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ABSTRACT ARTICLE HISTORY
Geographic simulation models can be used to explore and better  Received 11 July 2022
understand the geographical environment. Recent advances in  Accepted 17 October 2022
geographic and socio-environmental research have led to a dramatic

increa_se _in the nt_.|mber of mod_e_ls used for this purpose. Some model Geographic simulation
repositories provide opportunities for users to explore and apply model; academic impact;
models, but few provide a general evaluation method for assessing the  jnaytic hierarchy process;
applicability and recognition of models. In this study, an academic model impact evaluation
impact evaluation method for models is proposed. Five indices are

designed based on their pertinence. The analytical hierarchy process is

used to calculate the index weights, and the academic impacts of

models are quantified with the weighted sum method. The time range

is controlled to evaluate the life-term and annual academic impacts of

the models. Some models that met the evaluation criteria from different

domains are then evaluated. The results show that the academic impact

of a model can be quantified with the proposed method, and the major

research areas that models impact are identified.

KEYWORDS

1. Introduction

Earth is a complex giant system, and interactions among various living beings and abundant
geographical activities, including social and physical processes, are key in shaping it (Qian, Yu,
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and Dai 1993; Goodchild 2022). The advance of geospatial information science allows people to
acquire big Earth data to understand the current state of the earth system (Claramunt 2020; Guo
etal. 2020). In this context, Gore (1993) envisioned the concept of a Digital Earth, which is the pres-
entation of the Earth using 3D and multiresolution techniques; a large amount of geographic data
can be shown in conjunction with the Digital Earth to provide a new perspective for people to better
understand Earth and support the development of contemporary and digital geography. One of the
ambitious goals in this envisioning is the simulation of social and environmental phenomena,
which partly because of the additional challenges (Elsawah et al. 2020), is rarely considered in
the first-generation digital earth system but is expected to be implemented in the next-generation
digital earth system (Goodchild 2008, 2012). To achieve this goal, the employment of geographic
simulation models is necessary. Geographic simulation models are designed as abstract simplifica-
tions of geographical phenomena and processes in the real world and possess the ability to recon-
struct the past, assess reality and/or forecast the future at different scales (Wood 1994; Lii 2011; Lin
and Chen 2015; Umgiesser et al. 2021). For example, the Community Earth System Model (CESM)
is used to simulate climate futures (Lawrence et al. 2019), the Soil and Water Assessment Tool
(SWAT) is used to predict, and support decisions for managing, water, sediment, nutrient and pes-
ticide yields in watersheds (Santhi et al. 2006), and the Motor Vehicle Emission Simulator
(MOVES) estimates emissions from mobile sources from local to national scales (U.S. Environ-
mental Protection Agency 2012). Accordingly, geographic simulation models are helpful for the
next-generation digital earth system to become a comprehensive platform that integrates spatio-
temporal information (Guo, Liu, and Zhu 2010; Li et al. 2019; Zhu et al. 2021).

With recent advancements in the research on geography and Digital Earth, the number of
geographic simulation models has increased rapidly (Chelliah et al. 2015). With so many available
models, determining how to assess models has become a challenge. The current research on the
cognition of geographic simulation models is mainly focused on the completeness of model descrip-
tions and comparisons of the use and impact of models. To efficiently share and explore these
models, structured descriptions and surveys of models in web environments are becoming more
common (Yue et al. 2016; Wen et al. 2017; Salas et al. 2020; Liu et al. 2022). Various geographic
simulation resource repositories, such as the Network for Computational Modelling in Social
and Ecological Sciences (COMSES Net) (Janssen et al. 2008), Computational Infrastructure for Geo-
dynamics (CIG) (Kellogg 2011), The Community Surface Dynamics Modeling System (CSDMS)
(Peckham, Hutton, and Norris 2013; Tucker et al. 2022), HydroShare (Morsy et al. 2017), Open
Geographic Modeling and Simulation (OpenGMS) (Chen et al. 2019, 2020) and EPANET model
catalogue (Bayer, Ames, and Cleveland 2021) have been developed to enhance user discovery,
access, and use of geographic simulation models (Wang et al. 2018; Zhang et al. 2019). When
users wish to use models with which they are not familiar, they may need to rely on evaluations,
recommendations, or other metrics (e.g. the number of times a model has been downloaded
from a repository). In terms of geographic simulation model evaluation, the main approach used
currently is to compare the simulation results of a model with measured data or the simulation
results of other models, and evaluations of geographic simulation models are based on statistical
indices (e.g. CMIP, EMIC, and MSTMIP, among others). Besides, COMSES Net supports peer
review of models. Those that pass peer review are awarded a ‘peer reviewed’ badge and giving a
DOIL. Recently, CSDMS used citation indices, including the citation count, h-index and m-quotient,
to indicate model usage and impact. These citation indices reflect the impact of a specific model by
counting the related publications and citations of each paper.

Although research on model descriptions is abundant, research on model evaluation methods
must be improved, especially in terms of evaluating model impacts. The method of comparing
model outputs is beneficial for determining the accuracy of different models, but it is only appli-
cable to certain models and requires considerable time. In addition, since Garfield proposed the
impact factor concept in 1955, this metric has been widely used to evaluate the academic impact
of journals, papers, researchers, and institutions, among other entities (Garfield 1955, 1972;
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Sombatsompop et al. 2006; Pan and Fortunato 2014; Bai et al. 2020), even if it is disputed in the
context of the reliability of the source data, the meaning of the rankings, and the misuse in some
evaluations of research outputs or researchers (Smeyers and Burbules 2011). A quantitative
measure of academic impact can also provide users with an alternative guide for model evaluation.
Different than journals having a single academic impact source, extracting the impact of geographic
simulation models based only on papers seems to be biased. For example, a researcher’s professional
achievement depends mainly on the academic impact of their published papers in the past, whereas
datasets and software were considered less meaningful research results until recently (Thain, Tan-
nenbaum, and Livny 2006; Cagan 2003; Chassanoff et al. 2018). As important research products, the
academic impacts of geographic simulation models should likewise be evaluated from multiple per-
spectives to support professional evaluation and advancement (Cagan 2003). For model developers,
measuring their academic impact can provide feedback regarding the research value of the models
they establish and provide incentives for continuous optimization and improvement. For model
users, particularly interdisciplinary researchers and beginners in a research area, the academic
impact of models can provide objective criteria for selecting models in different applications.

A comprehensive academic impact evaluation method for geographic simulation models
requires further exploration. First, other dimensions can be used to classify academic impact
beyond journal publications, and a more comprehensive evaluation metric can be obtained by con-
sidering more indices. Moreover, the time range is important for evaluating academic impact.
Models with earlier release dates have had more time to accrue impact than have models released
recently. Finally, it is important to measure the academic impacts of models within their relevant
research areas to demonstrate the academic impact when assessing models in objective compari-
sons. Ultimately, by establishing a model citation index, we can continue to meet the original
goals of Garfield (1955): ‘evaluate the significance of a particular work and its impact on the litera-
ture and thinking of the period.’

In this study, we demonstrate the academic impact of geographic simulation models using mul-
tiple indices, which are combined using a weighted sum method that can be used to quantify mul-
tiple impacts using an analytical hierarchy process (AHP). The remainder of this paper is structured
as follows. In Section 2, the existing impact indices are reviewed. In Section 3, the concept of the
evaluation method is introduced. In Section 4, the impact evaluation method is presented in detail.
Section 5 provides an example of the implementation of the evaluation method. In Section 6, the
evaluation method for the academic impact of geographic simulation models is verified by analys-
ing the results. In Section 7, the methods used and results of this study are discussed, and the con-
clusions are presented in Section 8.

2. Existing indices

With the continuous expansion and increased depth of various research fields, researchers are
increasingly engaged in various types of work; thus, research outputs are increasing rapidly.
Faced with high volumes of research outputs, it is difficult to determine the impact of a researcher
or their research achievements. To better quantify the impact of research achievements, a variety of
indices have been proposed.

Most publications refer to other relevant publications to establish the significance of their
research; therefore, the number of citations a publication receives is considered an intuitive and
meaningful representation of its impact. Generally, the more citations a publication receives, the
higher its impact, even if these citations criticize the published work. However, the impact of pub-
lications is not confined to academics, as they can also have an impact on society. To measure the
social impact of publications, Priem, Groth, and Taraborelli (2012) proposed Altmetric, which
tracks different types of data sources on the internet, including usage, captures, mentions, social
media posts, and citations. This is an effective way to measure how much attention a publication
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receives from society and has been implemented by various tools, including ImpactStory, Altmetric,
and Plum Analytics (Konkiel 2016).

Based on the impact of publications, journal impacts can also be evaluated. The most well-
known journal impact index is the journal impact factor (JIF), which is a measure of the publication
citation frequency of a journal based on a two-year period and is part of the journal citation reports
produced by Clarivate Analytics. CiteScore evaluates journal impact using a metric similar to the JIF
but is based on a three-year period (Teixeira da Silva and Memon 2017). Considering that the cita-
tion peak for some papers can be late, Clarivate Analytics also developed a five-year impact factor
(IF5) that extends the two-year period to five years to reflect the impact of journals more continu-
ously and stably. Regarding the value of a citation, SCImago journal rank (SJR) considers the subject
field, quality and reputation of the source journal of a citation. The core of SJR is that all citations
are not created equal, which may aid in distinguishing the most valuable achievements (Gonzalez-
Pereira, Guerrero-Bote, and Moya- Anegén 2010; Guerrero-Bote and Moya-Anegon 2012). Due to
the differences in focus and progress in various subject fields, the impact of journals is rarely com-
pared using a common standard. The source-normalized impact per paper (SNIP) uses normaliza-
tion to adjust differences in citation behaviour among journals in different subject fields (Moed
2010; Waltman et al. 2013). In addition, other indices are used to evaluate the academic impact
of journals from different perspectives. For example, the immediacy index indicates how rapidly
papers in a journal are cited, the eigenfactor uses a citation network to measure the impact of jour-
nals, and the h5-index evaluates the academic impact of a journal by using the number of papers
published and the number of citations that the papers receive in five years.

Although the impact indices of publications and journals are recognized and widely used, the
impacts of specific researchers have also been continuously explored. Hirsch (2005) proposed the
h-index to evaluate the academic impact of a researcher, which reflects the number of papers (h)
published by a scholar that receive at least the same number of citations. This index can be used
to evaluate a researcher’s long-term impact; however, the index does not adequately reflect the
impact of researchers who have published few publications and received a large number of citations
for those publications. Subsequently, to overcome the shortcomings of the h-index, Egghe (2006a,
2006b) proposed the g-index, which is an evaluation index based on the cumulative contributions of
researchers and yields fairer evaluation results for scholars who publish fewer papers but are cited
more frequently. In addition to the g-index, some extensions of the h-index, including the e-index
(Zhang 2009), the AR-index (Jin et al. 2007), the f-index (Katsaros, Akritidis, and Bozanis 2009), the
x-index (Rodriguez-Navarro 2011), the w-index (Wu 2010), the V-index (Daud, Yasir, and
Muhammad 2013), the i10-index (Connor 2011), and the h-frac index (Koltun and Hafner
2021), have been proposed to improve upon the existing research impact indices.

Some indices can be used to evaluate researcher impact based on a factor in addition to citation
statistics. The concept of successful publications was designed considering the number of citations;
if the number of citations a publication receives outweighs the number of references it cites, the
paper is regarded as a successful paper (Kosmulski 2011). The number of successful papers can rep-
resent the academic standards of researchers. From the perspective of a scholarly social network,
ResearchGate designed its ResearchGate Score to evaluate scholars’ reputations, which are affected
by the numbers of publications, questions, answers, and followers on the ResearchGate website.
This can help researchers understand their level of recognition within the academic community
but requires engagement with the ResearchGate website and has been questioned due to its non-
transparency and non-replicability (Kraker, Jordan, and Lex 2015; Copiello and Bonifaci 2018).

In terms of non-journal article scientific research outputs, including data and software published
in other forms, such as online repositories (e.g. World Data System and Zenodo) or as published
sources (e.g. Earth-System Science Data and the JOSS Journal), no uniform metric has been devel-
oped; therefore, their impacts are difficult to evaluate. Current studies consider usage in various
repositories and/or social media mention indicators to represent impact, such as with the DUI
(Ingwersen and Chavan 2011) and Depsy Software Impact (Singh Chawla 2016). However, these
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metrics can only be used to evaluate specific objects, and it is difficult to apply them to models in
other fields.

As important research tools in the field of geographic modelling and simulation, geographic
simulation models have a variety of manifestations, including formulas, source codes, and execu-
table programs. Additionally, models can be published in various forms, including within a
paper or in an online repository. Therefore, citation formats for citing models are inconsistent.
Some publications cite model-related publications, whereas others annotate the URL or DOI of
the model repository. Additionally, in some cases, researchers simply refer to the name of the
model without providing a reference. It is difficult to measure the impact of geographical models
using the number of citations due to these nonstandard citation procedures. The number of
model references and the total number of citations are used to calculate the h-index of a model
in the CSDMS, which can accurately reflect the academic impact of a model from the perspective
of publications. However, a single index can easily be manipulated and may lead to changes in
research objectives to match the measurement of the index (Hicks et al. 2015). Hence, we posit
that to make the evaluation of model impact more objective, additional factors should be con-
sidered in addition to formal citations in peer-reviewed publications. These factors include multiple
types of index data and their importance, the duration of model availability, and the research field of
the model.

3. Conceptual framework of the evaluation method

As the scale of academic data has grown rapidly, new statistical tools have been developed to effec-
tively use and analyse these ‘big data’ (Anderson, Hankin, and Killworth 2008; Guo 2020). There is
also a requirement for pertinent tools to illuminate the relation between models and different types
of big academic data (Guo et al. 2021). To account for the variable levels of academic importance of
different impact indices, a weighted sum method was designed to quantitatively integrate the multi-
dimensional academic impacts of models. To enable fair and objective evaluations, the length of
time a model has been available should also be considered to reduce the bias caused by release
date. The research area should also be considered when evaluating a model.

3.1. Index selection for academic impacts

Many types of data are available that are potentially related to model impacts, including publi-
cations, patents, projects, videos, questions, tweets, blogs, and hosted codes (e.g. those on GitHub).
However, not all of these data types accurately represent the same level of academic impact of a
geographic simulation model. For example, videos, questions, tweets, and blogs are usually pub-
lished without peer review, as is code made available through a repository. Therefore, using indices
associated with these data types as a measure of academic impact is unconvincing (Joppa et al. 2013;
Howison et al. 2015). From the perspectives of research popularity and academic recognition, sev-
eral academic indices are selected to evaluate the academic impacts of geographic simulation
models. These academic indices include the following:

(1) Published papers related to models (A;). Models are often used as tools to address geographic
challenges (Benenson and Torrens 2004; Lin et al. 2013; Chen et al. 2021) and correspond to
research results typically published as papers. Published papers, including journal articles,
conference papers and books, provide evidence that the academic research results were note-
worthy. Therefore, mentioning a model in a paper can demonstrate that this model was instru-
mental to address a scientific challenge. These cases can include publications that describe new
models by name and mentions of existing models used in the research or that are recognized by
the researchers as important.
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(2) Granted invention patents related to models (A;). As a protection of intellectual property
rights, patents are a type of scientific research achievement other than publications related
to the dissemination and sharing of knowledge. The scientific research results in patents are
vital for patent applications. To protect intellectual property rights, patents must also undergo
rigorous review before approval is granted. Therefore, mentioning a model in an approved
patent can contribute to its academic impact. Open-source and public domain model codes
are less likely to receive patents and thus will not receive credit in this part of the index.

(3) Funded research projects related to models (A3). Before determining whether a research project
should be funded, rigorous review is necessary. The use or mention of a model in a funded
scientific research project can indicate that the model has academic research value. This com-
ponent favours models that receive broad financial support, as noted in published government
grant notices. Models that cannot be used to secure external funding will not receive credit in
this part of the index.

(4) Literature citations of model-related published papers (A,). After research results are pub-
lished, other research papers citing these papers demonstrate the value of the research results
and the impact of the model.

(5) Literature citations of model-related granted patents (As). A citation of a patent can not only be
used to support the recognition of the patent but can also reflect that the model used in the
patent produces an academic impact.

Ay, A and A; are the counts of model-related research activities and outputs, which represent
the research popularity of models, whereas A4 and Aj are the citations of model-related outputs,
which indicate the academic recognition of models.

3.2. Life-term and annual academic impacts

A model that has been available for a long period and is used by many people has a high life-term
impact. In contrast, recently released models have not had sufficient time to establish life-term aca-
demic impacts. Thus, these models are at a disadvantage in traditional methods in terms of life-term
impact. Therefore, to objectively evaluate the academic impacts of models, two time ranges were
selected for evaluating the academic impact. One is the life-term academic impact of a model,
which reflects the total impact of the model since its release. The other is the annual academic
impact of the model, which demonstrates the recent impact of the model. The annual academic
impact weakens the impact of the model release time by limiting the range of time assessed.

3.3. Formulas for evaluating academic impact

Differences in the meanings of indices lead to differences in the importance of different models or
studies. To comprehensively and intuitively demonstrate the academic effects of models, the
weighted sum method (equation 1) is used to assess the significance of each index:

5
M= Iﬂg(l + Ew; 3 Counr(A;)), (1)

where M is the academic impact of the model, w; is the importance weight of the i-th index, Count
(A;) is the value of the i-th academic impact index metric, and log is the common logarithm.

In formula 1, the logarithm is used to prevent the value of the weighted sum method from
increasing too fast and keep academic impact in a specific range. For the model academic impact
to be positive after using the logarithm, the value of the weighted sum method must be positive one.

Both the life-term and annual academic impacts of the models were calculated using equation 1,
but there are differences in the academic impact index data used in the calculations. The academic
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impact index data since the release of each model were used to evaluate the life-term academic
impact. Regarding the annual academic impact, the number of annual papers, projects and patents
is explicit, so the indices A;, A3, and A, are based on the annual counts of published papers, funded
projects and granted patents. Since citations last along time, to evaluate the impact of citation beha-
viours in a short-term period, the value of literature citation indices to annual academic impact was
limited. As the number of years after publishing increases, the number of citations increases to a
peak, which indicates that the impact of the study is at a maximum. Zhao and Li (2015) found
that the citation peak for papers is 2-4 years, and Fukuzawa and Ida (2016) found that the citation
peak for patents is 6 years. To evaluate the annual academic impact, the minimum number of years
to reach the citation peak years for each kind of literature was used as the limit regarding the value
of literature citations indices to annual academic impact. Hence, the value of index A, is based on
the number of literature citations 2 years after a paper is published, and the value of index As is
based on the number of literature citations 6 years after a patent is granted.

3.4. Evaluations in different research areas

It is not informative to compare all geographic simulation models with each other, as the models are
applied in different research areas and the research volume of each area varies, leading to variance
in the academic impacts of geographic simulation models in different research areas. However, no
reference value is available for researchers in different fields. Therefore, we divided the geographic
simulation models into different research areas and compared their academic impacts in each area.

4, Evaluation method

The data from the five impact indices were used to evaluate the academic impacts of models: model-
related published papers, granted patents, funded research projects, literature citations of papers,
and literature citations of patents. Below, we describe how we collected data for these indices, deter-
mined the weight of each index, and classified the models according to their research areas.

4.1. Data acquisition and processing methods

The impact index data were acquired from different databases. These databases contain academic
data from key counties/organizations around the world. The paper and citation data were obtained
from the Scopus (https://www.scopus.com) and ScienceDirect (https://www.sciencedirect.com)
databases. Patents and their citations were obtained from the Google Patents Public databases
(https://console.cloud.google.com/launcher/partners/patents-public-data). Finally, funded scien-
tific research project data were obtained from Fun Research (www.funresearch.cn), which has
been noted as a reliable data source for scientific research projects by many well-known university
libraries in China, such as Xiamen University, East China Normal University, and Nanjing Normal
University. Fun Research includes data for approximately 13 million scientific research projects
funded by over 20 key organizations in more than 10 countries, including China, the United States,
the United Kingdom, Germany, Canada, France, and Japan, as well as the European Union. The
data acquisition and use procedures followed the abovementioned database use policies.

The accuracy of the data used to calculate index values influences the confidence in the academic
impact metric results. For example, models are typically distinguished from each other by name.
However, the full names of some models are long; thus, they are identified by abbreviations. For
example, the Soil and Water Assessment Tool is abbreviated as SWAT, and the Community
Land Model is abbreviated as CLM. We used the full name and/or abbreviation to distinguish
the models from their index data when data were collected.
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4.1.1. Method for acquiring model-related paper data
According to the number of names that refer to the same model, the method was divided into two
parts.

If a model had both a full name and an abbreviation, then both were used to retrieve information
from the paper databases using APIs provided by Elsevier. First, the full name was used to refine
paper queries in Scopus and ScienceDirect. In particular, the papers that had a title, abstract,
keyword, or full text that contained the full model name were retrieved. Herein, we focused on
geographic simulation models, which are mostly used in the fields of geography and/or the environ-
ment; therefore, the queried papers were limited to these relevant research areas. The three-level
research area journal classifications in Scopus were used to determine the papers’ research areas.
The research area of a paper was regarded as the journal in which it was published. The selected
classifications related to geography and the environment in Scopus are shown in Table 1. After deter-
mining the classification, eligible papers were regarded as part of the paper index dataset. Second, a
model’s abbreviation was used for fuzzy queries of papers. If the text of the paper only contained the
model’s abbreviation, the references of the paper were checked to see whether they contained the
model’s full name. If the text of the reference retrieved in Scopus or ScienceDirect contained
the full name of the model, the paper was considered related to the model and included in the
model-related paper index dataset; otherwise, the paper was not included in the index dataset.
The results related to the model were also included in the paper index dataset. Finally, duplicates
were removed from the dataset (based on the DOI or Scopus ID) to ensure that each paper only
appeared once in a model-related paper index dataset.

If amodel had only one specific name, then this name was used to retrieve the model-related papers
by analysing whether a paper title, abstract, or full text contained the name and whether it included
research areas in the classifications in Table 1. The retrieved results comprised the paper index dataset.

Table 1. Classifications related to geography and the environment in Scopus.

First-Level Classification Second-Level Classification Third-Level Classification
Life Sciences Agricultural and Biological Sciences Agricultural and Biological Sciences
Agronomy and Crop Science
Forestry
Plant Science
Soil Science
Physical Sciences Earth and Planetary Sciences Earth and Planetary Sciences

Atmospheric Science
Computers in Earth Sciences
Earth-Surface Processes
Geochemistry and Petrology
Geology
Geophysics
Geotechnical Engineering and Engineering
Oceanography
Palaeontology
Space and Planetary Science
Stratigraphy

Environmental Science Environmental Science
Ecological Modelling
Ecology
Environmental Chemistry
Environmental Engineering
Global and Planetary Change
Health, Toxicology, and Mutagenesis
Management, Monitoring, Policy, and Law
Nature and Landscape Conservation
Pollution
Waste Management and Disposal
Water Science and Technology
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4.1.2. Method for acquiring model-related patent data
Based on the number of names that could refer to the same model, this method was divided into two
parts.

A process similar to that described above was used to retrieve information from the patent data-
base. First, the full name was used to refine a query of granted patents in the Google Patents Public
database. In particular, the granted patents that had a title, abstract, claim, or description that con-
tained the model’s full name were retrieved. Due to the classification of patents differing from that
of research areas, the retrieved results were not filtered by their classification. The results were
regarded as part of the patent index dataset. Second, the abbreviation was used to fuzzy query
the granted patents. If the full text of the granted patent only contained the abbreviation of the
model, the patent reference was analysed. Only if the content of the reference contained the full
name of the model was the patent considered related to the model. The results related to the
model were included in the patent index dataset. Finally, duplicates were removed to ensure that
each patent only appeared once in the model-related patent index dataset.

If a model had only one specific name, then this name was used to retrieve the model-related
granted patents by checking if a patent’s title, abstract, claim(s), or description contained the
name. The retrieved results comprised the patent index dataset.

4.1.3. Method for acquiring model-related scientific research project data

To protect scientific intellectual property, the full text of scientific research projects and final reports
are rarely disclosed. Therefore, in this study, we matched the names of models with other public attri-
butes from scientific research projects, including the project name, keywords, and application
abstract. If the project was completed, we also matched model names with the final report abstract
and project output details (including name, keywords and abstract). Matching was divided into two
cases. If the model had only one specific name, the abovementioned public attributes were checked to
determine if they contained the model’s name. If the model’s name was present, the project was con-
sidered related to the model. However, models may have a full name and an abbreviation, both of
which can be used to find model-related projects. In this case, full model names were used to identify
model-related projects first, and the match process for which was the same as that mentioned above.
Other model-related projects were retrieved by the model abbreviations. However, the lack of avail-
ability of references and full-text projects made it difficult to determine whether the abbreviations
referred to models. Therefore, to limit the search results to those with as much relevance to the
model as possible, abbreviations with the word ‘model’ were used to retrieve model-related projects.
The project number was used as a unique identifier to remove duplicate model-related project data.

4.1.4. Method for acquiring citation data

Citation data include the citations of model-related papers and model-related patents. For a par-
ticular model, citations of model-related papers count how many papers cited the model-related
paper. One paper that cited multiple papers related to a model counted only once. The method
used to count citations of model-related patents was the same as that for papers. The unique iden-
tifiers (e.g. digital object identifiers) of different types of literature data were used to identify dupli-
cate citations.

4.2. Index weight determination

The importance of indices that evaluate the academic impact of models varies. The weight can be used
to indicate the importance of indices, as the weight of index importance is directly related to the accu-
racy and rationality of evaluation results. Two methods are used to determine the weight of indices:
the subjective weight determination method and objective weight determination method (Liu et al.
2019). The subjective weight determination method includes an AHP and precedence chart. The
objective weight determination includes the entropy weight method, criteria importance through
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intercriteria correlation (also known as CRITIC), and principal component analysis. The comparison
of various approaches reveals that the subjective determination approach is intuitive, uncomplicated,
and capable of utilizing the research expertise of professionals to the fullest extent. The drawback is
that when the information is poor or the expertise of specialists is restricted, the subjective judgment
of weight loses credibility (Li et al. 2021, 2022). To maximum the separation of alternatives, the objec-
tive technique for determining index weight is based on the law of data itself and considers how to
employ information entropy or bias to distribute weight. The drawback of this method is that it
fails to account for the relative value of various indications (Eftekhari, Yang, and Wakin 2018).

Given that people have different perceptions of the importance of different indices, in order to
achieve broad agreement, the AHP (Saaty 1977, 1980) combined with the expert scoring method is
used in this paper to analyse and evaluate the importance of the academic impact indices. The first
step was establishing a hierarchical structure model. After dividing the decision-making goals, con-
sideration criteria, and indices into high, middle, and low levels according to the associated
relationships, a hierarchical structure diagram was established. The hierarchical structure model
used in this study is shown in Figure 1. Evaluating the academic impact (M) of geographic simu-
lation models was the goal, and the model research popularity (P,) and academic recognition (P;)
metrics were used as criteria for academic impact evaluation. The papers (A,), patents (A;), and
scientific research projects (Aj) related to models and the literature citations in relevant papers
(A4) and patents (As) were used as indices. The papers, patents, and scientific research projects
related to the model are indices related to research popularity, whereas literature citations in rel-
evant papers and patents are indices associated with academic recognition.

The second step was to construct pairwise comparison matrices. When determining the weights
of factors at different levels, qualitative results alone may be difficult to understand. Therefore, Saaty
(1977) proposed the consistent matrix method, which involves comparing factors in pairs instead of
all together. A relative scale can also minimize the difficulty of comparing various factors and
improve the accuracy of simulations. A pairwise comparison matrix can be used to compare the
relative importance of all factors at a specific level to a certain factor in the upper level. According
to the hierarchical structure model designed in this study, three pairwise comparison matrices were
constructed for different levels (Figure 2). In Figure 2, the first pairwise comparison matrix was con-
structed for the goal, the second was constructed for criterion Py, and the third was constructed for
criterion P,. According to the Weber-Fechner law, the magnitude of a subjective sensation increases
in proportion to the logarithm of the intensity of the external physical stimulus; this proportion is a
constant, also known as Weber’s constant. In other words, the external physical stimulus equals a

Goal Model Academic Impact (M)

et ; Research Academic
Popularity (P,) Recognition (P,)

Model-related Model-related Literature Literature

Indices M::E;’:[':t‘]?d Giantad Funded R ch Citations in Citations in
- P 3 Patents (A,) Projects (A;) Papers (A,) Patents (Ag)

Figure 1. Hierarchical structure model used for academic impact evaluations of geographic simulation models.



INTERNATIONAL JOURNAL OF DIGITAL EARTH @ 1865

Model-related
Model-related | Model-related
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d 1]
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Research
Projects (A,)
(a) (b) (c)

Figure 2. Pairwise comparison matrices used in the hierarchical structure model. a) Compare the importance of research popularity
(P,) and academic recognition (P,) to model academic impact (M). b) Compare the importance of model-related published papers
(A;), model-related granted patents (A;) and model-related funded research projects (A;) to research popularity (P,). ¢) Compare
the importance of literature citations in papers (A,) and literature citations in patents (As) to academic recognition (P,).

constant to the power of the magnitude of a subjective sensation divided by Weber’s constant. The
1-9 scale recommended by Saaty (1983) based directly on the sensory responses of people does not
n

consider the actual physical stimulus (Zhang, Liu, and Yang 2009). Hence, the 34_{n =0,1,2...,8)

scale recommended by Zhang, Liu, and Yang (2009) was selected to quantify people’s subjective

sensations and calculate the actual physical stimulus. To make it easier to distinguish importance
n

at different levels, the levels of the 32 scale were reduced from 9 to 5 by retaining nonadjacent scales,
n
and the format of the scale was simplified to 32(n = 0,1,2,3,4) (Table 2).

The third step was to invite scholars to compare the relative importance of all factors in each
level against the relevant impact of factors in the upper level, and the results were then checked
for consistency. When pairwise comparisons of over three factors were performed, a consistency
test was required to prevent contradiction issues in the compared results. In this study, a consist-
ency test was required for the pairwise comparison matrix shown in Figure 2. After adding the com-
parison results into the pairwise comparison matrix, the maximum characteristic root A,y of the
pairwise comparison matrix was obtained using linear algebra. The value was then substituted into
equation 2 to obtain the consistency index (CI).

Amax — N
Cl=—""—, (2)
n—1

Table 2. Importance scale.
Scale (n) Description Index Scale Value (3%)
0 Equally important 0

1(32)
1 Slightly more important 1

1.732 (32)
2 Clearly more important 2

3(32)
3 Much more important 3

5.196 (32)
4 Extremely much more important 4

9 (32)
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where Cl is the consistency index, Ay, is the maximum characteristic root of the pairwise compari-
son matrix, and n is the order of the matrix.

To determine whether the matrix displayed satisfactory consistency, CI was substituted into
equation 3:

CR=— 3)

where CR is the random consistency ratio and RI is the average random CL

Rl is related to the order of the matrix. When the matrix is a third-order matrix, RI has a value of
0.58. When CR < 0.1, the matrix exhibits acceptable consistency, and the comparison results can be
used in the next step.

In the fourth step, the importance weights of the academic impact indices were calculated. First,
the average of the results that passed the consistency test was calculated as the final comparison
result. Then, the consistency of the final comparison result was tested. If it did not pass the test,
the third step was repeated. Next, the weight of each element from the index level to the goal
level (Figure 1) was calculated according to the hierarchical structure model. Finally, each weight
was normalized, whereby the ratio of each weight to the smallest weight was calculated as the
importance weight for each indicator.

4.3. Model classification method

Different geographic simulation models can be used to investigate diverse geographic topics in
specific research areas (Lii 2011; Harpham, Cleverley, and Kelly 2014; Gianni et al. 2018). If all
models were compared regardless of research area, the results would not be meaningful because
the information was not subject-area specific. Therefore, models must be classified and com-
pared according to the associated research areas to obtain objective and meaningful comparison
results.

Regarding papers, the Scopus database uses a three-level classification system to identify journal
research areas. The first-level classification contains four categories: health, life, physical, and social
sciences. The second-level classification distinguishes among the major disciplines of each of the
first-level classifications. This classification divides the major disciplines into many specific research
areas. The number of research areas in a journal in Scopus can vary from one to many. In Scopus,
the research area of a paper is consistent with the research area of the corresponding journal.
Regarding patents, the Google Patents Public database uses a cooperative patent classification
scheme to classify patents according to their functions or applications. Regarding projects, Fun
Research uses major disciplines, such as mathematics, physics, or geosciences, to distinguish scien-
tific research projects. However, the cooperative patent classification system contains many func-
tional classifications that cannot be converted into research areas, and the project classification
system in Fun Research does not specify the detailed subdisciplines. Compared with the other
two classifications, the Scopus classification method is detailed and fits well with the model subject
area classification. Therefore, we used the subject areas from the Scopus database to classify the
models. The studied models were more relevant to the geography and environmental research
areas than to other areas. Thus, some classifications related to geography and the environment
in Scopus were selected to identify the research areas of the models, and classifications with the
same definitions were merged (Table 1). The third-level classifications were selected as the final
model classifications.

Due to the broad research scopes encompassed by journals, defining a model’s research area
based on the journal papers that mention the model can lead to certain models being incorrectly
assigned to a specific research area. Thus, it was also necessary to analyse and screen the model
research areas. The number of papers in which a model was applied to a given research area was
counted, and the results were then sorted from highest to lowest. The number of papers in all
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research areas was used as the total, and the number of papers in each of the sorted research areas

was added individually until the result of the sum divided by the total was not less than % after add-

ing the paper count for the n-th research area. The top-n research areas were regarded as the junior
major research areas of models. In addition, these major research areas were further adjusted to
ensure that the correlations between models and areas were correct. First, if there were other
research areas with paper counts equal to the minimum paper count for a major research area,
these research areas were added to the major research area list. Second, if the paper count for
any major research area was more than one, the research areas with paper counts equal to one
were not regarded as the major research area.

5. Implementation of the evaluation method

This academic impact evaluation method was implemented in two steps. First, the models were
used as the study objects, and data were acquired for the five selected indices. Next, the importance
weight of each academic impact index was determined by surveying expert opinions via a question-
naire. Finally, the academic impact of each model was calculated.

5.1. Data preparation

In the area of modelling and software, the adaptation and implementation of FAIR principles make
a model findable, accessible, interoperable, reusable, and even useful (Wilkinson et al. 2016; Chue
Hong et al. 2021; Barton et al. 2022b). CoMSES Net trusted digital repositories, including
OpenGMS (https://geomodeling.njnu.edu.cn/), CSDMS (https://csdms.colorado.edu/), and CIG
(https://geodynamics.org/), are strong supporters of FAIR principles (Barton et al. 2022a). Models
and different versions of their metadata can be easily found and accessed in these repositories, and
most of their software or code can be executed or reused by local or web-based services. To make a
model interoperable with other models, CSDMS and OpenGMS developed basic model interface
and model interoperation APIs (Hutton, Piper, and Tucker 2020; Zhang et al. 2021). As resources
in trusted digital repositories are well documented and well known, the models evaluated in this
study will be selected from these repositories, which focus on models of geographic physical pro-
cesses in the Digital Earth.

Because of the absence of a unified naming convention for various models, the full names or
abbreviations of some models were the same as other unrelated words or object names. For
example, the Sakura model simulates hyperpycnal flows but is also the Japanese word for cherry
blossoms. The soil and water assessment tool model is another example, as its abbreviation is
the same as that for ‘special weapons and tactics’. Duplicate names can reduce the relevance of
the index data for the model, and the corresponding academic impact may be incorrectly calculated.
Model names that could not be distinguished from other entities were not included in this study.
Fourteen models from various research fields and trusted geographic simulation model repositories
were selected to verify the methods proposed in this paper (Table 3). Through December 31, 2020,
all index data counts for the models acquired according to the method detailed in Section 4.1 are
listed in Table 3.

5.2. Calculation of the academic impact of geographic simulation models

Based on the hierarchical structure model for evaluating the academic impact of geographic simu-
lation models, a questionnaire was designed (to generate a pairwise comparison matrix) and given
to global researchers who have developed or applied geographic simulation models. Currently,
313 global researchers whose research interests are geography and/or environmental engineering
have completed the questionnaire. The comparison results from all the questionnaires were then
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Table 3. Model information.

Index value
Model Name Abbreviation Overview References A, A, A5 A, As
Basin and Badlands Badlands is a parallel TIN-based  (Salles 2016; Salles 5 0 2 55 0
Landscape landscape evolution model et al. 2018)
Dynamics built to simulate topography
development at various space
and time scales.
Coupled Routing CREST CREST is a distributed (Wang et al. 2011) 49 0 3 936 0
and Excess hydrologic model developed
STorage to simulate the spatial and
temporal variations in
atmospheric, land surface,
and subsurface water fluxes
and storage based on cell-to-
cell simulations.
Delft3D / Delft3D is a 3D hydrodynamic  (Elias et al. 2001; 1159 19 277 13048 126
and sediment transport Liang et al. 2015)
model.
Distributed DLBRM The DLBRM is a distributed, (Croley and He 1m0 6 408 0
Large Basin physically based watershed 2005)
Runoff Model hydrology model that
subdivides a watershed into a
1 km? grid network and
simulates hydrologic
processes for the entire
watershed sequentially.
Dynamic Earth DynEarthSol3D  DynEarthSol3D is a finite (Choi et al. 2013) 2 0 1 4 0
Solver in Three element solver that models
Dimensions the momentum balance and
the heat transfer of elasto-
visco-plastic material in
Lagrangian form.
Lisflood / Lisflood is a distributed (De Roo, Wesseling, 438 0 62 10058 0
hydrological rainfall-runoff and Van Deursen
model, 2000; De Roo etal.
2001)
Lithosphere and  LaMEM LaMEM is a parallel 3D (Pusok and Kaus 6 0 0 48 0
Mantle numerical code that can be 2015)
Evolution used to model various
Model thermomechanical
geodynamical processes, such
as mantle-lithosphere
interactions for rocks that
have visco-elasto-plastic
rheologies.
Parallel ice Sheet PISM PISM is designed to scale with  (Winkelmann et al. 46 0 52 774 0
Model increasing problem size by 2011)
harnessing the computational
power of supercomputing
systems and by leveraging
the scalable software libraries
that have been developed by
the high-performance
computing research
community.
Precipitation- PRMS PRMS is a modular-design (Carey 1984) 213 0 24 688 0
Runoff modelling system that has
Modeling been developed to evaluate
System the impacts of various

combinations of
precipitation, dimate, and
land use on surface-water

(Continued)
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Index value
Model Name Abbreviation Overview References A, A, A5 A, As
runoff, sediment yields, and
general basin hydrology.
Princeton Ocean  POM POM is a sigma coordinate (Blumberg and 1374 7 239 24782 24
Model coastal & basin circulation Mellor 1987)
model.
Quasi- QTCMm QTCM is a model of (Neelin and Zeng 28 0 13 958 0
equilibrium intermediate complexity 2000; Zeng,
Tropical suitable for the modelling of Neelin, and Chou
Circulation the tropical climate and its 2000)
Model variability.
Soil and water SWAT SWAT is a river-basin-scale (Arnold et al. 1998, 6070 12 211 56988 38
assessment model developed to quantify Gassman et al.
tool the impact of land 2007)
management practices in
large, complex watersheds.
The Control CVPM CVPM is a multidimensional (Clow 2018) 2 0 1 5 0
Volume heat-transfer modelling
Permafrost system for permafrost with
Model advanced unfrozen water
physics.
Variable VIC VIC is a macroscale hydrologic  (Miller, Russell, and 1446 3 484 29983 3
Infiltration model that solves full water Caliri 1994; Liang,
Capacity and energy balances and was Wood, and

originally developed by Xu Lettenmaier 1996)
Liang at the University of

Washington.
Note: Statistics up to December 31, 2020

Table 4. Importance weights of academic impact indices.
Index

Importance Weight

Published papers related to models (A,) 2,91
Granted invention patents related to models (Az) 1.03
Funded research projects related to models (A;) 1.12
Literature citations in papers (A,) 3.56

Literature citations in patents (As) 1

checked for consistency, as there was no fixed reference when multiple elements were compared
in pairs, and some judgements may be counterintuitive. After the calculation process, all compari-
son results passed the check and were used to calculate the weight vectors of the indices. Finally,
the importance weight of each index was obtained according to the established weight vector
(Table 4).

Based on the importance weights, literature citations in papers related to models (A,)
accounted for the largest contribution to the academic impact of geographic simulation models,
with an importance weight of 3.56. The second-largest contribution was papers related to models
(A,), with an importance weight of 2.91. Funded research projects related to models (As),
granted patents related to models (A,) and literature citations in patents (A;) had weights sub-
stantially lower than those of the top-two indices (1.12, 1.03 and 1, respectively). These numbers
demonstrate that researchers are still inclined to regard papers as the final published form of aca-
demic research results, and the number of paper citations can represent the impact of research
results. The academic impact score for each model was calculated using equation 1 and these

weights.
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Table 5. Correlation check results.

Paper Patent Project
Sample Number 1088 1 139
Accuracy (%) 98.2 97.6 95.0

6. Results
6.1. Correlation check analysis

To assess the accuracy of the index data acquisition method, the correlation between the acquired
index data and the model was investigated. Two people were trained to conduct the correlation
check between index data and the models to ensure that they could identify whether words consist-
ent with the model names in the index data text referred to the correct models. Because the size of
the paper and project index dataset established in this study was large, 10% of the papers and 10% of
the patents for each model were randomly selected (at least one of each index data is selected) to
determine the correlation between index data and models. Table 5 shows the correlation check
counts and results for the paper, patent, and project data without the literature citation indices
because the citations did not have to contain a model name. Here, the accuracies of the paper
and patent data were high (nearly 100%) because the results of the paper and patent data were
checked further by the citing literature, whereas the accuracy of project data was relatively low
(95.0%). After checking the unrelated project data, we found that a few projects may list papers pub-
lished in other research areas as outputs, and the themes of these papers may highly deviate from
the project theme. In view of the high accuracy of index data (more than 95%), we believe that these
data are reliable but could be improved.

6.2. Comparison of life-term and annual academic impacts

By substituting the importance weights of the academic impact indices into the academic impact
evaluation formula and supplementing them with the academic impact index data, the academic
impact of each model was calculated. By adjusting the time range for each academic impact
index calculation, the life-term and annual academic impacts of the models were determined. In
Figure 3, the life-term academic impacts of geographic simulation models increased progressively
over time, whereas the annual academic impacts varied. Therefore, the life-term academic impact
can better demonstrate the total impact of a model since its release, whereas the annual academic
impact can describe the academic impact of a model in different periods.

From the perspective of the changing trend of the models’ academic impact, life-term and annual
academic impact are obviously correlative. As shown in Figure 3, the annual academic impact of
SWAT increases by years, which indicates that the research popularity and recognition of SWAT
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Figure 3. Changes in the life-term and annual academic impacts of three geographic simulation models over time.



INTERNATIONAL JOURNAL OF DIGITAL EARTH @ 1871

is improving rapidly so that the life-term academic impact trends upwards almost diagonally. The
annual academic impact of POM remains at a stable level after having increased rapidly in the years
since its release, which shows that the research scales and areas of POM are relatively stable; thus,
the life-term academic impact trends upwards relatively rapidly. The annual academic impact of
QTCM is in a downwards trend over time, which shows that the research interest in QTCM is
decreasing, so the life-term academic impact is increasing slowly. These results obey the principle
of models in which continuously high annual academic impacts can also exhibit continuously high
life-term academic impacts.

6.3. Comparison with existing model repository records

6.3.1. Identification and comparison of the major model research areas

Using the method proposed in Section 4.3, major model research areas were identified. To verify
whether the identification results were correct, model domains that were added by model contri-
butors in CSDMS and OpenGMS were recorded (Table 6). Model domains in CSDMS focus on sub-
ject areas, while model domains in OpenGMS mainly focus on natural regions and include model
scale classifications and method-focused classifications (e.g. regional-scale, global-scale and phys-
ical process calculation). These extra classifications are beneficial for identifying models from the
perspective of model features. In Table 6, all model domains in CSDMS and OpenGMS are similar,
and both contain key domains for which models were designed. Because the classifications in Sco-
pus are designed for various subjects, including health sciences, life sciences, physical sciences and
social sciences, classifications regarding geography are not domain distinct. For example, water
science and technology includes research on hydrology and the cryosphere, and oceanography
spans marine and coastal research. Overall, the major research areas encompass the domains in
CSDMS and OpenGMS and, in some cases, contain specific application areas, such as environ-
mental engineering and pollution.

6.3.2. Comparison with CSDMS model impact

In CSDMS, model property information is recorded in the form of metadata, which is easy for
people and machines to read and use. Using this information, CSDMS acquired model-related pub-
lications and their citations based on the search algorithms applied, and model impacts were
assessed from the publication perspective.

Table 6 also shows the model development years and the years of the model impact evaluation
for different evaluation methods. Because CSDMS only uses publications to evaluate model impact,
the start year of the evaluation in CSDMS was the first paper published year. The start year of the
model impact evaluation in this paper was the earliest year of published papers, patents and projects
related to a model. It is obvious that the start year of the proposed evaluation method for some
models is earlier than the first publication year in CSDMS and close to the initial model develop-
ment year. Additionally, a few academic impacts are first observed the year after the first publication
in CSDMS. The reason is that papers acquired for this paper come from the Scopus and Science-
Direct database, which belong to Elsevier, but some of publications that CSDMS acquired were
technical documentations for models and articles in journals not published by Elsevier.

According to the model-related metadata and publication information, CSDMS calculates the
H-index and M-quotient of models to reveal model impact. Similar to the H-index of scholars,
the model H-index means that there are at most H model-related publications, and each publication
has been cited at least H times. The model M-quotient is equal to H-index for a given year divided
by the difference between this year and the year that the model was developed. However, if the
model development year is uncertain, it is replaced by the first paper published year. This study
refers to model-related publications acquired by CSDMS and calculates three models’ H-index
and M-quotient from the start year of the evaluation (Figure 4).



Table 6. Model information comparison.

Major Research Areas in this Development Start Year First Paper Published Model Academic

Model Name Abbreviation Domains in CSDMS Domains in OpenGMS Study (refer to CSDMS) Year (refer to CSDMS)  Impact Start Year
Basin and Landscape Badlands Terrestrial, Land regions Computers in Earth Sciences, 2015 2015 2016
Dynamics Hydrology, Earth-Surface Processes
Climate
Coupled Routing and ~ CREST Hydrology Land regions Water Science and Technology 2008 2011 2011
Excess STorage
Delft3D / Hydrology, Coastal, Land regions, Ocean regions Oceanography, 1988 1996 1997
Marine Water Sdence and
Technology,
Environmental Engineering
Distributed Large Basin DLBRM Hydrology Land regions Environmental Science, / 2005 2007
Runoff Model Water Sdence and
Technology
Dynamic Earth Solver in DynEarthSol3D Geodynamic Solid-earth regions Computers in Earth Sciences, 2013 2015 2015
Three Dimensions Water Sdence and
Technology,
Earth-Surface Processes
Lisflood / Hydrology Land regions, Regional scale, Water Science and 1996 2000 2000
Physical process calculation  Technology,
Earth and Planetary Sdences
Lithosphere and Mantle LaMEM Geodynamic Solid-earth regions, Physical Geophysics, Earth-Surface 2007 2015 2014
Evolution Model process calculation Processes
Parallel Ice Sheet Model PISM Cryosphere, Frozen regions Earth-Surface Processes, 2002 2009 * 2002
Terrestrial Water Science and
Technology
Precipitation-Runoff PRMS Terrestrial, Land regions Water Science and Technology / 1983 1981
Modeling System Hydrology
Princeton Ocean Model POM Marine Ocean regions Oceanography 1983 1995 1995
Quasi-equilibrium QTCMm Climate Atmospheric regions, Global Atmospheric Sdence 1997 2000 2000
Tropical Circulation scale
Model
Soil and water SWAT Terrestrial, Land regions, Regional scale Water Science and 1980 1994 1994
assessment tool Hydrology Technology,
Environmental Engineering,
Pollution
The Control Volume CVPM Terrestrial, Land regions, Frozen regions Earth and Planetary Sciences 2018 2018 2018
Permafrost Model Cryosphere
Variable Infiltration VIC Hydrology Land regions, Frozen regions Water Science and ! 1992 * 1990
Capacity Technology,

Earth and Planetary Sdences

* After checking model-related papers in CSDMS, we found that some papers were not related to models or that the published year was before the initial model development year. Therefore, we

removed these papers from the model-related papers and reset the first publication year in CSDMS.
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Figure 4. Changes in the H-index and M-quotient of three geographic simulation models over time.
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Figure 5. Contribution ratio of index A, and A, to SWAT annual academic impact over time.

When Figure 4 is compared with Figure 3, it becomes obvious that the CSDMS model impact is
similar to the model academic impact from the perspective of the overall trend, but there are some
differences in local features. The annual academic impact of SWAT continued to increase after
1994, while the M-quotient had a brief dip between 1994 and 1996 (Figure 3(a) and Figure 4(a)).
After checking the contribution ratio of each index to the SWAT annual academic impact in
1995 and 1996 (Figure 5), we find that the impact of literature citations in papers (A,) occupied
a prominent ratio in annual academic impact. The M-quotient derives from the H-index, whereas
the H-index cannot quantify the impact of literature citations in papers accurately; this is why the
M-quotient decreases. Constrained by the large H-index, the downward trend of the QTCM M-
quotient is gradual, while annual academic impact shows a fluctuating downwards trend (Figure
3(c) and Figure 4(c)). A comparison of Figure 6 with Figure 4(b) shows that the introduction of
the project (As) brings the start time of the model academic impact evaluation forward by years.
Overall, the model academic impact evaluation method proposed in this paper accurately describes
the trend and fluctuation of model academic impact.



1874 (&) M.CHENETAL

100
1
- A
80 Il A
- A
. mm A,
o 1809 . A
©
]
o 401
20 -

1990 1995 2000 2005 2010 2015 2020
Year

Figure 6. Contribution ratio of each index to POM life-term academic impact over time.

7. Discussion

For researchers in the geographic modelling and simulation fields, a geographic simulation model is
an important research output. However, people can learn about the impacts of a publication
through many indices and still know little about the research output other than what is discussed
in publications, particularly for models. In this study, an evaluation method was proposed to quan-
tify the academic impacts of geographic simulation models based on five indices related to academic
outputs. This method used the AHP to determine the importance weight of each index and
obtained the index data related to the models using a set of data acquisition methods. This method
can be used to evaluate the life-term and annual model academic impacts and identify the major
research area(s) that a model can impact.

Compared with the model impact evaluation method used by CSDMS, the model academic
impact proposed in this study exhibits improvements. First, the model academic impact accounts
for different time ranges, accurately reflecting changes in the life-term and annual impact of models.
Second, the model academic impact is based on multiple factors and their importance weights to
consider multiple perspectives, not just the publication perspective. Finally, people can learn the
major research areas not only for model design but also for model impact and application, thus pro-
moting targeted model use and development.

To improve the accuracy of the index data, the data acquisition method adopted in this study can
limit the scope of the data by filtering the data multiple times. However, this strict method exclude
data that look unreliable but are actually related to the model. Additionally, the method cannot
retrieve highly credible index data related to a model with the same name as a common word
because the results may be irrelevant. These limitations may be solved by applying natural language
processing to model recognition.

When spanning a range of research areas, there are several ways in which bias can arise, such as
differences in citation rates among research areas and differences in the potential audience for a
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particular model. The evaluation method may also be unfair for particular research areas. A nor-
malized method should be explored to meet the challenges associated with considering various
research areas.

In this study, the model academic impact evaluation method was helpful for measuring the aca-
demic achievements of models; it supports models as meaningful research outputs to obtain the
corresponding academic impacts, much like those used in traditional publishing. This study
expands the research on achievement impact indices, and the proposed approach can supplement
evaluation methods for models from a multifactor perspective.

8. Conclusions and future work

Based on five academic impact indices and their levels of importance, a method for eval-
uating the academic impacts of geographic simulation models is developed. The method
can be used for preliminary analyses of the academic impacts of different models from mul-
tiple perspectives, extend the time range of model academic impacts, demonstrate how mul-
tiple academic indices affect model academic impacts and acquire model major research
areas. There is quite a number of models that can be used in next-generation digital
earth systems to simulate social and physical processes. This study provides a new method
for the rapid discovery of models and lays the foundation for semantic relation networks
involving Digital Earth and other geographic-related domains throughout the modelling
community.

The results obtained in this study verify the reasonability of the proposed academic impact index
for geographic simulation models to some extent; however, some aspects of the method proposed in
this paper require improvement:

(1) The algorithm used to identify models in the literature should be improved. The models eval-
uated in this study had distinct names, whereas other models with names easily confused with
other words and objects were ignored. The method developed cannot accurately evaluate the
academic impacts of models with such names. Therefore, to support the automatic evaluation
of the academic impacts of all geographic simulation models, it will be necessary to combine
natural language processing and other machine learning methods to accurately identify geo-
graphic simulation models in various datasets.

(2) There should be a distinction between publications that embrace or use a model, and publi-
cations that a model. Having such a distinction makes it possible to adjust the academic impact
accordingly. For example, publications that embrace a model may increase the academic
impact, whereas critical publications may decrease it.

(3) Understanding the academic impacts of models for specific fields. In this study, models were
classified according to the class used by the journal in which the paper was published, which
was helpful for understanding the research area of the model. However, many studies focus
on various factors in one research area. For example, in water science, some questions focus
on rivers, whereas others focus on oceans. The models used to study these natural phenomena
differ. Therefore, helping people understand the academic impact of a model in a particular
field is most conducive to solving the relevant problem.
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