlying SAT solver has an

equal chance to return any satisfiable assignments. A row could be

selected if the xi it corresponds to is distinguishing, i.e., there exists

both a 0 element and a 1 element on that row, and any previously

selected rows do not cover the 1 element. The chance for a row to

be selected is proportional to the number of remaining (0, 1) pairs

on that row. Note that an attacker cannot determine if a row is one-

dominant unless it knows f(xi) in advance.

Theorem 3. If |f1| = M and h = min(M, 2m − M) ≪ 2m, the

expected number of I/O queries for a SAT-based attacking algorithm

to decrypt fenc(x, k) = f#(x⊕ k) is at least (1/c) · (2m/h), where

c is a small constant.

Proof. One of the two conditions must be fulfilled before the attacker

succeeds: a) select a one-dominant row; or b) select 2m/h− 1 zero-

dominant rows. From Lemma 1, the probability for the attacker to

select a one-dominant row is always less than 2h/2m before the

number of I/O queries reaches 2m/2h. Using (1− 2h/2m)2
m/2h ≤

1/e, we derive (1/2) · (1 − 1/e) · (2m/h) as a lower bound of the

expected I/O queries required to fulfill condition a).

2) Sensitization Attack Resilience: The sensitization attack [7] is

another I/O attack that aims to decrease the number of effective

key bits. It attempts to find input patterns that sensitize the targeted

key bits to the output while muting the remaining key bits. Input

permutation encryption resists sensitization attacks since all key bits

are sensitized to the output regardless of the input pattern.

3) Approximate Attack Resilience: Several attacking algo-

rithms [14], [32] query the oracle a finite number of times. Then they

choose a key at random from those not yet proved to be incorrect.

The following result can be proved similarly as Theorem 3.

Theorem 4. Let |f1| = M and h = min(M, 2m − M) ≪ 2m.

The probability that a randomly selected key decrypts fenc(x, k) =
f#(x⊕ k) is less than c · r ·h/2m, where r is the number of queries

to the oracle by an I/O attacking algorithm and c is a small constant.

4) Bypass Attack Resilience: The bypass attack [14] adds an

additional bypass unit to circumvent the protected input cubes that

lead to errors. In this way, the circuit can still work properly when an

incorrect key is applied. ObfusLock thwarts the bypass attack since

all input patterns are protected by permutation.

IV. OBFUSLOCK : A UNIVERSAL FRAMEWORK FOR LOGIC

ENCRYPTION

A. Integrating Input Permutation to Logic Locking

As discussed in Section III, input permutation encryption is prov-

ably secure if the original circuit has a single primary output bit which

is highly skewed. For a circuit that has multiple primary outputs, the

sum of h for all outputs should not exceed a secure threshold.

What if the skewness level does not meet the threshold? In this

case, ObfusLock constructs an additional locking circuit L that is

highly skewed and has a single output. The high-level architecture of

ObfusLock is shown in Fig. 2(b). It consists of the obfuscated unit

C ⊕ L and the input permutation encrypted restoring unit L#(x ⊕
k). Similar to SFLL [33], this architecture resists structural attacks

on the restoring unit because removing that unit cannot recover the

functionality of the original circuit.

Consider the encrypted circuit C ⊕L⊕L#(x⊕ k) and the oracle

circuit C⊕L⊕L#(x⊕k∗). Because the obfuscated unit parts in both

circuits are always identical regardless of the keys, only the restoring

unit part needs to be considered in analyzing any oracle-guided I/O

attacks. Therefore, all security guarantees presented in Section III

still hold for double-flip ObfusLock.

In the remainder of this section, we elaborate ObfusLock encryp-

tion procedures. We first discuss methods to estimate skewness values

when they are exponentially small. We then propose a practical way

to construct L incrementally. Finally, we present concrete resynthesis

techniques that make ObfusLock structurally robust.

B. Estimating Skewness Values

How do we estimate the probability a node evaluates to 1, assuming

every primary input has the same opportunity to be 0 or 1? One naive

approach is to transform the netlist to an And-Inverter Graph, sorting

all nodes into a topological order, and then compute skewness gate

by gate. The skewness is the complement of its input for an inverter

and the product of its inputs for an AND gate [12]. This algebraic

computation method can lead to significant error, especially when the

transitive fan-in cones of a gate’s inputs overlap. Another naive way

is to draw random input patterns and simulate the netlist. Because

we desire at least ϵ < h/2m, the required sample size, O(1/ϵ2), is

prohibitively large to achieve a reasonable confidence level.

To overcome the sample size problem, we propose Boolean multi-

level splitting. The key insight is that a rare event could be divided

into a sequence of consecutive common events, and applying random

simulation on those common events separately requires only a mod-

erate number of samples. Our method starts by reshaping the Boolean

network to maximize its logic height. This can be achieved by

reversely applying depth-oriented Boolean optimizations [34]. As a

result, a long critical path B should exist for every primary output. We

distinguish a set of nodes p1, · · · , pn along B, so that the skewness

values of every pair of consecutive p nodes are close. The skewness

value ski of node pi can thus be computed recursively: ski =
Pr(pi = 1|pi−1 = 1) · ski−1 + Pr(pi = 1|pi−1 = 0) · (1− ski−1).
Then we use a SAT witness sampler [35] to accurately estimate the

conditional probabilities in the above equation.

C. Constructing the Locking Circuit

ObfusLock builds a highly skewed locking circuit L with nodes

in the original circuit. Using the same nodes can reduce area and

power overheads and facilitate structural rewriting. It first executes

algebraic skewness computation to find candidate nodes with high

skewness values in the original circuit. Although inaccurate, algebraic

computation is efficient in searching for a large number of nodes. It



then builds L incrementally. In each iteration, a pre-selected operator

with a few nodes drawn from the candidates is tentatively attached

to the front of the current critical path. Boolean multi-level splitting

is initiated to estimate the gain in skewness value. If the gain is

higher than the required level, the attachment is confirmed, and

Boolean multi-level splitting is initiated again with a larger time

budget to compute the new skewness value accurately. Otherwise,

the process starts over with a decayed gain level. The construction

is finished when the skewness value of the current L is below the

secure threshold.

5) Synthesis-based Attack Resilience: Most logic locking tech-

niques alter fixed patterns within the logic representations of the

original circuits. The SPI attack [28] utilizes this fact to launch

a structural attack on the critical node. After logic synthesis and

optimization, the logic terms introduced by logic locking and those

of the original circuit can be separated by a set of rules. The flexibility

of ObfusLock enables the defender to first choose the logic terms that

cannot be detected by the rules, and then construct a skewed locking

circuit implementing those terms. An illustrative example is shown

in Figure 3.
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Fig. 3: A demonstration of how ObfusLock thwarts synthesis-based

attacks. (a) The logic representation of the original circuit after logic

optimization. abcd are internal nodes on a cut within the transitive fan-

in cone. (b) The circled element is changed by the defender, after which

none of the original prime implicants are split from either 0 or 1 polarity.

A skewed locking circuit L is then constructed to implement this change.

D. Logic Obfuscation through Structural Transformation

Structural attacks to logic locking aim to identify the critical

nodes in the netlist. Attackers may launch static analysis (e.g., gate-

level analysis) or a combination of static and dynamic analysis

(e.g., signal activity analysis) to find the critical nodes. To protect

sensitive information, logic obfuscation alters the netlist without

changing its behaviour. It seems impossible to exhaust all possible

structural analyses and prove an obfuscation method is definitely

secure. However, an obfuscated netlist is structurally robust if it has

a prohibitively large number of possible selections of critical nodes,

and each selection needs to be validated dynamically. It is even more

robust if no valid selections exist on the encrypted netlist.

For the obfuscated unit C ⊕ L, the critical node is the root node

of C or L. To launch a removal attack or a bypass attack, either

the critical node itself or all nodes on a cut in the transitive fan-

in cone need to be identified by the attacker. ObfusLock conducts

a combination of structural and functional rewriting steps to obtain

structural robustness. The advantages are threefold: a) Decomposi-

tion: the critical node and its activity is decomposed into multiple

nodes; b) Propagation: the decomposed nodes are propagated and

spread in the netlist; c) Elimination: the decomposed nodes are

merged with or substituted by other nodes in the netlist.

The rewriting steps are summarized as follows. i) Extended AIG

Transformation: the original circuit C is transformed to an And-

Inverter Graph (AIG). Similarly, the locking circuit L is transformed

to an extended AIG that contains Majority-of-three (MAJ) and XOR

gates besides AND gates and inverters. ii) Structural Reshaping:

Equations (2) - (4) illustrate the structural rewriting rules exploited

by ObfusLock to decompose and propagate L. In these equations, f
denotes the root node of C. f is XORed with the currently processed

node in L, while a, b and c are the immediate inputs of the current

node. Structural reshaping proceeds iteratively from the root node of

L. Depending on the type of the current node, one equation among

(2) - (4) is selected, and the LHS is replaced by the RHS. Such

an iteration continues on the first term in the RHS. iii) Structural

Elimination: the locking circuit L, as well as its activity, is distributed

to the whole network after structural reshaping. However, there is

a pitfall: node f is unchanged and can possibly be discovered by

an attacker. Thus, we devise rewriting rules to further eliminate f .

One example rule, given as equation (5), is applicable whenever the

transitive fan-in cone of f contains the internal node a¬b where

both a and b are certain nodes in C. We apply (5a)-(5b) repeatedly

to propagate f down the AIG, and (5c) to get it finally eliminated.

Elimination rules as such are made possible because L consists of

nodes in C. iv) Functional Rewriting: it replaces local structures with

equivalent precomputed structures. We use standard AIG functional

rewriting [36] to remove traces produced in rewriting.

f ⊕ ab = (f ⊕ a)⊕ a¬b, (2)

f ⊕ (a⊕ b) = (f ⊕ a)⊕ b, (3)

f ⊕ ⟨abc⟩ = ⟨(f ⊕ a)(f ⊕ b)(f ⊕ c)⟩, (4)

f ⊕ ab =











¬(f0 ⊕ ab), (f = ¬f0) (5a)

(f0 ⊕ ab)f1 ∨ ab¬f1, (f = f0f1) (5b)

a. (f = a¬b) (5c)

The above equations are listed just for illustration purposes.

Defenders can always add customized reshaping and elimination rules

for further diversification. The whole rewriting procedure terminates

when the number of applications of reshaping and elimination rules

both reach user-specified thresholds or the whole L netlist has been

traversed. Because of logic sharing, each application of a rewriting

rule introduces at most a constant number of extra gates.

On large benchmarks, applying double-flip ObfusLock from pri-

mary inputs to primary outputs (as shown in Fig. 2(b)) can incur

significant overhead. In this situation, we apply it only to a sub-

circuit to mitigate this issue. To find a suitable sub-circuit, ObfusLock

traverses backwards from a small set of primary outputs that have

important functionalities. It aims to find a cut, such that i) the cut

size is sufficiently large, and ii) the number of reachable patterns

on the cut is exponential to the cut size. The second condition

is crucial because an attacker may attempt to infer input patterns

corresponding to the reachable patterns on the cut, thereby launching

an SAT attack [37]. We use an approximate model counter [38] to

track the number of reachable patterns on the current cut. Once the

cut is settled down, the transitive fan-out cone of the cut is extracted

as the sub-circuit.

Notice that the attacker can only obtain an oracle for the whole

circuit. Even if the attacker can discover the cut of the sub-circuit, it

needs to infer the corresponding input pattern from a pattern on the

cut in every I/O attack iteration. This process will always introduce

an extra cost. A defender can even encrypt the remaining part of the

circuit to thwart such attempts.

6) Machine Learning Attack Resilience: These attacks [23], [25]

extract local structural information of nodes as learning features. They

discover critical nodes by revealing deterministic patterns caused by

logic locking. However, ObfusLock applies structural transformations

to the obfuscated unit globally. Moreover, it breaks any deterministic

patterns or statistical relations by introducing randomness from four

aspects: i) it enables high flexibility to choose internal nodes and

operators in constructing L; ii) its bubble insertion and pushing



Bench.
Skew.

#Keys Run. SAT Atk. (s) AppSAT Atk. (s)
(#Nodes) (bits) (s) sub. whole sub. whole

s9234
-11.4 14 1.23 162.9 TO 0.1 4.3

(3677)
-21.8 27 1.69 TO TO wrong wrong
-30.6 51 18.09 TO TO wrong wrong

c7552
-12.5 23 0.63 TO TO 238.5 wrong

(4003)
-20.4 35 4.35 TO TO wrong wrong
-33.2 55 17.78 TO TO wrong wrong

c6288
-10.6 19 1.77 231.7 406.2 13.8 wrong

(4660)
-22.5 31 5.30 TO TO wrong wrong
-32.8 47 9.89 TO TO wrong wrong

max
-10.4 16 0.63 TO TO 172.1 wrong

(5907)
-20.6 35 3.90 TO TO wrong wrong
-30.0 54 7.19 TO TO wrong wrong

s15850
-12.0 19 0.42 TO TO wrong wrong

(6820)
-21.6 33 4.45 TO TO wrong wrong
-32.5 51 2.63 TO TO wrong wrong

-12.0 15 0.38 51.4 TO 245.3 wrong
b14 -24.0 33 2.16 TO TO wrong wrong

(10635) -30.0 38 1.65 TO TO wrong wrong
-54.0 125 33.56 TO TO wrong wrong

-10.0 16 0.82 0.9 TO 0.1 97.0
s38417 -22.3 58 2.44 TO TO wrong wrong
(18781) -34.2 64 10.63 TO TO wrong wrong

-52.4 100 48.16 TO TO wrong wrong

-12.0 20 0.43 0.2 103.8 10.9 175.4
b20 -21.0 21 2.61 TO TO wrong wrong

(24292) -30.0 31 7.94 TO TO wrong wrong
-50.0 99 35.30 TO TO wrong wrong

-10.0 15 1.37 4.1 76.0 12.8 95.0
s38584 -22.9 35 1.51 TO TO wrong wrong
(24296) -32.0 51 17.52 TO TO wrong wrong

-57.4 126 32.70 TO TO wrong wrong

-10.9 26 1.33 50.4 TO 55.5 wrong
square -20.2 37 7.06 TO TO wrong wrong

(39248) -31.5 63 22.98 TO TO wrong wrong
-50.2 148 60.01 TO TO wrong wrong

TABLE I: Evaluation results (key efficiency, runtime, and resilience to

I/O attacks) for ObfusLock at different skewness levels.

process is fully randomized; iii) it allows the defender to add

structural reshaping and elimination rules at will; iv) it enables high

flexibility to choose the sub-circuit to be encrypted.

V. EXPERIMENTAL RESULTS

In this section, we present experimental results to demonstrate the

effectiveness and the robustness of ObfusLock. All experiments are

conducted on a Linux machine with a 3.2GHz CPU and 16GB of

RAM. We evaluated ObfusLock on larger benchmark circuits from

ISCAS’89 [39], ITC’99 [40] and EPFL [41]. Like most studies on

logic locking [42], we assume attackers have scan chain access.

We notice that ObfusLock cannot be effectively applied to those

circuits whose number of inputs is less than the desired skewness

level. For instance, ObfusLock fails to find a locking circuit for b09
(serial to serial converter) and b10 (voting system) in ITC’99, both of

which are deep sequential data pipelines with only a limited number

of inputs. ObfusLock may be effectively applied to such circuits if

unrolling is allowed.

In order to thoroughly evaluate ObfusLock, we extract the transitive

fan-in cones for all outputs of all candidate benchmarks. We filter

out a benchmark if less than 20% of its outputs have at least 30

inputs (<10,000 nodes) or 50 inputs (≥10,000 nodes) within their

transitive fan-in cones. However, as we will demonstrate later, this

requirement is not needed in practice. Among the remaining, we

select 10 benchmark circuits whose numbers of nodes are across

the range of 3,000 to 40,000 to represent circuits of different sizes.

Encryption Cost: Table I shows the experiment results of ObfusLock

encryption cost. Because different benchmark suites are in different

formats (gate-level netlists and LUTs), we map all benchmark circuits

to AIG and count the number of nodes. For every benchmark circuit,

we create 3 locking circuits L with at least 10, 20 and 30 bits of

skewness, respectively (−10.0 bits of skewness means the skewness

value of L is 2−10). For those benchmark circuits which have over

10,000 nodes, we also create a locking circuit with at least 50 bits of

skewness. The execution time of ObfusLock is in the order of tens

of seconds. The majority of the time is spent on estimating the gain

in skewness for each additional operator and corresponding nodes.

Therefore, to construct an L with a lower skewness value demands

more execution time.

Security Analysis (I/O Attacks): We use SAT attack and AppSAT

attack implementations in NEOS [32] to attack ObfusLock encrypted

netlists. We choose NEOS because it integrates BDD sweeping to

compress I/O constraints and is almost always faster than the original

SAT attack implementation [8]. We set the timeout (TO) limit to be

3 hours for all attacks. Besides, we set the upper limit for AppSAT

to be 2,048 iterations, after which it must return a key that is not

proved to be incorrect. This limit is higher than what is used in the

AppSAT paper [32].

We consider two attacking strategies. For the first strategy, an

attacker targets the whole encrypted circuit as normal. For the second

strategy, an attacker distinguishes and only targets the sub-circuit to

reduce the burden on the SAT solver. In our experiments, we assume

an attacker who adopts the second strategy i) always finds reachable

patterns on the cut when launching an I/O attack, and ii) can deduce

the pattern on the inputs from the pattern on the cut in no time.

Because both of the assumptions are not realistically achievable for an

attacker, the reported data in the sub. columns are the lower bounds

of the real-world values.

As shown in Table I, for all the benchmark circuits, encryptions

with 20 bits of skewness cannot be decrypted in the timeframe

regardless of the sizes of the circuits. 30 bits of skewness or more is

recommended to resist attackers who have greater capabilities.

Security Analysis (Structural Attacks): Structural attacks utilize

internal structural and functional information of the encrypted circuit

to recover the functionality of the original circuit. Most structural

attacks aim to distinguish the critical nodes within the encrypted

netlist and then isolate them or inject faults to these locations [12],

[21], [26], [27], [37]. Naively, an attacker can search through the

netlist to identify the critical nodes. Hence we start by running a

combinational equivalence checker to validate whether the critical

nodes, namely the root nodes of C and L, still exist after obfuscation.

Our result verifies that all critical nodes are successfully eliminated

in every encrypted circuit.

We further evaluate the structural robustness of ObfusLock against

the state-of-the-art structural attacking tools, Valkyrie [27] and SPI

attack [28]. When attacking double-flip defences, Valkyrie aims to

find a pair of flipping node in the encrypted circuit, namely perturb

and restore, such that when both nodes are replaced by constant faults,

the encrypted circuit has the same behaviour as the original circuit.

In our cases, perturb and restore are the root nodes of L and L#

respectively. We observe that while Valkyrie always finds the restore

node quickly, which we leave as-is, it either exits without finding the

obfuscated perturb node or exceeds the time limit.

We subsequently launch the SPI attack, which generates prime

implicant tables (PITs) for a set of selected internal nodes given an

encrypted circuit and infers the key therewith. The SPI attack always

returns an incorrect key.

If an attacker cannot distinguish the critical nodes, it may attempt

to distinguish a set of fan-in nodes of the obfuscated C, and then

reconstruct C with these nodes. Common techniques to distinguish

candidate nodes include skewness analysis [12], [37] and sensitization

analysis [21], [26], [27], [37]. Fig. 4 demonstrates how ObfusLock



protects structural and functional traces against these two attacks on

s9234. Fig. 4 (a) and Fig. 4 (b) show the statistics of skewness and

the number of keys within its transitive fan-in cone for all nodes. It

can be seen that the critical node C⊕L (marked in red) is an outlier.

After structural transformation, this critical node no longer exists.

We suppose that the attacker attempts to recover the functionality

of C with nodes in the transitive fan-in cone of C ⊕ L. Fig. 4 (c)

and Fig. 4 (d) show the statistics after structural transformation. The

attacker minimizes the complexity to recover the functionality of C, if

it finds a cut between the inputs and the outputs, such that i) it consists

of nodes that have equivalent counterparts in the original circuit C,

and ii) it is the closest cut to the protected outputs. All nodes along

the cut are marked in yellow. Because of structural transformation,

it is almost unlikely to differentiate these nodes from others.
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Fig. 4: Distributions of critical nodes before and after structural trans-

formation.

Overhead Analysis: We use Cadence Genus and Innovus along with

the NanGate 45nm Open Cell Library to measure the area and power

overheads. We choose the typical RC corner and set the target clock

period as 1ns for our analysis. As shown in Fig. 5, ObfusLock

incurs average area overheads of 2.1%, 4.0%, 5.1% and 4.8% for

netlists with 10, 20, 30 and 50 bits of skewness, respectively. The

majority of the area overhead is due to the restoring unit. Facilitated

with the sub-circuit approach, the area overhead is mostly correlated

with the skewness level but almost unrelated to the size of the

original circuit. It means that for a certain security level, the relative

overhead of ObfusLock decreases as the size of the original circuit

grows. ObfusLock records a 4.9% average power overhead for all the

benchmarks. Delay overhead is almost negligible (0.07% on average).

VI. CONCLUSION

In this paper, we propose ObfusLock, a novel logic locking scheme

that simultaneously achieves I/O attack resilience, structural attack

resilience, locking efficiency and protection diversity. ObfusLock

leverages skewness of nodes to construct a locking circuit and uses

a set of rewriting rules to obfuscate it with the original circuit.

Experimental results have confirmed the strong security guarantees

provided by ObfusLock.
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