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1 Introduction

Most modern theories of particle physics based on supergravity, strings and branes contain
hidden sectors which are neutral under the Standard Model (SM) gauge group but may
possess their own gauge groups. However, even though the hidden sectors are neutral under
the SM gauge group, they may possess feeble interactions with the visible sector via a
variety of portals such as the Higgs portal, kinetic and Stueckelberg mass mixings between
the hidden sector U(1) gauge fields and the visible sector U(1)Y hypercharge gauge field, or
via higher dimensional operators which are dually charged under the gauge groups of the
Standard Model and of the hidden sectors. The visible and the hidden sectors will in general
reside in different heat baths. In prior literature, it is often assumed (see, e.g. [1, 2]) that the
visible and the hidden sectors temperature evolution are governed by entropy conservation
carried out separately for the visible and the hidden sectors. However, such an assumption
is untenable if there is a coupling between the hidden sectors and the visible sector. Thus
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a proper treatment of the temperatures of the visible and the hidden sectors implies that
one perform their evolution consistent with conservation of the total entropy and not the
entropy conservation for each sector separately. An analysis of such a formalism was given
in ref. [3] for the case of one hidden sector and for the case of two hidden sectors in ref. [4].
Further, an application of ref. [3] was made for the explanation of EDGES anomaly [5] in
ref. [6] (for related works see [7–10]). It is to be noted that the extension to two hidden
sectors brings in new physics. Thus with one hidden sector, it is not possible to have dark
photon as dark matter because it is not possible to satisfy the twin constraints that the
dark photon simultaneously have a lifetime larger than the lifetime of the universe and at
the same give us significant amount of dark matter consistent with the Planck data [11].
We expect that further extensions of the formalism involving more hidden sectors would
also bring in new physics which may have implications for particle physics and cosmology.

Thus in this work we extend the analysis to the case of n number of hidden sectors
which are linked to the visible sector in a sequential manner. Specifically, if we label the
visible and the hidden sectors as Sa, a = 0, 1, · · · , n where S0 stands for the visible sector
and Sa, a = 1, · · · , n stand for the hidden sectors, then we assume that the sectors have
only next neighbor couplings. That is to say that a sector Si has couplings only with Si−1
and Si+1. In this setup, we investigate the correlated evolution of temperatures in each
sector relative to a given reference temperature. While such a reference temperature can be
chosen arbitrarily, in this analysis we assume the temperature of the visible sector to be the
reference temperature or the ‘clock’. Specifically, we obtain a set of n coupled Boltzmann
equations for the temperature evolution functions ξa = Ta/T, a = 1, 2, · · · , n, where T is the
temperature of the visible sector and Ta (a = 1, · · · , n) is the temperature of hidden sector
a. An analysis is also given of how very feeble couplings can be obtained by a sequential
couplings of the hidden sectors to the visible sector. For some early works related to the
evolution of hidden and visible sectors see, e.g., [12, 13].

The outline of the rest of the paper is as follows: in section 2, we discuss the model with
n hidden sectors, and in section 3 we apply this generalization to n hidden sectors to the
Stueckelberg extension of the SM. In section 4 we discuss the special case of three hidden
sectors for a simple model consisting of a dark Dirac fermion and dark scalar particles.
In section 5 we study the thermal effect of hidden sectors on experimentally measured
observables such as the spin-independent proton-DM scattering cross-section and on dark
radiation given by ∆Neff for extra light relics. Conclusions are given in section 6. A detailed
derivation of the evolution equations for visible and hidden sector temperatures is given in
appendix A and the collision and source terms used in the Boltzmann equations are listed
in appendix B.

2 A model with n hidden sectors

The model consists of n number of hidden sectors linked in a chain with the first hidden
sector connected to the visible sector as shown in figure 1.

The above is a generalization of the cases considered previously for n = 1 and n = 2.
As mentioned earlier, we choose the temperature of the visible sector as the clock. The set
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Visible sector
Hidden sectors

V (T ) H1(T1) H2(T2) Hn(Tn)

Figure 1. The visible sector linked to a chain of n number of hidden sectors.

of Boltzmann equations for the energy density ρα including energy exchange between the
sectors is dρα/dt+ 3H(pα + ρα) = jα (α = 0, 1, 2, · · · , n). For the range of masses for the
dark sector particles we consider in this analysis, it is safe to assume radiation domination1

down to T ∼ 10−5GeV and so pα = 1/3ρα. Thus, we get
dρα

dt
+ 4Hρα = jα, α = 0, 1, 2, . . . , n , (2.1)

where α = 0 refers to the visible sector and where jα encodes in it all the possible processes
exchanging energy between neighboring sectors. As discussed above, in order to properly
describe the thermal evolution of the universe with visible and hidden sectors in different
heat baths, we need to have evolution equations for the dξα/dT . However, to compute
dξα/dT, α = 1, 2, · · · , n we first derive equations for dρα/dT (α = 1 · · ·n) in terms of
dρv/dT . We proceed by considering the Boltzmann equation of the total energy density ρ,
i.e., dρ/dt+ 4Hρ = 0. Knowing that dρ/dt = (dρ/dT )(dT/dt), we have

dT

dt
= − 4Hρ

dρ/dT
. (2.2)

Next we look at the Boltzmann equations for the individual energy densities dρα/dt+4Hρα =
jα which after using eq. (2.2) will immediately give us

dρα

dT
= (4Hρα − jα)

4Hρ

dρ

dT
. (2.3)

Next we define
σv = ρ − ρv,

σα = ρ − ρα = ρv +
∑

β "=α

ρβ (α, β = 1 · · ·n), (2.4)

where the total energy density is

ρ = ρv +
n∑

α=1
ρα . (2.5)

1Early matter domination is possible, e.g., in the presence of heavy long-lived particles and rapidly
oscillating fields (such as the inflaton field). In string theory, oscillating moduli fields displaced from the
minimum of their potential can dominate the energy density in the early universe. None of these situations are
relevant in our analysis. The light spectrum of our dark species justify the radiation domination assumption.

– 3 –



J
H
E
P
0
9
(
2
0
2
2
)
0
8
4

To reduce clutter, we define Kα ≡ (4Hρα − jα)/4Hρ and so eq. (2.3) becomes

dρα

dT
= Kα

dρ

dT
= Kα



dρv
dT

+ dρα

dT
+
∑

β "=α

dρβ

dT



 . (2.6)

Rearranging, we get
dρα

dT
− Cα

∑

β "=α

dρβ

dT
= Cα

dρv
dT

, (2.7)

where we have defined

Cα ≡ Kα

1 − Kα
= 4Hρα − jα

4Hρ − 4Hρα + jα
= 4Hρα − jα

4Hσα + jα
. (2.8)

Further, we may write out the coupled equation for dρα/dT as follows

dρ1/dT − C1dρ2/dT − C1dρ3/dT · · · − C1dρn/dT = C1dρv/dT,

− C2dρ1/dT + dρ2/dT − C2dρ3/dT · · · − C2dρn/dT = C2dρv/dT,

· · · · · ·
− Cndρ1/dT − Cndρ2/dT − Cndρ3/dT · · ·+ dρn/dT = Cndρv/dT. (2.9)

We can write this in a matrix form so that




1 −C1 −C1 · · · −C1 −C1
−C2 1 −C2 · · · −C2 −C2
−C3 −C3 1 · · · −C3 −C3
· · · · · · · · · · · · · · · · · ·

−Cn−1 −Cn−1 −Cn−1 · · · 1 −Cn−1
−Cn −Cn −Cn · · · −Cn 1









dρ1/dT

dρ2/dT

dρ3/dT

· · ·
dρn−1/dT

dρn/dT





=





C1
C2
C3
· · ·

Cn−1
Cn





dρv/dT. (2.10)

This equation can be written in a compact form so that
n∑

β=1
Cαβ

dρβ

dT
= Cα

dρv
dT

, (2.11)

where the matrix C is the square matrix on the left hand side of eq. (2.10). Thus dρα/dT

can be written as
dρα

dT
=

n∑

j=1

(
C−1

)

αβ
Cβ

dρv
dT

. (2.12)

Note that one may also write

ρ′
α = dρα

dT
= Pα +Qαξ′

α, α = 1, 2, · · · , n − 1, n, (2.13)

where ξ′
α ≡ dξα/dT and where Pα and Qα are defined so that

Pα = ξα
dPα

dTα
, Qα = T

dρα

dTα
. (2.14)
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Thus we have an equation for dξα/dT which takes the form

dξα

dT
= −Pα

Qα
+

n∑

β=1

(
C−1

)

αβ
Cβ

ρ′
v

Qα
, α = 1, 2, · · · , n − 1, n. (2.15)

Eqs. (2.15) give us n differential equations for the evolution functions dξα/dT . These have
to be solved along with the Boltzmann equations governing the number density evolution of
the hidden sector particles. This will allow us to determine the relic densities of all stable
species and describe the thermal evolution of this coupled system.

For the special case of three hidden sectors, the matrix C is given by

C =




1 −C1 −C1

−C2 1 −C2
−C3 −C3 1



 . (2.16)

Therefore we can write eq. (2.12) in a matrix form so that




dρ1/dT

dρ2/dT

dρ3/dT



 = 1
D





(1 − C2C3) C1(1 + C3) C1(1 + C2)
C2(1 + C3) (1 − C1C3) C2(1 + C1)
C3(1 + C2) C3(1 + C1) (1 − C1C2)








C1
C2
C3



 dρv/dT, (2.17)

where D is given by

D = 1 − C1C2 − C1C3 − C2C3 − 2C1C2C3. (2.18)

Since ρ′
α = Pα +Qαξ′

α, we have

ξ′
α ≡ dξα

dT
= −Pα

Qα
+ 1

Qα
ρ′

α. (2.19)

Therefore the individual expressions can be easily obtained as

dξ1
dT

= −P1
Q1

+ 1
Q1D

[C1 + C1C2 + C1C3 + C1C2C3)] dρv/dT, (2.20)

dξ2
dT

= −P2
Q2

+ 1
Q2D

[C2 + C1C2 + C2C3 + C1C2C3)] dρv/dT, (2.21)

dξ3
dT

= −P3
Q3

+ 1
Q3D

[C3 + C2C3 + C1C3 + C1C2C3)] dρv/dT. (2.22)

These equations give the evolution of the temperature ratios ξα = Tα/T, α = 1, 2, 3.
Before proceeding further, we note here that a chain of n hidden sectors analogous

to the one of figure 1 appears in well known scenarios of physics beyond the Standard
Model such as in moose/quiver gauge theories (see, e.g., [14–17]). Thus an analysis of the
type above may find application in a broader class of particle physics models beyond the
Standard Model.
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3 Theory application: the Stueckelberg extension of the standard model

The Stueckelberg extension of the SM with an extra hidden U(1)X gauge group offers the
possibility of a hidden sector feebly coupled to the visible sector. The gauged U(1)X gives
rise to a dark photon which, under certain conditions, can be a dark matter candidate [4, 18].
In this section we give the analytic expressions for a Stueckelberg extension of the SM to n

hidden sectors which the above formalism can easily be applied to.

3.1 Generation of very feeble couplings from kinetic mixings via a chain of
hidden sectors

As discussed in section 2, we consider the following type of couplings: the visible sector
couples to the hidden sector 1 (H1), the hidden sector 1 couples to hidden sector 2 (H2) and
so on, up to hidden sector (n− 1) which couples to the hidden sector n (Hn). The couplings
between the sectors could be via kinetic mixing [19], via Stueckelberg mass mixing [20], via
both kinetic mixing and Stueckelberg mass mixing [21] and contain matter in the hidden
sectors [20, 22] (for recent works based on Stueckelberg extensions of the Standard Model
see also [23, 24]). Specifically we assume that each of the n number of hidden sectors possess
a U(1)XI gauge invariance with a gauge field Aµ

I , I = 1, · · · , n. Including the gauge field Bµ

for the hypercharge U(1)Y , we have n+ 1 U(1) gauge fields which we collectively denote by
V µ
i , i = 1, · · · , n+ 1 where we define the elements of Vi as follows:

(V ) = (V1 = B, V2 = A1, · · · , Vn+1 = An), (3.1)

where Bµ is the hypercharge field of the visible sector and AIµ, I = 1, · · · , n are the gauge
fields for the hidden sector U(1)XI , I = 1, · · · , n. We assume the gauge fields have kinetic
mixings and Stueckelberg mass mixings and such mixings to be sequential and thus the
Lagrangian for the gauge fields is assumed to be of the form

Lkm = − 1
4

[
n+1∑

i=1
GiµνG

µν
i + 2

n∑

i=1
δiGiµνG

µν
i+1

]

− 1
2

n∑

i=1
(MiViµ + µiVi+1µ + ∂µσi)2. (3.2)

Note that there are n axion fields σi, i = 1, · · · , n which are absorbed by the n gauge fields
of the hidden sectors to become massive.

We note that the fields in the Lagrangian above are not in their canonical form.
Further, this Lagrangian must be coupled with the Standard Model Higgs field in the
electroweak symmetry breaking. After the electroweak symmetry breaking, one must make
the appropriate transformations to put the Lagrangian in the canonical form. We give
now a brief discussion of this procedure. In the analysis below we will include the third
component of the gauge fields for SU(2)L(A3) of the SM since that fields along with the
hypercharge gauge field enter in giving mass to the W and Z bosons in the electroweak
symmetry breaking. The transformation that puts the kinetic energy in the canonical form
is given by

Vµ = KV ′
µ , (3.3)
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where our notation is the following2

VT
µ = ({Va}) = (A3µ, V1µ, V2µ, V3µ, · · · , Vnµ, Vn+1,µ), a = 0, · · · , n+ 1,

V ′T
µ = ({V ′

a}) = (A3µ, V
′
1µ, V

′
2µ, V

′
3µ, · · · , V ′

nµ, V
′
n+1,µ), a = 0, · · · , n+ 1,

and where K is an (n+ 2) × (n+ 2) dimensional matrix defined as

K =





1 0 0 0 0 · · 0
0 1 −s1 s1s2 −s1s2s3 · · (−1)ns1s2 · · · sn
0 0 c1 −c1s2 c1s2s3 · · (−1)(n−1)c1s2 · · · sn
0 0 0 c2 −c2s3 · · (−1)(n−2)c2s3 · · · sn
· · · · · · · ·
0 0 0 0 0 0 c(n−1) −c(n−1)sn
0 0 0 0 0 0 0 cn





, (3.4)

where in general ck and sk (for k = 1, . . . , n) are given by

ck =

√
1 −

∑k−1
i=1 δ2i√

1 −
∑k

i=1δ
2
i

, sk = δk√
1 −

∑k
i=1δ

2
i

. (3.5)

Note that ck, sk satisfy the relation c2k − s2k = 1. In the transformed coordinates the kinetic
energy part of the Lagrangian takes the form L = −1

4V
′T
µνV

′µν . Next, we focus on the mass
terms. In addition to the Stueckelberg mass terms involving the visible and the hidden
sectors, we have mass terms for A0,A3 from the Higgs mechanism which have the form

Lm
SM = −1

2

(1
4g

2
Y v

2BµBµ + 1
4g

2
2v

2Aµ
3A3µ + 1

2g1g2v
2BµAµ

3

)
, (3.6)

where v = (
√
2GF )−1/2 and where GF is the Fermi constant. Thus we write the total mass

term for the gauge fields so that

Lm = −1
2V

T
µ M

2Vµ, (3.7)

whereM2 includes the mass terms both from the Higgs mechanism and from the Stueckelberg
mass growth mechanism. After the transformation that diagonalizes the kinetic energy, the
mass term is given by

Lm = −1
2V

′T
µ M ′2V ′µ, (3.8)

where V ′µ is defined in eq. (3.3) and M ′2 = KTM2K. Since M ′2 is a symmetric matrix
it can be diagonalized by an orthogonal transformation R so that RTR = I. Thus the
transformation V ′ = RE , or V = KRE diagonalizes the mass matrix.

M2
D = OTM2O,

V = OE , (3.9)
2Note that while Viµ has i taking values i = 1, . . . , n+ 1, Va has a taking values a = 0, 1, · · · , n+ 1.
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where O = KR and both the kinetic and the mass terms are in a canonically diagonal basis
and we have

L = −1
4E

T
µνEµν − 1

2E
T
µ M

2
DEµ. (3.10)

We note that the subcase n = 2 was discussed in [25]. We arrange the vector mass eigenstates
Eµ so that ET = (Z,Aγ , Aγ2 , . . . , Aγ3 , · · · , Aγn). Thus the mass eigenstates consist of the Z

boson, the photon, and n number of dark photons in the hidden sector.

3.2 Neutral currents of the coupled visible and hidden sectors

Since the mixings involve the neutral gauge bosons of the visible and the hidden sectors, we
begin by displaying the interactions of these gauge bosons in their respective sectors. Thus
the neutral current interactions of the visible and the hidden sectors together are

LNC = g2J
µ
2 A3µ + gY J

µ
Y Bµ +

n∑

i=1
gXiJ

µ
XiAiµ. (3.11)

In the equation above, matter charged under a hidden sector gauge field Aiµ will reside in
the source term Jµ

Xi. Such matter may consist of dark fermions and dark complex scalar
fields charged under the U(1)Xi. Thus if we have Dirac fermions DXi charged under U(1)Xi

we will have Jµ
Xi = D̄XiγµDXi.

To write the neutral currents in a compact notation in the V basis, we define

(Va) : (A3µ, Bµ, A1µ, · · · , Anµ),

(Ga) : G0 = g2, G1 = gY , G3 = gX1 , · · · , Gn+1 = gXn a = 0, · · · , n+ 1,

(Ja) : J µ
0 = Jµ

2 , J µ
1 = Jµ

Y , · · · , J µ
i+1 = Jµ

Xi
, a = 0, · · · , n+ 1

(Ea) : Eµ
0 = Zµ, Eµ

1 = Aµ
γ , Eµ

2 = Aµ
γ2 , · · · , , Eµ

n+1 = Aµ
γ̃n
, a = 0, · · · , n+ 1, (3.12)

where Zµ is the Z-boson field, Aµ
γ is the photon field, and Aµ

γ̃i
, · · · , Aµ

γ̃n
are the fields for

the dark photons. We now rewrite the neutral current interaction so that

LNC =
n+1∑

a=0
GaJ µ

a Va. (3.13)

Next we write LNC in terms of the mass eigenstates E so that

LNC =
n+1∑

a=0
GaJ µ

a OabEbµ. (3.14)

We can now display the coupling of the Z boson and the photon and for the dark photon in
an explicit manner. Thus we can decompose the couplings into several parts so that

LNC = LNC
SM + LZγD + LSMγ̃ + LDγ̃ , (3.15)
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where
LNC
SM = (g2Jµ

2 O00 + gY J
µ
Y O10)Zµ + (g2Jµ

2 O01 + gY J
µ
Y O11)Aγ

µ,

LZγD =
n+1∑

a=2
gXaJ

µ
XaOa0Zµ +

n+1∑

a=2
gXaJ

µ
XaOa1A

γ
µ,

LSMγ̃ =
n∑

i=1

(
g2J

µ
2 O0(i+1) + gY JY O1(i+1)

)
Aγ̃i

µ ,

LDγ̃ =
n∑

i,j=1
gXiJXiO(j+1)(i+1)A

γ̃j
µ .

(3.16)

Here LNC
SM is the modified neutral current of the Standard Model, LZγD is the coupling of

the SM gauge bosons Z,Aγ with the dark sector, LSMγ̃ is the coupling of the dark photons
with the SM sector and LDγ̃ is the coupling of the dark photons with the dark sources. The
various parts of the couplings of eqs. (3.16) have the following meaning. As stated LSM is
the modified neutral current of the Standard Model. LZγD and LSMγ̃ enter in the freeze-in
production of the hidden sector particles, LSMγ̃ enters in the decay of the dark photons,
and LDγ̃ controls freeze-out in the dark sector, while LZγD enters in the analysis of kinetic
equilibrium of the dark sources after chemical decoupling.

4 Numerical application: the visible sector coupled to three hidden
sectors

4.1 A simple model
In this section we will use the general expression of eq. (2.15) to determine the temperature
evolution of a chain of hidden sectors coupled to the visible sector as described by figure 1.
The hidden sectors will eventually get populated by dark particle species and so the
evolution of the temperature is coupled with the evolution of the particle number densities.
In refs. [3, 4] the cases of one and two hidden sectors have been considered in the context of
a Stueckelberg U(1) extension of the SM. Here, we add a third hidden sector but consider a
simpler model to illustrate the effect of three hidden sectors on dark matter phenomenology
and on cosmology. Further, we assume that particles in the different sectors communicate
via a scalar portal which will become evident next.

Our set up of the matter content of the three hidden sectors is as follows: the first hidden
sector has a Dirac fermion D (which serves as one of the possible dark matter candidates)
and a pseudo-scalar φ1 (mediator). The field φ2 is a scalar while φ3 is a pseudo-scalar and
are not particularly associated with any specific hidden sector. The model presented below
is phenomenological and its UV completion remains to be explored. The Lagrangian of the
model we use for the rest of the analysis is

L = LSM + ∆L, (4.1)

where LSM is the SM Lagrangian and ∆L is the Lagrangian for the hidden sector including
portal interactions between the visible and the hidden sectors. We note here in passing that
we are considering the hidden sector to have no gauged U(1) symmetry and for that reason
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there is no kinetic energy for the hidden sector gauge field or its interactions included in
∆L below. Thus ∆L is given by

∆L = 1
2

3∑

i=1

(
∂µφi∂

µφi − m2
i φ

2
i

)
+ D̄ (iγµ∂µ − mD)D

− yqφ1q̄γ5q − y%φ1*̄γ
5* − yDφ1D̄γ5D

− κ1
3 φ2

1φ2 − κ2
3 φ2φ

2
3 − 1

4

3∑

i=1
λiφ

4
i − 1

4
∑

i

∑

j>i

λijφ
2
i φ

2
j , (4.2)

where the dark fermion D resides in the hidden sector 1 and couples only to the field φ1 in
the hidden sector 1. The fields φ1 and φ3 as pseudoscalars and φ2 as CP-even scalar are
chosen purely on phenomenological grounds which we use to illustrate the main features of
the visible sector coupling to three hidden sectors. For simplicity, we assume that φ1 only
couples to the first generation of quarks and leptons via the Yukawa couplings yq and y%

and to the D fermions via yD. Thus in this model, the field φ1 is the portal connecting the
visible and hidden sectors. Further, for simplicity, we will assume equality of the portal
field coupling to the Standard Model quarks and leptons, i.e., yq = y% = yf . The size of
the Yukawas could be very small. Thus, for example, a higher dimensional operator such
as H†H

Λ2 q̄q after electroweak symmetry breaking would give yq ∼ 10−9 for Λ = O(106)GeV.
A string scale such as this can arise in Type IIB string theory. The quartic couplings λi

do not play a role in the temperature and number density evolution while we assume the
couplings λij are small compared to κ1 and κ2.

4.2 Evolution equations

In the set up described above, only the first hidden sector possesses direct couplings to SM
(the visible sector) through the Yukawa couplings yq and y% while the second hidden sector
connects to the first and to the third hidden sectors. We assume that the visible sector is
held at a temperature T and the three hidden sectors at temperatures T1, T2 and T3 where
one prescribes the initial values of the temperatures Ti & T (i = 1, 2, 3). The Boltzmann
equations for the number and total energy densities are given by

dnr

dt
+ 3Hnr = Qr , (4.3)

dρ

dt
+ 3H(ρ + p) = 0, (4.4)

with r ∈ {D,φ1, φ2, φ3}. In the above, ρ is the total energy density, p is the total pressure,
H is the Hubble parameter and Qr are the collision terms which include all possible particle
number-changing processes. They are listed in appendix B.

After defining the co-moving number density or yield, Y = n/s, where s is the total
entropy density and using eqs. (4.3) and (4.4), we write

dYr
dT

= −s
dρ/dT

4Hρ
Qr, (4.5)
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where H is related to the energy density by the Friedmann equation

H2 = 8πGN

3 ρ. (4.6)

One can define the individual energy and entropy densities in terms of effective number of
degrees of freedom so that

ρ = π2

30
(
gveffT

4 + g1effT
4
1 + g2effT

4
2 + g3effT

4
3
)
, (4.7)

s = 2π2

45
(
hveffT

3 + h1effT
3
1 + h2effT

3
2 + h3effT

3
3
)
. (4.8)

We note that geff and heff of the hidden sectors are defined as integrals which depend on
the mass of the relevant particle and temperature. In appendix A, we exhibit the m/T

dependence of the integrals. In the above, we need to compute Ti so that Ti = ξiT . Thus
we need to write out the evolution equations for ξi in an explicit form. In this case we have
three evolution functions ξ1 = T1/T, ξ2 = T2/T and ξ3 = T3/T and using eq. (2.15) we find
that they obey the following equations

dξ1
dT

= −P1
Q1

+ 1
Q1D

[C1 + C1C2 + C1C3 + C1C2C3)] dρv/dT, (4.9)

dξ2
dT

= −P2
Q2

+ 1
Q2D

[C2 + C1C2 + C2C3 + C1C2C3)] dρv/dT, (4.10)

dξ3
dT

= −P3
Q3

+ 1
Q3D

[C3 + C2C3 + C1C3 + C1C2C3)] dρv/dT, (4.11)

where D is given by

D = 1 − C1C2 − C1C3 − C2C3 − 2C1C2C3. (4.12)

For the case of one hidden sector (n = 1), we have C2 = C3 = 0, D = 1 and ξ2 and ξ3 are
absent. In this case eq. (4.9) reads

dξ1
dT

= −P1
Q1

+ C0
ρ′
v

Q1
, (4.13)

which agrees with the result of ref. [3]. Next we look at the n = 2 case (two hidden sectors).
Here we set C3 = 0 and D = 1 − C1C2, so that

dξ1
dT

= −P1
Q1

+ C1 + C2C1
1 − C1C2

ρ′
v

Q1
. (4.14)

Similarly we have

dξ2
dT

= −P2
Q2

+ C1C2 + C2
1 − C1C2

ρ′
v

Q2
. (4.15)

These agree with the analysis of refs. [4, 18]. We note here that C1, C2, C3 are given by

C1 =
4Hρ1 − j1
4Hσ1 + jv

, C2 =
4Hρ2 − j2
4Hσ2 + j2

, C3 =
4Hρ3 − j3
4Hσ3 + j3

, (4.16)
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where the source terms admit the relation jv + j1 + j2 + j3 = 0. The source terms j1, j2 and
j3 are listed in appendix B. Carrying out some further simplifications to eqs. (4.9)–(4.11),
we can write them as

dξ1
dT

= −ξ1
T

+
( 4Hρ1 − j1
4Hρv + j1 + j2 + j3

)
dρv/dT

T dρ1
dT1

, (4.17)

dξ2
dT

= −ξ2
T

+
( 4Hρ2 − j2
4Hρv + j1 + j2 + j3

)
dρv/dT

T dρ2
dT2

, (4.18)

dξ3
dT

= −ξ3
T

+
( 4Hρ3 − j3
4Hρv + j1 + j2 + j3

)
dρv/dT

T dρ3
dT3

. (4.19)

The factor dρ/dT
4Hρ appearing in eq. (4.5) involves a derivative of the total energy density with

respect to the visible sector temperature. We differentiate each of the energy densities with
respect to T and remembering that ξα = ξα(T ), then eq. (4.5) can be cast in the form

dYr
dT

= − s
H

(
dρv/dT

4ρv − jv/H

)
Qr . (4.20)

It is to be noted from eq. (4.20) that the source term jv now appears in the Boltzmann
equations for the particle yields. The formalism given above provides us with a set of
coupled Boltzmann equations in temperature and yield which need to be numerically solved
to get a full description of the thermal evolution of the hidden sectors. We do this next.

4.3 Numerical analysis

In our analysis here we consider the case of self-interacting DM, where we take mφ1/mD & 1
which will allow us to consider the most recent results on the DM-nucleon spin-independent
(SI) cross-section from PandaX-II experiment [26] as an experimental constraint. In the
following we give an analysis of three type of mass hierarchies among the matter fields
of the hidden sectors which are: case 1: mφ1 > 2mφ2 , mφ2 = mφ3 ; case 2: mφ2 > 2mφ1 ,
mφ2 > 2mφ3 ; case 3: mφ2 > 2mφ1 , mφ3 = 0. For each of these cases we compute the
thermal evolution given by ξi = Ti/T for the three hidden sectors, and compute the
yields. Specifically the analysis indicates the fraction of the relic density of the dark matter
contributed by each of the dark sectors. We discuss each of these cases in detail below.

Case 1: mφ1 > 2mφ2 and mφ2 = mφ3. In figure 2 we exhibit the particle yields
(left panel) and the temperature ratios ξi (right panel) as a function of the visible sector
temperature. As the temperature T drops, the hidden sectors are gradually populated by
the dark particle species. The process happens sequentially where the first hidden sector
gets populated first whereas the second and third hidden sectors see an increase in the yield
much later. This is because the first hidden sector is the only one with direct couplings to
the visible sector whereas the other two hidden sectors rely on the first hidden sector to
get populated.

Further, the energy densities of the hidden sectors depend on the temperature evolution
of the respective sectors. This is illustrated in the right panel of figure 2. Here we notice
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Figure 2. The case of three initially cold dark sectors. Left panel: evolution of the yields of the
dark fermion D and of the spin zero particles of the dark sector versus the visible sector temperature.
Right panel: evolution of the temperature ratios ξi. The input parameters are: mD = 1.0GeV,
mφ1 = 50MeV, mφ2 = mφ3 = 1MeV, yf = 1.3 × 10−9, yD = 0.053 and κ1 = κ2 = 10−6. Total relic
density Ωh2 = 0.114, where Ωh2

D = 0.072, Ωh2
φ2

= 0.0175 and Ωh2
φ3

= 0.0275. We note that the
kink in ξi around T = 10−4 GeV is due to the variation in the degrees of freedom. Specifically, this
is due to neutrino decoupling and e+e− annihilation. Similar kinks appear in figures 4, 5 and 6.

how ξ1 rises almost immediately starting from large T while ξ2 and ξ3 remain at their lowest
values before picking up at T ∼ 30GeV. Thus the process of thermalization begins with
the first hidden sector which then permeates to the second and the third hidden sectors.
However, while ξ1 reaches 1 the other hidden sectors remain out of thermal equilibrium with
ξ2, ξ3 & 1 and ξ2 (= ξ3. For the benchmark considered in figure 2, the relic density is shared
among D, φ2 and φ3 (φ1 decays back to the SM particles). Note that φ2 can still have
a variety of off-shell decays: φ2 → φ∗

1φ
∗
1 → q̄qq̄q, *+*−*+*−, q̄q*+*−, q̄qνν, *+*−νν, νννν.

However, if the mass of φ2 is constrained so that mφ2 * 1MeV, all the decays except
for the final state νννν will be forbidden. In this case the decay is extremely suppressed
since Γφ2 ∝ κ2

1y
4
f ,

Γφ2 =
κ2
1y

4
f

16384π5mφ2

×
∫ m2

φ2

0
dq21

∫ (mφ2−q1)2

0
dq22

λ1/2
(
q21, q

2
2,m

2
φ2

)
q21q

2
2[(

q21 − m2
φ1

)2
+m2

φ1
Γ2

φ1

] [
(q22 − m2

φ1
)2 +m2

φ1
Γ2

φ1

] .

(4.21)

Thus we have τφ2 ∼ O(1025) yrs for the input mentioned in the caption of figure 2.
As is apparent from the preceding discussion, the thermalization between the first

hidden sector and the visible sector is mainly driven by the processes φ1 ↔ i ī, where i ī

refers to the SM particles. To illustrate this further, we plot in figure 3 the energy exchange
rate for different processes as well as the energy density dilution term due to the Hubble
expansion, 4Hρ1. In the left panel of figure 3, we consider case 1 which corresponds to the
analysis of figure 2. We see that all processes are subdominant to the dilution term except
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Figure 3. Plots of the energy exchange rate between different sectors versus the visible sector
temperature T . The input for the left panel (Case 1) are same as in figure 2 while the input for the
right panel (Case 2) are the same as in figure 5.

Figure 4. Same input as in figure 2 but for yf = 1 × 10−10. Relic density Ωh2
D = 3.6 × 10−2 and

Ωh2
φ2

= Ωh2
φ3

∼ 0.

for i ī → DD̄ and φ1 ↔ i ī. Of particular interest are the processes φ1 ↔ i ī (green and
brown curves) which become comparable in rate near 10−2GeV which is the region where
the two sectors thermalize as seen in the right panel of figure 2. The rates slightly overtake
4Hρ1(T1) for a short period of time before dying out due to Boltzmann suppression of the
number density. The right panel of figure 3 pertains to case 2 whose discussion we leave for
the next section.

Since the visible and the hidden sectors constitute a chain, a change in one coupling will
propagate to all sectors. In figure 4 we consider a smaller yf value, i.e. a weaker coupling
between the visible and first hidden sector. As expected, the relic density of D becomes
smaller and due to a smaller abundance of dark species in the first hidden sector, the yields
of φ2 and φ3 become negligible (the yield of φ3 does not appear in the left panel as it is
extremely small). Furthermore, the first hidden sector no longer thermalizes with the visible
sector as evident from the right panel of figure 4. We also note the change in the evolution
of ξ2 and ξ3.
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Figure 5. The case of three initially cold dark sectors. Left panel: evolution of the yields of the
dark fermion D and of the spin zero particles of the dark sector versus the visible sector temperature.
Right panel: evolution of the temperature ratios ξi. The input parameters are: mD = 1.0GeV,
mφ1 = 50MeV, mφ2 = 105MeV, mφ3 = 45MeV, yf = 1 × 10−9, yD = 0.05, κ1 = 10−7 and
κ2 = 6 × 10−6. Total relic density is Ωh2 = 0.1198, where Ωh2

D = 0.102 and Ωh2
φ3

= 0.0178.

Case 2: mφ2 > 2mφ1 and mφ2 > 2mφ3. For this mass hierarchy, both decay processes
φ2 → φ1φ1 and φ2 → φ3φ3 are kinematically allowed. We solve the coupled Boltzmann
equations for this case and plot in figure 5 the yields of the dark species as well as ξi against
the visible sector temperature.

As one would expect, φ1 as well as φ2 completely decay leaving D and φ3 as the two
possible DM components. For the benchmark considered in figure 5, the energy exchange
rate due to the processes φ2 → φ3φ3 and φ2 → φ1φ1 are comparable and reach values larger
than the energy density dilution due to the Hubble expansion (see the magenta and orange
curves in the right panel of figure 3) which results in a rapid thermalization between the
three hidden sectors as seen in the right panel of figure 5. Notice that all three sectors
remain very much in close thermal contact while also reaching thermal equilibrium with
the visible sector for a period of time.

Case 3: mφ2 > 2mφ1 and mφ3 = 0. With the same setup as before we assume now
that particle φ3 is massless. The evolution of the yields of the dark particles as well as the
temperature ratios ξi are shown in figure 6. The DM relic density is satisfied as seen from
the left panel.

Even though φ3 resides in the third hidden sector, the coupling yf between the first
hidden sector and the visible has an important effect on ξ3 owing to the coupled nature of
the system. Smaller values of yf will lead to smaller ξ3 and hence a lower contribution to
∆Neff . We study this in more detail in the next section.

5 Implications for observables

In this section we discuss the physical consequences of the formalism given above. In
subsection 5.1 we discuss the thermal effects of hidden sectors on the proton-DM scattering
cross sections. In subsection 5.2 we discuss the contribution to dark radiation from
hidden sectors.
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Figure 6. The case of three initially cold dark sectors. Left panel: evolution of the yields of the
dark fermion D and the scalars of the dark sector versus the visible sector temperature. Right panel:
evolution of the temperature ratios ξi. The input parameters are: mD = 5.0GeV, mφ1 = 10MeV,
mφ2 = 105MeV, mφ3 = 0, yf = 6.7 × 10−10, yD = 0.17 and κ1 = κ2 = 10−7. Total relic density is
Ωh2 = Ωh2

D = 0.123. As discussed in subsection 5.2, this case leads to extra relativisitc degrees of
freedom at BBN time so that ∆NBBN

eff = 0.323.

5.1 Thermal effect of hidden sectors on direct detection of dark matter

In this subsection we discuss the effect of a multi-hidden sector model on the determination of
the relic density and on the spin-independent DM-proton cross section. The first observation
to be made is regarding the effect of such a coupled system on the DM relic density. Here
we consider case 1 but with κ1, κ2 ∼ 10−9 so that the contributions from φ2 and φ3 to the
relic density are negligible. We solve the coupled Boltzmann equations for two cases: (A)
ξi0 = 1 and (B) ξi0 & 1. We note that cases A and B result in different DM relic density
such that (Ωh2)A < (Ωh2)B. The difference between the two can reach up to 50% in some
cases, especially for yf ! 10−8. To see why this is the case, one needs to examine the main
annihilation process responsible for DM depletion. For mφ1 & mD, the DM relic density
is dominantly controlled by the annihilation process DD̄ → φ1φ1 whose thermal average
depends on the temperature T1. In figure 7, we plot nD〈σv〉 for DD̄ → φ1φ1 versus the
visible sector temperature for cases A and B. Also shown (in dashed line) is the Hubble
parameter as well as the process DD̄ → i ī for comparison. The left panel of figure 7, which
corresponds to a light mediator (mφ1 = 1MeV) and small yf , shows that DD̄ → φ1φ1
is far more dominant than DD̄ → īi which can be explained by the relative sizes of the
couplings yf versus yD. Furthermore, the rate of annihilation to φ1φ1 for case B (blue curve)
overtakes the expansion rate earlier than for case A (red curve) and consequently decoupling
also happens earlier. Thus for case A, the annihilation process continues for a longer time
leading to a smaller relic density. This is in contrast to the case of a heavier mediator
(mφ1 = 1GeV) and a larger yf as shown in the right panel of figure 7 where one can see
that DD̄ → φ1φ1 decouples at the same instant for both cases A and B and thus the final
yield is insensitive to whether the two sectors were initially at the same temperature or not.

To illustrate more concretely the effect of hidden sectors on observables in the visible
sector, we use the latest constraints on the spin-independent (SI) DM-proton scattering
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Figure 7. Display of nD〈σv〉 for the processes DD̄ → φ1φ1 and DD̄ → īi versus T for two cases:
ξi0 = 1 and ξi0 (= 1. Input parameters for the left panel are: mD = 9.0GeV, mφ1 = 10MeV,
mφ2 = mφ3 = 1MeV, yf = 4.5 × 10−10, yD = 0.13 and κ1 = κ2 = 5 × 10−8. Input parameters for
the right panel are: mD = 5.0GeV, mφ1 = 1GeV, mφ2 = mφ3 = 1MeV, yf = 9.6 × 10−6, yD = 0.18
and κ1 = κ2 = 1 × 10−5.

cross-section from the PandaX-II collaboration. The collaboration presented their limits
based on a secluded dark sector model of ref. [27] which considers a thermal DM distribution
in the early universe. Using those limits, we recast the PandaX-II results to our model
parameters and display the limits in the left panel of figure 8 (solid lines). The analysis
which corresponds to the solid lines is for case A where we assume that the sectors have
the same initial temperature. The dashed lines correspond to case B where the hidden
sectors are initially much colder than the visible sector. We note that for 1MeV and 10MeV
mediators the limits have moved up, i.e., have become more relaxed while for a 1GeV
mediator there is virtually no effect.

As discussed earlier, sectors at different temperatures lead to a larger relic density and
so to reduce the value of the latter, one increases the coupling yD which leads to a larger SI
cross-section. Thus the limits move up as shown in the left panel of figure 8 (dashed lines).
However, this seems not to be the case for a 1GeV mediator. Also as discussed earlier, the
main annihilation process decouples at the same time for cases A and B which results in no
change in the relic density. This is due to the fact that in this case a larger yf is required for
those limits (yf " 10−7) which takes us closer to a pure freeze-out case as the one used by
PandaX-II to produce those limits. Thus as the coupling yf increases, it gradually phases
out the freeze-in mechanism [28] and we begin to agree with the limits presented in ref. [26].
This can be clearly seen in the right panel of figure 8 where the yield of D (red curve)
reaches close to its equilibrium value (dashed brown curve) and then undergoes a freeze-out
in a manner different from what appears for the cases of smaller yf (see figures 2 and 4–6).

5.2 Dark radiation from hidden sectors

Hidden sectors in general contain extra relativistic degrees of freedom which will contribute
to the so-called dark radiation which is constrained by BBN and CMB data. Thus, for
example, for case 3, we have a massless spin zero field φ3 which will remain in the spectrum
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Figure 8. Left panel: a recast of the exclusion limits of the spin-independent proton-DM cross
section, σpD, given by the PandaX-II Collaboration [26] for our model with two sets of initial hidden
sector constraints, i.e., case A with ξi0 = 1 (solid lines) and case B with ξi0 & 1 (dashed lines) as a
function of mD for three different values of the pseudo-scalar φ1 mass, i.e., mφ1=(1MeV (red lines),
10MeV (blue lines) and 1GeV (green lines)). The coupling yD for each point is chosen to give the
correct DM relic density. Right panel: a plot of the yield of the dark particle species with the input:
mD = 48GeV, mφ1 = 1GeV, mφ2 = mφ3 = 1MeV, yf = 10−7, yD = 0.55 and κ1 = κ2 = 1 × 10−5.

and contribute to the relativistic degrees of freedom in the universe as dark radiation. Such
a contribution over the existing neutrino species is determined by ∆Neff , so that

∆Neff = 8
7

(11
4

)4/3 ρDS
ργ

, (5.1)

where the energy density of the dark sector is ρDS = ρD(T1) + ρφ3(T3) and ργ is the photon
energy density. Based on the latest estimate of the effective number of neutrino species,
Neff , from BBN [29]

Neff = 2.88± 0.27, (5.2)

where one can deduce a 2σ upper bound on ∆Neff , so that ∆Neff < 0.42. If φ3 is produced
efficiently and reaches an equilibrium distribution, then ρφ3 ∝ T 4

3 and from eq. (5.1) we
have ∆Neff ∼ (T3/T )4 = ξ43 . So of particular importance to the determination of ∆Neff
is the evolution of ξ3 which is tightly coupled to the rest of the evolution parameters. In
figure 6 we display the evolution of the yields and ξi for the case of a massless φ3. For the
set of assumed couplings, we have ∆NBBN

eff = 0.323 consistent with the BBN bound.
As noted, the constraint given in eq. (5.2) comes from BBN while other estimates of

Neff rely on the power spectrum data and CMB lensing from Planck and Baryon Acoustic
Oscillations (BAO) [11, 30]. Further, local measurements of the Hubble parameter H0 [31–
33] show a significant deviation from estimates of H0 at earlier times (see ref. [34] for a
review of tensions in cosmology and ways to alleviate them and ref. [35] for a cosmologically
consistent particle physics model aimed at alleviating the Hubble tension). A fit of the
cosmological parameters to the CMB, BAO and local H0 data points to a larger ∆Neff at
the surface of last-scattering. The corresponding ranges for ∆Neff based on these analyses
are shown in figure 9 as red and blue bands. The future CMB-S4 experiment [36, 37] is
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Figure 9. A plot of ∆Neff for the case of massless φ3 as a function of yf for sets of values of κ1
and κ2. The color gradient of the curves reflects the DM relic density. Other input parameters are
same as in figure 6.

expected to reach a much better sensitivity in determining Neff which will put stronger
constraints on models predicting extra light relics. The projected sensitivity of CMB-S4 is
shown as the dashed blue line in figure 9.

The curves in figure 9 show the variation in ∆Neff as a function of the coupling yf
for two sets of κ1, κ2. Since the hidden sectors form a chain with the visible sector then a
change in yf will eventually propagate to the third hidden sector thus affecting the energy
density of φ3 which is a function of the temperature T3 (here enters the dependence on ξ3).
Larger yf leads to larger contributions to ∆Neff until it saturates for yf " 10−9 for the
particular benchmark under consideration. Furthermore, larger values of κ1 and κ2 lead
to a stronger coupling between the hidden sectors which eventually leads to an enhanced
contribution to ∆Neff as evident when comparing the two curves in figure 9. The color
gradient of the curves shows the change in the relic density as yf varies. One can see that in
the range of interest Ωh2 ≤ 0.12. Based on our model, CMB-S4 can probe feeble couplings
between the visible and hidden sectors down to O(10−10). Deviations from NSM

eff which are
O(10−2) can point to relativistic relics that reside in hidden sectors at temperatures much
lower than the visible sector temperature.

6 Conclusion

In a variety of supergravity, string and brane models one encounters hidden sectors which
although neutral under the Standard Model gauge group can interact feebly with the visible
sector via a variety of portals. In this work we have extended previous works where the
visible sector was coupled to one or two hidden sectors to the case where an arbitrary
number of hidden sectors are sequentially coupled to the visible sector. Thus the visible
sector couples only to hidden sector 1 and the latter couples to hidden sector 2, and so on,
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i.e., in general the i-th hidden sector couples to hidden sectors (i± 1). In general the visible
and the hidden sectors will be in different heat baths, each with their own temperature. Of
prime interest is to obtain the evolution equations for the ratio of temperatures in different
heat baths after one has chosen a given temperature to serve as the clock. In the work
here we use the temperature T of the visible sector as the clock and obtain the evolution
equations for the ratios Ti/T, i = 1, 2, · · · , n. A detailed analysis for the case of the visible
sector coupled to three hidden sectors is given with an application to a simple model with
scalar portals. We solve a set of coupled Boltzmann equations for particle yields and the
temperature ratios ξi to trace the evolution of the dark species’ population as well as the
temperatures in each of the hidden sectors. We’ve shown that the presence of a chain of
hidden sectors affects the DM relic density which comes out to be larger than one would get
assuming all sectors are at the same temperature. A direct consequence of this observation
is a modification of the recent PandaX-II limits on the SI DM-proton scattering cross
sections for the case of self-interacting DM. Also we have seen that the hidden sectors
thermalize with each other once the decay channels across the sectors are active. Further,
assuming that one of the spin zero particles is massless, contributions to ∆Neff become an
important constraint from cosmology. Weaker couplings between the different sectors lead
to a smaller dark species’ energy density and temperature ratios ξi. We expect the future
CMB-S4 experiment to probe ∆Neff down to O(10−2) which would constraint our model in
the very feeble coupling regime. We note that applications of the formalism developed here
to other portals and to larger values of n beyond n = 3 and possibly to explore the region
of large n should be of interest for future investigations. Finally, as noted in section 2, a
chain of n hidden sectors appears in a broad class of beyond the Standard Model physics
scenarios such as moose/quiver theories. Thus an analysis of the type discussed above may
find application in this broad class of models.
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A Mass and temperature dependence of geff and heff

The total effective number of energy density and entropy degrees of freedom in a sector
containing a Dirac fermion and a boson are given by

geff = gbeff + 7
8g

f
eff , and heff = hbeff + 7

8h
f
eff , (A.1)
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where the superscript b (f) indicates bosonic (fermionic) degrees of freedom where at
temperature T , gbeff , hbeff and gfeff , h

f
eff are given by [38]

gbeff = 15db
π4

∫ ∞

xb

√
x2 − x2b
ex − 1 x2dx, and hbeff = 15db

4π4

∫ ∞

xb

√
x2 − x2b
ex − 1

(
4x2 − x2b

)
dx,

gfeff = 15df
π4

∫ ∞

xf

√
x2 − x2f

ex + 1 x2dx, and hfeff = 15df
4π4

∫ ∞

xf

√
x2 − x2f

ex + 1
(
4x2 − x2f

)
dx.

(A.2)

where db (df ) are the intrinsic degrees of freedom for a bosonic (fermionic) field, so that for
a massive spin 1, db = 3 and for a Dirac fermion df = 4. Further, xb and xf are defined
so that xb = mb/T and xf = mf/T . The limit xb → 0 gives gbeff = hbeff → db and the limit
xf → 0 gives gfeff = hfeff → df .

B Collision and source terms

In this appendix we list the collision terms appearing in eq. (4.20) and the source terms
appearing in eqs. (4.17)–(4.19) for particles D, φ1, φ2 and φ3. The respective collision terms
are given by

QD =
1
2〈σv〉DD̄→ff̄ (T )

(
Y eq
D (T )2−Y 2

D

)
− 1

2〈σv〉DD̄→φ1φ1(T1)
(
Y 2
D−Y eq

D (T1)2
Y 2

φ1

Y eq
φ1

(T1)2

)
,

(B.1)

Qφ1 =

〈σv〉φ1φ1→ff̄ (T )(Y
eq

φ1
(T )2−Y 2

φ1)+
1
2〈σv〉DD̄→φ1φ1(T1)

(
Y 2
D−Y eq

D (T1)2
Y 2

φ1

Y eq
φ1

(T1)2

)

+〈σv〉ff̄→φ1
(T )

(
Y eq
q (T )2−Y eq

q (T )2 Yφ1

Y eq
φ1

(T1)

)
−〈σv〉φ1φ1→φ2φ2(T1)

(
Y 2

φ1 −Y eq
φ1

(T1)2
Y 2

φ2

Y eq
φ2

(T2)2

)

+〈σv〉φ3φ3→φ1φ1(T3)
(
Y 2

φ3 −Y eq
φ3

(T3)2
Y 2

φ1

Y eq
φ1

(T1)2

)
−〈σv〉φ1φ1→φ2(T1)

(
Y 2

φ1 −Y eq
φ1

(T1)2
Yφ2

Y eq
φ2

(T2)

)
,

(B.2)

Qφ2 =

〈σv〉φ1φ1→φ2φ2(T1)
(
Y 2

φ1 −Y eq
φ1

(T1)2
Y 2

φ2

Y eq
φ2

(T2)2

)
+〈σv〉φ1φ1→φ2(T1)

(
Y 2

φ1 −Y eq
φ1

(T1)2
Yφ2

Y eq
φ2

(T2)

)

+〈σv〉φ3φ3→φ2φ2(T3)
(
Y 2

φ3 −Y eq
φ3

(T3)2
Y 2

φ2

Y eq
φ2

(T2)2

)
+〈σv〉φ3φ3→φ2(T3)

(
Y 2

φ3 −Y eq
φ3

(T3)2
Yφ2

Y eq
φ2

(T2)

)
,

(B.3)

Qφ3 =

−〈σv〉φ3φ3→φ2φ2(T3)
(
Y 2

φ3 −Y eq
φ3

(T3)2
Y 2

φ2

Y eq
φ2

(T2)2

)
−〈σv〉φ3φ3→φ1φ1(T3)

(
Y 2

φ3 −Y eq
φ3

(T3)2
Y 2

φ1

Y eq
φ1

(T1)2

)

−〈σv〉φ3φ3→φ2(T3)
(
Y 2

φ3 −Y eq
φ3

(T3)2
Yφ2

Y eq
φ2

(T2)

)]

. (B.4)
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The source terms are given by

j1 =

2neq
f (T )2

(

1 − n2
D

neq
D (T1)2

)

J(ff̄ → DD̄) + 2neq
q (T )2

(

1 −
n2

φ1

neq
φ1
(T1)2

)

J(ff̄ → φ1φ1)

+ neq
q (T )2J(ff̄ → φ1) − nφ1J(φ1 → ff̄) + 2

(

nφ2 − neq
φ2

n2
φ1

neq
φ1
(T1)2

)

J(φ2 → φ1φ1)

− 2
(

n2
φ1 − neq

φ1
(T1)2

n2
φ2

neq
φ2
(T2)2

)

J(φ1φ1 → φ2φ2)

− 2
(

n2
φ1 − neq

φ1
(T1)2

n2
φ3

neq
φ3
(T3)2

)

J(φ1φ1 → φ3φ3), (B.5)

j2 =

−
(

nφ2 − neq
φ2

n2
φ1

neq
φ1
(T1)2

)

J(φ2 → φ1φ1) + 2
(

n2
φ1 − neq

φ1
(T1)2

n2
φ2

neq
φ2
(T2)2

)

J(φ1φ1 → φ2φ2)

+ 2
(

n2
φ3 − neq

φ3
(T3)2

n2
φ2

neq
φ2
(T2)2

)

J(φ3φ3 → φ2φ2) −
(

nφ2 − neq
φ2

n2
φ3

neq
φ3
(T3)2

)

J(φ2 → φ3φ3),

(B.6)

j3 =

− 2
(

n2
φ3 − neq

φ3
(T3)2

n2
φ2

neq
φ2
(T2)2

)

J(φ3φ3 → φ2φ2) + 2
(

nφ2 − neq
φ2

n2
φ3

neq
φ3
(T3)2

)

J(φ2 → φ3φ3)

+ 2
(

n2
φ1 − neq

φ1
(T1)2

n2
φ3

neq
φ3
(T3)2

)

J(φ1φ1 → φ3φ3). (B.7)

In the above we have

neq
f (T )2J

(
ff̄ → XX

)
(T ) = T

32π4

∫ ∞

4m2
D

ds σXX→ff̄s(s − s0)K2
(√

s/T
)
, (B.8)

neq
q (T )2J

(
ff̄ → φ1

)
(T ) = T

32π4

∫ ∞

s0
ds σff̄→φ1s(s − s0)K2(

√
s/T ), (B.9)

nX(Ti)2J(XX → Y Y )(Ti) =
nX(Ti)2

8m4
XTiK2

2 (mX/Ti)

∫ ∞

s0
ds σXX→Y Y s(s − s0)K2(

√
s/Ti),

(B.10)
nXJ(X → Y Y )(Ti) = nXmXΓX→Y Y . (B.11)
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