
J
H
E
P
0
3
(
2
0
2
3
)
1
0
4

Published for SISSA by Springer
Received: December 21, 2022
Accepted: February 28, 2023

Published: March 15, 2023

Constraints on ultralight scalar dark matter with
quadratic couplings

Thomas Bouley,a,f Philip Sørensenb,c,d,e and Tien-Tien Yua,f
aDepartment of Physics, University of Oregon,
Eugene, OR 97403, U.S.A.

bDipartimento di Fisica e Astronomia ‘G. Galilei’, Università di Padova,
Via F. Marzolo 8, Padova 35131, Italy

cINFN Sezione di Padova,
Via F. Marzolo 8, Padova 35131, Italy

dII. Institute of Theoretical Physics, Universität Hamburg,
Hamburg 22761, Germany

eDeutches Elektronen-Synchtron DESY,
Notkestr. 85, Hamburg 22607, Germany

f Institute for Fundamental Science, University of Oregon,
Eugene, OR 97403, U.S.A.
E-mail: tbouley@uoregon.edu, philip.soerensen@pd.infn.it,
tientien@uoregon.edu

Abstract: Ultralight dark matter is a compelling dark matter candidate. In this work,
we examine the impact of quadratically-coupled ultralight dark matter on the predictions
of Big Bang Nucleosynthesis. The presence of ultralight dark matter can modify the ef-
fective values of fundamental constants during Big Bang Nucleosynthesis, modifying the
predicted abundances of the primordial elements such as Helium-4. We improve upon the
existing literature in two ways: firstly, we take into account the thermal mass acquired
by the ultralight dark matter due to its quadratic interactions with the Standard Model
bath, which affects the cosmological evolution of the dark matter. Secondly, we treat the
weak freeze-out using the full kinetic equations instead of using an instantaneous approxi-
mation. Both improvements were shown to impact the Helium-4 prediction in the context
of universally-coupled dark matter in previous work. We extend these lessons to more
general couplings. We show that with these modifications, Big Bang Nucleosynthesis pro-
vides strong constraints of ultralight dark matter with quadratic couplings to the Standard
Model for a large range of masses as compared to other probes of this model, such as
equivalence principle tests, atomic and nuclear clocks, as well as astrophysical and other
cosmological probes.

Keywords: Cosmology of Theories BSM, Early Universe Particle Physics, Models for
Dark Matter, Particle Nature of Dark Matter

ArXiv ePrint: 2211.09826

Open Access, c© The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP03(2023)104

mailto:tbouley@uoregon.edu
mailto:philip.soerensen@pd.infn.it
mailto:tientien@uoregon.edu
https://arxiv.org/abs/2211.09826
https://doi.org/10.1007/JHEP03(2023)104


J
H
E
P
0
3
(
2
0
2
3
)
1
0
4

Contents
1 Introduction 1

2 Ultralight dark matter with quadratic couplings 2
2.1 Dark matter evolution 4

2.1.1 Electron coupling 5
2.1.2 Photon coupling 6

3 Ultralight dark matter and BBN 8
3.1 Standard BBN 8
3.2 Effect of varying fundamental constants 10

3.2.1 Variation in fundamental constants relevant for BBN 10
3.2.2 Variation in the neutron abundance after weak freeze-out 12
3.2.3 Variation in the neutron abundance at BBN 13
3.2.4 Variation in the helium abundance 13

3.3 Results 14

4 Other constraints 16
4.1 Weak equivalence principle violation searches 16
4.2 Experiments looking for varying fundamental constants 17
4.3 Structure formation 18
4.4 Astrophysics 18

5 Conclusions 19

1 Introduction

Most of the matter in the Universe is not accounted for in the Standard Model (SM)
of particle physics. This missing matter is referred to as dark matter (DM). Proposed
candidates for DM range from many solar mass compact objects to ultralight DM with
masses as low as about 10−19 eV [1–3]. In the low mass range, the DM is characterized by
high occupation numbers, causing DM to behave like a classical field. Familiar examples
of such ultralight DM (ULDM) are axion-like-particles [4–6] and dilatons (see, e.g., [7]).
Dilatons are scalar fields φ present in models with compactified extra dimensions and have
leading order couplings that are of the form [8]

φ

ΛOSM , (1.1)

where OSM are terms in the SM Lagrangian and Λ is the scale of new physics generating
the coupling. Scalars with such couplings generate new long-range forces, and such theories
are, therefore, heavily constrained by 5th force experiments [9–12]. In this work, we will
consider instead scalar ULDM with quadratic couplings of the form

φ2

Λ2OSM , (1.2)
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which evades the most stringent constraints on dilatons and possesses novel phenomenol-
ogy distinct from models with linear couplings. Such quadratic couplings can arise if the
new physics assumed at the high-energy (UV) scale Λ is subject to symmetries that re-
strict the linear contributions. The lack of definitive observation of ULDM indicates that
the ULDM must have extremely feeble couplings to ordinary matter. Beyond fifth-force
searches, past attempts to search for ULDM have included searches for frequency variation
of atomic clocks [13] and searches for perturbations in the arms of gravitational wave ex-
periments [14]. Astrophysical probes of ULDM can be derived from Supernova SN1987A
energy loss arguments [15, 16], from the spin-down of black holes due to superradiance [17–
23], and from pulsar timing arrays [24, 25].

In this work, we investigate cosmological probes of ULDM. Cosmology provides an
attractive probe of ULDM because the field values of ULDM decrease with the expansion
of the Universe, such that the largest field values are realized at early times. The earli-
est current probe of physics in the early Universe comes from Big Bang Nucleosynthesis
(BBN), which therefore provides a powerful constraint of ULDM. This constraint appears
because the presence of a background DM field can shift the effective value of fundamental
constants and therefore can modify BBN [26]. To adequately model the effect of ultra-
light DM on BBN, the backreaction from the SM bath on the ULDM must be accounted
for. Furthermore, the BBN analysis must go beyond instantaneous approximations of the
neutron-proton, or weak, freeze-out. Previous work [27] has shown the relevance of these
improvements in the context of universally-coupled ULDM. In this work, we investigate
DM with more general couplings, correctly accounting for the evolution of the DM and the
dynamics of weak freeze-out. We begin in section 2 with a description of the quadratically-
coupled ULDM model and discuss the DM coupling to low-energy degrees of freedom. We
also discuss the evolution of ULDM, properly accounting for the backreaction from the SM
bath. In section 3, we provide an overview of BBN and show how ULDM affects BBN,
specifically the predictions of the Helium-4 (4He ) abundance. In section 4 we will discuss
the resulting constraints and compare the BBN constraints to other known constraints.
We conclude in section 5.

2 Ultralight dark matter with quadratic couplings

We begin by adding to the SM a real scalar field,

Lφ = 1
2∂µφ∂

µφ− 1
2m

2
φφ

2 , (2.1)

where mφ is the scalar mass. Couplings, such as the ones considered below, will lead to
corrections to the bare scalar mass. Generically, these are of the form

δmφ ≈ d(2)f

m2
fΛ2

UV
M2

pl
coupling to fermions with mass mf , (2.2)

δmφ ≈ d(2)b

Λ4
UV

M2
pl

coupling to bosons, (2.3)
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with ΛUV the scale of the UV completion and d(2)i are dimensionless couplings defined
below. Naïvely, mφ, smaller than this correction could be considered unnatural because
this contribution would have to be tuned out. However, there exist models in which these
contributions are suppressed, e.g., see [28, 29]. Here, we seek to describe the phenomenology
of such a field in a model-independent way, and we therefore leave any discussion of radiative
corrections and protection from these to other work on model implementations.

We consider scenarios in which the scalar field is charged under a symmetry, e.g., Z2,
such that the leading coupling is quadratic, i.e., we take the interactions of the scalar with
the SM to be in the form φ2

Λ2OSM, where OSM is a term in the SM Lagrangian and Λ is
some high scale at which new physics appears. For ease of comparison with results in the
literature, we will follow the conventions of [8, 30–32] and parameterize the interactions of
the scalar particle with the SM with the following Lagrangian:

L ⊃ 2π φ2

M2
pl



d
(2)
e

4e2 FµνF
µν − d(2)g β3

2g3
GA

µνG
Aµν − d(2)me

meēe −
∑

i=u,d

(
d(2)mi

+ γmid
(2)
g

)
miψ̄iψi



 .

(2.4)
Here, Mpl = 1.22× 1019GeV is the Planck mass, β3 is the QCD beta function, and γmi are
the anomalous dimensions of the u and d quarks. The superscript (2) specifies that these
are the quadratic (as opposed to linear) couplings of the scalar. An alternative convention
for parameterizing these coupling found in [26, 33–36] has

L ⊃ φ2

Λ′2
e

1
4e2FµνF

µν − φ2

Λ′2
g

β3
2g3

GA
µνG

Aµν − φ2

Λ′2
me

meēe −
∑

i=u,d

(
φ2

Λ′2
mi

+ γmi

φ2

Λ′2
g

)

miψ̄iψi .

(2.5)
This convention implies that the scale of the new physics mediating these couplings to the
SM is around Λ′. The conversion from this convention to the one used in this work is given
by d(2)i = M2

pl
2πΛ′2

i
with i = e, g,me,mu, or md.

Note that the interactions defined in equation (2.4) will give rise to φ-dependency in
the fundamental “constants” of the SM. In a background φ, the fundamental constants will
shift according to

∆α
α

= d(2)e
ϕ2

2 , (2.6)

∆ΛQCD
ΛQCD

= d(2)g
ϕ2

2 , (2.7)

∆mf

mf
= d(2)mf

ϕ2

2 , for f = e, u, d, (2.8)

where we have defined ϕ =
√
4πφ
Mpl

. Here, α % 1/137 is the fine-structure constant, ΛQCD
the QCD confinement scale, and mf are the fermion masses. The quark mass-couplings
are more useful written in terms of the symmetric and antisymmetric combinations:

d(2)m̂ ≡ dmdmd + dmumu

md +mu
symmetric, (2.9)

d(2)δm ≡ dmdmd − dmumu

md − mu
anti-symmetric, (2.10)

– 3 –



J
H
E
P
0
3
(
2
0
2
3
)
1
0
4

as physical quantities come in these combinations. In particular, the quark mass-couplings
enter BBN through the neutron-proton mass difference, which depends on the anti-sym-
metric combination, and through the neutron axial coupling, which depends on the sym-
metric combination.

2.1 Dark matter evolution
We are interested in the field values of the ULDM at BBN. The present-day field value, φ0,
is fixed by the current abundance of DM: ρDM,0 = 1

2m
2
φφ

2
0. To determine the value of the

field around BBN, we evolve the scalar field backward in time according to its equations
of motion, using the present-day field value φ0 as a boundary condition,

φ̈+ 3Hφ̇+m2
effφ = 0 , (2.11)

where the ˙ denotes derivatives with respect to time. The effective mass is a combination
of the bare mass and the thermal mass induced by the SM bath: m2

eff = m2
φ+m2

ind. During
BBN, the SM bath is primarily composed of photons and electrons. Thus, only interactions
with photons (d(2)e ) and electrons (d(2)me) give significant contributions to the thermal mass
as other species are not sufficiently abundant. Therefore, the quark (d(2)δm and d(2)m̂ ) and
gluon (d(2)g ) couplings do not provide a significant contribution to the thermal mass and
the backreaction from these two couplings can be ignored.

To solve equation (2.11), we can examine three distinct regimes of DM evolution:

• Hubble friction domination (H): when H2 ' m2
eff

• Bare mass domination (B): when m2
φ ∼ m2

eff ' H2

• Induced mass domination (I): when m2
eff ' H2,m2

φ

In the B and I regimes, φ is rapidly oscillating, and performing the full computation is
numerically expensive. Instead, we model the interactions of the ULDM with matter by
taking the average over an oscillation period. We use a WKB-type solution, as in [27], to
find the amplitude of the oscillation. This WKB-type approximation gives,

φamp ∝ m−1/2
eff a−3/2, (2.12)

where φamp is the amplitude of the rapidly oscillating φ. In the H regime, the field value
is constant due to the Hubble friction term dominating the equation of motion. In the
transitions between the regimes, the field is slowly oscillating and we can solve the field
evolution numerically and resolve the behavior of φ without the need for averaging. Figure 1
shows an example evolution for mφ = 10−20 eV and d(2)e = 2000 or d(2)me = 2000 comparing
the evolution computed using our method to the pure WKB and numerical solution. In
the top panel showing the electron coupling case the field transitions from being Hubble
dominated at early times, to being induced mass dominated, and finally to being bare mass
dominated. In the induced mass domination regime the field is slowly oscillating when the
induced mass is comparable to Hubble. We see the same behavior in the bottom panel,
which shows the photon coupling case. We see that at early times the induced mass is
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Figure 1. The evolution of the DM coupled to electrons (upper) or photons (lower). The effective
solution is a splice of the numerical solution and the WKB approximation. The thermal mass used
for the photon evolution was computed in the high-temperature limit as explained in section 2.1.2.
The difference between the numerical solution and the effective solution in the non-oscillating regions
is due to factors of 2 present in averaging. Time is indicated both in terms of temperature T and
in terms of the scale factor a, the latter of which is normalized to a0 = 1 today.

comparable to Hubble and the field is slowly oscillating, and at late times it transitions
to bare mass domination. In both panels, we see that at late times the field is rapidly
oscillating, which is needed to satisfy the requirement that the field is DM today. The
behavior shown in figure 1 is not generic and the evolution depends on the mass and
couplings. As we see the induced mass is crucial to understand the behavior of the scalar
field. In what follows, we discuss the induced thermal mass for the electron and photon
couplings.

2.1.1 Electron coupling

There are two ways to calculate the induced mass from the interactions with electrons. The
first is to calculate the induced mass using thermal field theory. The leading diagram is

φ φ

e

. (2.13)
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In the imaginary time formalism described in [37, 38], this diagram gives

Π1 = −22πd
(2)
meme

M2
pl

T
∞∑

n=−∞

∫ d3p
(2π)3

tr(/p+me)
p2 − m2

e
, (2.14)

where the sum is over the n Matsubara frequencies which each fix the time component of
p to p0 = i(2n+ 1)T . The temperature-dependent part of this diagram is given by

m2
eff = m2

φ + 2πd(2)me

M2
pl

4m2
e

π2
T 2
∫ ∞

me/T
dx
√
x2 − (me/T )2

ex + 1 . (2.15)

This calculation can be cross-checked with a second way of calculating the effective mass,
which is to note that when electrons are on-shell the interaction 2πd

(2)
me

M2
pl
φ2meψ̄ψ can be

written as 2πd
(2)
me

M2
pl
φ2 i

2(ψ̄/∂ψ−(∂µψ̄)γµψ) = 2πd
(2)
me

M2
pl
φ2Θe where Θe is the trace of the electrons’

contribution to the stress-energy tensor. The effective mass is then given by [27, 39]

m2
eff = m2

φ + 4πd(2)me

M2
pl

Θe = m2
φ + 4πd(2)me

M2
pl

(ρe − 3Pe) , (2.16)

which agrees with equation (2.15) after substituting

ρe =
2
π2

T 4
∫ ∞

me/T
dxx

2√x2 − (me/T )2
ex + 1 , (2.17)

Pe =
2

3π2T
4
∫ ∞

me/T
dx(x

2 − (me/T )2)3/2
ex + 1 . (2.18)

Note that for T ' me, equation (2.15) implies that m2
eff ∝ T 2. In this regime,

m2
eff ∝ a−2 whereas H2 ∝ a−4. Thus, at early times (high temperature), the DM evolution

is dominated by Hubble friction and the field is in the H regime. Thus, the mass induced
on φ from finite density effects can lead to highly non-trivial evolution of the scalar field.
This can be seen in figure 2, where the induced mass m2

ind ≡ m2
eff − m2

φ is compared to
both H and the bare mass mφ. In the example given in figure 2, which corresponds to
the behavior also seen in figure 1, the field is initially dominated by Hubble friction, then
starts oscillating because of the induced mass and the returns to a brief Hubble friction
dominated state before finally settling into an oscillating state driven by the late time
mass. Figure 2 also shows the mass that can be induced by a photon coupling, which are
discussed in the next section.

2.1.2 Photon coupling
For the photon coupling, we calculate the contribution to the induced mass using thermal
field theory. The 1-loop diagram,

φ φ

γ

, (2.19)
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Figure 2. Potential contributions to meff from the electron and photon coupling for the couplings
d(2)e = 105 or d(2)me = 105. The dotted lines are the high-temperature approximations for the electron
and photon couplings, respectively.

gives

Π1 =
2πd(2)me

M2
pl

T
∞∑

n=−∞

∫ d3p
(2π)3 (g

µνp2 − pνpµ)gµν

p2
, (2.20)

where similarly to equation (2.14) the sum is over the n Matsubara frequencies which set
p0 = i2nπT . This gives a scaleless integral and so vanishes in dimensional regularization,
therefore this diagram does not contribute to the thermal mass. Instead, the leading
diagram appears at two loops

φ φ

e

e

. (2.21)

This gives

Π2 =
2πd(2)e

Mpl
e2T

∞∑

n=−∞

∫ d3k
(2π)3T

∞∑

m=−∞

∫ d3p
(2π)3

(gµνk2 − kµkν)(−1) tr
(
γµ(/p+me)γν(/p− /k+me)

)

k4(p2 −m2
e)((p− k)2 −m2

e)
,

(2.22)
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summing over the n and m Matsubara frequencies which set k0 = i2nπT and p0 = i(2m+
1)πT . Evaluating the above expression is substantially complicated due to overlapping UV
divergences, but it is relatively simple to compute in the limit where T ' me. In this
high-temperature limit, the contribution to the thermal mass is given by

Π2 =
2πd(2)e

M2
pl

α

4π
π2

3 T 4 . (2.23)

This high-temperature limit is a good approximation for the thermal mass at temperatures
much larger than the electron mass. For lower temperatures, the finite electron mass sup-
presses the contribution. Therefore, we expect the high-temperature result to overestimate
the thermal mass.

In the regime where the field is always oscillating, we expect this thermal mass con-
tribution to somewhat relax the constraints. Therefore, the high-temperature result can
be taken as conservative. This can be seen from the WKB-approximation, by which the
amplitude of the oscillations can be described as φ ∝ m−1/2

eff a−3/2. The thermal mass con-
tribution decays in time, which then tends to compensate for the growth in a and therefore
slow down the redshift of φ. This reduces the hierarchy between φBBN and φ0. Since φ0
is fixed by the zero-temperature mass and the observed DM abundance today φBBN will
therefore be smaller in a scenario with thermal mass contribution, as long as WKB is al-
ways a good approximation of the evolution. This argument breaks down in the regime in
which Hubble friction becomes significant and WKB approximation fails. In this regime,
a thermal mass contribution can overcome Hubble friction which increases the strength of
the constraint. At low mφ the impact on the constraint is therefore a competition between
opposing effects. For our purposes, we will present our results in the two limits using the
high-temperature effective mass given in equation (2.23) and in the low-temperature limit
where meff % mφ, which provides an envelope within which the true bound will sit.

3 Ultralight dark matter and BBN

We are interested in understanding the effect of the ULDM couplings on the predictions
of BBN. We, in section 3.1, begin with a brief review of the standard BBN analysis,
following the discussion in [40]. From this, we can calculate an analytic estimate of the
4He abundance. In section 3.2, we perturb the standard result to obtain constraints.

3.1 Standard BBN
The 4He abundance is determined by the abundance of neutrons at the time that fusion to
helium becomes efficient. This in turn is determined by the abundance of neutrons when
neutrinos decouple and the time at which deuterium can form. Before weak freeze-out, the
weak reactions n+ e+ ↔ p+ ν̄e and n+ νe ↔ p+ e− are efficient and neutrons and protons
have equilibrium abundances,

Xeq
n = 1

1 + emnp/T
, (3.1)

Xeq
p = 1 − Xeq

n = 1
1 + e−mnp/T

, (3.2)
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where Xeq
n and Xeq

p are the equilibrium fractions of baryons in neutrons and protons,
respectively, and mnp is the proton-neutron mass difference. As the Universe expands and
cools, the reaction rate for these processes falls below the expansion rate of the Universe,
the Hubble scale, and so the neutron abundance falls out of equilibrium. At this point, the
evolution of the neutron abundance Xn is governed by the kinetic equation,

a
dXn

da = −λn→p

H
(1 + e−mnp/T )(Xn − Xeq

n ) , (3.3)

where a is the scale factor (normalized to a0 = 1 today), H = ȧ/a is the Hubble parameter,
T is the temperature, and λn→p is the reaction rate of n+ (e+ or ν) → p+ (ν̄ or e−):

λn→p =
1 + 3gAn

π3
G2

FT
5J
(
mnp

T

)
. (3.4)

Here, GF is the Fermi constant, gAn is the weak axial coupling, and J is a phase space
factor, given by

J(z) = 45ζ(5)
2 + 21ζ(4)

2 z + 3ζ(3)
2

(

1 − m2
e

2m2
np

)

z2 . (3.5)

Solving equation (3.3) for the neutron abundance at late times gives

Xn,W = −
∫ ∞

0
dadX

eq
n

da exp
[

−
∫ ∞

a

da′

a′ λ̃n→p

]
, (3.6)

with λ̃n→p = λn→p

H (1 + e−mnp/T ).
At this point, the neutron abundance continues to decrease due to neutron decay. The

neutron abundance at these times follows

a
dXn

da = −XnΓn

H
, (3.7)

with Γn the neutron inverse lifetime given by

Γn = 1 + 3gA2
n

2π3 G2
Fm

5
eP
(
mnp

me

)
, (3.8)

where P is a phase space factor given by

P (x) = 1
60
(
(2x4 − 9x2 − 8)

√
x2 − 1 + 15x ln (x+

√
x2 − 1)

)
. (3.9)

Integrating equation (3.7), we find the neutron abundance at BBN:

Xn,BBN = Xn,W exp
(

−
∫ aBBN

aW

da
aH

Γn

)
. (3.10)

After weak freeze-out, neutrons and protons fuse to form deuterium through

p+ n ↔ D+ γ . (3.11)
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Initially, the photon abundance is much larger than the baryon abundance, and given that
the deuterium binding energy is not very large compared to the temperature, equilibrium
strongly favors the left side of equation (3.11). The deuterium abundance is given by the
Saha equation

XD = 24ζ(3)√
π

ηbXpXn

(
T

mp

)3/2
eBD/T , (3.12)

where Xp,n is the abundance of protons and neutrons, respectively, BD is the deuterium
binding energy, and ζ is the Riemann zeta function. Note that the 4He binding energy is
much larger than BD so in equilibrium 4He would dominate. However, the reactions needed
to form helium

D + D T + p ,
D + D 3He + n , (3.13)
D + T 4He + n ,

D + 3He 4He + p ,

depend on the formation of deuterium and are suppressed by the low abundance of deu-
terium. This suppression of the deuterium abundance due to the background photons is
known as the “deuterium bottleneck”. Eventually when T ≈ BD

30 , the deuterium abundance
becomes large enough such that the reactions (3.13) become efficient. At this time most
of the neutrons become bound into helium and the 4He abundance is

Yp ≈ 2Xn,BBN . (3.14)

Not long after this, the Universe becomes too cool and diffuse for these nuclear reactions to
be efficient. This signals the end of BBN. After this, but before the onset of star formation,
the tritium and 7Be decay to 3He and 7Li respectively.1

Equation (3.14) gives Yp ≈ 0.25 [40]. A detailed numerical calculation including the
kinetics of the fusion reactions given in (3.13) gives Y th

p = 0.24672 ± 0.00061 using the
baryon to photon ratio measured by Planck [42]. This is in excellent agreement with the
PDG recommended average of Y ex

p = 0.245± 0.003 [1].

3.2 Effect of varying fundamental constants

We now consider how the presence of ULDM modifies the standard analysis above. We first
consider how φ varies the fundamental constants and we then consider how this impacts
the neutron fraction at freeze-out and at BBN. Finally, we derive the impact of φ on 4He .

3.2.1 Variation in fundamental constants relevant for BBN
As we saw in the previous section, the 4He abundance produced by BBN depends on the
deuterium binding energy BD, the proton-neutron mass difference mnp, and the neutron

1It should be noted that in the standard theory there was a discrepancy between predictions and obser-
vations of the 7Li abundance. This is known as the lithium problem. However, the existence of this tension
has recently been put into question [41].
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axial coupling gA. In order to determine how the presence of φ affects BNN, one must de-
termine how φ shifts mnp, BD, and gA. These parameters do not have analytic expressions
but can only be calculated from first principles using lattice gauge theory. The shift in mnp

and BD can be estimated using a combination of lattice and analytic methods as discussed
in [43]; we summarize the relevant parts below. The neutron-proton mass difference can
be written as

mnp = mn − mp ≈ bαΛQCD + (md − mu) , (3.15)

where b is some constant number determined as in [43], giving bαΛQCD ≈ −0.76MeV.
Using equations (2.6), (2.7), and (2.8) we get

∆mnp

mnp
= bαΛQCD

mnp

(
d(2)e + d(2)g

) ϕ2

2 + md − mu

mnp

(
d(2)δm + γd(2)g

) ϕ2

2 . (3.16)

As already stated above, the dimensionless parameter ϕ is defined as ϕ =
√
4πφ
Mpl

. The
dependence of BD on the fundamental constants can be parameterized as [43]

∆BD
BD

= 18∆ΛQCD
ΛQCD

= 18d(2)g
ϕ2

2 . (3.17)

Determining the dependence of gA on fundamental constants is more involved and
requires input from lattice results. Lattice-QCD based attempts to estimate gA from first
principles have limited statistics for physical quark masses and rely on calculations at
heavier quark masses to fit formulae taken from chiral perturbation theory (ChPT) to
extrapolate to physical quark masses. To estimate the dependence of gA on the quark
masses we use these fits. Specifically, we use the expression

gA(επ) = g0 − ε2π
(
(g0 + 2g30) ln επ − c2

)
+ g0c3ε

3
π (3.18)

with επ = mπ
4πfπ

. This expression is from NNLO heavy baryon ChPT. It neglects effects
from ∆ resonances [44, 45] and is used by lattice groups for their extrapolation to physical
quark masses [46, 47]. The coefficients g0, c2, and c3 are determined from fits to lattice
calculations. The dependence of gA on επ can be used to infer the dependence on the quark
masses using mπ ∝

√
m̂ and neglecting the small dependence of fπ on the quark masses.

Putting this all together, we have

∆gA
gA

= d(2)m̂ ϕ
1
2
∂ ln gA
∂ ln επ

(3.19)

This depends on the specific values for the coefficients g0, c2, and c3 that come from lattice
fits. The values obtained from [48] and its supplementary materials are

g0 = 1.237± 0.034 , (3.20)
c2 = −23.0± 3.5 , (3.21)
c3 = 28.7± 5.5 , (3.22)
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with the covariance matrix
g0 c2 c3

g0 0.011 −0.12 0.18
c2 −0.12 12.25 −19.17
c3 0.18 −19.17 30.25

. (3.23)

These give
∂ ln gA
∂ ln επ

= −0.008± 0.023 . (3.24)

Since the dependence of the 4He abundance is proportional to d(2)m̂
∂ ln gA
∂ ln επ

, and the interval
above contains zero, we are not able to give meaningful constraints on d(2)m̂ from BBN at
this time. Improved lattice results may constrain ∂ ln gA

∂ ln επ
away from 0, which in turn could

give constraints on d(2)m̂ from BBN.
Armed with these expressions that encode the effects of the ULDM on the parameters

that enter the calculation for the 4He abundance, we can now determine the effect of ULDM
on the 4He abundance.

3.2.2 Variation in the neutron abundance after weak freeze-out
We begin by varying (3.6) to find the change in Xn,W due to the presence of φ (or equiva-
lently to ϕ). To first order in κ = d(2)i

ϕ2

2 , where i = e,me, g, or δm, we find

∆Xn,W = −
∫ ∞

0
da
(dXeq

n

da exp
[
−
∫ ∞

a

da′

a′ λ̃n→p

](
−
∫ ∞

a

da′

a′ ∆λ̃n→p

)

+d∆Xeq
n

da exp
[
−
∫ ∞

a

da′

a′ λ̃n→p

])
(3.25)

= −
∫ ∞

0
da
(
dXeq

n

da exp
[
−
∫ ∞

a

da′

a′ λ̃n→p

](
−
∫ ∞

a

da′

a′ ∆λ̃n→p

)

−∆Xeq
n
λ̃n→p

a
exp

[
−
∫ ∞

a

da′

a′ λ̃n→p

])

(3.26)

= −
∫ ∞

0

da
a
exp

[
−
∫ ∞

a

da′

a′ λ̃n→p

](
−∆Xeq

n λ̃n→p − a
dXeq

n

da

∫ ∞

a

da′

a′ ∆λ̃n→p

)
.

(3.27)

The change in ∆Xn,W depends on ∆Xeq
n , dXeq

n
da , and ∆λ̃n→p. Let’s first examine the

variation in Xeq
n

∆Xeq
n = − mnp

2T (1 + coshmnp/T )
∆mnp

mnp
, (3.28)

and compare this to
a
dXeq

n

da = − mnp

2T (1 + cosh(mnp/T ))
. (3.29)

The variation in λ̃n→p is given by

∆λ̃n→p

λ̃n→p
= ∆λn→p

λn→p
− mnpXeq

n

T

∆mnp

mnp
, (3.30)
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with the variation in λn→p given by

∆λn→p

λn→p
= 6gA2

n

1 + 3gA2
n

∆gAn

gAn
+ 2∆GF

GF
+ ∆(J(mnp/T ))

J(mnp/T )
(3.31)

= 6gA2
n

1 + 3gA2
n

∆gAn

gAn
+ 2∆GF

GF
+ mnpJ ′

TJ

∆mnp

mnp

− 3ζ(3)
2J

m2
e

T 2
∆me

me
+ 3ζ(3)

2J
m2

e

T 2
∆mnp

mnp
. (3.32)

The last two terms in equation (3.32) are proportional to m2
e

T 2 , which is small at relevant
times and in principle can be neglected. However, we will include them going forward.
Note that ∆GF

GF
= 0 for the models we are considering. Putting everything together we find

that the change in the neutron abundance at weak freeze-out is given by

∆Xn,W =
∫ ∞

0

da
a

mnp

2T (1 + cosh(mnp/T ))
exp

[
−
∫ ∞

a

da′

a′ λ̃n→p

]

×
{

−λ̃n→p
∆mnp

mnp
+
∫ ∞

a

da′

a′ λ̃n→p

[
mnpXeq

n

T

∆mnp

mnp

− 6gA2
n

1 + 3gA2
n

∆gAn

gAn
− 2∆GF

GF
− mnpJ ′

TJ

∆mnp

mnp

+3ζ(3)
2J

m2
e

T 2

(
∆me

me
− ∆mnp

mnp

)]}

.

(3.33)

3.2.3 Variation in the neutron abundance at BBN
After weak freeze-out, the neutron abundance is modified by neutron decay. To find the
variation in the neutron abundance at BBN, we vary equation (3.10) to find

∆Xn,BBN
Xn,BBN

= ∆Xn,W

Xn,W
−
(∫ aBBN

aW

da
aH

∆Γn

)
− Γn

H

∆a

a

∣∣∣∣∣

aBBN

aW

(3.34)

≈ ∆Xn,W

Xn,W
−
(∫ aBBN

aW

da
aH

∆Γn

)
+ Γn

H

∣∣∣∣∣
aBBN

∆TBBN
TBBN

, (3.35)

where we dropped the ∆TW
TW

term because at weak freeze-out Γn
H - 1. The variation in the

neutron lifetime is given by

∆Γn

Γn
= 6gA2

n

1 + 3gAn

∆gAn

gAn
+ 2∆GF

GF
+ 5∆me

me
+ mnpP ′

meP

(
∆mnp

mnp
− ∆me

me

)

. (3.36)

3.2.4 Variation in the helium abundance
The variation of equation (3.14) gives

∆Yp
Yp

= ∆Xn,BBN
Xn,BBN

. (3.37)
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The remaining piece of our calculation is to determine ∆TBBN
TBBN

. Recall that the time of BBN
is determined by the deuterium abundance reaching a critical value allowing the efficient
fusing of deuterium into 4He . Using equation (3.12), we can find TBBN by examining

Xcrit
D = 24ζ(3)√

π
ηb(1 − Xn,BBN)Xn,BBN

(
TBBN
mp

)3/2
eBD/TBBN . (3.38)

Note that the left-hand side is exponentially dependent on BD/TBBN. Therefore, any shift
in BD must be compensated by a shift in TBBN, indicating that TBBN depends mostly
on BD, i.e.

∆TBBN
TBBN

≈ ∆BD
BD

. (3.39)

Combining everything, we get

∆Yp
Yp

= ∆Xn,W

Xn,W
+ Γn

H

∆BD
BD

∣∣∣∣∣
aBBN

−
∫ aBBN

aW

da
a

Γn

H

(
6gA2

n

1 + 3gAn

∆gAn

gAn

+2∆GF
GF

+ 5∆me

me
+ mnpP ′

meP

(
∆mnp

mnp
− ∆me

me

))

.

(3.40)

Using equations (2.8), (3.16), and (3.17) for the variations in the fundamental constants
we can now find the change in the 4He abundance in terms of the field value of φ as a
function of redshift. φ as a function of redshift was found using the evolution as described
in section 2.1. We place constraints on the DM couplings by requiring that the resulting
shift in the 4He abundance keeps the 4He abundance in the 95% confidence interval of the
observed abundance, i.e. we require that Y ex

p −Y th
p − 2σYp < ∆Yp < Y ex

p −Y th
p +2σYp with

σYp being the uncertainty of the theory prediction and the experimental uncertainty added
in quadrature.

3.3 Results
The constraints on quadratically-coupled ULDM obtained from BBN in this work are
shown as solid red lines in figure 3. For masses larger than about 10−14 eV, the evolution
is in the bare mass dominated regime both during and after weak freeze-out. For these
masses, the constraints scale as d(2)i ∝ m2

φ regardless of coupling. For the quark and gluon
couplings, the field is Hubble frozen before BBN for masses lower than 10−19 eV. This
leads the constraint to scale as d(2)i ∝ m1/2

φ in this low-mass regime. At intermediate
masses, the field is Hubble frozen-in during or between weak freeze-out and BBN and the
behavior is more complicated. For the electron coupling, the thermal mass is relevant
for the evolution of the dark matter for masses less than 10−18 eV. This leads to slow
oscillations on the timescale of relevant BBN dynamics and the complex behavior shown
in figure 3. For the photon coupling, we show two different constraints for two different
estimates of the effective mass. The dark red line neglects the thermal mass of φ and the
red line uses the thermal mass calculated in the high-temperature limit. We expect that
the true constraint, calculated using the exact thermal mass, would be in between these
two bounds as explained in section 2.1.2.
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Figure 3. Constraints on quadratic couplings of ULDM to electrons, quarks, gluons, and photons.
Red regions indicate the BBN constraints derived in this paper. Other constraints are given in
shades of gray. On the photon coupling plot, the conservative high-temperature approximation of
the thermal mass yields the constraint in lighter red while the optimistic zero-temperature (i.e.,
without backreaction) result yields the constraint in darker red, see section 2.1.2 for details. The
dashed red lines indicate where the approximation used in this paper breaks down and a more
detailed analysis is needed. The grey regions show parameter space ruled out by prior work from
the Eöt-Wash [9] and MICROSCOPE [49] experiments, atomic clock experiments [31, 50] as well
as constraints from Lyman-α [2], UFDs [3] and superradiance [23, 51]. Also shown, with dashed
gray lines, are projected constraints from the AION and AEDGE experiments [52, 53] as well as
projections for nuclear clocks [54]. Following the discussion in section 2, we show the line above
which the low values of mφ may be rendered unnatural by large loop corrections, assuming a cutoff
of Λ = 10TeV and Λ = 2GeV. For the gluon and photon plots, the line for a Λ = 10TeV cutoff lies
outside the range shown.
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The BBN constraints derived in this work improve on the constraints derived in [26]
by including the effects of the thermal mass on the evolution of the dark matter and by
treating weak freeze-out using the full kinetic description. For the electron coupling, at
masses of at least mφ ! 10−14 eV the two effects lead to a constraint about two orders of
magnitude weaker than the constraint given in [26]. This reduced constraint is explained
by the thermal mass which reduces the field value at the BBN era. For the quark coupling,
the thermal mass is insignificant and the constraint on this coupling is instead enhanced by
about a factor 2 relative to [26] in the mφ ! 10−14 eV regime. In all cases, for masses below
10−14 eV we see nontrivial behavior not seen in [26]. For the photon coupling, our results
indicate only the region of parameter space in which a full calculation of the thermal effects
is expected to place the constraint. The constraint on the photon coupling given in [26]
lies within the region where we expect the constraint to lie. Therefore, we cannot show a
change in the photon coupling constraint without a more detailed evaluation of thermal
effects, which we leave to future work. The gluon coupling was not treated in [26] and thus
the constraints on the gluon coupling derived in this work are completely novel.

Our analysis is valid in the regime where d(2)i ϕ2 - 1. In this regime, we can neglect
the higher-order interactions of φ with the SM that would be present in a UV completion
and treat φ as a small perturbation to the SM. Importantly, we can neglect the effect of the
thermal quartic and other higher-order terms on the evolution of the ULDM. Because the
amplitude of φ decreases with redshift, the threshold d(2)i ϕ2 ∼ 1 could have been crossed
sometime in the early Universe; if this happens after weak freeze-out then details of the UV
completion are needed to determine the impact of φ on BBN. The parameter space in which
the condition that d(2)i ϕ2 - 1 is violated at any time after weak freeze-out corresponds
to the lightly shaded regions above the dashed red lines in figure 3. In these regions, a
model-dependent treatment is required for any given UV completion.

4 Other constraints

Scalar ULDM with the couplings discussed in this paper is subject to several constraints in
addition to the BBN bound derived here. These include constraints from searches for weak
equivalence principle (WEP) violation, atomic clock experiments directly looking for vary-
ing fundamental constants, probes of cosmological structure formation, and astrophysical
constraints.

4.1 Weak equivalence principle violation searches

Searches for violation of the WEP look for accelerations on test masses in addition to
those expected from gravity. Such accelerations can violate the universality of free fall
(UFF) and can be generated by long-range Yukawa forces mediated by φ. Classically,
this effect appears because the φ-SM couplings perturb fundamental constants which leads
to perturbations of the binding energy and thus the mass of SM matter. In general,
the φ-dependence in SM matter will depend on the material composition, so that the
resultant force will not respect the WEP. In the presence of background φ-field gradients or
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oscillations, this φ-dependence in the mass of SM matter lead to apparent WEP violations
that are highly constrained by experiment.

Such constraints on apparent WEP violation depend sensitively on the background
field configuration, which was studied in [31]. For linear interactions, the φ-SM interactions
generate a static field configuration around the Earth itself, the gradient of which leads
to WEP violation constraints. For quadratic interactions, no static solution beyond the
trivial one exists. Instead, φ gets an effective mass inside the Earth and other massive
bodies (see e.g. [55]). This effect screens the φ field,2 creating gradients in the φ field in
the vicinity of the earth.

The strongest constraints from WEP violation searches are set by the Eöt-Wash ex-
periment [9] and the MICROSCOPE experiment [49]. The Eöt-Wash experiment searches
for equivalence principle violation by monitoring a torsion balance with masses made of
dissimilar materials (beryllium and titanium) and looking for torques generated by differ-
ing force per mass on the test bodies. For quadratic interactions, φ acquires an induced
mass from the interaction with the Earth, which screens φ. This effect limits the sensitivity
of Earth-based experiments. The MICROSCOPE experiment is a space-based experiment
that looks for differing gravitational accelerations on test masses in orbit. Because of the
reduced screening, the MICROSCOPE experiment provides stronger constraints than the
Eöt-Wash experiment across all masses for quadratic interactions. These constraints are
shown in figure 3.

This discussion of WEP violation constraints follows the derivation in [31]. In this
work, it is assumed that far away from the Earth ϕ approaches

ϕ %
√

ρDM
2πM2

plm
2
φ

cos(mφt) (4.1)

with ρDM the local DM density. However, this assumption neglects the virial velocity of
the DM; the virial velocity can be neglected when the wavelength of the DM is larger than
the radius of the Earth. However, for mφ ! 10−11 the wavelength is comparable to or
smaller than the size of the Earth and the WEP constraints derived in [31] and displayed
in figure 3 may need to be modified. Note that this is the first time that the quark and
gluon constraints from WEP searches have been presented for quadratic couplings.

4.2 Experiments looking for varying fundamental constants

Precision measurements can search for temporal variation in fundamental constants in labs
on Earth and in space. By examining the stability of different atomic frequency standards
relative to each other, tight constraints can be put on the temporal variation in the ratios
of different atomic transitions (not necessarily of the same species). This puts strong
constraints on the coupling of ULDM to photons, quarks and gluons [13, 31]. The most
sensitive clock experiments are not sensitive to the electron coupling due to approximate
cancellations for the frequency comparisons they make. Future improvements in this field

2If the φ−SM coupling appears with a negative sign, then an enhancement of the field value can instead
be found. We do not consider such scenarios here. See, e.g., discussions in [27, 31].
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may come from the development of nuclear clocks based on the nuclear transition between
the ground state and the first excited state of the 229Th isotope. If such a clock is realized,
the current constraints could be improved by many orders of magnitude. For a review of
recent developments in the field, e.g., see [54].

Matter-wave interferometry experiments are very sensitive to potential time variation
in atomic transition energy [56]. A large number of upcoming experiments will probe
interesting parameter space. A recent summary of progress in this field can be found in [54].
Among the most sensitive of such atom interferometers are the Earth-based AION [52] and
the space-based AEDGE [53]. The Earth-based experiment is hampered by the screening
effects discussed in the previous section. These experiments are also sensitive to the electron
and photon couplings.

4.3 Structure formation
Cosmological structures cannot form on length scales smaller than the de Broglie wave-
length of the DM. To correctly reproduce structure formation, the DM must therefore
be sufficiently heavy. Observations of dwarf Milky Way satellites require mφ ! 3 ×
10−21 eV [57–59]. Similar constraints come from measurements of the subhalo mass func-
tion and observations of stellar streams [60, 61]. The large de Broglie wavelength also delays
structure formation compared to standard cosmology, so complementary constraints arise
from observations of small-scale structure at high redshift. For example, the Lyman-α
forest flux power spectrum requires mφ ! 2 × 10−20 eV [2].

The strongest lower bound on the mass of ULDM comes from observations of ultra-faint
dwarf galaxies (UFDs). The wave-like properties of ULDM cause DM density fluctuations
that transfer energy to stars through gravitational interactions leading to dynamical heating
of dwarf galaxies. Measurements of the velocity dispersion of the UFDs Segue 1 and Segue
2 require mφ ! 3 × 10−19 eV [3]. Similar constraints were claimed from observation of
the dwarf galaxy Eridanus II [62]. However, that analysis made strong assumptions about
the solitonic core of the DM halo of Eridanus II, which were relaxed in a more detailed
analysis [63].

4.4 Astrophysics
Astrophysical probes are also sensitive to the presence of interacting ULDM. In particular,
pulsar timing arrays can be used to constrain very light ULDM in a manner complementary
to the structure formation arguments discussed above [24, 25]. These constraints are weaker
than the constraints from structure formation and are thus not shown here. At higher
masses, constraints arise from superradiance. Bosonic radiation incident on a rotating
black hole can be amplified through a process called black hole superradiance in which
energy and angular momentum are extracted from the black hole in a manner similar to
the Penrose process [64] and results in the spin-down of black holes [65]. The observation
of old, rapidly rotating black holes can therefore be used to rule out the existence of light
bosons [17–22, 66, 67]. Observations of solar mass black holes can be used to constrain
light scalars with masses in the interval [2.7 × 10−13, 6.1 × 10−12] eV [23]. Supermassive
black holes can also be used to constrain DM mass in the interval [2.9 × 10−21, 1.6 ×
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10−17] eV [20, 51, 67, 68], although the spin measurements are not as robust as for solar mass
black holes and less is understood about the accretion disks, whose properties may disrupt
the superradiance process [65, 69]. Quadratically coupled ULDM will get an effective
mass from interaction with the accretion disk in the vicinity of a black hole, potentially
modifying the dynamics of superradiance. In the absence of a detailed analysis of this
effect, we restrict the superradiance constraints to couplings where the induced mass from
the accretion disk is subdominant to the bare mass,

m2
induced = d(2)i

2π
M2

Pl
2QiρBH - m2

φ , (4.2)

where ρBH is the density of the accretion disc at the radius of the boson cloud, and Qi

is the dilatonic charge of the accretion disk as in [31]. Furthermore, we neglect any self-
interactions. Such self-interactions can disrupt superradiance, potentially weakening the
bound further [23, 70, 71].

5 Conclusions

In this work, we examined the effect of ultralight scalar DM with quadratic couplings on
the predicted helium abundance produced by Big Bang nucleosynthesis. Figure 3 shows the
constraints derived in this work. In addition, we also show constraints from the Eöt-Wash
and MICROSCOPE experiments, atomic clocks experiments, and projected constraints
from the AION and AEDGE matter-wave interferometry experiments. This is the first
time that the quark and gluon constraints from WEP searches have been presented for
quadratic couplings. In this work, we treated weak freezeout in the full kinetic description
and accounted for backreaction from the SM on the evolution of the DM. From the impact
of ULDM on BBN, we constrain the couplings of ULDM to electrons, quarks, and photons
for DM masses ranging from about 10−19 eV to 10−4 eV. This updates the result in [26]
that treated weak freezeout in the instantaneous approximation and neglected backreaction
from the SM on the evolution of the DM. For a significant range of parameter space, we
show that the bounds from BBN are the strongest constraints on quadratically coupled
ultra-light dark matter. We show that these BBN bounds are significantly modified by the
effects of the backreaction and the full kinematic decoupling studied in this work.
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