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Metals are canonical plasmonic media at infrared and optical wavelengths, allowing one to guide and manipulate
light at the nanoscale. A special form of optical waveguiding is afforded by highly anisotropic crystals revealing
the opposite signs of the dielectric functions along orthogonal directions. These media are classified as hyperbol-
ic and include crystalline insulators, semiconductors, and artificial metamaterials. Layered anisotropic metals are
also anticipated to support hyperbolic waveguiding. However, this behavior remains elusive, primarily because
interband losses arrest the propagation of infrared modes. Here, we report on the observation of propagating
hyperbolic waves in a prototypical layered nodal-line semimetal ZrSiSe. The observed waveguiding originates
from polaritonic hybridization between near-infrared light and nodal-line plasmons. Unique nodal electronic
structures simultaneously suppress interband loss and boost the plasmonic response, ultimately enabling the

propagation of infrared modes through the bulk of the crystal.

INTRODUCTION

Nodal-line semimetals reveal Dirac-like linear dispersion of elec-
tronic bands with nodes extending along lines/loops in the Brillouin
zone (Fig. 1A) (I, 2). These systems present an appealing platform
to investigate quantum effects originating from the interplay of to-
pology, reduced dimensionality, and electronic correlations encod-
ed in unconventional optical responses (3, 4). Here, we focus on the
nodal metal ZrSiSe, which hosts nearly two-dimensional electronic
structure and high-mobility Dirac fermions (2). We show that the
nodal band structure and the attendant van Hove singularities (VHSs)
suppress the interband transitions (5-7) and boost plasmonic re-
sponse, thus enabling propagation of infrared waveguide modes in
metallic samples. We use scanning near-field optical microscopy to
visualize the nanoscale infrared signatures of waveguide modes and
evaluate their energy-momentum (o, q) dispersion.

Common materials bounce light at frequencies where the real part
of the dielectric function (e = €, + ie;) becomes negative. Perhaps
counterintuitively, anisotropic media, including layered crystals, do sup-
port propagating modes in their interior provided the in-plane and
out-of-plane dielectric functions are of opposite sign (e‘fb -g] < 0).
Because the relevant isofrequency surface (Fig. 1B) is the hyperbo-
loid, these media are referred to as hyperbolic (8-10). In the hyperbolic
regime, the interaction of light with collective modes of crystals
yields hyperbolic polaritons imbuing crystals with exotic optical
properties, including negative reflection at interfaces (11) and
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ray-like waveguiding in the bulk (12, 13). Hyperbolic waveguiding
has mostly been explored in polar insulators inside their narrow
phonon bands, including hBN (14, 15), MoOs (16, 17), V,05 (18),
calcite (19), Ga,O3 (20), and semiconducting WSe;, (21). Expanding
the spectral bandwidth of hyperbolic polaritons and extending hy-
perbolicity in the near-infrared frequency range are highly desirable
but difficult. Here, we achieved this challenging task by hybridizing
light with plasmonic modes of a nodal metal, ZrSiSe.

Hyperbolic waveguiding is anticipated in a wide variety of aniso-
tropic conductors (8, 22-26). As the screened plasma frequency w;
marks the zero crossing of €5, a vast frequency range of hyperbolicity

appears between o, < @ < ¥, wheree?’ < Oand€; > 0(27). While
anisotropic metals, in principle, offer broadband hyperbolicity, the
inherently strong electronic loss (28) prevents waveguiding. It is
customary to quantify the electronic loss through the complex optical
conductivity (6 = ) + i5). The precondition for propagating polaritons
02/01 > 1 is rarely fulfilled although the hyperbolic plasmons are re-
ported in various electronic systems. Commonly, interband transitions
lead to a large o, in the near-infrared range and therefore severely limit
the plasmon propagation (28). Here, we demonstrate a practical route
toward a metal with reduced electronic losses by harnessing the nodal
band structure and the attendant VHSs. Our data show that the nodal
metal ZrSiSe attains a local minimum of 6; near the VHS energy. The
sharp reduction in o, that we observe is accompanied by increases in 6,
that collectively lead to the inequality 6,/ >> 1 over a broad frequency
range. The enhanced plasmonic properties along with concurrently re-
duced interband losses allow for direct experimental observation of
propagating hyperbolic plasmon polaritons (HPPs) in the near infrared.

RESULTS

Antenna-launching experiment

To visualize infrared waveguide modes in ZrSiSe, we performed
two types of nanoimaging experiments (Fig. 1C). The first one in-
volved placing thin crystals of ZrSiSe on patterned gold antennas,
which served as launchers of hyperbolic rays into the interior of the
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Fig. 1. Infrared waveguide modes in nodal-line metal ZrSiSe. (A) Schematic band structure E versus kap, kc showing the Dirac nodal line (red). The gray plane indicates
the Fermi level. (B) Schematic isofrequency surface inside the hyperbolic regime (g5 - € < 0) for a nodal-line metal. Red arrow indicates the direction of the group velocity
of the hyperbolic ray. (C) Schematic of the nanoimaging setup. The near-infrared laser illuminates the sample and hyperbolic plasmon polaritons (HPPs; red lines) are
launched by an atomic force microscope (AFM) tip at the edge or by an underlying gold antenna. The AFM-based nano-optics registers the evanescent fields associated
with the waveguide modes in the bulk in the form of linear fringes or characteristic rings. The layered crystal structure of ZrSiSe is shown in the inset. (D) Topography (gray
scale) and near-field scattering amplitude Ss (color scale) of a 26-nm ZrSiSe crystal partially covering a gold disk. White dotted line indicates the boundary of the Au disk.
Red solid lines mark the split center peaks of hyperbolic polariton modes along the circumference. (E) Images of S; obtained within the sector region indicated by black
dashed lines in (D) and assembled for laser frequencies from ® = 7143 to 5556 cm™" within the hyperbolic region. The image taken outside of the hyperbolic range at

2222 cm™' is devoid of the double-ring structure.

sample (12, 13, 21). The second approach used the sample edge to
reflect the HPPs and revealed characteristic higher-order hyperbol-
ic modes (12, 15). The two complementary experiments produced
consistent results.

We first focus on experiments involving an Au disk launcher
underneath the crystal. As illustrated in Fig. 1C, the HPPs propa-
gate as conical rays and emerge on the top surface of the sample as
“hot rings” with enhanced nano-optical contrast surrounding the
edge of the Au antennas. The propagation angle 6 (with respect to
surface normal) is controlled by the anisotropic permittivities of the
sample (12, 13, 29)

tan(0) = \-e5’/ef = SiTZ

where § is the separation of the rings on the top surface and d is the
sample thickness. We obtained colocated topography and nano-op-
tical amplitude [S3(w); see Materials and Methods] images of a thin
ZrSiSe crystal partially covering the gold disk (Fig. 1D). At @ =
6667 cm™, a clear double-ring pattern (Fig. 1D) emerges along the
Au antenna boundary.

This double-ring pattern is confined to the vicinity of the anten-
na edges and is distinct from the intensity variation in the interior
of our structures prompted by the internal resonances of the Au

(1)
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antenna at much longer length scales. In Fig. 1D, the ring separation
(6=150 nm) is an order of magnitude smaller than the free-space
light wavelength (A = 1.5 um,  ~ 6667 cm ™). The double-ring pat-
tern also varies with incident light frequency, as shown in Fig. 1E,
where we assemble the S3(w) data at selected frequencies. The blue
and red dashed lines mark the positions of the hot rings at ® = 7143
and 5556 cm ™', with systematic evolution of the ring separation for
frequencies in between. In contrast, the double-ring feature is com-
pletely absent in the sector for @ = 2222 cm ™" outside of the hyperbolic
range quantified in Fig. 2; instead, this sector shows a homogeneous
near-field response (see also fig. S6).

We now inquire into quantitative details of propagating HPPs in
ZrSiSe. We average the radial line profiles within the sectors depicted
in Fig. 1E and plot these in Fig. 2A. The experimental ring separa-
tion 8(w) is obtained by fitting the line profile with two Gaussian
functions and a linear background, shown for = 7634 and 5556 cm™"
in Fig. 2A (see text S3 for complete analysis). With the ab-plane
permittivity known from (5), the experimental ring separation §,
together with the sample thickness d, allows for the extraction of
the c-axis permittivity of ZrSiSe from Eq. 1. These latter data are
displayed in Fig. 2B along with the experimental ab-plane permit-
tivity (squares). The hyperbolic regime in ZrSiSe extends between
~2837 and 9091 cm ™’ (see texts S1 and S3). Last, we observe yet
another hallmark of the hyperbolic rays, which is the scaling of the
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Fig. 2. Hyperbolic electrodynamics of ZrSiSe. (A) Line profiles of the near-field scattering amplitude S at several incident frequencies. Black dashed lines are fits using
Gaussian functions for the = 7634 and 5556 cm™' line profiles. Green and yellow shaded areas indicate the individual Gaussian functions representing the hyperbolic
ray profiles. Bottom shows the topography line profile (orange) near the edge of the Au disk (gold) in Fig. 1D. The downward slope (tana) of the sample (blue) leads to a
geometrical correction to the measured ring separation 3. (B) In-plane dielectric function (egp, red line) obtained from far-field optical measurements (5). The g4, values at
selected frequencies (squares) together with 8(w) in (A) are used to extract €. (circles) using Eq. 1. The black line is a Drude-Lorentz fit of the experimental out-of-plane
dielectric function data. (C) Hyperbolic ray separation 8(w) as a function of flake thickness d at m = 6061 cm™! (red)and ® =7143 cm™! (blue). The separations scale linearly

with increasing flake thickness, as prescribed by Eq. 1 (gray dashed line).

interpeak separation § with increasing sample thickness (Fig. 2C),

& = 2d\-£*/¢¢. Broadband hyperbolic electrodynamics in the lay-
ered nodal metal ZrSiSe is therefore firmly established.

Higher-order hyperbolic polariton modes

The natural edges of thin hyperbolic materials can also launch and
reflect polaritons emanating from the metallic tip (Fig. 1C) (30). To
explore HPPs near the edges, we focused on the phase contrast,
which provides highest level of image fidelity (31-33). The phase-
contrast data reveal weak higher-order HPP modes: yet another
electrodynamics signature of hyperbolicity (12, 15). In Fig. 3 (A to C),
we present the topography and near-field phase-contrast images
obtained for a 20-nm-thin ZrSiSe crystal on an Si/SiO; substrate for
two representative laser frequencies. At ® = 8333 cm™' (Fig. 3B), the
phase contrast displays a prominent fringe near the edge, which
shifts further into the interior of the sample as the laser frequency
decreases in Fig. 3C. The first peak-dip separation systematically
increases in thicker samples (fig. S15). To quantify the HPP wave-
length, we used a previously developed electromagnetic solver (34)
to simulate the phase contrast with the complex polariton momen-
tum gp = (1 + #y)2n/A, as input. Here, A, is the polariton wavelength,
and v accounts for the damping of the polariton wave.

Shao etal., Sci. Adv. 8, eadd6169 (2022) 26 October 2022

Multiple fringes of different periodicities appear at lower fre-
quencies and are particularly apparent at ® = 6250 cm ™" (Fig. 3C).
To better resolve these shorter wavelength oscillations, we inspect-
ed the derivative of the phase line profiles, d¢4/dr. In Fig. 3D, we
show the experimental and simulated phase derivative traces for 0=
8333, 6250, and 5000 cm™ (see ﬁ? S13 for additional data). The
profile obtained at ® = 8333 cm™ can be adequately reproduced
with a single damped polariton of wavelength A,y =~ 300 nm. How-
ever, for ® = 6250 and 5000 cm ™', an additional mode with a much
shorter wavelength A, is needed to fully account for the data. Both
weaker (q;) and stronger (qo) peaks in the derivative line profiles are
well described by the simulation (black dashed line) involving two
polariton modes with different polaritons of wavelengths A,y and
Ap1. The polariton momentum can then be extracted from the wave-

lengthasRe g, = i—;, enabling a direct comparison with the theoret-
ical dispersion. As we show below, the two modes correspond to the
principal and higher-order HPPs in ZrSiSe and are in accord with
the experimental dielectric tensors in Fig. 2B.

The extracted HPP momenta are organized in the dispersion (o,
q) plot in Fig. 3E. It is customary to identify HPPs via the diver-
gences of the reflection coefficient r(w, ) (14). A colormap of
Im(r,) provides an instructive way to visualize both the dispersion
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Fig. 3. Hyperbolic plasmon polaritons in ZrSiSe. Topography (A) and near-field phase (¢4) image of a 20-nm-thin crystal of ZrSiSe at (B) ® = 8333 cm™ and (€) =
6250 cm™". (D) Phase derivative line profiles (dos/dr) at multiple laser frequencies near edges of ZrSiSe. For » = 6250 and 5000 cm ™', the derivative profiles reveal features
at multiple spatial periodicities (go and g;). Black dashed lines are the simulation of the derivative profile with two periodicities, corresponding to the principal (go) and
higher-order (g;) HPPs. a.u., arbitrary units. (E) Frequency-momentum dispersion of HPP plotted in the form of Im(r,). Circles, the principal modes; triangles, higher-order
polaritons. Data points are superimposed over the calculated Im(r,) described in the text. The gray dashed line represents the free-space light cone. Black dashed lines
indicate numerical solutions for the divergence of Im(r,) for the higher-order HPP branches. Red dashed line is a guide for the dispersion of the principal branch. The kink
in the experimental dispersion near o ~ 6200 cm™" probably originates from the impact of surface states (fig. 528). (F) Fourier transform (FT) of the complex near-field
signal S4¢™, along the same path in (B) to (D) at ® = 5780 and 5000 cm™". Multiple peaks in the Fourier transform amplitude correspond to the principal (go) and high-

er-order (g1, g2) modes and are fitted by Lorentzian functions (color-shaded area).

and the damping of the HPP modes. The colormap is calculated for
a 20-nm-thick crystal of ZrSiSe residing on a SiO»/Si substrate using
experimental dielectric functions (Fig. 2B). As expected, multiple
dispersive branches develop in the hyperbolic frequency range, cor-
responding to the principal and higher-order modes. The existence
of higher-order modes can also be documented by directly Fourier
transforming the experimental real-space line profile (12, 15). As
shown in Fig. 3F, the Fourier transform amplitudes of the complex
signal S4e™®, for o= 5780 and 5000 cm™" (see fig. S14 for additional
data) indeed display up to three distinct modes that can be parameter-
ized by Lorentzian functions. The obtained momenta (go, 41) are con-
sistent with the values from line profile modeling (Fig. 3, D and E);
Fourier transforms are also suggestive of an additional weaker high-
er-order mode ¢. The calculated hyperbolic dispersions agree with
the experimental momenta (colored circles and triangles), unequivo-
cally corroborating the notion of HPPs in ZrSiSe. The deviation of the
higher-order branch (q;) and the data points (triangles) is within the
experimental error bars. Nevertheless, this slight discrepancy hints at
the presence of surface states in ZrSiSe (35-37) with potentially differ-
ent dielectric responses (see text S4) from the bulk values (Fig. 2B)
used in our calculation. Furthermore, around 6200 cm ™", a kink in the
experimental dispersion of the g; mode shows more pronounced

Shao etal., Sci. Adv. 8, eadd6169 (2022) 26 October 2022

deviation from the prediction based on bulk dielectric constants. This
kink structure can also be attributed to the impact of increased metal-
licity and additional interband transition from the surface state bands
(see fig. S28).

DISCUSSION

The propagating HPPs observed in ZrSiSe would not have been
possible without tamed interband losses: a unique feat of the nodal
band structure uncovered by our experiments. In ZrSiSe, the nodal
lines form “squares” in momentum space with lines of VHSs inside
the nodal squares (Fig. 4A, inset) (5, 7). The resulting saddle-point
structure (Fig. 4A) leads to a suppression of interband transitions
above the van Hove energy (A). The corresponding dissipative part
of the conductivity 61(®) shows a “cliff” above A (Fig. 4B), accom-
panied by a peak in 6,(®) at A prescribed by Kramers-Kronig rela-
tions. We emphasize that the enhancement in 0,(®) is an important
approach toward high-quality factor plasmons (28, 34, 38). The
unique combination of reduced dissipation (o;) and enhanced plas-
monic response (05), quantified by the ratio g—f ~ 3to 5 for ZrSiSe
(Fig. 4C), is superior to that of all other candidate plasmonic and
excitonic hyperbolic materials reported so far. The plasmonic
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conductivities).

qualities in ZrSiSe are anticipated to be further enhanced at cryo-
genic temperatures (Fig. 4C, black curve).

The suppression of interband transitions near the van Hove en-
ergy offers a novel strategy for the “band structure engineering” ap-
proach to mitigating loss and boosting plasmonic response (39, 40).
While the existence of “loss-less metal” remains elusive (28), we
propose that VHSs in topological systems (41) reveal as-yet un-
tapped plasmonic design rule afforded by nodal-line semimetals.

MATERIALS AND METHODS

Single crystal growth and device fabrication

The ZrSiSe single crystals were synthesized using a chemical vapor
transport method as described previously (2, 5). For Au antenna-
patterned devices, Au/Cr (25 nm/1 nm) disks were e-beam-deposited
on SiO,/Si substrates following standard e-beam lithography pro-
cesses using a lift-off resist. ZrSiSe flakes were then directly exfoliated
on Au/Cr disks in a glove box filled with inert gas [O, < 1 part per
million (ppm), H,O < 0.1 ppm]. Before exfoliation, the substrates
were annealed in glove box at 250°C for 1 hour to remove any residual
moisture on the surface.

Near-infrared nano-optical measurements

We used a scattering-type scanning near-field optical microscope
(Neaspec) based on an atomic force microscope (AFM) operating
in tapping mode. The tapping frequency of the AFM tip is around
70 kHz, and near-field data are collected at higher harmonic (n = 3
or 4) of the tapping frequency to suppress the far-field background.
For the gold antenna launcher experiment, the difference frequency

Shao etal., Sci. Adv. 8, eadd6169 (2022) 26 October 2022

generation outputs of a pulsed laser source (Pharos, Light Conver-
sion) were used. We used a continuous-wave tunable laser from M
Squared to obtain phase contrast images near the edges of thin crys-
tals. Tunable outputs between 1140 and 2200 nm are generated by
frequency mixing of a high-power 532-nm diode laser (Equinox)
and a Ti:sapphire laser tunable between 700 and 1000 nm (SolsTiS).

Geometrical correction considering finite antenna thickness

Because of the finite thickness of the underlying Au antenna, the
sample exhibits a downward slope outside the antenna boundary
(Fig. 2A, bottom). This small slope (tana) leads to a finite asymmetry
(g > %) in the propagation distance of the two rays (Fig. 2A), which
we corrected in the extraction of §(®) as following. The two distances
8and & are related byg = 1 + tano - tan®, where tan6 = % and d
is the sample thickness. The measured double-ring distance is de-
8

notedasA = 3+ %. Substituting 8 in terms of A and 8, we obtained
S =A- % + \AZ + 4‘122 . At the limit of o — 0 (no downward slope)
tan"o

2d

ang and there-

or d — oo (infinitely thick sample), \/Az + t:n‘fa ~

fore, 8 — A as expected.

Model for interband optical conductivity of ZrSiSe near VHS

The minimum in the interband optical conductivity of ZrSiSe (see
fig. S1) can be modeled by a step function near the VHSs and a Lorentzian
function accounting for transitions at higher energy. Specifically, the step

tanh[ (-0 + A)/T ]+1
2

the van Hove energy, I is the step width, and o, is a constant

function is expressed as Ggtep(®) = + o5, where A is
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background. The higher-energy optical transition is described by
Ohigh(®) = — iw[e. — 1 + f2/(w02 - - iyo)], where €., is the
high-frequency dielectric constant; f, o, and y are the oscillator
strength, center frequency, and scattering rate of the Lorentzian
peak, respectively. The real part of the interband optical conductiv-
ity of ZrSiSe can then be expressed as 6 = Gyiep(®) + Re [Ghigh(w)],
and the imaginary part , are obtained numerically through Kramers-
Kronig relations. For modeled 6, and o, shown in Fig. 4B, the fol-
lowing parameters are used: A = 1.25, T = 0.06, 6, = 0.1, 09 = 2, f > = 0.49,

’Y:

0.5,and €., = 2.5.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.add6169
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