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Thermal and thermoelectric properties of an antiferromagnetic topological insulator MnBi2Te4
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The discovery of an intrinsic antiferromagnetic topological insulator (AFMTI) in MnBi2Te4 has attracted
intense attention, most of which lies in its electrical properties. In this paper, we report electronic, thermal, and
thermoelectric transport studies of this newly found AFMTI. The temperature and magnetic field dependence of
its resistivity, thermal conductivity, and Seebeck coefficient indicate strong coupling between charge, lattice, and
spin degrees of freedom in this system. Furthermore, MnBi2Te4 exhibits a large anomalous Nernst signal, which
is associated with nonzero Berry curvature of the field-induced canted antiferromagnetic state.
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I. INTRODUCTION

Intrinsic magnetic topological materials have been in-
tensely sought after by researchers in materials science
and condensed matter physics communities in the past few
years [1–10]. In particular, the integration of magnetism and
nontrivial band topology in magnetic topological insulators
(MTIs) provides an ideal ground for identifying exotic states
and quasiparticles, such as the quantum anomalous Hall in-
sulator, axion insulator, and non-Abelian Majorana fermions
[11–13]. Three routes to search for new MTIs have been ac-
tively explored, including doping topological insulators (TIs)
with magnetic elements [14], building heterostructures by
stacking TIs and magnetic layers together [15], and synthe-
sizing single-phase materials which can host magnetism and
topological bands [10]. The recent discovery of the charac-
teristics of an intrinsic MTI in MnBi2Te4 (MBT) [8] marks a
major advancement in the latter route, which further attracts
avid efforts in exploring all aspects of this newly found MTI
[11,13,16–21] and its derivatives [22–28].

In MBT the magnetic order is associated with the man-
ganese atoms; the nontrivial band topology arises from the pz
bands of bismuth and tellurium [8]. It undergoes a paramag-
netic to antiferromagnetic order at TN = 25K with an A-type
spin structure where spins are ferromagnetically aligned
within the ab plane but coupled antiferromagnetically along
the c axis [16,21], and the system has a magnetic easy axis
along the c direction [21]. The antiferromagnetic ground state
is predicted to gap out both bulk and surface states and create
an axion insulator state, while the Weyl semimetal is proposed
to emerge in the ferromagnetic phase [7,17]. Indeed, the ob-
servation of a robust axion insulator state has been reported
recently [11], and the field-induced topological phase transi-
tion has been inferred from recent electronic transport studies
[29,30]. These theoretical predictions and experimental stud-
ies demonstrate that new quantum states can be achieved in
a system wherein intrinsic magnetism and nontrivial band
topology couples strongly.

Thus far, most studies of MBT have mainly focused on the
interplay between magnetism and band topology, while the
lattice degree of freedom and its potential coupling to the spin
and charge degrees of freedom remain largely unexplored.
In recent inelastic neutron scattering experiments, intrinsic
linewidth broadening of the spin wave spectrum has been
observed, which was attributed to coupling of magnons to
either phonons or electrons [20]. More recently, a terahertz
(THZ) experiment demonstrated coherent magnetophononic
coupling in MnBi2Te4, which enables subpicosecond control
of magnetism with an ultrafast laser [31]. These studies im-
ply the strong coupling between spin and lattice degrees of
freedom in MBT. While recently Wang et al. reported the
temperature dependence of zero-field thermal conductivity
and the Seebeck coefficient in Mn(Bi1–xSbx )2Te4 [32], they
focused on the hole-doping effect induced by Sb substitution.
In this paper, we report thermal and thermoelectric proper-
ties of MBT. We show that both thermal conductivity and
Seebeck coefficient strongly depend on the applied magnetic
field, indicative of the strong coupling between charge, lat-
tice, and spin degrees of freedom in MBT. In addition, we
observe a clear anomalous Nernst effect (ANE) feature, which
is presumably ascribed to the nonzero Berry curvature in the
field-induced canted antiferromagnetic phase.

II. EXPERIMENT

MBT single crystals were grown using the flux method
[21]. Magnetic susceptibility measurements were carried
out using a superconducting quantum interference device
(SQUID) magnetometer, and the electronic and thermal and
thermoelectric transport measurements were conducted using
a physical property measurement system (PPMS). Thermal
and thermoelectric transport measurements were performed
using a homemade sample puck designed to be compatible
with the PPMS cryostat. The sample was attached to a piece
of oxygen-free high conductivity copper used as the heat sink
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FIG. 1. (a) Temperature dependence of magnetic susceptibility
of MnBi2Te4 measured with a 1 T magnetic field applied along the
crystalline c axis. The sample is cooled under zero-field conditions.
(b) Isothermal magnetization measurement of MnBi2Te4 at various
temperatures from 2 to 30 K.

using silver epoxy, and a heater (∼1 k� resistor) was attached
to the other end of the sample. The heat current JQ was applied
in the ab plane and the magnetic field was applied along
the c axis. We used three Cernox (Lakeshore Cryotronics)
sensors for the temperature measurements, and the thermo-
electric voltage was measured using K2182A nanovoltmeters.
The Nernst and Seebeck coefficients were obtained by anti-
symmetrizing and symmetrizing the thermoelectric voltages
measured in the presence of positive field and negative field,
respectively.

III. RESULTS

Figure 1(a) shows the temperature dependence of zero
field cooled (ZFC) magnetic susceptibility measured with 1
T field applied along the crystalline c axis (χc) during the
warming process. A sharp drop in χc at the Néel tempera-
ture (TN = 25K) is clearly seen, characteristic of the onset
of antiferromagnetic transition. The isothermal magnetization
curvesM(H ) measured at various temperatures from 2 to 30 K
are presented in Fig. 1(b). Below TN, field-induced metamag-
netic transition occurs at the critical field (Hc1) which depends
on the temperature. Previous transport and neutron scattering
measurements showed that a canted antiferromagnetic phase
emerges above Hc1 [21]. Another critical magnetic field Hc2

with larger magnitude is expected, above which MBT be-
comes fully polarized [21]. The nice agreement of magnetic
susceptibility presented in Fig. 1 with the literature [21] af-
firms the good sample quality of our single crystals.

We now discus the temperature dependence of electronic,
thermal, and thermoelectric properties of MBT. In Fig. 2(a)
we show the Seebeck coefficient (Sxx ) and resistivity (ρxx ) of
MBT measured at a field of 0 and 9 T applied along the c
axis. At zero field, a kinklike transition around the Néel tem-
perature is observed in both Sxx and ρxx. A previous transport
study has found that the spin fluctuation driven scattering has
a prominent effect on MBT, even well above TN [21]. Upon
approaching TN, spin fluctuations are expected to be stronger,
leading to stronger scattering and thus a shorter mean free
path of electrons and an increase in ρxx. As the long-range
magnetic order develops below TN, in which spins within
the ab plane are ferromagnetically aligned, spin fluctuations
and the electron-spin scattering are suppressed, resulting in
kink in ρxx at TN followed by a continuous decease upon
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FIG. 2. (a) Temperature dependence of longitudinal Seebeck
coefficient Sxx (upper panel) and resistivity ρxx (lower panel) of
MnBi2Te4 measured under an applied field of 0 T (in blue) and 9 T
(in red, H//c). (b) Temperature dependence of longitudinal thermal
conductivity κxx measured under an applied field of 0 T (in blue) and
9 T (in red, H//c).

decreasing the temperature. For Sxx, its negative sign over the
whole measured temperature range suggests electrons as the
dominant charge carriers, which is consistent with the Hall
effect transport studies [21]. The negative sign of Sxx was
also previously observed, although only Sxx above 15 K was
reported [32] and its magnitude is different from the values
shown in Fig. 1(a), the latter of which is presumably associ-
ated with the quality of samples grown by different groups. As
the temperature decreases, the entropy per electron decreases
[33], leading to a decrease in Sxx; on the other hand, as will
be discussed later, below TN the magnon-electron drag effect
due to the coherent momentum conserving magnon-electron
scattering gives rise to an increase in Sxx. As a result, the
net Sxx develops a broad bump around 14 K. At 9 T, MBT
becomes a fully polarized ferromagnet, which increases the
magnon lifetime and thus enhances the magnon-electron drag
effect. Overall, these features of Sxx and ρxx indicate that the
spin and charge degrees of freedom are intimately coupled in
MBT.

Figure 2(b) shows the thermal conductivity (κxx ) measured
at 0 and 9 T magnetic field (H ‖ c). At zero field, we observe
a large increase of κxx upon the onset of antiferromagnetic
ordering at TN. The total thermal conductivity in MBT has
contributions from electrons, phonons, and magnons (i.e.,
κxx = κe + κph + κmag). We first estimate the thermal conduc-
tivity of electrons (κe) using the Wiedemann-Franz law (κe =
σLT, L = 2.44 × 10−8 V2/K2). The maximum electron con-
tribution below 25 K is 0.05 Wm−1 K−1, much smaller than
the increase of thermal conductivity κxx observed below TN.
Therefore, the main heat carriers in MBT are phonons and/or
magnons. Magnons can contribute to the thermal conduction
via two ways. One is that magnons serve as heat carriers,
which would lead to an enhanced κxx below TN; the other is
that magnons scatter phonons, giving rise to a reduction of the
phonon contribution to κxx. Thus, the increase of κxx below
TN indicates the dominance of magnons as heat carriers. In
addition, well below TN κxx at 9 T is smaller than the value
measured at zero field, which can be ascribed to the suppres-
sion of magnon population in the presence of a magnetic field,
suggesting that magnons contribute to the enhanced κxx below
TN. On the other hand, the increase of κxx near TN in the
presence of 9 T is a sign of the dominant phonon scattering
by magnons. As will be discussed later, the magnetic field
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FIG. 3. The magnetic field dependence of relative change in lon-
gitudinal (a) thermal conductivity κxx , (b) Seebeck coefficients Sxx ,
and (c) resistivity ρxx measured at various temperatures.

dependence of κxx below TN shows nonmonotonic behavior,
suggesting that in MBT the spin and lattice degrees of free-
dom are also intertwined.

The prominent effects of magnetic field on the temperature
dependence of ρxx, κxx, Sxx indicate that the spin, lattice,
and charge degrees of freedom are strongly coupled in MBT.
To better understand this coupling, we further investigate the
field dependence of these three quantities. Note that a similar
field dependence of ρxx has been reported previously [21]. In
Fig. 3(a), we plot the field dependence of �κxx/κxx(0) with
�κxx = κxx(μ0H ) − κxx(0) measured at some selected tem-
peratures. Each curve is vertically shifted for clarity. Above
TN, κxx increases monotonically with magnetic field due to the
suppression of spin fluctuation driven phonon scattering. In
contrast, below TN, κxx exhibits a nonmonotonic field depen-
dence. At T = 21.5K, κxx first decreases until the magnetic
field reaches the first critical field Hc1 and then continues
to increase with the magnetic field. As the temperature de-
creases, a second critical field Hc2 is observed prior to the
continuous increase of κxx with the magnetic field. Both Hc1

andHc2 increase upon decreasing the temperature. Such a field
dependence of κxx below TN is mainly associated with the
spin state of MBT in the presence of magnetic field. Previous
neutron diffraction measurements show that MBT displays an
A-type antiferromagnetic structure for H < Hc1 and then a
canted-antiferromagnetic (CAFM) spin structure in the region
of Hc1 < H < Hc2 followed by a field-induced fully polarized
spin state above Hc2 [21]. Therefore, for H < Hc1 the appli-
cation of a magnetic field suppresses the magnon population,
thus reducing the magnon contribution κmag to the total κxx.
For Hc1 < H < Hc2, while the magnetic field continues to
suppress the magnon population and reduces its contribution
to κxx, the phonon scattering by magnons is reduced as well,
which tends to enhance the phonon contribution to κxx. As a
result of these competing effects, κxx decreases slightly in this
intermediate field region. Finally, in the fully polarized state
at H > Hc2 the magnon population further decreases as the
magnon gap increases with the magnetic field, which leads
to the dominant phonon contribution due to the suppression

of magnon-phonon interaction over the magnon contribution,
thus giving rise to an enhancement in the total κxx.

Figure 3(b) shows the change of Seebeck coefficient
�Sxx/Sxx(0) with �Sxx = Sxx(μ0H ) − Sxx(0) as a function
of magnetic field. Above TN, Sxx increases with magnetic field;
below TN, Sxx first decreases with the applied field at H < Hc1

and then sharply increases at Hc1. At Hc1 < H < Hc2, Sxx
shows a bowl shape as a function of magnetic field; aboveHc2,
Sxx continues to increase with field again. Can the variation in
Sxx in the presence of magnetic field arise from the magnetic
field effect of the electron diffusion contribution? In metallic
systems, one may anticipate that the diffusion thermoelectric

effect follows the Mott relation, Sxx = −π2k2BT
3eσxx

dσxx
dζ

|μ (μ is the
Fermi energy). Assuming that the energy derivative of con-
ductivity at Fermi energy dσxx

dζ
|μ is constant, one would expect

Sxx to increase with the increase of resistivity ρxx (=1/σxx),
which is opposite to the trends of field dependence of Sxx and
ρxx shown in Figs. 3(b) and 3(c). Thus, one potential scenario
is that the dσxx

dζ
|μ term is field dependent, having an opposite

trend to and dominating over the field dependence of ρxx such
that Sxx increases while ρxx decreases with field. Alterna-
tively, the magnetic field dependence of �Sxx/Sxx(0) shown
in Fig. 3(b) may be associated with the magnon-electron drag
effect. In the presence of a temperature gradient, magnons
may scatter electrons, causing a drag in electron velocity
and enhancing Sxx. The initial decrease of Sxx at H < Hc1

is likely due to the reduction of magnon population and the
resulting suppression of the magnon-electron drag process.
Across Hc1, the magnetic structure changes from an A-type
antiferromagnet to a canted antiferromagnet [21]. As a result,
the magnon relaxation lifetime τm and the lifetime of an elec-
tron scattered by a magnon (τem) are altered. In the leading
order approximation, the magnon-electron drag thermoelec-
tric effect is proportional to τm/τem [34]. Thus, a potential
dominant increase of τm compared to that of τem in the canted
antiferromagnet state can lead to an enhanced Sxx. At Hc2

MBT becomes a fully polarized ferromagnet [21], which
can reduce the magnon scattering at the magnetic domain
walls and consequently further increases τm and the magnon-
electron drag effect in Sxx. Another possible mechanism that
might account for the field dependence of Sxx is associated
with the field-induced electronic structure change in MBT.
That is, MBT undergoes topological phase transition from
antiferromagnetic topological insulator to Weyl semimetal in
the ferromagnetic state [7,17,30]. Further theoretical investi-
gation is desirable to pin down the underlying physics of the
observed Sxx(H ) behavior.

Finally, we discuss the transverse thermoelectric transport,
i.e., anomalous Nernst effect (ANE) in MBT. Recently, there
has been increasing interest in the ANE effect in topological
materials [35–39]. ANE is complementary to anomalous Hall
effect (AHE) measurements in characterizing the Berry cur-
vature distribution in the reciprocal space [38]. Recent AHE
studies suggested that a nonzero Berry curvature is created
in the canted AFM state, leading to an intrinsic AHE [21].
In Fig. 4 we present the magnetic field dependence of the
Nernst coefficient (−Sxy) measured at various temperatures.
The inset illustrates the schematic experimental setup and
the sign convention here follows a previous ANE study on
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FIG. 4. Magnetic field dependence of Nernst coefficients of
MnBi2Te4 measured at various temperatures. The inset shows a
schematic of the experimental setup.

a Dirac semimetal Cd3As2 [39]. Overall, the Nernst signal
tracks well with the magnetization data [Fig. 1(b)] in behav-
ior. Below TN, the Nernst coefficient slowly increases with
the magnetic field until Hc1 at which a sudden increase in
Nernst coefficient is observed, consistent with the emergence
of nonzero Berry curvature in the momentum space in the
canted antiferromagnetic phase suggested previously based on
AHE measurements [21]. As the magnetic field is increased,
MBT becomes fully polarized at Hc2 [21] and turns into a
Weyl semimetal [7,17,29,30]. Nevertheless, recent electronic
transport studies showed that the Weyl nodes in the polar-
ized ferromagnetic state are not close to the Fermi energy in
the pristine compound, in contrast to the lightly hole doped

Mn(Bi1–xSbx )2Te4 sample [29]. As a result, the slight further
enhancement in |Sxy| above Hc2 is mainly ascribable to the
normal Nernst contribution instead of field-induced electronic
structure change.

IV. CONCLUSION

In conclusion, we have studied electronic, thermal, and
thermoelectric transport properties of MnBi2Te4. We observe
both temperature and magnetic field dependence of longitudi-
nal resistivity, thermal conductivity, and Seebeck coefficient,
indicating strong coupling among charge, lattice, and spin
degrees of freedom in this system. Furthermore, the observa-
tion of anomalous Nernst effect implies the creation of Berry
curvature in the momentum space in the field-induced canted
antiferromagnetic state.
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