# Epitaxial growth of wafer-scale transition metal dichalcogenide monolayers by metalorganic chemical vapor deposition

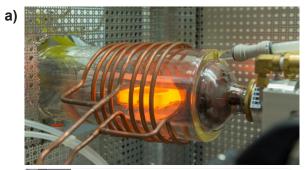
Nicholas Trainor,<sup>2</sup> Chen Chen,<sup>1</sup> Haoyue Zhu,<sup>1</sup> Thomas V. Mc Knight,<sup>2</sup> Tanushree H. Choudhury,<sup>1</sup> and Joan M. Redwing<sup>1,2,\*</sup>

<sup>1</sup>2D Crystal Consortium – Materials Innovation Platform, <sup>2</sup>Department of Materials Science and Engineering, The Pennsylvania State University, University Park PA USA \*jmr31@psu.edu.

#### **Abstract**

The epitaxial growth of wafer-scale semiconducting TMDs monolayers (MoS<sub>2</sub>, WS<sub>2</sub>, WSe<sub>2</sub>) on c-plane sapphire by metalorganic chemical vapor deposition (MOCVD) is demonstrated and the resulting structural and optical properties of the films are compared to elucidate trends based on metal and chalcogen species. The sulfur based TMDs exhibit improved epitaxy, fewer defects and increased photoluminescence intensity on sapphire compared to WSe<sub>2</sub> which is attributed to a smaller effective lattice mismatch and improved stability.

### Introduction


Transition metal dichalcogenides (TMDs) form a compelling class of 2D materials with potential applications in optoelectronics, flexible electronics, chemical sensing and quantum technologies. At the monolayer limit, the semiconducting TMDs (*e.g.*, MX<sub>2</sub> where M = Mo/W and X = S/Se) exhibit direct band gaps within the visible range, large exciton binding energies and spin-valley polarization. The lack of out-of-plane bonding on the van der Waals surface of these materials enables heterostructure formation without the constraints of lattice matching.

Epitaxial growth of single crystal TMD monolayers at the wafer-scale is of significant interest for device applications. Metalorganic chemical vapor deposition (MOCVD) is a promising approach for TMD growth as it enables the use of high substrate temperatures (700-1000°C) and chalcogen/metal ratios  $(10^3-10^5)$  [1] which are beneficial for epitaxy. In addition, the flow rate of precursors can be modulated during growth to enhance the surface diffusion of metal-containing species and control the lateral growth rate of TMD domains [1]. C-plane sapphire has emerged as the substrate of choice for epitaxy due to its crystallographic compatibility and good chemical stability in the CVD environment. In addition, steps on the sapphire surface can be used to induce a preferred alignment of TMD domains resulting in a significant reduction in inversion domains in the films [2,3]. The availability large MOCVD-grown of area monolayers films has enabled benchmarking studies of field-effect device performance [4] and photodetectors for sensing platforms [5].

In this study, the growth and properties of wafer scale MoS<sub>2</sub>, WS<sub>2</sub> and WSe<sub>2</sub> monolayers grown by MOCVD on 2" diameter c-plane sapphire are compared and contrasted. The results provide insights into the role of the metal and chalcogen species on film growth and properties of large area TMD monolayers.

# Experimental

MOCVD growth was carried out in a horizontal coldwall reactor that includes an induction-heated rotating SiC-coated graphite susceptor and separate gas inlets for the metal and chalcogen precursors (Figure 1). Metal hexacarbonyls (Mo(CO)<sub>6</sub> and W(CO)<sub>6</sub>) and hydrides (H<sub>2</sub>S and H<sub>2</sub>Se) were used as precursors in a H<sub>2</sub> carrier gas. Typical growth conditions include growth temperatures ranging from 850-1000°C, reactor pressures from 50-200 Torr and high chalcogen/metal ratios (~10<sup>4</sup>) resulting in growth rates on the order of 1-3 monolayers/hour. The films were characterized post-growth using atomic force microscopy and room temperature confocal Raman/photoluminescence spectroscopy.



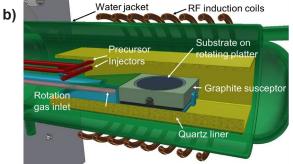



Fig. 1: Photo (a) and schematic (b) of horizontal cold wall MOCVD reactor used for TMD growth.

## **Results and Discussion**

MoS<sub>2</sub> monolayers were grown by MOCVD on 2" cplane sapphire using Mo(CO)<sub>6</sub> and H<sub>2</sub>S in a single step process at 1000°C and 50 Torr reactor pressure. The growth time was varied from 10-15 mins to achieve a fully coalesced monolayer with minimal bilayers. Under these conditions, a uniform monolayer was obtained across the 2" diameter wafer (Fig. 2(a)). Undulations in the surface morphology of the monolayer arise from steps on the sapphire surface. Small triangular bilayers are also present at a surface coverage of <15%. Room temperature PL spectra (Fig. 2(b)) obtained at the center and the edge of the 2" sapphire contain an emission peak at 1.91 eV associated with the A exciton [6]. Raman spectra (Fig. 2(c)) obtained at the center and edge of the wafer show characteristic modes for MoS<sub>2</sub>.

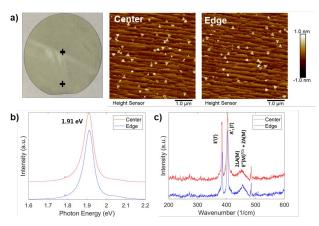



Fig. 2: (a) Surface morphology of MoS<sub>2</sub> monolayer grown on 2" c-plane sapphire at center and edge of wafer (locations indicated by + in photo); Room temperature (b) PL and (c) Raman spectra obtained at the center and edge of the wafer.

A three-step nucleation-ripening-lateral growth process [1] at 850-1000°C was used for the epitaxial growth of WS<sub>2</sub> on 2" c-plane sapphire. The three-step process is beneficial for the growth of tungstencontaining TMDs as it enhances the surface diffusivity of W-containing species leading to a reduction in the in-plane misorientation of domains [2]. W(CO)<sub>6</sub> and H<sub>2</sub>S were used as precursors in a H<sub>2</sub> carrier gas at a reactor pressure of 50 Torr. Lateral growth times ranging from 10-15 mins were required to achieve a fully coalesced monolayer. The WS<sub>2</sub> monolayer (Fig. 3(a)) exhibits a similar morphology to that of MoS<sub>2</sub> (Fig. 2) characterized by sapphire step undulations and a small number of bilayers. The room temperature PL spectrum (Fig. 3(b)) obtained at the

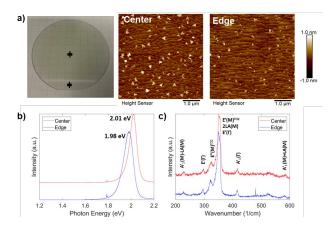



Fig. 3: (a) Surface morphology of WS<sub>2</sub> monolayer grown on 2" c-plane sapphire at center and edge of wafer (locations indicated by + in photo); Room temperature (b) PL and (c) Raman spectra obtained at the center and edge of the wafer.

center of the 2" sapphire contains a peak at 2.01 eV which is red-shifted to 1.98 eV near the edge. Raman spectra (Fig. 3(c)) obtained at the center and edge show characteristic modes for WS<sub>2</sub>.

MOCVD growth of WSe<sub>2</sub> was also carried out in the horizontal cold-wall reactor using W(CO)<sub>6</sub> and H<sub>2</sub>Se in a H<sub>2</sub> carried gas at 200 Torr. Similar to WS<sub>2</sub> on sapphire, a three-step process at 850-1000°C was used to promote epitaxy of WSe<sub>2</sub>. Lateral growth times ranging from 22-30 minutes were required to obtain a coalesced monolayer. The surface morphology of WSe<sub>2</sub> on sapphire consists of undulations due to steps on the sapphire, (Fig. 4(a)), however, the undulations are less uniform than that of the MoS<sub>2</sub> and WS<sub>2</sub> monolayers. The WSe<sub>2</sub> monolayer also contains small pinholes due to incomplete coalescence and triangular bilayers which are

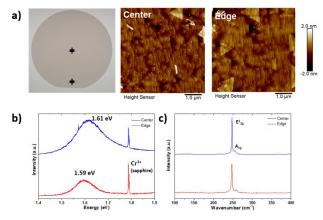



Fig. 4: (a) Surface morphology of WSe<sub>2</sub> monolayer grown on 2" c-plane sapphire at center and edge of wafer (locations indicated by + in photo); Room temperature (b) PL and (c) Raman spectra obtained at the center and edge of the wafer.

generally larger in size (hundreds of nanometers) than the bilayers present on MoS<sub>2</sub> and WS<sub>2</sub> (tens of nanometers). The room temperature PL spectrum (Fig. 4(b)) obtained at the center of the 2" sapphire contains a peak at 1.61 eV which is red-shifted to 1.59 eV near the edge. The PL intensity from the WSe<sub>2</sub> monolayers is generally lower than that of the MoS<sub>2</sub> and WS<sub>2</sub> films as evidenced by the presence of the sharp peak at 1.79 eV associated with Cr<sup>3+</sup> emission from the sapphire substrate which is barely visible in the PL from MoS<sub>2</sub> (Fig. 2(b)) and WS<sub>2</sub> (Fig. 3(b)). Raman spectra (Fig. 4(c)) obtained at the center and edge of the wafer show characteristic modes for monolayer WSe<sub>2</sub>.

The difference in the growth and properties of waferscale WSe<sub>2</sub> on c-plane sapphire compared to the sulfide-based TMDs (MoS<sub>2</sub> and WS<sub>2</sub>) can be attributed, at least in part, to lattice mismatch. While both exhibit hexagonal symmetry, there significant differences in the lattice constants of the TMDs and sapphire (Table 1). However, there is commensurability between 2 units cells of α-Al<sub>2</sub>O<sub>3</sub> and 3 units cells of the TMDs [2]. Based on this, the effective lattice mismatch of (MoS<sub>2</sub>, WS<sub>2</sub>)/sapphire is reduced to ~0.569% compared to a much larger lattice mismatch (~4.89%) for WSe<sub>2</sub>/sapphire. This translates into increased strain/defects in WSe2 which impacts the optical and transport properties of the coalesced monolayers. In addition to lattice mismatch, the metal-sulfide bond strength is greater than that of metal-selenide which imparts additional thermal and chemical stability to the sulfide TMDs.

Table 1. Lattice parameter (a) and effective lattice mismatch between TMDs and sapphire assuming  $3x(a_{TMD})/2x(a_{Al2O3})$ 

| Material                         | Lattice    | Effective       |
|----------------------------------|------------|-----------------|
| Substrate/Film                   | parameter* | mismatch (%) to |
|                                  | (a, Å) [7] | sapphire        |
| α-Al <sub>2</sub> O <sub>3</sub> | 4.758      | -               |
| $MoS_2$                          | 3.190      | 0.569           |
| $WS_2$                           | 3.191      | 0.569           |
| $WSe_2$                          | 3.327      | 4.89            |

## Conclusion

Epitaxial growth of wafer-scale MoS<sub>2</sub>, WS<sub>2</sub> and WSe<sub>2</sub> monolayers on c-plane sapphire is demonstrated by MOCVD. Uniform films are achieved across the 2" wafer diameter. The sulfide TMDs exhibit fewer defects and improved optical

properties compared to WSe<sub>2</sub> which is attributed, in part, to reduced lattice mismatch on sapphire.

## Acknowledgments

This work was supported by the National Science Foundation (NSF) through the 2D Crystal Consortium—Materials Innovation Platform (2DCC-MIP) at Penn State under NSF cooperative agreements DMR-1539916 and DMR-2039351.

### References

- [1] X. Zhang, T.H. Choudhury, M. Chubarov, Y. Xiang, B. Jariwala, F. Zhang, N. Alem, G.C. Wang, J.A. Robinson, and J.M. Redwing, "Diffusioncontrolled epitaxy of large area coalesced WSe<sub>2</sub> monolayers on sapphire," Nano Lett., 18, 1049-1056 (2018).
- [2] M. Chubarov, T.H Choudhury, D. Reifsnyder Hickey, S. Bachu, T. Zhang, A. Sebastian, A. Bansal, H. Zhu, N. Trainor, S. Das, M. Terrones, N. Alem and J.M. Redwing, "Wafer-scale epitaxial growth of unidirectional WS<sub>2</sub> monolayers on sapphire," ACS Nano 15, 2532-2541 (2021).
- [3] T. Li, W. Guo, L. Ma, W. Li, Z. Yu, Z. Han, S. Gao, L. Liu, D. Fan, Z. Wang, Y. Yang, W. Lin, Z.Z. Luo, X. Chen, N. Dai, X. Tu, D. Pan, Y. Yao, P. Wang, Y. Nie, J. Wang, Y. Shi and X. Wang, "Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire," Nature Nanotech. DOI: 10.1038/S4-1565-021-00963-8.
- [4] A. Sebastian, R. Pendurthi, T.H. Choudhury, J.M. Redwing and S. Das, "Benchmarking monolayer MoS<sub>2</sub> and WS<sub>2</sub> field-effect transistors," Nature Comm., 12, 1-12 (2021).
- [5] D. Jayachandran, A. Oberoi, A. Sebastian, T.H. Choudhury, B. Shankar, J.M. Redwing and S. Das, "A low power biomimetic collision detector based on an in-memory molybdenum disulfide photodetector," Nature Electron. 3, 646-655 (2020).
- [6] K. M. McCreary, A. T. Hanbicki, S.V. Sivaram and B. T. Jonker, "A- and B-exciton photoluminescence intensity ratio as a measure of sample quality for transition metal dichalcogenide monolayers," APL Mater. 6, 111106 (2018).
- [1] A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, K.A. Persson, "The Materials Project: A materials genome approach to accelerating materials innovation," APL Mater., 2013, 1(1), 011002.