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ABsSTRACT. Maas (2011) showed that for an oscillating two-dimensional barotropic
tide flowing over sub-critical topography of compact support, some topographic
forms existed that produced non-radiating baroclinic disturbances. The problem
is related to “stealth” and “cloaking” problems. Here Maas’s result is derived
using a simpler approach, not involving complicated mappings, but formally
restricted to perturbation topography. Wider results come from the discussion
of nearly-compact support topographic disturbances provided by Schwartz func-
tions with weak high-wavenumber radiation and by exploiting both a known
functional equation formulation and Fourier methods. The problem is extended
to disturbances on uniform slopes. A variety of non-radiating topographies can
be found, although they are mathematically delicate and unlikely to be found in
nature. Topography with weak radiation at high wavenumber is a much wider
class of structures. Application of these solutions would lie with the ability to
estimate dissipation over and near the topography from motions observed at a
distance.

1. INTRODUCTION

Early interest in the conversion of the barotropic tide into baroclinic (linear
inviscid internal wave) modes can be found in the papers of Cox and Sandstrom
(1962) and Baines (1973). Garrett and Kunze (2007) reviewed work to that date, the
major progress having come after the global detection of internal tides in altimetric
data (Ray and Mitchum, 1997). Numerous later papers have dealt with various
methods, topographies, and physics including nonlinearities. Morozov (2018) is a
monograph on the subject with a focus on in situ observations. The importance of
the problem arises from the major tidal contribution to the energy budget controlling
ocean mixing and evolution of the lunar orbit.

Maas (2011) (cf. also Magaard (1962)) showed, surprisingly, that two-dimensional
bottom topography shapes existed in which zero conversion occurred, as though
the bottom topography were transparent to an incoming barotropic flow (and see
the commentary by Llewellyn Smith, 2011). Earlier, Sandstrom (1975), using a
different approach, had shown the existence of such configurations (his Table 1).
Some care is required concerning the assertion in the previous sentences because
a disturbance, trapped to the topography, does exist and it will be dissipative and
non-linearly radiating, but no radiating baroclinic flow occurs in the linear problem.

This present note arose initially from an attempt to formulate an inverse theory
perspective, for which two interesting, if hypothetical, questions emerge: (1) Can
measurement of near- or far-fields of internal waves be used to reconstruct the
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generating topography? (2) How does a non-radiating topography emerge as a
solution in an inverse calculation (a null space)? The problem is reminiscent of the
one called ‘Can you hear the shape of a drum?’ (Kac, 1966, Gordon and Webb,
1996) directed at determining an unknown boundary shape.

More familiar, analogous, problems are the wave scattering and antenna radiation
problems of physics and radio engineering. With the structure of an antenna known,
the near-field radiation can be extremely complicated. But as the distance to the
antenna increases, much of the complexity vanishes, being trapped in the near-field,
and distant patterns are often simplified into dipole and multi-pole patterns. The
crucial feature is that much of the structure in the near-field is non-propagating,
and so the far-field is simplified (e.g. Stratton, 1941, p. 435). On the other
hand, measurements in the far-field then cannot be used to reconstruct the near-
field pattern, a desirable feature in the problem of radar cross-section reduction in
“stealth” technology (e.g. Bahret, 1993) or in the wider field of “cloaking” (Kadec
et al., 2015).

Maas (2011, hereafter M11) and Maas and Harlander (2011) used an analogue
of conformal mapping for solving the hyperbolic-in-space equation governing the
internal wave field. The resulting transformation does not have a physically obvious
interpretation even in the linearized case, and the main point of this present note is
to show that a more direct mathematical approach suffices in the case of perturbative
topography considered here. Sandstrom’s (1975) solution in terms of characteristics
is also physically more accessible. The general problem of understanding the
effectiveness of baroclinic tidal generation for any given topographic structure here
remains the central theme.

A partial differential equation hyperbolic in space (Eq. 1 below) generates
a number of fascinating mathematical problems including extreme sensitivity to
the boundary conditions describing the topography. From a physical standpoint
however, many of the mathematical issues are likely irrelevant, at least on some
scales: the hyperbolic character in this problem arises from the reduction in the order
of the equation from a system including viscosity and diffusion. These processes
raise the order of the system and suppress the hyperbolic characteristic curves
of the reduced system in the high-wavenumber regime. Wunsch (1969) included
a brief discussion of the boundary-layer on a uniform slope in the fourth-order
frictional system. Unlike some other problems, strong dissipative properties are
not restricted to boundary layers at walls—the existence of discontinuous interior
(super-critical) solutions to Eq. (1) below implies that those processes can act
intensely throughout the fluid volume. The existence of fluid interior as well as
boundary dissipation suggests that a modal approach will be more robust than
method-of-characteristics solutions. Reduction into low modes in the far-field
is consistent with ocean observations (e.g., Zhao et al. 2016), whereas long-
distance propagation of identifiable characteristics is not; admittedly, however, the
currently available satellite data is not well adapted to observation of transient,
high-wavenumber phenomena.
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2. GOVERNING EQuAaTIiON

In Cartesian coordinates, the equation governing the stream function, ¥ (x, z),
for inviscid, two-dimensional, linear internal wave propagation of frequency w in a
uniformly stratified fluid (constant buoyancy frequency, N, and Coriolis frequency,
fo < N) is the hyperbolic-in-space Poincaré or Poincaré-Sobolev equation ,
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in a channel of depth /(x) as here, or in an infinitely deep ocean, —oco < z < h. A
factor exp(—iwt) is implicit. The velocity field, u =(u, w),
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is subject to a top boundary condition of w = 0 and a bottom boundary condition
of u-V(h —z) = 0, i.e. no normal flow. If ¢ <0, that is, w? > N? or w? < foz,
the nature of the equation changes from hyperbolic to elliptic. This latter regime,
particularly important for diurnal and longer period tidal forcing poleward of about
30° latitude, is of considerable oceanographic interest, but is not discussed here.
When w?/N? — 0, the system is hydrostatic. Llewellyn Smith and Young (2006)
described the important role of a finite, reflective, upper boundary relative to an
infinitely deep ocean.

Eq. (1) has been written so that if 7 (time) is substituted for x, the equation has
the same form as an ordinary one-dimensional wave equation with wave speed c. In
such problems, a boundary that moves faster than ¢ would generate a shock, or be
physically impossible if ¢ is the speed of light (see, e.g., Balazs, 1961 or Greenspan,
1963). These problems require causality in the x,  domain, but no such causality
is required in x, z where information can flow ‘backwards’ in x. As is well-known,
the internal wave problem can be divided into regimes according to the topographic
slope. Here we consider the regime with slopes y that are sufficiently shallow
(v < c¢) that no non-causal characteristics are generated by reflection of causal
characteristics off the topography. Such slopes are labelled ‘transmissive’ or ‘sub-
critical’ meaning that energy (information) is not returned in the direction in x from
which the disturbance originated. By contrast, when slopes are sufficiently large
(v > ¢), non-causal characteristics can exist; these slopes are ‘reflective’ or ‘super-
critical.” Poincaré (1885) discussed the corresponding spatially hyperbolic equation
for the interior of an unstratified, N = 0, but strongly rotating, fluid container. As
a ‘critical’ slope, v = c, is approached, the characteristic curves become tangent to
the boundary, and solution infinities are generated. What follows is restricted to the
transmissive, subcritical, case.

From here, the notation differs slightly from thatin M11: the z—coordinate origin
is taken at constant reference depth, 4, so that the upper rigid lid is at z = h. The
most natural spatial scale comes from the water depth, so that a non-dimensional
vertical coordinate, z* is defined as z = hz* and the non-dimensional horizontal
coordinate is defined as x = ix*/c. The upper lid is at z* = 1 and the disturbance to
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the seafloor about z = 0is z = hy(x/h) or z* = hy(x*/c)/h < 1. Eq. (1) becomes,

@) 5~ w5 =0,
c?0x 0z

¢ is retained as a mnemonic device. With a flat bottom, the dimensional forced

oscillatory solution to Eq. (1) consists of a uniform horizontal flow,

3) Yo(z) = Uz,

and non-dimensional ¢ is defined from ¢ = (Uh)y*. Flow is left-to-right when
U > 0, although oscillating in direction with ¢. Choose U = 1.

At this point, the * will be dropped, all variables being non-dimensional. The
role of c is as a reminder that the horizontal scale will change with the frequency
of oscillation. With a flat bottom, in addition to ¢, an infinite set of internal wave
modes exists,

cF=1;

@) Viw = ) Ape™ sin(mr2),

m=—oo
all satisfying the two Dirichlet boundary conditions ¥ (z = 0,z = 1) = 0, and which
radiate to and from infinity in +x. Periodicity in cx is 2. For these vertically-standing
modes, zonal phase and group velocities are in the same direction.

Assume now that a non-zero value of ¢y = z is imposed in the channel with a
perturbation A (cx) to the bottom boundary, so that the non-dimensional bottom
boundary condition is linearized about z = 0 with U = 1:

o
d(cx)
Balmforth et al. (2002), Pétrélis et al. (2006) and a number of other authors
provided examples of what is considered the ‘forward’ or ‘direct’ problem for
W, given hi(cx). When dhi(cx)/d(cx) < 1, the slope is subcritical. In an

infinite channel as discussed here, radiation conditions must usually be imposed as
|cx| — oo. (A finite amplitude case is considered briefly at the end.)

(5) (u,w)-V(h—-2) = -w(z=0)=0.

3. SIMPLIFIED SOLUTION

Consider, in non-dimensional space, subcritical, transmissive, topography, /1 (cx),
with the boundary condition linearized about z = 0. Let

U=f(cx—z+a))+g(cx+z+ap)

f,g are arbitrary, but twice differentiable, solutions to Eq. (2), where «; are

constants. On z = 1, f(cx — 1+ a;) = —g(cx + 1 + a2), and choosing a; = 1,
ap = —1 (in effect, using the method of images), g(¢) = —f(g). Then,
(6) U(ex,z) = fex—z+1) = f(cx+z—1), —00 < x < o0,

satisfying the upper boundary condition, ¥(z = 1) = 0 (see Manton and Mysak,
1971, Biihler and Holmes Cerfon, 2011).

If the difference in Eq. (6) is non-zero only inside some interval P, effectively
vanishing outside x € P, then no far-field radiation will be generated. Following
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mathematical practice, functions with that confined support will be called ‘rapidly
decreasing functions’ (RDF); see Cheney (2001). If no far-field disturbance occurs,
then radiation conditions (RC) become irrelevant.

The perturbation vertical velocity is,

(7 w(ex,z) = — dd =—f'(ex—z+ 1)+ f(ex+z-1),
0(cx)
and setting
, , ohy
€)) w(cx,0)=—f(ex+ 1)+ f(ex=1) = ——,
0(cx)
or
) —flex+ 1)+ f(ex—1) = hi(cx) +H,

with H arbitrary and set to zero. h(cx) will be RDF if the difference in Eq. (9)
is RDF even if f(cx) is not itself RDF. Any f(cx) of period 2 (the usual non-RDF
Eq. (4) flat-bottom radiating free modes) can be added to the solution f, without
necessitating a change in 4.

Note that nonradiating examples are easy to come by: we may freely specify f
a function of rapid decrease, and then simply set

(10) hi(cx) = f(ex—=1) = f(cx+1)

to obtain the topography, and recover ¢ from (6), which inherits rapid decay (in x)
from f. An explicit example of this construction is as follows:

Let
(11) f(cx) = e sech(mcx)
(12) f’(cx) = —re sech(mcx) tanh(crx),
then
(13) Y =¢e[sechm(cx —z+ 1) —sechm(cx +z—1)]

which is exponentially confined to the topography with no radiation. Here and
elsewhere, € is a small parameter. Also,

(14)
w =ne [sechm(ecx —z+ 1)tanhw(cx —z+ 1) —sechm(cx+z— 1) tanh w(cx +z — 1)]
(15)
hi(cx) = e[—sech(m(cx + 1)) +secha(cx —1)]
(16)

hi(cx) = ne [sech(n(cx + 1)) tanh(7(cx + 1)) — sech w(cx — 1) tanh 7w (ex — 1)]

is the corresponding topography determined inversely from the solution. The flow
and topography for £ = 0.1 can be seen in Fig. 1, 2 where & (cx) becomes constant
and hence non-radiating.
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Ficure 1. Topography (upper panel) and its derivative (dashed
line) and the solution (lower panel), ¥ (x,z) in Eq. 13. Here
¢ =1,&=0.1. No far-field radiation occurs.
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FIGURE 2. w(x,z = 1/2) = =0y /dx, for the double sech bottom profile.

This ‘non-converting’ or ‘non-radiating’ field was called, in M11, the ‘non-
hydrostatic barotropic’ flow. But given the numerous conflicting definitions of
‘barotropic’ in the literature, the terminology is avoided here.

In an oceanographic context, the possible existence of such trapped solutions
implies a relatively high shear, and hence strong mixing over topographic features.
A far-field measurement of the resulting disturbance would vanish, and no infor-
mation about the shear would be recoverable directly. (Indirect estimates might be

possible through the influence of a strong mixing region on the larger-scale flow
field.)
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4. SoME GENERALIZATION

The label ‘compact support’ implies a function that is identically zero outside
an interval P. Such functions f, or topographies, /1, do not exist in the real world
unless entire ocean basins are considered, and then lateral boundary conditions
intrude. Within the class of RDF, ‘bump’ functions are identically zero outside
P, and the ‘Schwartz functions’! are RDF but are also perfectly smooth (infinitely
differentiable), with all derivatives also enjoying rapid decay. For what follows,
the most important characteristic of Schwartz functions in wavenumber space is
that their Fourier transforms are also Schwartz functions. Rapidity of decay is still
subject to the uncertainty principle, however, so that bandwidth in one domain is
inversely proportional to that in the other.

To the extent that the wavenumber decay is proportional to a power of k=7, and
viscous decay is proportional of V2 (u, v, w), the value p will determine the relative
importance of high wavenumber dissipation. Thus if p = 2, dissipation is uniform
in k; and larger values of p will tend to minimize high wavenumber contributions
to dissipation.

As above, given f(cx) from a known ¥ (cx, z), then in a simple formal inverse
problem, Ahj(cx) is easily determined: the solution is known, and the boundary
shape, &1 (cx),is found by subtraction. The Appendix briefly summarizes a situation
of practical observations, including noise.

Here the conventional wave generation ‘forward’ problem: for given /i (cx),
find f’(cx), is more interesting, both with and without an RDF requirement. Eq.
(9) is an innocuous-seeming functional equation examined by Manton and Mysak
(1971) and more recently by Beckebanze and Keady (2016), the latter emphasizing
closed containers without RC.2 Hazewinkel et al. (2010) discuss the application of
wave attractors to similar problems. Colin de Verdiere and Saint-Raymond (2020)
and Dyatlov and Zworski (2019) have recently revisited the analysis of attractors
via methods of microlocal analysis. If the RDF requirement is abandoned, Eq. (9)
provides a general relationship between any perturbation topography and a function
f, but only insofar as RC are satisfied—and which is not so easily accomplished
in general. On the other hand, if  has compact support, radiation conditions are
irrelevant.

4.1. Functional Equation by Operator Inversion. As a linear inverse model, Eq.
(9) is a very simple one for determining 4, (cx) from (cx, z). In practice, the most
common measurement would be of the density/temperature, which is in the linear
internal wave theory proportional to dy/d(cx) for any value of cx, z. For any full
formulation, sufficient measurements would need to be available to determine not
only the trapped components, but also the propagating mode amplitudes.

Here we address the slightly more challenging forward problem of determining
W (cx, z) given topography %;. One form of the ill-posed forward problem solution
that complements the above can be described as follows, at least formally. Define

1"Good” functions in the terminology of Lighthill (1958) and others.
2Aczél (1966) is a general discussion of functional equations.
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the unit backward displacement operator and its inverse,

(17) Di(g(x)) =gx—1)

(18) D' (g(x) = glx +1)

Then Eq. (8) is

(19) Dif'(ex) — D7 f/(ex) = h)(cx)
or

(20) (D? = 1) f'(cx) = D1k} (cx), and

(1 =D f'(cx) = Oy ) (ex)

Adding the two forms in Eq. (20) and by formal inversion of the operators (1 —
D), (1 - D;2)

1
(21) f(cx) = —5(1)1 + D} + D)+ D] + ...} (cx)

1
+ E(Dl_] + D7+ D7 + D77 + L)k (ex)

(22) :%Z(hi(cx+2j+l)—hi(cx—2j—1)),
j=0

a sum of the slopes at distances 2 which converges provided |A](cx)| < C/ |x|1*e
for some £ > 0, and producing an explicit solution to the forward problem. The
operators (Z)l2 -1), (1 —2)1‘2) have a null space of any period-2 function in cx, hence
the solution f’ obtained here is certainly not unique. Note that if the topography is
symmetric about x = 0 then A (2j + 1) = —h,l(—2j -1).

From this perspective if we revisit the construction of nonradiating examples by
first specifying f (decaying or compactly supported) and then obtaining /; by (10),
we see that we obtain cancellations in the series (21). In particular, let p(x) be any
function of compact support. Setting

(23) hi(cx) =p(cx+1) = p(ex - 1),

then the f’ series telescopes, with the sum thus having compact support, and
the topography is again seen to be non-radiating. Eq. (21) provides an especially
convenient characterization of the statistics of f(cx) should the topographic slopes
be treated as a random process. We remark that while our derivation by operator
inversion was purely formal, the resulting manifestly solves the functional equation
ex post facto, whenever it converges (either pointwise or in the sense of generalized
functions).

4.2. Functional Equation By Fourier Methods. We may alternatively give for-
mal solutions to the forward problem of obtaining f from /; by Fourier methods.
Suppose, in Eq. (9), i1 (cx) is RDF. Let

24) hi(cx) = /mle(k) exp(2nikex)dk, f(cx) = /mf(k) exp(2nikcx)dk

—00
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using the conventions of Bracewell (1978). Then,

(25)
/ f(k)exp(2rik (cx+1))—f (k) exp(2mik (cx—1))dk = / hi (k) exp(2rikex)dk
That is, there is a solution f given by
Ao (k)
(26) k) = 2sin(2rk)’

provided the quotient on the right is appropriately interpreted in the sense of the
theory of distributions. In general, we thus obtain poles of f on the real axis at all
k = n/2, i.e. at half-integers. Now assume analyticity of /; (k) in the upper-half-
plane together with appropriate decay to close the contour of integration; moreover,
let us make sense of the quotient by regularizing the resulting integral across the
poles of f arising in the formal inverse Fourier transform by treating it as a principal
value integral at each pole. Thus when inverting for f(cx) we thus obtain the sum
of half the corresponding residues, hence formally

27) f(x)=-n Z hi(n/2) exp(—inmcx).
(28) R
Y(x,z) = ﬂn;m h(lfrllgs) [—exp(=inm(cx — z+ 1)) +exp(—ina(cx +z — 1))]

These generate propagating modes in a Fourier series periodic with period cx = 2
that are not generally RDF . For the example (15), h(nx) is exponentially small
with increasing n with measurable radiation only for the lowest modes. Note that
in this example, the topography is a Schwartz function. Ambiguities appear to
arise from the regularization of & (k)/sin(27k) at half-integers, where the use of
the principal value is only one choice among many. The results could differ by
linear combinations of §(k — n/2), producing terms of the form exp(nincx) in the
inverse Fourier transforms, but such contributions in ¢ are precluded by the upper
boundary condition.

The question then remains as to whether any RDF solution ¢ will exist for
an arbitrary compactly supported /;(x)? By way of example, consider the even
simpler topography, /;(cx) = € sech(zcx), a Schwartz function, whose transform
is also a Schwartz function,

(29) hi (k) = e sech(rk)

(Bracewell, 1978) and which, when substituted into Eq. (26), gives a radiating field
in f, although one that again diminishes rapidly with k. Evidently, to avoid radiation
(as discussed briefly by M11), a necessary condition is that /1| (k) must have zeros
at the pole positions—an artificial construct that surely does not occur in nature.
Another, more likely, possibility is that /2; (k) has diminished effectively to zero by
the position of the smallest non-zero pole at k = 1/2, which, consistent with the
uncertainty principle, would produce a relatively broad 4 (cx). Such profiles are
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FiGure 3. The triangle function eA(cx).

weakly radiating of high wavenumbers—a wider class than non-radiating solutions,
and mainly the lowest modes will be seen in the far-field.

5. CORNERS

Asymptotics

Alternative, and more general, descriptions of topographic influence can be in-
ferred from the Fourier transform asymptotics described e.g., by Lighthill (1958).
Those asymptotics can be used to show that most topographies manifesting them-
selves as a corner, i.e., an abrupt change in slope, (with (k) diminishing as k=2
for large k), or more rapidly for any higher derivative discontinuity, would in
general be radiating. Apart from the abyssal plains, oceanic topographic features
short compared to the internal tide-frequency wavelengths—corner-like—are nearly
ubiquitous and will thus necessarily be radiators. These will be superimposed upon
both perturbation and finite amplitude topographies.

A nonradiating “Corner”

Horizontal wavelengths of low-mode internal tides are tens of kilometers and
longer, long compared to numerous topographic features. That configuration raises
the question of the effect of a “corner” on a tidal flow, i.e., a point of derivative
dicontinuity in the topography. Here we consider a corner in which the slopes
are subcritical (cf. Hurley, 1972). Consider a non-Schwartz topography /;(cx)
proportional to the triangle function (Fig. 3 and see particularly, Pétrélis et al.,
20006),

| > 1
. =<1 (a>0
which has compact support. The Fourier transform is
(sinka)?

(mka)?

Acx/a) = {(1)’_ ox

A(k) = asinc®(ka) = a
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If a = 2, with a bottom perturbation of order £ < 1, the inverse Fourier transform
of f takes the form

. © . sin(2rmk)
(30) f(cx) = 4die [OO exp(inkcx) k)2 dk
with & a small parameter, vanishing at all the poles at wavenumbers, k = n/2, an
accident of the width, and none of the propagating modes is excited. See Fig. 4.
Again issues of regularization at k = 0 potentially arise, but are generally irrelevant
because of the boundary conditions on .
Alternatively, define a simple ramp as

31) G(x)=-1, x < —-1/2
=2x, —1/2<x<1/2
=1,1/2<x

and put,

(32) flex) = 2G(5)

Then, from Eq. (6),

33 plex,0) = S-G(E) + 6(HE)

confined over the region of the ridge but with derivative, and hence velocity,
discontinuities at the ramp edges. These would be sites of intense dissipation with
corner radiation.

More generally, a corner will typically have asymptotic wavenumber contribution
diminishing with k=2 in the far-field. The stream function in the vicinity of the
corner will be complicated and of high shear. Related numerical solutions are
Nie et al. (2019) who computed the solution for the critical case, and Liang and
Wunsch (2015) who computed the nonlinear interactions for a double exponential
sub-critical ridge in a rotating system.

5.1. Finite Topography-Uniform Slope. M11 noticed that for finite amplitude
sub-critical slopes, Eq. (2) has a non-RDF, solution when forced by a vertically
uniform horizontal flow,

(34)

-z+1
Yrwedge(cx.2) =In(—"") =In(cx—z+ 1) —In(cx+2—1), 0< 2 < 1,x > 0
cx+z-1
in the present notation, vanishing on z = 1 as required and also conserving volume
flux in the externally imposed oscillating flow U. ¢/, cq¢. must be a constant, along

a slope, such that,
cx—z+1 B

cx+z—1_ﬁ’
where 3 is a constant or,
1-5
= +1, = <c,x>0
7=1vycx 0% (1+ﬁ) c, X

with a zero-depth corner at x = 0, z = 1 (Fig. 5) where the equations fail.
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Ficure 4. Stream function ¢ (x, z) for the triangle function of
width 2 (upper panel). u, w at two depths for the triangle function
(lower panel).

This solution is valid for finite amplitude subcritical topography, under an im-
posed oscillating flow with magnitude increasing monotonically as the zero-depth
corner is approached from x < 0. No radiating linear waves are generated, albeit if
the slope region is finite—as is physically necessary—then the transitions to a flat
bottom in both deep water and prior to the corner would have dh;/d(cx) discon-
tinuous. A radiated far-field, with Fourier transform again falling as k=2, will be
generated there. Solutions (34) might have some applicability over the large-scale
sloping abyssal plains.

A topographic perturbation to a uniform slope can be dealt with in a form
analogous to that done for perturbations to a flat bottom (cf. the treatment in M11
via coordinate transformation). Let & = hg + h, where hg = ycx + 1 and k) is a
perturbation. Let u =(u, w) = ug + uj, where ug corresponds to the undisturbed
stream function Eq. (34). Then to lowest order the boundary condition becomes,

(35) llV(h - Z)lz:yx+l ~ u0|z27x+1 Vhl + u1|z:yx+1 V(hO - Z) =0

Letting u; = (0y1/9z, —0y1/0x), | must satisfy the same governing hyperbolic
equation as . With V(hg — z) = (y,—1), hence with f; as in (6), the boundary
condition is

(36) (1 -y (1 =y)ex)=(1+y) f{ (1 +y)cx) = = Wol =y x4y V1 = Q' (cx)

In the limit y — 0, the slope coincides with the upper boundary.

-0.15

-0.2
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FIGURE 5. Y eage from Eq. (34) and a constant slope y = 0.4
(dashed red line). Contouring near the singularity at cx =0,z =1
and along the critical slope z = cx is incomplete. Solution, also
shown, would be appropriate below the critical line although not
oceanographically interesting there.

The natural integral transform for wedge-geometries is the Mellin transform
(Sneddon, 1972) and thus defining

(37) /01 (= M) (s) = /0 ¢ f(q)dg

with inverse transform,

1 PHico (Min)
’ 4 n —
(3%) e = [T H0 )0 ds
i P—ico
for some constant 8, and with corollary,

(39) M) (@x)) = a™ f;M (s).
Applying M(.) to Eq. (36)

(40) T ly)s_l O s ly)s_l £ (5) = M(Q' (ex))

-1 s—1
7(MlIn) _ (1 _)/)S (1 +7) MO’
K6 = e oM @)
for any Mellin transformable Q’(cx). The logarithmic singularity implicit here
means that there is no equivalent of the Schwartz function solutions. These to-
pographies are not pursued further here. The free propagating modes in this finite
slope configuration (Wunsch, 1969) can be added with arbitrary amplitudes.

6. SUMMARY

The determination of subcritical topography without ‘tidal conversion,” discussed
by Maas (2011), can be found from a formulation in the linearized case not involving



14 CARL WUNSCH AND JARED WUNSCH

conformal-mapping analogues. As with his solutions, choice of a rapidly decaying
stream function leads readily to a determination of a corresponding bottom topog-
raphy, &1(cx) in an inverse problem. All solutions over the topography can be
intense, with quantitative implications for ocean mixing, whether the topography is
a radiating one or not. Direct solution of a governing functional equation (Manton
and Mysak, 1971) permits generation of an infinite number of non-radiating to-
pographies for a tidal disturbance at a fixed frequency. The wider class of Schwartz
function topographies are poor radiators of high wavenumber fields.

Constraints on non-radiating topography are so great however, that their ap-
pearance outside the laboratory or the computer seems very unlikely. One useful
interpretation is that a solution at one non-radiating tidal frequency w will, if the
forcing is changed to another tidal frequency, generally produce radiation. Thus
in moving from the period of the principal lunar tide, M> at 12.42 hours to that of
the principal solar tide, S, at 12.0 hours (e.g., Zhao, 2017), the M, null space will
vanish.

The inverse problem of determining /;(cx) from far-field measurements will
be non-unique up to topographic structures that are non-radiating (or below noise
levels); see the Appendix. Primary concern will be less the inability to determine
those structures, and more the necessity of observations to estimate mixing confined
closely to the topography itself. The class of non-converting topographies appears
to be extremely fragile and unlikely to be found in oceanographic practice.

Practical utility aside, numerous interesting theoretical extensions of this problem
remain: general finite amplitude topography, super-critical-reflective slopes and
corners, three-dimensions with rotation, non-constant N (z), non-linear interactions,
shear flows, diffusion, dissipation, transient establishment, and stochastic forms of
topography and values of U, all remain to be explored.

APPENDIX A. INVERSION WITH OBSERVATIONS

The inverse problem with observations has a different flavor from the purely
theoretical discussion above. As an example, let w (Eq. 7) be measured at M
positions x;, z; with some error n; with known first and second moments. (w would
likely be inferred from a measurement of temperature, with the mean vertical
temperature gradient being used to calculate the vertical displacement through
time.) Putr; = cx; —z; + 1, s5; = cx; + z; — 1. Then measure w(x;, z;), defined
as y; = w; + n; where n; is the noise. Egs. (21) are a set of linear equations for
the slopes and whose solutions A} (r;), h'1 (s;) can be estimated by conventional
linear algebraic methods for M-equations in 2m + 1-unknowns. To the degree the
problem is underdetermined, a null-space in the elements h](g;) will result. From
an estimate of h{, h itself can be estimated with computable uncertainty.

In practice, other procedures may be more convenient. For example, scale
the domain consisting of min(r;,s;) < {r;,s;} < max(r;,s;) to lie between
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Ficure 6. (Upper panel) Exact w at z = 0.5 for the same topog-
raphy as in Fig. 1 and the result of inverting it with "data" having
standard deviation of 10% of the Chebyshev polynomials for an ex-
pansion using m = 1, ..., 30. Assumption is of white noise. (Lower
panel). Inferred and correct value of f(x) from using w(x, z = 0.5)
. Error bars are one standard deviation. Correct value of f is shown
as a solid line.

-1< {rlf, sl’} < 1, and expand the unknown,
M
1) FED = anTn(r))
m=1
where, somewhat arbitrarily, the 7, are the ordinary Chebyshev polynomials .
Then

(42) yi = wi(x), 2) +ni = —f'(r]) + f'(s])
M
= am(Tn(s)) = T (1))
m=1

and which is readily solved by conventional least-squares/Gauss-Markov methods
for estimates of a,, with values dependent upon the statistics of n;. Evidently,
any complete set of functions can be used. (Note that as written, the 7}, are not
orthogonalized over the present data interval.)

The result for f’(x) from using T, m = 1, ...,30 and a 10% added white noise
at each point can be seen in Fig. 6. In practice, one would likely control the ripple
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0.2 ;

Ficure 7. Estimated topography slope using a rank M = 30
Chebyshev polynomial expansion with noise. Error estimate (not
shown) accounts for the covariance in the errors of f’(x + 1) and

fx=1).

by use of a prior structure on f’, but this artificial example is not further pursued
here as the principle is clear. An estimate of f’ leads to a corresponding estimate
of h’(cx), compared to the true value in Fig. 7. The full analysis yields uncertainty
estimates for i’ as well as resolution estimates both on the individual data points
and on the Chebyshev coefficients—not shown.

Eq. (21) implies that slope contributions from infinitely distant points contribute
to the local measurement—a plausible result only for a purely inviscid situation.
Should such an inverse problem be attempted in practice, a prior estimate of /]
with some estimate of its uncertainty would normally be available, along with an
estimate of the extent to which distant contributions would be dissipated. Although
the inverse machinery permits understanding of the error covariances and the reso-
lution of the solution and of the different data positions, further exploration of this
hypothetical problem is omitted here. In fully radiating situations, the existence
of a ‘near-field’ over the topography is of intense oceanographic interest for its
implications about large-scale mixing. Note only that the effective null space of
the topography in this formulation consists of the higher wavenumber Chebyshev
polynomials.

Linear in situ array measurements of baroclinic tidal amplitudes are rare. Much
more common are global estimates of surface elevation, {, owing primarily, but
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not wholly, to the first baroclinic mode (Zhao et al. 2016). Surface pressure,
p(x,z = 1) = gpl(x), (exerted against the rigid lid), is related to the stream
function through the dimensional equations,

ap w? - f2 oy
43 - = -
(43a) Ox iw 0z
op N?—w? oy
43b _r_r wr7
(43b) 0z iw Ox

and this opens the novel possibility of inferring generating topography from alti-
metric data.
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