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a b s t r a c t 
White matter bundle segmentation using diffusion MRI fiber tractography has become the method of choice to 
identify white matter fiber pathways in vivo in human brains. However, like other analyses of complex data, there 
is considerable variability in segmentation protocols and techniques. This can result in different reconstructions 
of the same intended white matter pathways, which directly affects tractography results, quantification, and 
interpretation. In this study, we aim to evaluate and quantify the variability that arises from different protocols 
for bundle segmentation. Through an open call to users of fiber tractography, including anatomists, clinicians, and 
algorithm developers, 42 independent teams were given processed sets of human whole-brain streamlines and 
asked to segment 14 white matter fascicles on six subjects. In total, we received 57 different bundle segmentation 
protocols, which enabled detailed volume-based and streamline-based analyses of agreement and disagreement 
among protocols for each fiber pathway. Results show that even when given the exact same sets of underlying 
streamlines, the variability across protocols for bundle segmentation is greater than all other sources of variability 
in the virtual dissection process, including variability within protocols and variability across subjects. In order 
to foster the use of tractography bundle dissection in routine clinical settings, and as a fundamental analytical 
tool, future endeavors must aim to resolve and reduce this heterogeneity. Although external validation is needed 
to verify the anatomical accuracy of bundle dissections, reducing heterogeneity is a step towards reproducible 
research and may be achieved through the use of standard nomenclature and definitions of white matter bundles 
and well-chosen constraints and decisions in the dissection process. 

1. Introduction 
Diffusion MRI fiber tractography ( Xue et al., 1999 , Conturo et al., 

1999 ) offers unprecedented insight into the structural connections of 
the human brain. In a process that parallels post-mortem microdissec- 
tion, tractography – in combination with a set of rules, constraints, and 
procedures to dissect and segment major white matter fascicles of the 
brain – allows noninvasive visualization and quantification of the shape, 
location, connectivity, and biophysical properties of white matter bun- 
dles. This process of in vivo “virtual dissection ” ( Catani and Thiebaut 
de Schotten, 2008 , Catani et al., 2002 ), also called bundle segmentation , 
has led to new insight into how structural connectivity underlies brain 
function, cognition, and development, in addition to dysfunction in neu- 
rological diseases, mental health disorders, and aging ( Le Bihan and 
Johansen-Berg, 2012 ). Additionally, bundle segmentation is used rou- 
tinely to provide critical clinical information in both pre-operative and 
intra-operative mapping of brain tumor resections ( Essayed et al., 2017 , 
Vanderweyen et al., 2020 ). 

Despite widespread use in clinical and research domains, there are 
a large number of variations in workflows for bundle segmentation that 
have been adopted by the neuroimaging community ( Fig. 1 ). Normally, 
workflows either generate bundles of streamlines, i.e., digital represen- 
tations of fiber trajectories, or dissect subsets of streamlines from an en- 
semble of streamlines throughout the whole brain. These protocols typ- 
ically differ in the rules and constraints used to isolate a given pathway, 
ranging from manual delineation of inclusion and exclusion regions of 
interest, to fully automated segmentations based on shape, location, or 
connectivity. Contributing to this variability, agreements on the anatom- 
ical definitions of pathways in the human brain are far from settled 
( Forkel et al., 2014 , Mandonnet et al., 2018 , Panesar and Fernandez- 
Miranda, 2019 , Bajada et al., 2015 ), in part hindered by the lack of 
a consistent framework for defining tracts. Descriptive tract definitions 
have traditionally focused on the shape and area of convergence of axons 
deep in the white matter, but may also focus on the specific regions to 
which these fibers connect ( Mandonnet et al., 2018 , Bajada et al., 2015 , 
Bajada et al., 2017 , Carpenter and Sutin, 1983 , Nieuwenhuys et al., 
2008 , Schmahmann et al., 2007 ). Consequently, and coming full cir- 
cle, differences and disagreements in anatomical definitions and their 
interpretation may lead to further variations in protocols used in the 
virtual dissection process. 

For these reasons, the process of bundle segmentation has been de- 
scribed as existing somewhere between science and art ( Schilling et al., 

2019 ). Variation in protocols can result in different segmentations 
which can lead to different scientific conclusions or clinical decisions 
( Pujol et al., 2015 ). This inter-protocol variability adds “noise ” to 
the literature when it comes to the process of bundle segmentation 
( Rheault et al., 2020 , Botvinik-Nezer et al., 2020 ), a variability that 
prevents a direct comparison of the outcomes of different studies, and 
hinders the translation of these techniques from the research laboratory 
to the clinic. Yet, an estimate of the variability that exists across dif- 
ferent protocols remains unclear. In order to ultimately harmonize the 
anatomical definition of tracts and standardize the bundle segmentation 
process, we propose a first step is to quantify this variability, and un- 
derstand the similarities and differences in bundle segmentation results 
across protocols. 

There have been many works that benchmark or validate the 
anatomical accuracy of tractography, typically comparing against sim- 
ulated data ( Daducci et al., 2014 , Neher et al., 2015 , Maier-Hein et al., 
2017 ), physical phantoms ( Guevara et al., 2012 , Perrin et al., 2005 ), 
animal tracer studies ( Schilling et al., 2019 , Donahue et al., 2016 , 
Girard et al., 2020 , Grisot et al., 2021 , Schmahmann and Pandya, 2006 ), 
or cadaveric dissections ( Forkel et al., 2014 , Lawes et al., 2008 , 
Sarubbo et al., 2013 , Maffei et al., 2018 , Hau et al., 2017 ). These have 
led to insight into the challenges and limitations of tractography, includ- 
ing the presence of false positive and false negative pathways and sub- 
sequent sensitivity/specificity tradeoff in accuracy ( Maier-Hein et al., 
2017 , Schilling et al., 2019 , Thomas et al., 2014 , Aydogan et al., 
2018 , Knösche et al., 2015 ), and the presence of biases ( Rheault et al., 
2020 ) due to pathway shape and location ( Yeh et al., 2016 ), anatomy 
( Schilling et al., 2018 , Reveley et al., 2015 ), and processing decisions 
( Girard et al., 2014 ). Importantly, differences and variability in re- 
sults are expected due to differences in acquisition ( Ambrosen et al., 
2020 ), pre-processing ( Maier-Hein et al., 2017 , Cote et al., 2013 ), 
orientation reconstruction ( Li et al., 2012 ), and the tractography ap- 
proach/algorithm ( Donahue et al., 2016 , Cote et al., 2013 , Smith et al., 
2020 , Smith et al., 2012 , Bastiani et al., 2012 ). However, variability due 
to differences in protocols for segmenting specific white matter path- 
ways has not been thoroughly investigated. Here, we ask “what happens 
when many groups attempt to dissect the same white matter bundles on 
the same tractography dataset ” in order to isolate and quantify vari- 
ability in the tractography dissection process. This variation represents 
differences that may occur when different groups segment and study the 
same major white matter pathways of the brain, even if all other sources 
of variation are removed. 
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Fig. 1. Variation in white matter bundle segmentation. Four example segmentations of the corticospinal tract (green) and arcuate fasciculus (cyan) show variability 
in the size, shape, densities, and connections of these reconstructed white matter pathways. 

Towards this end, the aims of this study are twofold: (1) to under- 
stand how much variability exists across different protocols for bun- 
dle segmentation, and (2) to quantify which fascicles exhibit the most 
agreement/disagreement across protocols. To do this we take a “many 
analysts, one dataset ” approach previously used to study workflows 
for diffusion analysis ( Jones et al., 2007 ), hippocampus segmentation 
( Boccardi et al., 2011 ), fMRI analysis ( Botvinik-Nezer et al., 2020 , 
Poline et al., 2006 ), and psychology research ( Silberzahn et al., 2018 ). 
Through an open call to the community, we invited collaborations from 
expert scientists and clinicians who use tractography for bundle segmen- 
tation, provided them all with the same sets of tractography streamlines, 
and gave them the task of segmenting 14 white matter pathways from 
each dataset. This enabled streamline-based and volume-based quan- 
tification of inter-protocol agreement and disagreement for each fiber 
pathway and the results highlight the problem of variation of defini- 
tions and protocols for bundle segmentation. 
2. Results 
2.1. Submissions 

We surveyed the protocols for bundle segmentation of 14 white mat- 
ter bundles: Superior Longitudinal Fasciculus (SLF), Arcuate Fasciculus 
(AF), Optic Radiation (OR), Corticospinal Tract (CST), Cingulum (CG), 
Uncinate Fasciculus (UF), Corpus Callosum (CC), Middle Longitudinal 
Fasciculus (MdLF), Inferior Fronto-Occipital Fasciculus (IFOF), Inferior 
Longitudinal Fasciculus (ILF), Fornix (FX), Anterior Commissure (AC), 
Posterior Commissure (PC), and Parieto-Occipital Pontine Tract (POPT). 

To isolate the effects of bundle segmentation from all other sources 
of variation, we directly provided six sets of whole-brain streamlines 
(both deterministic and probabilistic) to all collaborators, derived from 
3 subjects with scan-rescan data acquired from the Human Connectome 
Project test-retest database ( Glasser et al., 2016 ). Collaborators were 
given the choice of utilizing streamlines generated from one of two com- 
monly used tractography methods, a deterministic or a probabilistic al- 
gorithm, which are known to generate different representations of white 
matter bundles and have different uses and applications as described in 
the literature ( Pestilli et al., 2014 , Sarwar et al., 2019 ). 

In total, this collaborative effort involved 144 collaborators from 42 
teams ( Fig. 2 , top). 57 unique sets of protocols were submitted, of which 
28 submissions used the deterministic streamlines and 29 used proba- 
bilistic. A total of 3138 bundle tractograms were submitted. Because col- 
laborators did not have to submit all bundles, pathways showed varying 
representation across submissions ( Fig. 2 , bottom), ranging from as low 
as 16 protocols for the PC, up to 50 protocols for the CST. 

A detailed description of all protocols, submitted by each of the 42 
groups is provided as a Supplementary Table. 
2.2. Qualitative results 

Example visualizations of randomly selected segmentations from a 
single subject are shown for exemplar projection, association, and com- 

missural pathways (CST, AF, CC) in Fig. 3 . These are visualized as both 
streamlines directly, and also as 3D streamline density maps. The pri- 
mary result from this figure is that there are many ways to segment these 
structures that result in qualitatively different representations of the 
same white matter pathways. These examples demonstrate visibly ap- 
parent variations in the size, shape, and connectivity patterns of stream- 
lines. In contrast, different protocols result in similar patterns of high 
streamline density in the deep white matter and midbrain, with sim- 
ilar overall shape and central location. Similar visualizations, for all 
submitted pathways, both probabilistic and deterministic, are provided 
in supplementary documentation. These observations apply to all dis- 
sected pathways, however the commissural AC and PC contained very 
few streamlines, with little-to-no agreement across protocols. 
2.3. Pathway-specific results 

To understand the variability that exists across protocols for a given 
pathway, we visualize volume-based and streamline-based overlaps 
among the protocols and show boxplots of agreement measures that 
quantify inter-protocol, intra-protocol, and inter-subject variation. The 
volume overlap is displayed as the volume of voxels in which a given 
percent of protocols agree that the voxel was occupied by a given path- 
way, where a streamline overlap is displayed as the individual stream- 
lines in which a given percent of protocols agree that streamline is rep- 
resentative of a given pathway. For quantitative analysis, we use several 
measures to describe similarity and dissimilarity of streamlines, stream- 
line density, and pathway volume ( Fig. 4 ). This includes (1) v olume 
Dice overlap which describes the overall volume similarity, (2) density 
correlation which describes insight into similarity of streamline density, 
(3) bundle adjacency which describes the average distance of disagree- 
ment between two bundles, and (4) streamline Dice which describes the 
overlap of streamlines common between protocols (which can only be 
calculated because bundles come from the same original set of stream- 
lines). We calculate geometric measures of pathways including num- 
ber of streamlines, mean length, and volume, as well as microstructural 
measures of the average fractional anisotropy (FA) of the entire pathway 
volume and the FA weighted by streamline density (wFA). 

For simplicity, we show results of the CST, AF, and CC. Analysis 
was conducted on all tracts, and results are provided in supplementary 
documentation. 
2.3.1. Corticospinal Tract (CST) 

Fig. 5 shows the results for the CST, and Appendix A summarizes 
the descriptive definitions and decisions made in the bundle segmenta- 
tion workflow. Looking at the volume of agreement on a single subject, 
nearly all methods agree on the convergence of axons through the inter- 
nal capsule and midbrain, with some disagreements on cortical termina- 
tions, and only a minority of protocols suggesting lateral projections of 
this tract. Streamline-based agreements show similar trends. The most 
striking result is that there were not any streamlines which were com- 
mon to at least 75% of either the deterministic or probabilistic protocols. 
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Fig. 2. Summary of teams and submissions. Location of the teams’ affiliated lab (top). In total, 42 teams submitted 57 unique sets of bundle dissections, 28 utilized 
the provided deterministic streamlines, and 29 utilized probabilistic. Map icons are colored based on the set of streamlines utilized, with the same color-scheme as 
bar plots. Example submissions are shown for 14 pathways (bottom) along with a pie chart indicating the number of submissions for each bundle. Acronyms: see 
text. 
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Fig. 3. Variation in protocols for bundle segmentation of example pathways (CST, AF, and CC) on the same subject from the same set of whole-brain streamlines. Eight 
randomly selected bundle segmentation approaches for each pathway are shown as segmented streamlines and rendered as 3D streamline density maps. Variations 
in size, shape, density, and connectivity are qualitatively apparent. Probabilistic streamlines are shown, see supplementary material for Deterministic submissions. 
Random selections generated independently for each pathway. Streamlines are colored by orientation and all density maps are windowed to the same range. 

Fig. 4. Similarity and dissimilarity metrics to assess reproducibility. Example SLF datasets are used to illustrate a range of similarity values between bundles A and 
B (top) and between bundles A and C (bottom). Dice overlap is a volume-based measure calculated as twice the intersection of two bundles (magenta) divided by 
the union (red and blue). Density correlation is calculated as the correlation coefficient between the voxel-wise streamline densities (shown as a hot-cold colormap 
ranging from 0 to maximum streamline density) of the two bundles being compared. Bundle adjacency is calculated by taking the average distance of disagreement 
(not including overlapping voxels in blue) between bundles (distances shown as hot-cold colormap). Finally, streamline Dice is taken as the intersection of common 
streamlines divided by the union of all streamlines in a bundle and requires input bundles to be segmented from the same set of underlying streamlines (intersection 
shown in figure). 
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Fig. 5. Corticospinal Tract (CST) inter-protocol variability. Renderings show 25%, 50%, and 75% agreement on volume and streamlines for deterministic and 
probabilistic tractograms. Box-and-whisker plots of Dice overlap, density correlation, and bundle adjacency quantify inter-protocol, intra-protocol, and inter-subject 
variability (deterministic: red; probabilistic: blue). Each data-point in the plots is derived from the summary statistic of a single submission. Note that there were no 
streamlines which were common to at least 75% of the protocols. 

Quantitative analysis indicates fairly low agreement across proto- 
cols. Inter-protocol Dice overlap coefficients largely fall between 0.4 
and 0.6 (median Dice of 0.47 and 0.51 for probabilistic and determin- 
istic, respectively), with a larger tail towards much lower Dice values 
indicating some outlier protocols that are substantially different from 
others. Protocols show moderate density correlation coefficients (me- 
dian correlations of 0.51 and 0.67), and an average difference between 
protocols of > 4mm (median bundle adjacency of 4.3mm and 3.9mm). 
Reproducibility within protocols is much higher, resulting in higher Dice 
coefficients, higher density correlations, and lower bundle adjacency. 
The variation across protocols is even greater than the variation across 
subjects when quantified using Dice overlap. However, the density cor- 
relation across protocols is higher than that across subjects, indicating 
that while the volume overlap decreases, measures of bundle density are 
more consistent across protocols. Finally, bundle adjacency is higher for 
inter-protocol analysis than inter-subjects, suggesting that volume-based 

differences across protocols are greater than volume-based differences 
across subjects. The quantitative index FA shows a coefficient of varia- 
tion across protocols of 7% relative to its average value and the density 
weighted FA shows a variation of 4%. 
2.3.2. Arcuate Fasciculus (AF) 

Fig. 6 shows the results of the inter-protocol analysis for the AF, and 
Appendix B summarizes the descriptive definitions and decisions made 
in the bundle segmentation workflow. A majority of the extracted bun- 
dles agree on the volume occupied by the bundle, with both determin- 
istic and probabilistic submissions showing the characteristic arching 
shape as the pathway bends from the frontal to temporal lobes. The vol- 
ume of the 75% agreement is significantly smaller and much more spe- 
cific than that of the 25% of agreement, occupying only the deep white 
matter core of this trajectory. Similar results are shown for streamlines. 
Very few streamlines were agreed upon by 75% of protocols for deter- 
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Fig. 6. Arcuate Fasciculus (AF) inter-protocol variability. Renderings show 25%, 50%, and 75% agreement on volume and streamlines for deterministic and prob- 
abilistic tractograms. Box-and-whisker plots of Dice overlap, density correlation, and bundle adjacency quantify inter-protocol, intra-protocol, and inter-subject 
variability (deterministic: red; probabilistic: blue). Note that there were no streamlines which were common to at least 75% of the protocols. 
ministic tractography, and no single streamline was observed in 75% of 
probabilistic submissions. Cortical connections show significant varia- 
tion. Qualitatively, as we become more strict with agreement, the con- 
nections become much more refined to the frontal and temporal lobes 
only, with fewer connections to the parietal cortex. 

Quantitative analyses of similarity and agreement closely follow that 
of the CST. The Dice overlap indicates relatively poor inter-protocol 
agreement (median values 0.46 and 0.43 for probabilistic and determin- 
istic, respectively), with a much higher intra-protocol agreement (me- 
dian of 0.66 and 0.74). However, the inter-protocol overlap is similar 
to the variation across subjects (0.40 and 0.53). Similar trends are ob- 
served for density correlations. In this case, the inter-subject variation 
is lower than inter-protocol for deterministic, but higher for probabilis- 
tic, although both measures are lower than within protocol agreement. 
Finally, differences across protocols are on average > 5mm of distance, 
whereas the disagreement is much less within protocols and even be- 

tween subjects. Finally, the coefficient of variation of FA and wFA across 
protocols is 10% and 5% that of the average FA and wFA, respectively. 
2.3.3. Corpus callosum 

Fig. 7 shows the results of inter-protocol analysis of the CC, and 
Appendix C presents a summary of the descriptive definitions and deci- 
sions made in the bundle segmentation workflow. Most protocols gen- 
erally agree that this structure takes up a large portion of the cerebral 
white matter in both hemispheres. While many streamlines were consis- 
tent across methods, when looking at the 75% agreement, many submis- 
sions do not include lateral projections – although they exist within the 
dataset – as well as fibers of the splenium (or forceps major) connecting 
to the occipital lobe and connections to temporal cortex. 

Quantitative analysis shows much higher reproducibility than for the 
AF and CST, with mean Dice values across protocols of 0.66 and 0.72, 
which are again lower than intra-protocol reproducibility, but in this 

8 



K.G. Schilling, F. Rheault, L. Petit et al. NeuroImage 243 (2021) 118502 

Fig. 7. Corpus callosum (CC) inter-protocol variability. Renderings show 25%, 50%, and 75% agreement on volume and streamlines for deterministic and probabilistic 
tractograms. Box-and-whisker plots of Dice overlap, density correlation, and bundle adjacency quantify inter-protocol, intra-protocol, and inter-subject variability 
(deterministic: red; probabilistic: blue). 
case, both slightly higher than that across subjects. The density correla- 
tion shows similar trends. Finally, bundle adjacency is higher across pro- 
tocols than across subjects, with measures indicating that disagreement 
is generally 3mm or greater across protocols. Even though this structure 
is quite expansive throughout the white matter, variation across quanti- 
tative FA measures are still on the order of 8% and 4% for FA and wFA, 
respectively. 
2.4. Inter-protocol variability 

To understand which pathways exhibit the most agreement/ 
disagreement across protocols, intra-protocol volume-based variation 
measures of Dice overlap, density correlation, bundle adjacency, and 
Dice streamlines are plotted in Fig. 8 . 

There is a fairly large variation across pathways in the overall proto- 
col agreement as measured by Dice volume overlap ( Fig. 8 A). Volume- 
wise, the most reproducible were the CC, the CST, and the IFOF. Re- 

producible results from the CC were expected due to its large size and 
unambiguous location of the CC proper, while the CST is arguably one of 
the most well-studied tracts. The IFOF, while one of the more controver- 
sial fasciculi ( Forkel et al., 2014 , Mandonnet et al., 2018 , Altieri et al., 
2019 , Sarubbo et al., 2019 ), likely results in higher overlap because it is 
a long anterior-posterior directed pathway spanning from the occipital 
to frontal lobe, passing through the temporal stem, a tight and small bot- 
tleneck region ( Hau et al., 2016 ) and most protocols agree that nearly 
any streamline spanning this extent through a ventral route, will belong 
to this pathway. In all cases, the overlap across protocols is fairly low, 
with median values of the CC of 0.66 and 0.72 being the highest among 
all pathways studied. 

The least reproducible structures are those of the commissures, AC 
and PC, which are largely defined only by a single location along the 
midline with very little information on their routes or connections. The 
FX represented a unique case. Many groups submitted the left FX as 
expected, while others considered the left and right FX as a single struc- 
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Fig. 8. Inter-protocol variability. Dice overlap coefficients, density correlation, bundle adjacency, and Dice streamlines for all studied pathways. Deterministic results 
shown in red, probabilistic in blue. 

Fig. 9. Inter-protocol variation in mean FA, weighted-FA, volume (mm 3 ), and pathway length (mm) for all studied pathways. Note that CC volume is an order of 
magnitude larger than all other pathways and is shown on a 10 3 mm 3 scale. 
ture due to its commissural component. Thus, while it is indeed a small 
structure, the quantitative value of overlap is overly critical based on 
qualitative observations. 

In agreement with qualitative results, the density correlations 
( Fig. 8 B) are moderate to high for most pathways, meaning that areas 
of high streamline density and low streamline density are generally in 
agreement across protocols. Pathways such as the CC, IFOF, CG, CST, 
and UF have high agreement in streamline densities, whereas pathways 
with generally lower number of streamlines and hence lower densities 
(i.e., PC, and FX) show lower density correlations. 

Similar results are observed for dissimilarity ( Fig. 8 C). Again, AC, 
PC, show very large distances of disagreement, along with the FX and 
in this case the MdLF. For nearly all pathways, the range of disagree- 
ments across protocols are most typically on the order of 4-6mm. Look- 
ing at Dice overlap of the streamlines ( Fig. 8 D), it is immediately ap- 
parent that the overlap is very low in all cases, much lower than over- 
lap of volume. For all pathways, a large majority of all comparisons 
yield streamline Dice coefficients less than 0.2, with many indicating 
no overlap at all. A trend observed in the streamline comparisons is 
that the overlap is generally greater for deterministic than probabilistic 
algorithms. 

Fig. 9 shows protocol variability for pathway-specific measures of 
the mean fractional anisotropy, weighted fractional anisotropy, path- 

way volume, and pathway length across all protocols. In agreement with 
results on the CST, AF, and CC, the FA derived from different protocols 
varies by more than 8-12%, an effect greater than that observed in the 
literature across study cohorts ( Landman et al., 2011 , Farrell et al., 2007 , 
Landman et al., 2007 ). Weighted-FA (wFA), however, varies much less 
across protocols (4-7%) and is of greater overall magnitude than the 
unweighted metric. The volume measurements show that different pro- 
tocols can result in an order of magnitude difference in pathway volume, 
an effect observed for all pathways. Finally, pathways with more vari- 
ation in average streamline length ( Fig. 9 ) agree well with those with 
more variation in overlap measures. For example, AC, PC, and FX re- 
sult in large differences in average length, while protocols on the IFOF 
consistently agree on the length of this structure. 
2.5. Variability within and across pathways 

To assess similarity and differences in submissions without a priori 
user-defined metrics of similarity, we utilized the Uniform Manifold Ap- 
proximate and Projection (UMAP) ( McInnes and Healy, 2007 ) technique 
to visualize all bundle segmentation techniques in a low-dimensional 
space. The UMAP is a general nonlinear dimensionality reduction that is 
particularly well suited for visualizing high-dimensional datasets, in this 
case, on a 2D plane. Fig. 10 shows all submissions, for all pathways, pro- 
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Fig. 10. UMAP dimensionality reduction projected bundles onto an un-scaled 2D plane. Object color and shape represent pathways, and object size designates 
deterministic/probabilistic. While variation exists within pathways and within deterministic/probabilistic streamlines, the white matter pathways generally cluster 
together in low dimensional space. Insets visualize data points as streamline renderings, and highlight areas where similarity and/or overlap is shown across different 
pathways. 
jected on a 2D plane. While there are differences across protocols for a 
given pathway, all submissions for a given pathway generally cluster to- 
gether and show similar low-order commonalities, for both probabilistic 
and deterministic. However, overlap between different pathways does 
occur in some instances, for example between the SLF and AF ( Fig. 10 , 
A), POPT and CST ( Fig. 10 , B), and MLF, ILF, and OR ( Fig. 10 , C). This 
suggests similar low-order representation of some submissions in these 
pathways. 
3. Discussion 

These results identify and quantify differences and the significant 
heterogeneity of white matter structures introduced by the use of differ- 
ent protocols for bundle segmentation with tractography. This variabil- 
ity may present difficulties interpreting differences in bundle segmenta- 
tion results obtained by different labs, or meta-analyses extending and 
comparing findings from one study to other studies. Additionally, this 
variation in protocols can lead to variability in quantitative metrics that 
are greater than true biological variability across populations or sub- 
jects and may hinder translation of these techniques from the research 
laboratory to the clinic. 

We propose that a major source of this variation stems from a lack 
of consensuses on the anatomical definition of pathways ( Forkel et al., 
2014 , Mandonnet et al., 2018 , Panesar and Fernandez-Miranda, 2019 , 
Bajada et al., 2015 ). There is no standard framework for defining a tract, 
with some descriptive definitions focusing on the shape and locations of 
convergence of axons in the deep white matter, while others may focus 
on specific regions to which fibers connect ( Mandonnet et al., 2018 , 
Bajada et al., 2015 , Bajada et al., 2017 , Carpenter and Sutin, 1983 , 
Nieuwenhuys et al., 2008 , Schmahmann et al., 2007 ). Consequently, 
differences, misconceptions, and ambiguities in anatomical definitions 
and their interpretation may lead to different rules used in the dissec- 
tion process. For example, workflows used to dissect a bundle range from 
manual to automated delineation of regions through which streamlines 
must pass, to shape-based, signal-based, or connection-based methods 
of segmentation. Importantly, the appropriateness and usefulness of the 
chosen reconstruction method is application dependent, and no single 
method is clearly wrong and/or better than the others. 

This study was not intended to detract from the value of tractogra- 
phy and bundle segmentation, but rather the aim was to clearly define a 
current inherent problem and its scope. Looking forward, with a number 
of well-validated and valuable tools, pipelines, software, and processes 
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at our disposal, it becomes fairly straightforward to modify bundle seg- 
mentation protocols to match what we would ultimately strive for in 
a “consensus definition ” of white matter bundles. Thus, instead of de- 
scribing these results as revealing a problem, we see this as an opportu- 
nity, or a call-to-action to harmonize the field of bundle segmentation –
both in the nomenclature and definition of white matter pathways, and 
in the best way to virtually segment these using tractography. More- 
over, optimistically, it may be quite useful to have a supply of tools 
available to dissect and investigate the same white matter bundle in 
different ways depending on the research question, or the anatomy or 
functional system under investigation. We note that collaborative efforts 
have proven valuable to identify successes and limitations of tractog- 
raphy ( Schilling et al., 2019 , Pujol et al., 2015 , Daducci et al., 2014 , 
Maier-Hein et al., 2017 , Schilling et al., 2019 ), and facilitate future im- 
provements. Here, we pursue a different approach, focusing specifically 
on variability of the tractography dissection process when performed 
by different groups, rather than comparisons against simulations, phan- 
toms, tracers, or prior knowledge. 
3.1. What happens when 42 groups dissect the same dataset? 

Our first main result is that the inter-protocol agreement is generally 
poor across protocols for many pathways , with limited agreement on the 
brain volume occupied by the pathway. With few exceptions, the aver- 
age Dice coefficients from both deterministic and probabilistic stream- 
lines were below 0.5, with many considerably lower. For most stream- 
lines, the inter-protocol bundle adjacency is between 4-6 mm, meaning 
that when protocols disagree, they do so by an average of ∼3-5 vox- 
els. Shape and geometry-based measures (i.e., length and volume) of 
the streamline bundles vary by an order of magnitude across protocols. 
Consequently, quantitative metrics calculated based on this volume will 
vary, for example the average FA within a bundle varies by ∼8-12% 
across protocols. Because our analysis was based on the same set of 
streamlines, these results represent a best-case measure of inter-protocol 
agreement, and would almost certainly result in increased variability if 
participants performed their own reconstruction and streamline gener- 
ation procedures. 

Our second main result is that bundle segmentation protocols have bet- 
ter agreement in areas with high streamline densities . Measures of stream- 
line density correlation coefficients across submissions are on average 
> 0.5, with few exceptions, which suggests that high density areas in 
tractograms generally correspond to high density areas of other trac- 
tograms, while low density areas correspond to low-density areas (or, 
in fact, regions with no streamlines). This agrees with observations of 
3D density maps where areas of high streamline density are consistently 
observed in the same location across submissions. These areas of higher 
streamline density correspond to the core or stem of most of the bundles, 
generally located in the deep white matter of the brain. Because of this, 
weighting quantification by streamline density will reduce variability 
across protocols, for example, wFA varied by ∼4-7% across protocols. 

Third, we find that the variability across protocols is greater than the 
variability within protocols , and more importantly, similar to (or greater 
than) the variability across subjects. These results are in agreement with 
previous studies showing high overlap, high density correlations, and 
low disagreements within a protocol ( Wakana et al., 2007 , Nath et al., 
2019 , Rheault et al., 2020 ). Most importantly, in our study, this rep- 
resents a worst-case intra-protocol measure. It includes sources of vari- 
ability related to acquisition (and associated noise and artifacts), reg- 
istration, reconstruction, and streamline generation – sources of vari- 
ation which are shown to be still smaller than that across protocols. 
Thus, while there is little consensus on bundle dissection protocols, a 
study that uses a consistent protocol has been shown to have the power 
to reliably detect consistent differences within and across populations; 
however, there may be limitations in how the findings from a given 
study can be extended, applied, or compared to others with different 
protocols. 

Fourth, we find that there is variability per bundle in how much agree- 
ment there is across protocols . The commissural CC has a higher repro- 
ducibility due to its large size and very clear anatomical definition, de- 
spite more ambiguous definitions of its cortical terminations. However, 
the PC and AC commissures showed very poor agreement, despite hav- 
ing a very clear location along the midline. This is in part due to smaller 
sizes, but also scarce literature on the location and connections of the 
bundles that pass through these regions. CST and IFOF also show mod- 
erate agreement across protocols, in part due to their length and at least 
one location that is moderately specific to these bundles (i.e., the pyra- 
mids of the medulla for the CST and the floor of the external capsules for 
the IFOF). Even here, the Dice overlap across protocols is 0.6 or less, on 
average. The MdLF and CG show relatively poor agreement. The MdLF 
is much less studied, and a relatively recent addition to the literature 
( Seltzer and Pandya, 1986 , Makris et al., 2013 ), with some disagree- 
ment on parietal terminations ( Bajada et al., 2015 ). The CG is a tract 
that is likely composed of both longer fibers extending throughout the 
whole tract, as well as multiple short fibers across its structure which 
may be both hard for tractography to entirely delineate the long fibers, 
and hard to capture and constrain segmentation of the shorter fibers 
that enter and leave throughout ( Jones et al., 2013 , Heilbronner and 
Haber, 2014 ). The POPT showed relatively higher agreement. This bun- 
dle was included as a relatively ambiguous nomenclature (seen in the 
literature) of pontine tracts. Whereas both occipito-pontine and parieto- 
pontine fibers exist, they are not usually defined as a specific tract or fas- 
ciculus. Finally, some of the more commonly delineated structures (OR, 
ILF, SLF, UF) show inter-protocol variabilities somewhere in between, 
but still exhibit poor-to-moderate volume and streamline overlaps. 

For many applications, end-users of bundle segmentation technolo- 
gies are interested in gross differences in connectivity and location, 
and what matters is not so much that tracts are reconstructed in their 
entirety, but that they are not confused with one another. For exam- 
ple, misunderstanding or inapt nomenclature, and/or non-specific con- 
straints in the bundle segmentation process could lead to misidentifica- 
tion of the desired pathway (possibly as another pathway or subset of 
another pathway) and would lead to confusion in the literature. Based 
on our results, an experienced neuroanatomist or neuroimager can eas- 
ily classify the submitted pathways based on visual inspection of the 
streamlines. Thus, these inter-protocol bundle segmentations represent the 
same basic structure , even if some variability in spatial extent and con- 
nections is observed. This is confirmed using an unsupervised data ex- 
ploration tool for dimensionality reduction, where within-pathway sub- 
missions are clearly clustered (for both probabilistic and deterministic 
algorithms) in low dimensional space. However, there are a few excep- 
tions. Notably, several AF and SLF submissions overlap significantly, 
which is not unexpected because these have often been defined and/or 
used interchangeably in the literature ( Dick and Tremblay, 2012 ). Re- 
latedly, several submissions of the POPT contain a subset of streamlines 
often assigned as CST, which is again expected because both are often 
(or can be) described as having parietal connections in common. Fi- 
nally, several ventral longitudinal systems of fibers (MdLF, OR, ILF, and 
IFOF) are not clearly separated in this space, suggesting that in many 
instances they share similar spatial overlap and densities of streamlines 
across submissions. 

Finally, while there is low volume-based agreement, streamline- 
based agreement is lower still. In fact, many protocols did not agree on a 
single streamline belonging to a pathway of interest. Protocols agreed on 
consistently 20% or less of deterministic streamlines and less than 10% 
of probabilistic streamlines. Put another way, given a set of streamlines 
from which to select, very few streamlines were consistently determined 
to be a part of a given pathway across all groups performing the segmen- 
tation. With the wide variety of workflows to select streamlines, few 
streamlines met inclusion criteria associated with cortical connectivity, 
shape and spatial location, and survived possible exclusion criteria such 
as filtering based on length, curvature, or diffusions signal, as well as 
personal preference of the person performing dissection (for example 
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eliminating streamlines to reduce complexity of manual segmentation). 
Thus, the final main result is that the measured variability depends on the 
scale upon which the variability is analyzed . Protocols show little-to-no 
agreement in assigning individual streamlines to a pathway, whereas 
protocols show higher agreement in assessing spatial overlap of path- 
way, and even higher agreement when taking into account density of 
streamlines over a volume. This means that while selected streamlines 
may occupy the same volume, the streamlines that make up this volume 
are different.Thus, the effects of this variability are dependent upon how 
these bundles are ultimately utilized in practice , and there are a number of 
ways in which these bundles are used and applied. For this reason, we 
state that no submissions are inherently “wrong ”, and instead emphasize 
that they are simply “different from one another ”. 
3.2. Sources of variability 

We have identified variability in the protocols for bundle segmen- 
tation, which parallels variability in the literature of other techniques 
that have been used to elucidate the structure and function of the brain 
for the last 20 years. These types of disagreements and the challenge 
in advancing science beyond them are not new to computational neu- 
roanatomy. Indeed, as we look at the history of brain science differences 
in opinions and associated results can be traced back a long way. Key 
examples of the inherent variability in anatomical and functional defi- 
nitions and associated disagreements include the definition and func- 
tional specialization of cortical areas ( Tootell and Hadjikhani, 2001 , 
Weiner and Grill-Spector, 2012 , Winawer et al., 2010 ). Hence, our find- 
ings here highlight the complexity of the scientific concepts and the 
difficulty in making progress towards understanding. The fact that the 
engineering of new methods needs to be refined because we still have 
(and have had for over hundreds of years in neuroanatomy) substan- 
tial variability in results does not necessarily mean that science is not 
progressing. 

We postulate that the problem stems from two sources (1) the 
anatomical definition of a white matter pathway and (2) the constraints 
used to dissect this pathway. The descriptions of the white matter path- 
ways given in the appendix highlight the problem of “definition ”. Path- 
ways may be defined by their shape, their endpoints, or by regions 
through which they pass. Descriptions and definition approaches may 
vary based on the pathway itself (i.e., some may lend themselves more 
easily to descriptions of shape rather than endpoints), by the system or 
functions under investigation, by the training and/or occupation of the 
researcher/clinician, or by the modality used to define the tract. For 
example, cadaveric microdissection may facilitate description of fasci- 
cular organization and regional descriptions over highly specific lobu- 
lar connectivity descriptions provided by histological tracers. Further, 
definitions do not always facilitate binary decision making in the bun- 
dle dissection process due to biological reasons. The brain is a complex 
structure, there are not always hard or unique borders between cortical 
or subcortical regions, and the location of endpoints or regions may not 
always be precisely determined. The goal of tractography bundle seg- 
mentation then is to recreate these definitions in the bundle dissection 
process ( Schilling et al., 2020 ); however, certain algorithms, software 
packages, and manual pipelines lend themselves more naturally to one 
type of constraint than the other, and may implement them in different 
ways or with different levels of precision. Even if a definition has been 
entirely met, a sensitivity/specificity tradeoff is possible, influenced by 
potentially every step in the fiber tractography process from acquisi- 
tion and reconstruction to the final constraints and streamline filtering 
techniques ( Schilling et al., 2019 , Thomas et al., 2014 , Knösche et al., 
2015 ). 
3.3. The ‘problem’ and ‘solution’ 

The question becomes “whose problem is this? ”. We propose that 
there may be shared responsibility on the part of classical anatomists, 

those developing tractography algorithms, and those implementing or 
performing segmentations. The endeavor to digitally segment the white 
matter is predicated upon there being some consensus of what structures 
are there to be segmented, this is the task of classical neuroanatomists. 
Next, tractography providers must endeavor to create candidate trac- 
tomes that resemble the white matter of the brain as closely as possible, 
as the resultant tractomes must contain viable anatomy for extraction. 
Finally, those who perform digital segmentations must decide an appro- 
priate level of precision (sensitivity/specificity) and be clear and precise 
as they describe the methods of their segmentations as this will permit 
comparison and refinement between segmentations. This must be an 
iterative process, utilizing orthogonal information in the form of non- 
human model brains, micro-dissection, and alternative neuroimaging 
contrasts, in order to validate the existence and location or connections 
of a pathway, validate the rules and constraints that allow accurate dis- 
section of this pathway, then iteratively refining the location and/or 
connections based on knowledge gained through the bundle segmenta- 
tion process. Thus, we hope that this paper acts as a call to action on two 
efforts of consensus: both standardization of the anatomical definition 
(in addition to nomenclature) and the adoption of protocols to fulfill 
this definition. 

Even without a consensus, there could be a convergence towards 
appropriate, or more specific, nomenclature and clustering of stream- 
lines, or alternative accepted definitions. Additionally, a consensus on 
the healthy, young adult, individual may not lead to satisfactory results 
on developing, aging, or diseased populations. The effect of protocols 
and their adherence to definitions should be investigated in the presence 
of tumors, on the pediatric and elderly populations, and also with vary- 
ing acquisition, reconstruction, and streamline generation conditions. 
Convergence upon protocols may come from isolating and operational- 
izing similarities and differences in definitions and protocols, as done in 
image segmentation literature ( Boccardi et al., 2015 ), in order to slowly 
converge upon a consensus and/or guidelines. This may include: (1) 
exploring relationships between automated, semi-automated, and man- 
ual methods, (2) nomenclature and methodology based on volumetric 
characteristics (locations, shapes, orientation) versus connectivity char- 
acteristics (origins and terminations) ( DN et al., 2021 ), and (3) studies 
of various constraints to best replicate nomenclature. 

While we cannot currently give a recommended dissection protocol 
for a given pathway, we can recommend good practices to be used in 
all studies. First, we suggest transparency and explicit descriptions of 
pathway definition, dissection protocol, and ROIs ( Catani and Thiebaut 
de Schotten, 2008 , Fekonja et al., 2019 ). Second, understanding and 
quantifying the intra-protocol variability, for both automatic and man- 
ual approaches, is a necessary prerequisite to determine quantification 
variability and subsequent statistical power. Third, with the knowledge 
that the dense core of the pathway is consistent across protocols, weight- 
ing by density (or a focus on deep white matter, as is common in many 
statistical analyses ( Smith et al., 2007 , Yeatman et al., 2012 )) will be 
more appropriate for evaluating inter-subject difference in microstruc- 
tural properties, given its smaller inter-site and inter-lab differences. Fi- 
nally, the results obtained by (and inferences made from) tractography 
must be interpreted with appropriate level of coarseness, by consider- 
ing the existence of inter-protocol variability and coarse spatial scale 
of diffusion MRI measurements. Since some of statistical properties of 
tractography (streamline counts and densities, and geometry/volume of 
tracts) have dependency on method selections at this point, it is im- 
portant to encourage studies by independent groups testing how much 
conclusions in a single original paper can be generalizable to a different 
segmentation protocol or datasets. 
3.4. Limitations 

This study has several limitations which constrain the generaliz- 
ability of the results. First, there is a low number of subjects and low 
number of repeats. While automated methods can be run on several 
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hundred subjects using only CPU-hours, this study would have become 
prohibitive for manual or semi-automated methods with more than 14 
pathways over six datasets (84 total possible dissections), and many of 
these methods would have been under-represented. Next, we did not in- 
clude a number of pathways with functional relevance in the literature, 
but chose a sample representative of the commonly studied projection, 
association, and commissural bundles, and, again, a compromise was 
made between the number of pathways requested and expected time and 
effort. Future studies should consider studying pathway sub-divisions 
specifically, as well as additional major white matter pathways and su- 
perficial U-fibers ( Guevara et al., 2020 ). Further, because we wanted to 
isolate the effect of bundle segmentation protocols, we forced the use 
of our own generated streamlines. This may not be optimal for a given 
segmentation process where streamlines are generated using different 
parameters or propagation methods, and filtered or excluded in various 
ways. However, allowing the creation of different streamlines would 
only increase the variability seen across protocols. Finally, there is no 
“right ” measure to quantify variability ( Rheault et al., 2020 ). No single 
measure can paint a complete picture of the similarities and differences 
of this complex technology across all applications. The measures used 
in this study were chosen as intuitive quantifications of volume-based, 
voxel-wise, and streamline-based agreement, as well as measures based 
on binary volumes and streamline densities. We also quantified mea- 
sures of geometry which are often used in quantification or to modu- 
late connectivity measures, as well as measures of microstructure within 
pathways (both weighted and unweighted by densities). The best mea- 
sure of bundle variability is ultimately dependent on how the bundle is 
used. 

Future studies may investigate which protocols (and which features 
of those protocols) result in bundles that are more or less similar to 
other protocols, and more importantly, quantify how well different pro- 
tocols result in bundles that match the desired anatomical definition. 
This could be done using tools ( Wassermann et al., 2016 ) to query text 
descriptions of volume, location, and connectivity to determine whether 
streamlines agree with the definition of a bundle. Finally, similar efforts 
with international and multi-disciplinary teams must apply evidence- 
based approaches pooling knowledge gathered from tracers, dissections, 
and functional contrasts from in vivo and ex vivo specimens in order to 
ultimately reach a consensus on tract descriptions ( Yang et al., 2021 , 
Bullock et al., ), and the best way to virtually dissect these tracts using 
fiber tractography. 
4. Materials and methods 

We surveyed the protocols for bundle segmentation of 14 white mat- 
ter bundles, chosen to represent a variety of white matter pathways stud- 
ied in the literature, including association, projection, and commissural 
fibers, fibers with clinical and neurosurgical relevance, as well as cov- 
ering a range from frequently to relatively infrequently studied and/or 
described in the literature. 

We made available the same datasets to be analyzed by a large num- 
ber of groups in order to uncover variability across analysis teams. 
To isolate the effects of bundle segmentation from all other sources 
of variation, we directly provided six sets of whole-brain streamlines 
(both deterministic and probabilistic) to all collaborators, derived from 
3 subjects with scan-rescan data acquired from the Human Connectome 
Project test-retest database ( Glasser et al., 2016 ). We extended invita- 
tions for collaboration, disseminated data and the protocol with clearly 
defined tasks, and received streamlines from collaborators for analysis. 
In addition to streamlines, we requested a written “definition ” of the 
pathways and a description of the constraints used to dissect it. Impor- 
tantly, this dataset allows us to quantify and compare variability across 
protocols (inter-protocol), variability within protocols (intra-protocol), 
and variability across subjects (inter-subject). Detailed procedures are 
provided in supplementary material. 

4.1. Data and protocol 
The diffusion data for this study were selected from the Human Con- 

nectome Project test-retest database ( Glasser et al., 2016 ). A total of 
three subjects (HCP IDs: 144226, 103818, 783462) were chosen that 
had repeat diffusion MRI scans, resulting in six high-quality datasets, 
free of any significant artifacts. This dataset was chosen as a compromise 
between quantification and inclusivity - the use of this small database 
still provides enough information to detect and quantify the variability 
among results with great enough participation across laboratories and 
scientists. 

Collaborators were not informed that the six datasets represented 
only three subjects in order to not bias intra-protocol analysis. Dis- 
tortion, motion correction and estimation of nonlinear transforma- 
tions with the MNI space was performed using the HCP preprocessing 
pipelines ( Glasser et al., 2016 ). Whole-brain tractograms were gener- 
ated using the DIPY-based Tractoflow processing pipeline ( Theaud et al., 
2020 , Garyfallidis et al., 2014 ), producing both deterministic and prob- 
abilistic sets of streamlines to be given to participants. Importantly, to 
be as inclusive as possible to all definitions and constraints, streamlines 
were not filtered in any way. Streamlines were separated into left, right, 
and commissural fibers in order to minimize file sizes. Also provided 
were the b0 images, Fractional Anisotropy (FA) maps ( Jenkinson et al., 
2012 ), directionally-encoded color maps ( Jenkinson et al., 2012 ), T1 
weighted images, and masks for the cerebrospinal fluid, gray matter, 
and white matter ( Jenkinson et al., 2012 ). 

The task given to collaborators was (see supplementary material) to 
dissect 14 major white matter pathways on the left hemisphere on the 
six diffusion MRI datasets provided. Collaborators were free to choose 
either deterministic or probabilistic streamlines, and free to utilize any 
software they desired. In order to maximize the quality of submitted 
results, investigators did not have to provide segmentations for all path- 
ways if they did not have protocols or experience in some areas. 
4.2. Submissions 

For submission, we asked for a written definition of the white mat- 
ter bundles, a description of the protocol to dissect these pathways, 
all code and/or temporary files in order to facilitate reproducibility of 
methods, and finally the streamline files themselves. Quality assurance 
was performed on file organization, naming conventions, and streamline 
spatial attributes, and visual inspection was performed for all stream- 
lines of all subjects. Tools for quality assurance (QA) can be found at 
( https://github.com/scilus/scilpy ). 
4.3. Pathway-specific analysis 

For all pathways, we focused on quantifying volume-based and 
streamline-based similarities and differences in the dissected bundles 
across protocols. Qualitatively, we assessed volume overlap and stream- 
line overlap. Volume overlap was displayed as the volume of voxels in 
which 25%, 50%, and 75% of all protocols agreed that a given voxel 
was occupied by the pathway under investigation. Similarly, we viewed 
the individual streamlines in which 25%, 50%, and 75% of all protocols 
agreed that this streamline is representative of a given pathway. These 
qualitative observations were shown as volume-renderings or stream- 
lines visualizations directly. 

Next, quantitative analysis used three voxel-based measures (based 
on volume and streamline density) and one streamline-based measure 
( Rheault et al., 2020 ). The Dice overlap coefficient, density correlation 
coefficient, bundle adjacency, and streamline Dice overlap are illus- 
trated in Fig. 4 . Dice overlap measures the overall volume similarity 
between two binarized bundles (i.e., all voxels that contain a stream- 
line), by taking twice the intersection of two bundles divided by the 
union of both bundles. A value of 1 indicates perfect overlap, a value 
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of 0 indicates no overlap. The density correlation coefficient is a mea- 
sure of the Pearson’s correlation coefficient obtained from the streamline 
density maps. This provides insight into not only overlap, but also agree- 
ment in streamline density. Bundle adjacency is a volume-based metric 
that describes the average distance of disagreement between two bun- 
dles. This was calculated by taking all non-overlapping voxels from one 
bundle, and calculating the nearest distance to the second bundle (and 
repeating from the second to the first bundle) and taking the average of 
these distances. By defining this metric, we are using a convenient sym- 
metric distance between two binary volumes, which is a modification 
of the Hausdorff distance. A value of 3mm, for example, indicates that 
when the bundles disagree, they are an average of 3mm apart. Finally, 
streamline Dice is the streamline-equivalent of Dice overlap. Because all 
submissions for a given subject were derived from the same set of whole- 
brain streamlines, we had the ability to quantify whether an individ- 
ual streamline was common to both submitted bundles. Streamline Dice 
was calculated by taking the total amount of streamlines common to 
both protocols (i.e., intersection) divided by the total number of unique 
streamlines in both bundles (i.e., union). Again, a value of 1 indicates 
that all streamlines are exactly the same, a value of 0 indicates no over- 
lap in streamlines. Note that this final measure can be calculated only 
for datasets that are derived from the same original set of streamlines. 
4.4. Quantifying variability across protocols 

The measures introduced above were used to quantify variability 
across protocols (inter-protocol), variability within protocols (intra- 
protocol), and variability across subjects (inter-subject), with separate 
analyses for deterministic and probabilistic results. Below, we describe 
these three levels of variability assuming there were “N ” submissions 
for a given pathway. 

For inter-protocol variability, each bundle was compared to its coun- 
terpart as produced by each of the other N-1 protocols, and the results 
averaged, representing the average similarity/dissimilarity of that pro- 
tocol with all others. This was done for all N submissions, for all 3 sub- 
jects, resulting in Nx3 data-points for each pathway. 

For intra-protocol variability, we aimed to compare the same proto- 
col performed on the same subject. For each of the N submissions, we 
calculated the similarity/dissimilarity measures with respect to the same 
submission on the repeated scan. This was repeated for all subjects, re- 
sulting in again Nx3 data-points for each pathway. A “precise ” measure 
of intra-protocol variability would have been possible if the same set of 
streamlines had been provided twice for each subject. Instead, the study 
used scan/re-scan data to measure not only intra-protocol variability, 
but the variability of everything up to, and including protocol . Thus, this 
measure includes acquisition variability (i.e., noise and possible arti- 
facts), registration (to a common space), reconstruction, and generation 
of whole brain streamlines. 

For inter-subject variability, we sought to characterize how simi- 
lar/dissimilar a bundle is across subjects within a single protocol. All 
streamlines were normalized to MNI space using nonlinear registration 
( antsRegistrationSyn) ( Avants et al., 2008 ) of the T1 image to the MNI 
ICBM 152 asymmetric template ( Fonov et al., 2011 ). For each of N proto- 
cols, the agreement measures were calculated from subject 1 to subject 
2, from subject 2 to subject 3, and from subject 1 to subject 3, again 
resulting in Nx3 data-points for each pathway. 

Finally, to visually assess differences across bundles and across pro- 
tocols,we utilized the Uniform Manifold Approximate and Projection 
(UMAP) ( McInnes and Healy, 2007 ) technique ( https://github.com/ 
lmcinnes/umap ; release 0.4.1), which is particularly suited for visu- 
alizing clusters or groups of high-dimensional data and their relative 
proximities. UMAP input was the 3D density maps of all bundles for 
all submission, while the output was projection of all bundles onto 
the 2D space. We note that any dimensionality reduction technique 
and subsequent visualization could have been used, for example t- 
SNE ( Hinton and Roweis, 2002 ), for qualitative analysis of tractograms 

grouped across bundles and protocols. Hyperparameters and algorithm 
initialization are known to influence results for these nonlinear dimen- 
sion reduction techniques ( Kobak and Linderman, 2021 ), but for our 
purposes (qualitative visualization of local and global clusters without 
an explicit user-defined scalar measure of agreement/disagreement) we 
have implemented this with all default parameters of distances, metrics, 
and components. 
Data and Code Availability 

The diffusion data for this study were selected from the Human Con- 
nectome Project test-retest database. A total of three subjects (HCP IDs: 
144226, 103818, 783462) were used in this study. Code for bundle vari- 
ability analysis is available at (https://github.com/scilus/scilpy). 
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Appendix A. Cortico Spinal Tract (CST) 

The CST is the major descending tract that mediates voluntary skilled 
movements ( Jang, 2009 , Wiesendanger, 1969 ). At its most basic, this 
tract is a pathway of fibers coursing primarily from the motor cortex 
down the spinal cord. Despite this apparent simplicity, dissecting this 
tract can be quite variable. Moderately increasing the complexity of the 
definition, the CST can be (unanimously) described as starting from the 
cortex, traveling through the corona radiata, converging into the in- 
ternal capsule, continuing into the brainstem through the medulla, and 
finally extending to the spinal cord. Decisions to be made include choos- 
ing specific cortical terminations (which span both frontal and parietal 
lobes) and how these are delineated, selecting regions through which 
the streamlines must pass ( “cortex to medulla ” or “cortex to lower brain- 
stem ” or “motor cortex to medulla ”), and implementing additional in- 
clusion and exclusion regions throughout the extent of the pathway to 
further refine where it goes and where it does not go. Adding further 
ambiguity, the CST together with the corticobulbar tract make up the 
pyramidal tract, and because these are not easily (or not possibly) sep- 
arated due to inherent tractography limitations and field of view re- 
strictions, these have sometimes been used interchangeably and/or in- 
correctly in the literature. In this study, the CST was divided into pre- 
central and postcentral divisions based on endpoints, hand-foot-face di- 
visions based on regions of interest, anterior-posterior-central-cingulate 
divisions based on endpoints, combined/separated with ascending path- 
ways with thalamic synapses, as well as combined/separated with the 
peri-Rolandic component based on endpoints, and divided into lateral 
and anterior components based on definition (but not dissected). 
Appendix B. Arcuate Fasciculus (AF) 

The AF plays a key role in language processing. This is an associ- 
ation tract that is well-understood to connect Wernicke’s area (some- 
where in the posterior temporal lobe) to Broca’s area (located in the 
inferior frontal lobe). It gets its name (Latin for curved bundle) from the 
distinctive arch shape it makes as it curves from the anterior-posterior 
direction in the frontal-parietal cortex ventrally into the temporal cortex 
around the Sylvian fissure (lateral sulcus) ( Catani and Mesulam, 2008 , 
ten Donkelaar et al., 2018 ). This description of the AFs shape is gen- 
erally agreed upon. A third area (inferior parietal lobule) is also tra- 
ditionally included in this tract’s connections, representing the path- 
way that Geschwind postulated to be damaged in conduction aphasia 
( Catani and Mesulam, 2008 ). For this reason, many descriptions include 
multiple segments of the AF - a direct pathway traversing the entire tract 
from temporal to frontal lobes, and an indirect pathway of shorter fibers 
connecting temporal to parietal to frontal lobes. Consequently, the AF 

can be described as connecting a number of areas of the perisylvian 
cortex of the frontal, parietal, and temporal lobes. To further compli- 
cate the literature, because the AF is a dorsal longitudinal system of 
tracts, it is occasionally considered to be part of the SLF system of tracts 
( Dick and Tremblay, 2012 , Thiebaut de Schotten et al., 2012 ) and con- 
sidered synonymous or used interchangeably in the literature ( Dick and 
Tremblay, 2012 ). For these reasons, we hypothesized that we would see 
large variability when giving collaborators the task to “segment the ar- 
cuate fasciculus ”. Variability is observed due to differences in defining 
the location and method of delineating Wernicke’s and Broca’s areas, or 
selection of regions to capture the arch-like shape. Approximately 1/5 of 
submissions indicated dividing the AF into the long direct segment (of- 
ten described as more medially located), and the anterior and posterior 
indirect segments (described as laterally located shorter segments). 
Appendix C. Corpus Callosum (CC) 

The CC is the largest, and arguably most easily recognizable, white 
matter structure of the brain. This structure is not a single tract, but 
rather a commissure, composed of axons coursing in the left-right ori- 
entation at the midline, and interconnecting the cerebral cortex of the 
two hemispheres. Many subdivisions of the CC have been proposed 
( Hofer and Frahm, 2006 ) with most partitioning the CC based on axon 
location in the mid-sagittal section. Most commonly, subcomponents are 
rostrum, genu, body, isthmus, splenium, and (sometimes) tapetum, al- 
though others include genu, splenium, and callosal body, or anterior, 
mid-anterior, central, mid-posterior, and posterior based on (FreeSurfer) 
parcellation schemes. Alternative subdivisions included separating ac- 
cording to the major lobes of the brain (frontal, parietal, occipital, and 
temporal) or numerical subdivisons (ranging between 5 and 12) based 
on cadaveric and histological dissections ( Witelson, 1985 ), or homolo- 
gous connections, or clusters of fibers. Common to all protocols is the 
large, easily distinguishable region near the midline. Constraints, de- 
cisions, and filters include choices of where these bundles cannot go 
(various temporal lobe regions, through or near subcortical structures, 
cingulum and parahippocampal gyri, etc), filtering by connection re- 
gions or lengths, or rules enforcing homologous connections. 
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