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ABSTRACT

White matter bundle segmentation using diffusion MRI fiber tractography has become the method of choice to
identify white matter fiber pathways in vivo in human brains. However, like other analyses of complex data, there
is considerable variability in segmentation protocols and techniques. This can result in different reconstructions
of the same intended white matter pathways, which directly affects tractography results, quantification, and
interpretation. In this study, we aim to evaluate and quantify the variability that arises from different protocols
for bundle segmentation. Through an open call to users of fiber tractography, including anatomists, clinicians, and
algorithm developers, 42 independent teams were given processed sets of human whole-brain streamlines and
asked to segment 14 white matter fascicles on six subjects. In total, we received 57 different bundle segmentation
protocols, which enabled detailed volume-based and streamline-based analyses of agreement and disagreement
among protocols for each fiber pathway. Results show that even when given the exact same sets of underlying
streamlines, the variability across protocols for bundle segmentation is greater than all other sources of variability
in the virtual dissection process, including variability within protocols and variability across subjects. In order
to foster the use of tractography bundle dissection in routine clinical settings, and as a fundamental analytical
tool, future endeavors must aim to resolve and reduce this heterogeneity. Although external validation is needed
to verify the anatomical accuracy of bundle dissections, reducing heterogeneity is a step towards reproducible
research and may be achieved through the use of standard nomenclature and definitions of white matter bundles

and well-chosen constraints and decisions in the dissection process.

1. Introduction

Diffusion MRI fiber tractography (Xue et al., 1999, Conturo et al.,
1999) offers unprecedented insight into the structural connections of
the human brain. In a process that parallels post-mortem microdissec-
tion, tractography — in combination with a set of rules, constraints, and
procedures to dissect and segment major white matter fascicles of the
brain - allows noninvasive visualization and quantification of the shape,
location, connectivity, and biophysical properties of white matter bun-
dles. This process of in vivo “virtual dissection” (Catani and Thiebaut
de Schotten, 2008, Catani et al., 2002), also called bundle segmentation,
has led to new insight into how structural connectivity underlies brain
function, cognition, and development, in addition to dysfunction in neu-
rological diseases, mental health disorders, and aging (Le Bihan and
Johansen-Berg, 2012). Additionally, bundle segmentation is used rou-
tinely to provide critical clinical information in both pre-operative and
intra-operative mapping of brain tumor resections (Essayed et al., 2017,
Vanderweyen et al., 2020).

Despite widespread use in clinical and research domains, there are
a large number of variations in workflows for bundle segmentation that
have been adopted by the neuroimaging community (Fig. 1). Normally,
workflows either generate bundles of streamlines, i.e., digital represen-
tations of fiber trajectories, or dissect subsets of streamlines from an en-
semble of streamlines throughout the whole brain. These protocols typ-
ically differ in the rules and constraints used to isolate a given pathway,
ranging from manual delineation of inclusion and exclusion regions of
interest, to fully automated segmentations based on shape, location, or
connectivity. Contributing to this variability, agreements on the anatom-
ical definitions of pathways in the human brain are far from settled
(Forkel et al., 2014, Mandonnet et al., 2018, Panesar and Fernandez-
Miranda, 2019, Bajada et al., 2015), in part hindered by the lack of
a consistent framework for defining tracts. Descriptive tract definitions
have traditionally focused on the shape and area of convergence of axons
deep in the white matter, but may also focus on the specific regions to
which these fibers connect (Mandonnet et al., 2018, Bajada et al., 2015,
Bajada et al., 2017, Carpenter and Sutin, 1983, Nieuwenhuys et al.,
2008, Schmahmann et al., 2007). Consequently, and coming full cir-
cle, differences and disagreements in anatomical definitions and their
interpretation may lead to further variations in protocols used in the
virtual dissection process.

For these reasons, the process of bundle segmentation has been de-
scribed as existing somewhere between science and art (Schilling et al.,

2019). Variation in protocols can result in different segmentations
which can lead to different scientific conclusions or clinical decisions
(Pujol et al., 2015). This inter-protocol variability adds “noise” to
the literature when it comes to the process of bundle segmentation
(Rheault et al., 2020, Botvinik-Nezer et al., 2020), a variability that
prevents a direct comparison of the outcomes of different studies, and
hinders the translation of these techniques from the research laboratory
to the clinic. Yet, an estimate of the variability that exists across dif-
ferent protocols remains unclear. In order to ultimately harmonize the
anatomical definition of tracts and standardize the bundle segmentation
process, we propose a first step is to quantify this variability, and un-
derstand the similarities and differences in bundle segmentation results
across protocols.

There have been many works that benchmark or validate the
anatomical accuracy of tractography, typically comparing against sim-
ulated data (Daducci et al., 2014, Neher et al., 2015, Maier-Hein et al.,
2017), physical phantoms (Guevara et al., 2012, Perrin et al., 2005),
animal tracer studies (Schilling et al., 2019, Donahue et al., 2016,
Girard et al., 2020, Grisot et al., 2021, Schmahmann and Pandya, 2006),
or cadaveric dissections (Forkel et al., 2014, Lawes et al., 2008,
Sarubbo et al., 2013, Maffei et al., 2018, Hau et al., 2017). These have
led to insight into the challenges and limitations of tractography, includ-
ing the presence of false positive and false negative pathways and sub-
sequent sensitivity/specificity tradeoff in accuracy (Maier-Hein et al.,
2017, Schilling et al., 2019, Thomas et al., 2014, Aydogan et al.,
2018, Knosche et al., 2015), and the presence of biases (Rheault et al.,
2020) due to pathway shape and location (Yeh et al., 2016), anatomy
(Schilling et al., 2018, Reveley et al., 2015), and processing decisions
(Girard et al., 2014). Importantly, differences and variability in re-
sults are expected due to differences in acquisition (Ambrosen et al.,
2020), pre-processing (Maier-Hein et al., 2017, Cote et al., 2013),
orientation reconstruction (Li et al., 2012), and the tractography ap-
proach/algorithm (Donahue et al., 2016, Cote et al., 2013, Smith et al.,
2020, Smith et al., 2012, Bastiani et al., 2012). However, variability due
to differences in protocols for segmenting specific white matter path-
ways has not been thoroughly investigated. Here, we ask “what happens
when many groups attempt to dissect the same white matter bundles on
the same tractography dataset” in order to isolate and quantify vari-
ability in the tractography dissection process. This variation represents
differences that may occur when different groups segment and study the
same major white matter pathways of the brain, even if all other sources
of variation are removed.
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Fig. 1. Variation in white matter bundle segmentation. Four example segmentations of the corticospinal tract (green) and arcuate fasciculus (cyan) show variability
in the size, shape, densities, and connections of these reconstructed white matter pathways.

Towards this end, the aims of this study are twofold: (1) to under-
stand how much variability exists across different protocols for bun-
dle segmentation, and (2) to quantify which fascicles exhibit the most
agreement/disagreement across protocols. To do this we take a “many
analysts, one dataset” approach previously used to study workflows
for diffusion analysis (Jones et al., 2007), hippocampus segmentation
(Boccardi et al., 2011), fMRI analysis (Botvinik-Nezer et al., 2020,
Poline et al., 2006), and psychology research (Silberzahn et al., 2018).
Through an open call to the community, we invited collaborations from
expert scientists and clinicians who use tractography for bundle segmen-
tation, provided them all with the same sets of tractography streamlines,
and gave them the task of segmenting 14 white matter pathways from
each dataset. This enabled streamline-based and volume-based quan-
tification of inter-protocol agreement and disagreement for each fiber
pathway and the results highlight the problem of variation of defini-
tions and protocols for bundle segmentation.

2. Results
2.1. Submissions

We surveyed the protocols for bundle segmentation of 14 white mat-
ter bundles: Superior Longitudinal Fasciculus (SLF), Arcuate Fasciculus
(AF), Optic Radiation (OR), Corticospinal Tract (CST), Cingulum (CG),
Uncinate Fasciculus (UF), Corpus Callosum (CC), Middle Longitudinal
Fasciculus (MdLF), Inferior Fronto-Occipital Fasciculus (IFOF), Inferior
Longitudinal Fasciculus (ILF), Fornix (FX), Anterior Commissure (AC),
Posterior Commissure (PC), and Parieto-Occipital Pontine Tract (POPT).

To isolate the effects of bundle segmentation from all other sources
of variation, we directly provided six sets of whole-brain streamlines
(both deterministic and probabilistic) to all collaborators, derived from
3 subjects with scan-rescan data acquired from the Human Connectome
Project test-retest database (Glasser et al., 2016). Collaborators were
given the choice of utilizing streamlines generated from one of two com-
monly used tractography methods, a deterministic or a probabilistic al-
gorithm, which are known to generate different representations of white
matter bundles and have different uses and applications as described in
the literature (Pestilli et al., 2014, Sarwar et al., 2019).

In total, this collaborative effort involved 144 collaborators from 42
teams (Fig. 2, top). 57 unique sets of protocols were submitted, of which
28 submissions used the deterministic streamlines and 29 used proba-
bilistic. A total of 3138 bundle tractograms were submitted. Because col-
laborators did not have to submit all bundles, pathways showed varying
representation across submissions (Fig. 2, bottom), ranging from as low
as 16 protocols for the PC, up to 50 protocols for the CST.

A detailed description of all protocols, submitted by each of the 42
groups is provided as a Supplementary Table.

2.2. Qualitative results

Example visualizations of randomly selected segmentations from a
single subject are shown for exemplar projection, association, and com-

missural pathways (CST, AF, CC) in Fig. 3. These are visualized as both
streamlines directly, and also as 3D streamline density maps. The pri-
mary result from this figure is that there are many ways to segment these
structures that result in qualitatively different representations of the
same white matter pathways. These examples demonstrate visibly ap-
parent variations in the size, shape, and connectivity patterns of stream-
lines. In contrast, different protocols result in similar patterns of high
streamline density in the deep white matter and midbrain, with sim-
ilar overall shape and central location. Similar visualizations, for all
submitted pathways, both probabilistic and deterministic, are provided
in supplementary documentation. These observations apply to all dis-
sected pathways, however the commissural AC and PC contained very
few streamlines, with little-to-no agreement across protocols.

2.3. Pathway-specific results

To understand the variability that exists across protocols for a given
pathway, we visualize volume-based and streamline-based overlaps
among the protocols and show boxplots of agreement measures that
quantify inter-protocol, intra-protocol, and inter-subject variation. The
volume overlap is displayed as the volume of voxels in which a given
percent of protocols agree that the voxel was occupied by a given path-
way, where a streamline overlap is displayed as the individual stream-
lines in which a given percent of protocols agree that streamline is rep-
resentative of a given pathway. For quantitative analysis, we use several
measures to describe similarity and dissimilarity of streamlines, stream-
line density, and pathway volume (Fig. 4). This includes (1) volume
Dice overlap which describes the overall volume similarity, (2) density
correlation which describes insight into similarity of streamline density,
(3) bundle adjacency which describes the average distance of disagree-
ment between two bundles, and (4) streamline Dice which describes the
overlap of streamlines common between protocols (which can only be
calculated because bundles come from the same original set of stream-
lines). We calculate geometric measures of pathways including num-
ber of streamlines, mean length, and volume, as well as microstructural
measures of the average fractional anisotropy (FA) of the entire pathway
volume and the FA weighted by streamline density (WFA).

For simplicity, we show results of the CST, AF, and CC. Analysis
was conducted on all tracts, and results are provided in supplementary
documentation.

2.3.1. Corticospinal Tract (CST)

Fig. 5 shows the results for the CST, and Appendix A summarizes
the descriptive definitions and decisions made in the bundle segmenta-
tion workflow. Looking at the volume of agreement on a single subject,
nearly all methods agree on the convergence of axons through the inter-
nal capsule and midbrain, with some disagreements on cortical termina-
tions, and only a minority of protocols suggesting lateral projections of
this tract. Streamline-based agreements show similar trends. The most
striking result is that there were not any streamlines which were com-
mon to at least 75% of either the deterministic or probabilistic protocols.
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Probabilistic

Fig. 2. Summary of teams and submissions. Location of the teams’ affiliated lab (top). In total, 42 teams submitted 57 unique sets of bundle dissections, 28 utilized
the provided deterministic streamlines, and 29 utilized probabilistic. Map icons are colored based on the set of streamlines utilized, with the same color-scheme as
bar plots. Example submissions are shown for 14 pathways (bottom) along with a pie chart indicating the number of submissions for each bundle. Acronyms: see
text.
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Fig. 3. Variation in protocols for bundle segmentation of example pathways (CST, AF, and CC) on the same subject from the same set of whole-brain streamlines. Eight
randomly selected bundle segmentation approaches for each pathway are shown as segmented streamlines and rendered as 3D streamline density maps. Variations
in size, shape, density, and connectivity are qualitatively apparent. Probabilistic streamlines are shown, see supplementary material for Deterministic submissions.
Random selections generated independently for each pathway. Streamlines are colored by orientation and all density maps are windowed to the same range.

Bundles Volume Dice Overlap Density Correlation Bundle Adjacency Streamline Dice Overlap

i 073 Ofnm
-“-

Fig. 4. Similarity and dissimilarity metrics to assess reproducibility. Example SLF datasets are used to illustrate a range of similarity values between bundles A and
B (top) and between bundles A and C (bottom). Dice overlap is a volume-based measure calculated as twice the intersection of two bundles (magenta) divided by
the union (red and blue). Density correlation is calculated as the correlation coefficient between the voxel-wise streamline densities (shown as a hot-cold colormap
ranging from O to maximum streamline density) of the two bundles being compared. Bundle adjacency is calculated by taking the average distance of disagreement
(not including overlapping voxels in blue) between bundles (distances shown as hot-cold colormap). Finally, streamline Dice is taken as the intersection of common
streamlines divided by the union of all streamlines in a bundle and requires input bundles to be segmented from the same set of underlying streamlines (intersection
shown in figure).
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Fig. 5. Corticospinal Tract (CST) inter-protocol variability. Renderings show 25%, 50%, and 75% agreement on volume and streamlines for deterministic and
probabilistic tractograms. Box-and-whisker plots of Dice overlap, density correlation, and bundle adjacency quantify inter-protocol, intra-protocol, and inter-subject
variability (deterministic: red; probabilistic: blue). Each data-point in the plots is derived from the summary statistic of a single submission. Note that there were no

streamlines which were common to at least 75% of the protocols.

Quantitative analysis indicates fairly low agreement across proto-
cols. Inter-protocol Dice overlap coefficients largely fall between 0.4
and 0.6 (median Dice of 0.47 and 0.51 for probabilistic and determin-
istic, respectively), with a larger tail towards much lower Dice values
indicating some outlier protocols that are substantially different from
others. Protocols show moderate density correlation coefficients (me-
dian correlations of 0.51 and 0.67), and an average difference between
protocols of >4mm (median bundle adjacency of 4.3mm and 3.9mm).
Reproducibility within protocols is much higher, resulting in higher Dice
coefficients, higher density correlations, and lower bundle adjacency.
The variation across protocols is even greater than the variation across
subjects when quantified using Dice overlap. However, the density cor-
relation across protocols is higher than that across subjects, indicating
that while the volume overlap decreases, measures of bundle density are
more consistent across protocols. Finally, bundle adjacency is higher for
inter-protocol analysis than inter-subjects, suggesting that volume-based

differences across protocols are greater than volume-based differences
across subjects. The quantitative index FA shows a coefficient of varia-
tion across protocols of 7% relative to its average value and the density
weighted FA shows a variation of 4%.

2.3.2. Arcuate Fasciculus (AF)

Fig. 6 shows the results of the inter-protocol analysis for the AF, and
Appendix B summarizes the descriptive definitions and decisions made
in the bundle segmentation workflow. A majority of the extracted bun-
dles agree on the volume occupied by the bundle, with both determin-
istic and probabilistic submissions showing the characteristic arching
shape as the pathway bends from the frontal to temporal lobes. The vol-
ume of the 75% agreement is significantly smaller and much more spe-
cific than that of the 25% of agreement, occupying only the deep white
matter core of this trajectory. Similar results are shown for streamlines.
Very few streamlines were agreed upon by 75% of protocols for deter-
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Fig. 6. Arcuate Fasciculus (AF) inter-protocol variability. Renderings show 25%, 50%, and 75% agreement on volume and streamlines for deterministic and prob-
abilistic tractograms. Box-and-whisker plots of Dice overlap, density correlation, and bundle adjacency quantify inter-protocol, intra-protocol, and inter-subject
variability (deterministic: red; probabilistic: blue). Note that there were no streamlines which were common to at least 75% of the protocols.

ministic tractography, and no single streamline was observed in 75% of tween subjects. Finally, the coefficient of variation of FA and wFA across
probabilistic submissions. Cortical connections show significant varia- protocols is 10% and 5% that of the average FA and wFA, respectively.
tion. Qualitatively, as we become more strict with agreement, the con-
nections become much more refined to the frontal and temporal lobes
only, with fewer connections to the parietal cortex.

Quantitative analyses of similarity and agreement closely follow that
of the CST. The Dice overlap indicates relatively poor inter-protocol
agreement (median values 0.46 and 0.43 for probabilistic and determin-
istic, respectively), with a much higher intra-protocol agreement (me-
dian of 0.66 and 0.74). However, the inter-protocol overlap is similar
to the variation across subjects (0.40 and 0.53). Similar trends are ob-
served for density correlations. In this case, the inter-subject variation
is lower than inter-protocol for deterministic, but higher for probabilis-
tic, although both measures are lower than within protocol agreement.
Finally, differences across protocols are on average >5mm of distance,
whereas the disagreement is much less within protocols and even be-

2.3.3. Corpus callosum

Fig. 7 shows the results of inter-protocol analysis of the CC, and
Appendix C presents a summary of the descriptive definitions and deci-
sions made in the bundle segmentation workflow. Most protocols gen-
erally agree that this structure takes up a large portion of the cerebral
white matter in both hemispheres. While many streamlines were consis-
tent across methods, when looking at the 75% agreement, many submis-
sions do not include lateral projections — although they exist within the
dataset — as well as fibers of the splenium (or forceps major) connecting
to the occipital lobe and connections to temporal cortex.

Quantitative analysis shows much higher reproducibility than for the
AF and CST, with mean Dice values across protocols of 0.66 and 0.72,
which are again lower than intra-protocol reproducibility, but in this
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Fig.7. Corpus callosum (CC) inter-protocol variability. Renderings show 25%, 50%, and 75% agreement on volume and streamlines for deterministic and probabilistic
tractograms. Box-and-whisker plots of Dice overlap, density correlation, and bundle adjacency quantify inter-protocol, intra-protocol, and inter-subject variability

(deterministic: red; probabilistic: blue).

case, both slightly higher than that across subjects. The density correla-
tion shows similar trends. Finally, bundle adjacency is higher across pro-
tocols than across subjects, with measures indicating that disagreement
is generally 3mm or greater across protocols. Even though this structure
is quite expansive throughout the white matter, variation across quanti-
tative FA measures are still on the order of 8% and 4% for FA and wFA,
respectively.

2.4. Inter-protocol variability

To understand which pathways exhibit the most agreement/
disagreement across protocols, intra-protocol volume-based variation
measures of Dice overlap, density correlation, bundle adjacency, and
Dice streamlines are plotted in Fig. 8.

There is a fairly large variation across pathways in the overall proto-
col agreement as measured by Dice volume overlap (Fig. 8A). Volume-
wise, the most reproducible were the CC, the CST, and the IFOF. Re-

producible results from the CC were expected due to its large size and
unambiguous location of the CC proper, while the CST is arguably one of
the most well-studied tracts. The IFOF, while one of the more controver-
sial fasciculi (Forkel et al., 2014, Mandonnet et al., 2018, Altieri et al.,
2019, Sarubbo et al., 2019), likely results in higher overlap because it is
a long anterior-posterior directed pathway spanning from the occipital
to frontal lobe, passing through the temporal stem, a tight and small bot-
tleneck region (Hau et al., 2016) and most protocols agree that nearly
any streamline spanning this extent through a ventral route, will belong
to this pathway. In all cases, the overlap across protocols is fairly low,
with median values of the CC of 0.66 and 0.72 being the highest among
all pathways studied.

The least reproducible structures are those of the commissures, AC
and PC, which are largely defined only by a single location along the
midline with very little information on their routes or connections. The
FX represented a unique case. Many groups submitted the left FX as
expected, while others considered the left and right FX as a single struc-
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Fig. 9. Inter-protocol variation in mean FA, weighted-FA, volume (mm?3), and pathway length (mm) for all studied pathways. Note that CC volume is an order of

magnitude larger than all other pathways and is shown on a 10> mm? scale.

ture due to its commissural component. Thus, while it is indeed a small
structure, the quantitative value of overlap is overly critical based on
qualitative observations.

In agreement with qualitative results, the density correlations
(Fig. 8B) are moderate to high for most pathways, meaning that areas
of high streamline density and low streamline density are generally in
agreement across protocols. Pathways such as the CC, IFOF, CG, CST,
and UF have high agreement in streamline densities, whereas pathways
with generally lower number of streamlines and hence lower densities
(i.e., PC, and FX) show lower density correlations.

Similar results are observed for dissimilarity (Fig. 8C). Again, AC,
PC, show very large distances of disagreement, along with the FX and
in this case the MdLF. For nearly all pathways, the range of disagree-
ments across protocols are most typically on the order of 4-6mm. Look-
ing at Dice overlap of the streamlines (Fig. 8D), it is immediately ap-
parent that the overlap is very low in all cases, much lower than over-
lap of volume. For all pathways, a large majority of all comparisons
yield streamline Dice coefficients less than 0.2, with many indicating
no overlap at all. A trend observed in the streamline comparisons is
that the overlap is generally greater for deterministic than probabilistic
algorithms.

Fig. 9 shows protocol variability for pathway-specific measures of
the mean fractional anisotropy, weighted fractional anisotropy, path-

way volume, and pathway length across all protocols. In agreement with
results on the CST, AF, and CC, the FA derived from different protocols
varies by more than 8-12%, an effect greater than that observed in the
literature across study cohorts (Landman et al., 2011, Farrell et al., 2007,
Landman et al., 2007). Weighted-FA (wFA), however, varies much less
across protocols (4-7%) and is of greater overall magnitude than the
unweighted metric. The volume measurements show that different pro-
tocols can result in an order of magnitude difference in pathway volume,
an effect observed for all pathways. Finally, pathways with more vari-
ation in average streamline length (Fig. 9) agree well with those with
more variation in overlap measures. For example, AC, PC, and FX re-
sult in large differences in average length, while protocols on the IFOF
consistently agree on the length of this structure.

2.5. Variability within and across pathways

To assess similarity and differences in submissions without a priori
user-defined metrics of similarity, we utilized the Uniform Manifold Ap-
proximate and Projection (UMAP) (McInnes and Healy, 2007) technique
to visualize all bundle segmentation techniques in a low-dimensional
space. The UMAP is a general nonlinear dimensionality reduction that is
particularly well suited for visualizing high-dimensional datasets, in this
case, on a 2D plane. Fig. 10 shows all submissions, for all pathways, pro-
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Fig. 10. UMAP dimensionality reduction projected bundles onto an un-scaled 2D plane. Object color and shape represent pathways, and object size designates
deterministic/probabilistic. While variation exists within pathways and within deterministic/probabilistic streamlines, the white matter pathways generally cluster
together in low dimensional space. Insets visualize data points as streamline renderings, and highlight areas where similarity and/or overlap is shown across different

pathways.

jected on a 2D plane. While there are differences across protocols for a
given pathway, all submissions for a given pathway generally cluster to-
gether and show similar low-order commonalities, for both probabilistic
and deterministic. However, overlap between different pathways does
occur in some instances, for example between the SLF and AF (Fig. 10,
A), POPT and CST (Fig. 10, B), and MLF, ILF, and OR (Fig. 10, C). This
suggests similar low-order representation of some submissions in these
pathways.

3. Discussion

These results identify and quantify differences and the significant
heterogeneity of white matter structures introduced by the use of differ-
ent protocols for bundle segmentation with tractography. This variabil-
ity may present difficulties interpreting differences in bundle segmenta-
tion results obtained by different labs, or meta-analyses extending and
comparing findings from one study to other studies. Additionally, this
variation in protocols can lead to variability in quantitative metrics that
are greater than true biological variability across populations or sub-
jects and may hinder translation of these techniques from the research
laboratory to the clinic.

11

We propose that a major source of this variation stems from a lack
of consensuses on the anatomical definition of pathways (Forkel et al.,
2014, Mandonnet et al., 2018, Panesar and Fernandez-Miranda, 2019,
Bajada et al., 2015). There is no standard framework for defining a tract,
with some descriptive definitions focusing on the shape and locations of
convergence of axons in the deep white matter, while others may focus
on specific regions to which fibers connect (Mandonnet et al., 2018,
Bajada et al., 2015, Bajada et al., 2017, Carpenter and Sutin, 1983,
Nieuwenhuys et al., 2008, Schmahmann et al., 2007). Consequently,
differences, misconceptions, and ambiguities in anatomical definitions
and their interpretation may lead to different rules used in the dissec-
tion process. For example, workflows used to dissect a bundle range from
manual to automated delineation of regions through which streamlines
must pass, to shape-based, signal-based, or connection-based methods
of segmentation. Importantly, the appropriateness and usefulness of the
chosen reconstruction method is application dependent, and no single
method is clearly wrong and/or better than the others.

This study was not intended to detract from the value of tractogra-
phy and bundle segmentation, but rather the aim was to clearly define a
current inherent problem and its scope. Looking forward, with a number
of well-validated and valuable tools, pipelines, software, and processes
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at our disposal, it becomes fairly straightforward to modify bundle seg-
mentation protocols to match what we would ultimately strive for in
a “consensus definition” of white matter bundles. Thus, instead of de-
scribing these results as revealing a problem, we see this as an opportu-
nity, or a call-to-action to harmonize the field of bundle segmentation —
both in the nomenclature and definition of white matter pathways, and
in the best way to virtually segment these using tractography. More-
over, optimistically, it may be quite useful to have a supply of tools
available to dissect and investigate the same white matter bundle in
different ways depending on the research question, or the anatomy or
functional system under investigation. We note that collaborative efforts
have proven valuable to identify successes and limitations of tractog-
raphy (Schilling et al., 2019, Pujol et al., 2015, Daducci et al., 2014,
Maier-Hein et al., 2017, Schilling et al., 2019), and facilitate future im-
provements. Here, we pursue a different approach, focusing specifically
on variability of the tractography dissection process when performed
by different groups, rather than comparisons against simulations, phan-
toms, tracers, or prior knowledge.

3.1. What happens when 42 groups dissect the same dataset?

Our first main result is that the inter-protocol agreement is generally
poor across protocols for many pathways, with limited agreement on the
brain volume occupied by the pathway. With few exceptions, the aver-
age Dice coefficients from both deterministic and probabilistic stream-
lines were below 0.5, with many considerably lower. For most stream-
lines, the inter-protocol bundle adjacency is between 4-6 mm, meaning
that when protocols disagree, they do so by an average of ~3-5 vox-
els. Shape and geometry-based measures (i.e., length and volume) of
the streamline bundles vary by an order of magnitude across protocols.
Consequently, quantitative metrics calculated based on this volume will
vary, for example the average FA within a bundle varies by ~8-12%
across protocols. Because our analysis was based on the same set of
streamlines, these results represent a best-case measure of inter-protocol
agreement, and would almost certainly result in increased variability if
participants performed their own reconstruction and streamline gener-
ation procedures.

Our second main result is that bundle segmentation protocols have bet-
ter agreement in areas with high streamline densities. Measures of stream-
line density correlation coefficients across submissions are on average
>0.5, with few exceptions, which suggests that high density areas in
tractograms generally correspond to high density areas of other trac-
tograms, while low density areas correspond to low-density areas (or,
in fact, regions with no streamlines). This agrees with observations of
3D density maps where areas of high streamline density are consistently
observed in the same location across submissions. These areas of higher
streamline density correspond to the core or stem of most of the bundles,
generally located in the deep white matter of the brain. Because of this,
weighting quantification by streamline density will reduce variability
across protocols, for example, wFA varied by ~4-7% across protocols.

Third, we find that the variability across protocols is greater than the
variability within protocols, and more importantly, similar to (or greater
than) the variability across subjects. These results are in agreement with
previous studies showing high overlap, high density correlations, and
low disagreements within a protocol (Wakana et al., 2007, Nath et al.,
2019, Rheault et al., 2020). Most importantly, in our study, this rep-
resents a worst-case intra-protocol measure. It includes sources of vari-
ability related to acquisition (and associated noise and artifacts), reg-
istration, reconstruction, and streamline generation — sources of vari-
ation which are shown to be still smaller than that across protocols.
Thus, while there is little consensus on bundle dissection protocols, a
study that uses a consistent protocol has been shown to have the power
to reliably detect consistent differences within and across populations;
however, there may be limitations in how the findings from a given
study can be extended, applied, or compared to others with different
protocols.
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Fourth, we find that there is variability per bundle in how much agree-
ment there is across protocols. The commissural CC has a higher repro-
ducibility due to its large size and very clear anatomical definition, de-
spite more ambiguous definitions of its cortical terminations. However,
the PC and AC commissures showed very poor agreement, despite hav-
ing a very clear location along the midline. This is in part due to smaller
sizes, but also scarce literature on the location and connections of the
bundles that pass through these regions. CST and IFOF also show mod-
erate agreement across protocols, in part due to their length and at least
one location that is moderately specific to these bundles (i.e., the pyra-
mids of the medulla for the CST and the floor of the external capsules for
the IFOF). Even here, the Dice overlap across protocols is 0.6 or less, on
average. The MdLF and CG show relatively poor agreement. The MdLF
is much less studied, and a relatively recent addition to the literature
(Seltzer and Pandya, 1986, Makris et al., 2013), with some disagree-
ment on parietal terminations (Bajada et al., 2015). The CG is a tract
that is likely composed of both longer fibers extending throughout the
whole tract, as well as multiple short fibers across its structure which
may be both hard for tractography to entirely delineate the long fibers,
and hard to capture and constrain segmentation of the shorter fibers
that enter and leave throughout (Jones et al., 2013, Heilbronner and
Haber, 2014). The POPT showed relatively higher agreement. This bun-
dle was included as a relatively ambiguous nomenclature (seen in the
literature) of pontine tracts. Whereas both occipito-pontine and parieto-
pontine fibers exist, they are not usually defined as a specific tract or fas-
ciculus. Finally, some of the more commonly delineated structures (OR,
ILF, SLF, UF) show inter-protocol variabilities somewhere in between,
but still exhibit poor-to-moderate volume and streamline overlaps.

For many applications, end-users of bundle segmentation technolo-
gies are interested in gross differences in connectivity and location,
and what matters is not so much that tracts are reconstructed in their
entirety, but that they are not confused with one another. For exam-
ple, misunderstanding or inapt nomenclature, and/or non-specific con-
straints in the bundle segmentation process could lead to misidentifica-
tion of the desired pathway (possibly as another pathway or subset of
another pathway) and would lead to confusion in the literature. Based
on our results, an experienced neuroanatomist or neuroimager can eas-
ily classify the submitted pathways based on visual inspection of the
streamlines. Thus, these inter-protocol bundle segmentations represent the
same basic structure, even if some variability in spatial extent and con-
nections is observed. This is confirmed using an unsupervised data ex-
ploration tool for dimensionality reduction, where within-pathway sub-
missions are clearly clustered (for both probabilistic and deterministic
algorithms) in low dimensional space. However, there are a few excep-
tions. Notably, several AF and SLF submissions overlap significantly,
which is not unexpected because these have often been defined and/or
used interchangeably in the literature (Dick and Tremblay, 2012). Re-
latedly, several submissions of the POPT contain a subset of streamlines
often assigned as CST, which is again expected because both are often
(or can be) described as having parietal connections in common. Fi-
nally, several ventral longitudinal systems of fibers (MdLF, OR, ILF, and
IFOF) are not clearly separated in this space, suggesting that in many
instances they share similar spatial overlap and densities of streamlines
across submissions.

Finally, while there is low volume-based agreement, streamline-
based agreement is lower still. In fact, many protocols did not agree on a
single streamline belonging to a pathway of interest. Protocols agreed on
consistently 20% or less of deterministic streamlines and less than 10%
of probabilistic streamlines. Put another way, given a set of streamlines
from which to select, very few streamlines were consistently determined
to be a part of a given pathway across all groups performing the segmen-
tation. With the wide variety of workflows to select streamlines, few
streamlines met inclusion criteria associated with cortical connectivity,
shape and spatial location, and survived possible exclusion criteria such
as filtering based on length, curvature, or diffusions signal, as well as
personal preference of the person performing dissection (for example
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eliminating streamlines to reduce complexity of manual segmentation).
Thus, the final main result is that the measured variability depends on the
scale upon which the variability is analyzed. Protocols show little-to-no
agreement in assigning individual streamlines to a pathway, whereas
protocols show higher agreement in assessing spatial overlap of path-
way, and even higher agreement when taking into account density of
streamlines over a volume. This means that while selected streamlines
may occupy the same volume, the streamlines that make up this volume
are different.Thus, the effects of this variability are dependent upon how
these bundles are ultimately utilized in practice, and there are a number of
ways in which these bundles are used and applied. For this reason, we
state that no submissions are inherently “wrong”, and instead emphasize
that they are simply “different from one another”.

3.2. Sources of variability

We have identified variability in the protocols for bundle segmen-
tation, which parallels variability in the literature of other techniques
that have been used to elucidate the structure and function of the brain
for the last 20 years. These types of disagreements and the challenge
in advancing science beyond them are not new to computational neu-
roanatomy. Indeed, as we look at the history of brain science differences
in opinions and associated results can be traced back a long way. Key
examples of the inherent variability in anatomical and functional defi-
nitions and associated disagreements include the definition and func-
tional specialization of cortical areas (Tootell and Hadjikhani, 2001,
Weiner and Grill-Spector, 2012, Winawer et al., 2010). Hence, our find-
ings here highlight the complexity of the scientific concepts and the
difficulty in making progress towards understanding. The fact that the
engineering of new methods needs to be refined because we still have
(and have had for over hundreds of years in neuroanatomy) substan-
tial variability in results does not necessarily mean that science is not
progressing.

We postulate that the problem stems from two sources (1) the
anatomical definition of a white matter pathway and (2) the constraints
used to dissect this pathway. The descriptions of the white matter path-
ways given in the appendix highlight the problem of “definition”. Path-
ways may be defined by their shape, their endpoints, or by regions
through which they pass. Descriptions and definition approaches may
vary based on the pathway itself (i.e., some may lend themselves more
easily to descriptions of shape rather than endpoints), by the system or
functions under investigation, by the training and/or occupation of the
researcher/clinician, or by the modality used to define the tract. For
example, cadaveric microdissection may facilitate description of fasci-
cular organization and regional descriptions over highly specific lobu-
lar connectivity descriptions provided by histological tracers. Further,
definitions do not always facilitate binary decision making in the bun-
dle dissection process due to biological reasons. The brain is a complex
structure, there are not always hard or unique borders between cortical
or subcortical regions, and the location of endpoints or regions may not
always be precisely determined. The goal of tractography bundle seg-
mentation then is to recreate these definitions in the bundle dissection
process (Schilling et al., 2020); however, certain algorithms, software
packages, and manual pipelines lend themselves more naturally to one
type of constraint than the other, and may implement them in different
ways or with different levels of precision. Even if a definition has been
entirely met, a sensitivity/specificity tradeoff is possible, influenced by
potentially every step in the fiber tractography process from acquisi-
tion and reconstruction to the final constraints and streamline filtering
techniques (Schilling et al., 2019, Thomas et al., 2014, Knosche et al.,
2015).

3.3. The ‘problem’ and ‘solution’

The question becomes “whose problem is this?”. We propose that
there may be shared responsibility on the part of classical anatomists,
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those developing tractography algorithms, and those implementing or
performing segmentations. The endeavor to digitally segment the white
matter is predicated upon there being some consensus of what structures
are there to be segmented, this is the task of classical neuroanatomists.
Next, tractography providers must endeavor to create candidate trac-
tomes that resemble the white matter of the brain as closely as possible,
as the resultant tractomes must contain viable anatomy for extraction.
Finally, those who perform digital segmentations must decide an appro-
priate level of precision (sensitivity/specificity) and be clear and precise
as they describe the methods of their segmentations as this will permit
comparison and refinement between segmentations. This must be an
iterative process, utilizing orthogonal information in the form of non-
human model brains, micro-dissection, and alternative neuroimaging
contrasts, in order to validate the existence and location or connections
of a pathway, validate the rules and constraints that allow accurate dis-
section of this pathway, then iteratively refining the location and/or
connections based on knowledge gained through the bundle segmenta-
tion process. Thus, we hope that this paper acts as a call to action on two
efforts of consensus: both standardization of the anatomical definition
(in addition to nomenclature) and the adoption of protocols to fulfill
this definition.

Even without a consensus, there could be a convergence towards
appropriate, or more specific, nomenclature and clustering of stream-
lines, or alternative accepted definitions. Additionally, a consensus on
the healthy, young adult, individual may not lead to satisfactory results
on developing, aging, or diseased populations. The effect of protocols
and their adherence to definitions should be investigated in the presence
of tumors, on the pediatric and elderly populations, and also with vary-
ing acquisition, reconstruction, and streamline generation conditions.
Convergence upon protocols may come from isolating and operational-
izing similarities and differences in definitions and protocols, as done in
image segmentation literature (Boccardi et al., 2015), in order to slowly
converge upon a consensus and/or guidelines. This may include: (1)
exploring relationships between automated, semi-automated, and man-
ual methods, (2) nomenclature and methodology based on volumetric
characteristics (locations, shapes, orientation) versus connectivity char-
acteristics (origins and terminations) (DN et al., 2021), and (3) studies
of various constraints to best replicate nomenclature.

While we cannot currently give a recommended dissection protocol
for a given pathway, we can recommend good practices to be used in
all studies. First, we suggest transparency and explicit descriptions of
pathway definition, dissection protocol, and ROIs (Catani and Thiebaut
de Schotten, 2008, Fekonja et al., 2019). Second, understanding and
quantifying the intra-protocol variability, for both automatic and man-
ual approaches, is a necessary prerequisite to determine quantification
variability and subsequent statistical power. Third, with the knowledge
that the dense core of the pathway is consistent across protocols, weight-
ing by density (or a focus on deep white matter, as is common in many
statistical analyses (Smith et al., 2007, Yeatman et al., 2012)) will be
more appropriate for evaluating inter-subject difference in microstruc-
tural properties, given its smaller inter-site and inter-lab differences. Fi-
nally, the results obtained by (and inferences made from) tractography
must be interpreted with appropriate level of coarseness, by consider-
ing the existence of inter-protocol variability and coarse spatial scale
of diffusion MRI measurements. Since some of statistical properties of
tractography (streamline counts and densities, and geometry/volume of
tracts) have dependency on method selections at this point, it is im-
portant to encourage studies by independent groups testing how much
conclusions in a single original paper can be generalizable to a different
segmentation protocol or datasets.

3.4. Limitations
This study has several limitations which constrain the generaliz-

ability of the results. First, there is a low number of subjects and low
number of repeats. While automated methods can be run on several
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hundred subjects using only CPU-hours, this study would have become
prohibitive for manual or semi-automated methods with more than 14
pathways over six datasets (84 total possible dissections), and many of
these methods would have been under-represented. Next, we did not in-
clude a number of pathways with functional relevance in the literature,
but chose a sample representative of the commonly studied projection,
association, and commissural bundles, and, again, a compromise was
made between the number of pathways requested and expected time and
effort. Future studies should consider studying pathway sub-divisions
specifically, as well as additional major white matter pathways and su-
perficial U-fibers (Guevara et al., 2020). Further, because we wanted to
isolate the effect of bundle segmentation protocols, we forced the use
of our own generated streamlines. This may not be optimal for a given
segmentation process where streamlines are generated using different
parameters or propagation methods, and filtered or excluded in various
ways. However, allowing the creation of different streamlines would
only increase the variability seen across protocols. Finally, there is no
“right” measure to quantify variability (Rheault et al., 2020). No single
measure can paint a complete picture of the similarities and differences
of this complex technology across all applications. The measures used
in this study were chosen as intuitive quantifications of volume-based,
voxel-wise, and streamline-based agreement, as well as measures based
on binary volumes and streamline densities. We also quantified mea-
sures of geometry which are often used in quantification or to modu-
late connectivity measures, as well as measures of microstructure within
pathways (both weighted and unweighted by densities). The best mea-
sure of bundle variability is ultimately dependent on how the bundle is
used.

Future studies may investigate which protocols (and which features
of those protocols) result in bundles that are more or less similar to
other protocols, and more importantly, quantify how well different pro-
tocols result in bundles that match the desired anatomical definition.
This could be done using tools (Wassermann et al., 2016) to query text
descriptions of volume, location, and connectivity to determine whether
streamlines agree with the definition of a bundle. Finally, similar efforts
with international and multi-disciplinary teams must apply evidence-
based approaches pooling knowledge gathered from tracers, dissections,
and functional contrasts from in vivo and ex vivo specimens in order to
ultimately reach a consensus on tract descriptions (Yang et al., 2021,
Bullock et al.,), and the best way to virtually dissect these tracts using
fiber tractography.

4, Materials and methods

We surveyed the protocols for bundle segmentation of 14 white mat-
ter bundles, chosen to represent a variety of white matter pathways stud-
ied in the literature, including association, projection, and commissural
fibers, fibers with clinical and neurosurgical relevance, as well as cov-
ering a range from frequently to relatively infrequently studied and/or
described in the literature.

We made available the same datasets to be analyzed by a large num-
ber of groups in order to uncover variability across analysis teams.
To isolate the effects of bundle segmentation from all other sources
of variation, we directly provided six sets of whole-brain streamlines
(both deterministic and probabilistic) to all collaborators, derived from
3 subjects with scan-rescan data acquired from the Human Connectome
Project test-retest database (Glasser et al., 2016). We extended invita-
tions for collaboration, disseminated data and the protocol with clearly
defined tasks, and received streamlines from collaborators for analysis.
In addition to streamlines, we requested a written “definition” of the
pathways and a description of the constraints used to dissect it. Impor-
tantly, this dataset allows us to quantify and compare variability across
protocols (inter-protocol), variability within protocols (intra-protocol),
and variability across subjects (inter-subject). Detailed procedures are
provided in supplementary material.
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4.1. Data and protocol

The diffusion data for this study were selected from the Human Con-
nectome Project test-retest database (Glasser et al., 2016). A total of
three subjects (HCP IDs: 144226, 103818, 783462) were chosen that
had repeat diffusion MRI scans, resulting in six high-quality datasets,
free of any significant artifacts. This dataset was chosen as a compromise
between quantification and inclusivity - the use of this small database
still provides enough information to detect and quantify the variability
among results with great enough participation across laboratories and
scientists.

Collaborators were not informed that the six datasets represented
only three subjects in order to not bias intra-protocol analysis. Dis-
tortion, motion correction and estimation of nonlinear transforma-
tions with the MNI space was performed using the HCP preprocessing
pipelines (Glasser et al., 2016). Whole-brain tractograms were gener-
ated using the DIPY-based Tractoflow processing pipeline (Theaud et al.,
2020, Garyfallidis et al., 2014), producing both deterministic and prob-
abilistic sets of streamlines to be given to participants. Importantly, to
be as inclusive as possible to all definitions and constraints, streamlines
were not filtered in any way. Streamlines were separated into left, right,
and commissural fibers in order to minimize file sizes. Also provided
were the b0 images, Fractional Anisotropy (FA) maps (Jenkinson et al.,
2012), directionally-encoded color maps (Jenkinson et al., 2012), T1
weighted images, and masks for the cerebrospinal fluid, gray matter,
and white matter (Jenkinson et al., 2012).

The task given to collaborators was (see supplementary material) to
dissect 14 major white matter pathways on the left hemisphere on the
six diffusion MRI datasets provided. Collaborators were free to choose
either deterministic or probabilistic streamlines, and free to utilize any
software they desired. In order to maximize the quality of submitted
results, investigators did not have to provide segmentations for all path-
ways if they did not have protocols or experience in some areas.

4.2. Submissions

For submission, we asked for a written definition of the white mat-
ter bundles, a description of the protocol to dissect these pathways,
all code and/or temporary files in order to facilitate reproducibility of
methods, and finally the streamline files themselves. Quality assurance
was performed on file organization, naming conventions, and streamline
spatial attributes, and visual inspection was performed for all stream-
lines of all subjects. Tools for quality assurance (QA) can be found at
(https://github.com/scilus/scilpy).

4.3. Pathway-specific analysis

For all pathways, we focused on quantifying volume-based and
streamline-based similarities and differences in the dissected bundles
across protocols. Qualitatively, we assessed volume overlap and stream-
line overlap. Volume overlap was displayed as the volume of voxels in
which 25%, 50%, and 75% of all protocols agreed that a given voxel
was occupied by the pathway under investigation. Similarly, we viewed
the individual streamlines in which 25%, 50%, and 75% of all protocols
agreed that this streamline is representative of a given pathway. These
qualitative observations were shown as volume-renderings or stream-
lines visualizations directly.

Next, quantitative analysis used three voxel-based measures (based
on volume and streamline density) and one streamline-based measure
(Rheault et al., 2020). The Dice overlap coefficient, density correlation
coefficient, bundle adjacency, and streamline Dice overlap are illus-
trated in Fig. 4. Dice overlap measures the overall volume similarity
between two binarized bundles (i.e., all voxels that contain a stream-
line), by taking twice the intersection of two bundles divided by the
union of both bundles. A value of 1 indicates perfect overlap, a value
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of 0 indicates no overlap. The density correlation coefficient is a mea-
sure of the Pearson’s correlation coefficient obtained from the streamline
density maps. This provides insight into not only overlap, but also agree-
ment in streamline density. Bundle adjacency is a volume-based metric
that describes the average distance of disagreement between two bun-
dles. This was calculated by taking all non-overlapping voxels from one
bundle, and calculating the nearest distance to the second bundle (and
repeating from the second to the first bundle) and taking the average of
these distances. By defining this metric, we are using a convenient sym-
metric distance between two binary volumes, which is a modification
of the Hausdorff distance. A value of 3mm, for example, indicates that
when the bundles disagree, they are an average of 3mm apart. Finally,
streamline Dice is the streamline-equivalent of Dice overlap. Because all
submissions for a given subject were derived from the same set of whole-
brain streamlines, we had the ability to quantify whether an individ-
ual streamline was common to both submitted bundles. Streamline Dice
was calculated by taking the total amount of streamlines common to
both protocols (i.e., intersection) divided by the total number of unique
streamlines in both bundles (i.e., union). Again, a value of 1 indicates
that all streamlines are exactly the same, a value of 0 indicates no over-
lap in streamlines. Note that this final measure can be calculated only
for datasets that are derived from the same original set of streamlines.

4.4. Quantifying variability across protocols

The measures introduced above were used to quantify variability
across protocols (inter-protocol), variability within protocols (intra-
protocol), and variability across subjects (inter-subject), with separate
analyses for deterministic and probabilistic results. Below, we describe
these three levels of variability assuming there were “N” submissions
for a given pathway.

For inter-protocol variability, each bundle was compared to its coun-
terpart as produced by each of the other N-1 protocols, and the results
averaged, representing the average similarity/dissimilarity of that pro-
tocol with all others. This was done for all N submissions, for all 3 sub-
jects, resulting in Nx3 data-points for each pathway.

For intra-protocol variability, we aimed to compare the same proto-
col performed on the same subject. For each of the N submissions, we
calculated the similarity/dissimilarity measures with respect to the same
submission on the repeated scan. This was repeated for all subjects, re-
sulting in again Nx3 data-points for each pathway. A “precise” measure
of intra-protocol variability would have been possible if the same set of
streamlines had been provided twice for each subject. Instead, the study
used scan/re-scan data to measure not only intra-protocol variability,
but the variability of everything up to, and including protocol. Thus, this
measure includes acquisition variability (i.e., noise and possible arti-
facts), registration (to a common space), reconstruction, and generation
of whole brain streamlines.

For inter-subject variability, we sought to characterize how simi-
lar/dissimilar a bundle is across subjects within a single protocol. All
streamlines were normalized to MNI space using nonlinear registration
(antsRegistrationSyn) (Avants et al., 2008) of the T1 image to the MNI
ICBM 152 asymmetric template (Fonov et al., 2011). For each of N proto-
cols, the agreement measures were calculated from subject 1 to subject
2, from subject 2 to subject 3, and from subject 1 to subject 3, again
resulting in Nx3 data-points for each pathway.

Finally, to visually assess differences across bundles and across pro-
tocols,we utilized the Uniform Manifold Approximate and Projection
(UMAP) (Mclnnes and Healy, 2007) technique (https://github.com/
Imcinnes/umap; release 0.4.1), which is particularly suited for visu-
alizing clusters or groups of high-dimensional data and their relative
proximities. UMAP input was the 3D density maps of all bundles for
all submission, while the output was projection of all bundles onto
the 2D space. We note that any dimensionality reduction technique
and subsequent visualization could have been used, for example t-
SNE (Hinton and Roweis, 2002), for qualitative analysis of tractograms
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grouped across bundles and protocols. Hyperparameters and algorithm
initialization are known to influence results for these nonlinear dimen-
sion reduction techniques (Kobak and Linderman, 2021), but for our
purposes (qualitative visualization of local and global clusters without
an explicit user-defined scalar measure of agreement/disagreement) we
have implemented this with all default parameters of distances, metrics,
and components.

Data and Code Availability

The diffusion data for this study were selected from the Human Con-
nectome Project test-retest database. A total of three subjects (HCP IDs:
144226, 103818, 783462) were used in this study. Code for bundle vari-
ability analysis is available at (https://github.com/scilus/scilpy).
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Appendix A. Cortico Spinal Tract (CST)

The CST is the major descending tract that mediates voluntary skilled
movements (Jang, 2009, Wiesendanger, 1969). At its most basic, this
tract is a pathway of fibers coursing primarily from the motor cortex
down the spinal cord. Despite this apparent simplicity, dissecting this
tract can be quite variable. Moderately increasing the complexity of the
definition, the CST can be (unanimously) described as starting from the
cortex, traveling through the corona radiata, converging into the in-
ternal capsule, continuing into the brainstem through the medulla, and
finally extending to the spinal cord. Decisions to be made include choos-
ing specific cortical terminations (which span both frontal and parietal
lobes) and how these are delineated, selecting regions through which
the streamlines must pass (“cortex to medulla” or “cortex to lower brain-
stem” or “motor cortex to medulla”), and implementing additional in-
clusion and exclusion regions throughout the extent of the pathway to
further refine where it goes and where it does not go. Adding further
ambiguity, the CST together with the corticobulbar tract make up the
pyramidal tract, and because these are not easily (or not possibly) sep-
arated due to inherent tractography limitations and field of view re-
strictions, these have sometimes been used interchangeably and/or in-
correctly in the literature. In this study, the CST was divided into pre-
central and postcentral divisions based on endpoints, hand-foot-face di-
visions based on regions of interest, anterior-posterior-central-cingulate
divisions based on endpoints, combined/separated with ascending path-
ways with thalamic synapses, as well as combined/separated with the
peri-Rolandic component based on endpoints, and divided into lateral
and anterior components based on definition (but not dissected).

Appendix B. Arcuate Fasciculus (AF)

The AF plays a key role in language processing. This is an associ-
ation tract that is well-understood to connect Wernicke’s area (some-
where in the posterior temporal lobe) to Broca’s area (located in the
inferior frontal lobe). It gets its name (Latin for curved bundle) from the
distinctive arch shape it makes as it curves from the anterior-posterior
direction in the frontal-parietal cortex ventrally into the temporal cortex
around the Sylvian fissure (lateral sulcus) (Catani and Mesulam, 2008,
ten Donkelaar et al., 2018). This description of the AFs shape is gen-
erally agreed upon. A third area (inferior parietal lobule) is also tra-
ditionally included in this tract’s connections, representing the path-
way that Geschwind postulated to be damaged in conduction aphasia
(Catani and Mesulam, 2008). For this reason, many descriptions include
multiple segments of the AF - a direct pathway traversing the entire tract
from temporal to frontal lobes, and an indirect pathway of shorter fibers
connecting temporal to parietal to frontal lobes. Consequently, the AF
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can be described as connecting a number of areas of the perisylvian
cortex of the frontal, parietal, and temporal lobes. To further compli-
cate the literature, because the AF is a dorsal longitudinal system of
tracts, it is occasionally considered to be part of the SLF system of tracts
(Dick and Tremblay, 2012, Thiebaut de Schotten et al., 2012) and con-
sidered synonymous or used interchangeably in the literature (Dick and
Tremblay, 2012). For these reasons, we hypothesized that we would see
large variability when giving collaborators the task to “segment the ar-
cuate fasciculus”. Variability is observed due to differences in defining
the location and method of delineating Wernicke’s and Broca’s areas, or
selection of regions to capture the arch-like shape. Approximately 1/5 of
submissions indicated dividing the AF into the long direct segment (of-
ten described as more medially located), and the anterior and posterior
indirect segments (described as laterally located shorter segments).

Appendix C. Corpus Callosum (CC)

The CC is the largest, and arguably most easily recognizable, white
matter structure of the brain. This structure is not a single tract, but
rather a commissure, composed of axons coursing in the left-right ori-
entation at the midline, and interconnecting the cerebral cortex of the
two hemispheres. Many subdivisions of the CC have been proposed
(Hofer and Frahm, 2006) with most partitioning the CC based on axon
location in the mid-sagittal section. Most commonly, subcomponents are
rostrum, genu, body, isthmus, splenium, and (sometimes) tapetum, al-
though others include genu, splenium, and callosal body, or anterior,
mid-anterior, central, mid-posterior, and posterior based on (FreeSurfer)
parcellation schemes. Alternative subdivisions included separating ac-
cording to the major lobes of the brain (frontal, parietal, occipital, and
temporal) or numerical subdivisons (ranging between 5 and 12) based
on cadaveric and histological dissections (Witelson, 1985), or homolo-
gous connections, or clusters of fibers. Common to all protocols is the
large, easily distinguishable region near the midline. Constraints, de-
cisions, and filters include choices of where these bundles cannot go
(various temporal lobe regions, through or near subcortical structures,
cingulum and parahippocampal gyri, etc), filtering by connection re-
gions or lengths, or rules enforcing homologous connections.
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