SUBCONVEXITY BOUNDS FOR TWISTED L-FUNCTIONS, II

RIZWANUR KHAN

ABSTRACT. We prove hybrid subconvexity bounds for twisted L-functions L(s, f X x) at the central
point using a fourth moment estimate, including a new instance of the Burgess subconvexity bound.

1. INTRODUCTION

Let f be a holomorphic Hecke cusp form for the congruence group I'g(g), and x a primitive
Dirichlet character of modulus p, where ¢ and p are distinct odd primes. The twisted L-function
L(s, f x x) corresponds by Atkin-Lehner theory to a newform of level gp? and nebentypus x2. Thus
the analtyic conductor of this L-function in the level aspect is gp?, and the (hybrid) subconvexity
problem is to obtain the bound

L(3, f x x) < (qp*)"*
for some 0 < Kk < i, where we have normalized so that s = % is the central point. Such a bound
is known for all ranges of ¢ and p, by work of Blomer, Harcos, and Michel [3]. Their subconvexity
bound (k = i — @) has the advantage of being very general, but much stronger bounds are known
in certain ranges. Such bounds are contained in various works, each of which has its unique strength.
Blomer and Harcos [2] proved the subconvexity bound
(1.1) L(5,f % X) < (ap) (0% +qipH).

1-96

For any fixed § > 0, this gives subconvexity in the range ¢ < p*~°, and is particularly strong when
3

q < p°, for then it is of Burgess quality (x = 15). In [17], we established the subconvexity bound

(1.2) L(3, f > x) < (ap")5H(qgip ™2 +q7 )
for p? < ¢ < p?>~%. This bound is particularly strong for p'~—¢ < ¢ < p'*¢, where it is of Weyl quality
(k = %) In the special case that x is real, Petrow and Young [24] proved the bound

1 1 _ 1
L(3, f x x) < (gp*)iTqrpTs,

which gives subconvexity for ¢ < p?>~% and is of Weyl quality for ¢ < p.

In this paper, we prove a new subconvexity bound which has the advantage of covering at once
essentially all ranges of p and ¢ (except when they are very small) and being particularly strong for
p?~¢ < ¢ < p**€, which is a new feature. We aimed particularly to address this latter range, for this
is the point at which (1.2) fails to give any subconvexity bound.

Theorem 1.1. Let f be a holomorphic newform with weight k > 2, prime level q and trivial
nebentypus. Let x be a primitive Dirichlet character of prime modulus p. Suppose that (q,p) = 1.
We have

1 _1 _1,9
LA fxx) e (qp?)it(p73 +q75779),
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2 RIZWANUR KHAN
where ¥ = 6—74 denotes current best exponent towards the GL(2) Ramanujan Congecture, due to Kim
and Sarnak [18].

On the Ramanujan Conjecture, for any fixed 6 > 0 our bound gives level aspect subconvexity as
long as p > ¢° and ¢ > p°, and in the subrange p?>~¢ < ¢ < p?>t¢ we get the Burgess bound
L3, fxx) < (gp*)iste. This latter bound is the best our result can do.

While the subconvexity bound (1.2) of [17] was deduced from an estimate for the second moment
of L(%, f X x), averaging over the newforms f, in this paper the main result Theorem 1.1 is deduced
from a fourth moment estimate. This is deeper than our previous paper and requires the spectral
theory of automorphic forms.

Theorem 1.2. Keep the notation in the statement of Theorem 1.1. For k > 2, we have

(1.3) STOILE £ x X <k (ap)(ap + pPq )
feBi(a)

for any € > 0.

This fourth moment estimate immediately yields Theorem 1.1. For comparison, we note that the
large sieve would give the bound O(g**p?T<) for the left hand side of (1.3) (see Lemma 2.9 and
Theorem 2.3). Of course, the best expected bound is essentially O(¢'*¢) on the Lindelsf Hypothesis.

The study of the fourth moment of GL(2) automorphic L-functions in the level aspect has a
long history. In their influential paper [8], Duke, Friedlander, and Iwaniec were the first to prove
a non-trivial upper bound for an amplified fourth moment, and from this the first subconvexity
bound for automorphic L-functions in the level aspect. Kowalski, Michel, and VanderKam [20] went
further to prove an asymptotic for a mollified fourth moment, from which they obtained nonvanishing
results in this context. Blomer, Harcos, Michel [3] proved estimates for an amplified fourth moment
involving more general forms, allowing for non-trivial nebentypus. More recently, new techniques
were introduced, which avoid the so-called shifted convolution problem that had been central to
the aforementioned works. Kiral and Young [19] proved an estimate for the fifth moment that is
sharp on the Ramanujan Conjecture. Blomer and Khan [4] established a ‘reciprocity’ relation for
the twisted fourth moment, and from this an estimate for an amplified fourth moment where the
amplifier can be taken so long that it yields the fifth moment. This was generalized to the case of
non-trivial nebentypus by the same authors in [5].

In this paper, we study the fourth moment in a different direction. Instead of trying to insert
a longer amplifier or mollifier, our goal is to reduce the family size in the fourth moment. Indeed
in (1.3), the L-functions are associated to forms of level gp?, but we average over only those which
arise as lifts of forms of level ¢q. Note that in the range p?>~¢ < ¢ < p?>*¢, where we get our strongest
subconvexity bound, the log(conductor) to log(family size) ratio is 8. The fourth moment in small
families has also been studied for other types of L-functions. See [23] for Dirichlet L-functions and
[16] for automorphic L-functions in the spectral aspect.

The general plan of attack is to introduce a root number into |L(%7 f x x)|* using the functional
equation, following [5]. We then express the L-values as Dirichlet series using approximate functional
equations, and apply the Petersson trace formula to obain a sum of Kloosterman sums. We dualize
the sum by applying Voronoi summation, obtaining a new sum of Kloosterman sums. To this we
apply Kuznetsov’s formula in reverse to return to a sum of automorphic objects. The final step is
to bound this using the spectral large sieve. The term O(p2+€q%+ﬁ+€) seen in (1.3) arises from this
process. The other term O(q!T¢p!T¢) arises from a diagonal term earlier on in the calculation (see
Lemma 3.2). The sketch just described is part of a familiar sort of strategy in a classical approach
to ‘spectral reciprocity’. We have already mentioned a few works in this regard. See also [1, 11, 6]
for a further sample of the growing literature on spectral reciprocity type problems. From [4], for
example, one sees that the fourth moment of L(%, f) over a family of level ¢ forms is related to a
fourth moment of level 1 forms, times the Hecke eigenvalue at ¢. In our problem, we consider the
fourth moment of L(%, f x x) over a family of level ¢ forms. Although we do not develop a precise
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SUBCONVEXITY BOUNDS FOR TWISTED L-FUNCTIONS, II 3

reciprocity relation, we will roughly see that on the dual side, we get a fourth moment over level p*
forms with nebentypus x?, times the Hecke eigenvalue at g.

Throughout, we follow the e-convention: that is, € will always be positive number which can be
taken as small as we like, but may differ from one occurence to another. All implied constants may
depend on € and k.

Acknowledgement. I am grateful to Matthew P. Young for helpful comments and to Zhao Xu
for pointing out a mistake in an earlier version of the paper.

2. BACKGROUND

2.1. Automorphic forms and L-functions. Most of the facts in this subsection may be found
in [12, Chapter 14]. Let Si(gq) denote the space of holomorphic cusp forms of prime level g, weight
k, and trivial nebentypus. Let S} (g) C Sk(q) denote the space of newforms. Every f € Si(g) has a
Fourier series expansion

for S(z) > 0. Let By(g) denote an orthogonal basis of Sk(¢), which contains a basis Bj(q) of S} (q),
normalized so that pf(1) = 1 for every f € Bj(g). Thus for f € Bj(q), the n-th Fourier coefficient
equals the n-th Hecke eigenvalue.

Let x be primitive Dirichlet character of prime modulus p. For f € Bk (q), define

k—1

(f xX)(2) = Y x(n)ps(n)n" 7 e(nz).

For f € Bj(q), this is a newform of level gp?, weight k, and nebentypus x?. The associated L-function
is entire and for R(s) > 1 equals

— nS
This satisfies the functional equation
pgz _ B
(2.1) Als, £ xx) 1= (BE) Tls 4+ 551 L(s, £ x X) = £(F x WAL =5, f X %),
where
T(0)?

e(f x x) = —i*ps(q)a? x(q) .
is of modulus 1. Thus the analytic conductor at s = £ is kp®g, or just p®q in the level aspect.

We now consider more general automorphic forms. Let N > 1 be an integer, ¥ a Dirichlet
character of modulus N, and let cond(¢) denote the modulus of the primitive character which
induces . Suppose that v is even and cond(1)) is squarefree and odd, since this is the case which
we will need. Let By(N, ) denote an orthogonal basis of holomorphic cusp forms of weight k& and
nebentypus ¥ with respect to To(IN). Let B(N, ) denote an orthogonal basis of Maass cusp forms
with nebentypus ¢ with respect to I'o(V), with ¢, denoting the spectral parameter of g € B(N, ). It
is conjectured that ¢, is real, but the possibility of purley imaginary ¢, with |t4| € (0, ) has not been
disproven (these are called exceptional eigenvalues). Whenever we wish to work with orthonormal
bases, we will divide by the L?*norm ||g|| of the forms. Let E.(-,3 + it) denote the Eisenstein
series of nebentypus v associated to a cusp ¢ which is singular for ¢ (see [27] for definitions). For
o= (5%) € SLy(R), let j(o,2) :=cz + d. We write the Fourier expansions of these objects around
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a singular cusp a associated to a scaling matrix o, as follows:
9(042)j (04, 2 Zpgu n'Te (nz) for g € Bi(N,),

2) =" pg, (M)~ 2 Wo i, (4nlnly)e(na) for g € B(N, ),
n#0
Be(0az, 3 +it) = c1.c(t)y> " + e c()y> T+ Y pealn, t)n” 2 W e, (47 |nfy)e(na),
n#0
where
Wo,it, (4m|nly) = vnWyKitf(27T|n|y)
is a Whittaker function and Kj; is a Bessel function. For a = co, we simply write

Pga (n) = pg(n) and  peq(n, t) = pc(n7 t),

and this matches the notation seen above.

Let Bj(N,v¢) C By(N,9) and B*(N,v¢) C B(N,1) denote orthogonal bases of the space of
newforms, normalized so that p,(1) = 1. For ¢ in Bj(N,®) or B*(N,v), we have the Hecke
multiplicativity relations

nm n m
pampg(m) = D7 wldpy(Z5). palnm) = 37 vy (5 ) (5)-
d|(n,m) d|(n,m)
For g in B} (N,), we have the Ramanujan bound (due to Deligne),
pg(n) < néa
and for g € B*(N, ), we have the Kim-Sarnak bound [18]
pg<n) < n19+e7

where 9 = 614. For g € B{(N) and r dividing the square-free part of N, we have [21, Theorem 2]

1

lpg(r)| =172,

Thus for f € B} (q), we have pf(q) = +q 2.
In order to appeal to the properties above, which are restricted to newforms, it will be useful to
have bases By (N, ) and B(N, ) expressible in terms of lifts of newforms.

Lemma 2.1. We have an orthogonal basis
(2:2) Be(N,¢) = |J {9 : g € Bi(6, )},
50N
where
1
90 (z) =Y vs(r)rg(rz)
r|d
for some complex numbers vs(r) depending onr,d, and g, such that vs(r) < (rd)¢, where the under-
standing is that B(€,1) is empty if ¥ is not a character mod {. Further, this basts is orthonormal

if every g € By (€,9) for {|N is L*-normalized with respect to T'o(N).
The same type of statement with obvious notational modification holds for B(N,1)).

Proof. See [22, Proposition 7.1] and [23, Section 6.6]. O

We do not reproduce it here, but analogous to Lemma 2.1, for the continuous spectrum we have
an ‘orthonormal’ basis involving newform Eisenstein series, whose Fourier coefficients satisfy the
Hecke relations. This theory was developed in [27]. See the remarks following [23, Lemma 6.11].
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2.2. Petersson trace formula. We state the Petersson trace formula.

Theorem 2.2. We have

(23) > F(k_l)>pf(n1)pf(nz) = O(nymng) T 200D S(”l’C?CN) J’H(M\/W»

k—1
FEBL(N) (47T) <faf =1 cN

where S(ny,na, ¢N) is the Kloosterman sum, (f, f) is the Petersson inner product for To(N), Jy—1(x)
is a J-Bessel function, and dp equals 1 if the statement P is true, and O otherwise.

Proof. See [12, Corollary 14.23]. O

By [14, equation (2.24)], for N square-free and f € Bj(N), we have

rk—1) 2m?
@4 @10, )~ Nk~ DL(Lsym2f)’

where L(s,sym?f) is the associated symmetric square L-function and N=¢ < L(1,sym?f) < N€ by
[10].

2.3. Spectral large sieve. We state the spectral large sieve inequality.
Theorem 2.3. For any sequence {a,} of complex numbers, we have

y Loy L)y o (|| < (1% + LY ja?,

2
semniv 1917y on

k<T
k=0 mod 2
1 1 2 ) Mlte )
> remery] 2 anesm] < (74 =) lal?
geB(N, ) 9 97" M<m<2M
t;<T

> 2 M1+6
> /_Ooml(m’ > ampca(m7t)‘ < (T2+T)||a|\2,

¢ singular M<m<2M
where ||g||? is the Petersson inner product of g with itself and ||c||* = 3 ;< ncans |Cm|?.

Proof. This is almost given by [7, Proposition 4.7], except that there, the bounds on the right hand
side equal (T2 + cond(¢) = M;re)
was observed in [28, Proposition 2.5] that this extra factor cond(t)2 can be removed. O

la||?. Under the assumption that cond(¢)) is squarefree and odd, it

When the sums on the left hand side of the large sieve inequality are restricted to newforms,
normalized to have first Fourier coefficient equal to 1, we can use

l—eg.—¢ (k_ 1)' (k—l)'
(2.5) N~k (a1 (4m)k—1

< lgl* < N*ke
for g holomorphic, and

N1+ Jtg]) < Jlgll> < N'F(1+ |tg))°

—e 1
cosh(mt,) cosh(rt,)

for g a Maass form. See [25, Equation (2.3)]. For analogous bounds for newform Eisenstein series,
see [25, Equation (2.7)].
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2.4. Kuznetsov’s trace formula. Follow the notation from the previous section. Let ¢ be a
smooth function compactly supported on the positive reals. Define the following transforms of ¢
against Bessel functions:

. ke T
o) = = [ aa@o@ T
(1) = 781112}172;) /OOO(Jzit(iU) - LG(a?))aﬁ(x)d;w7

H(t) = 8 cosh(rt) /000 Kgit(xﬂ)(m)d—x.

X

We have the following estimates for these transforms.

Lemma 2.4. (a) If ¢(x) is supported on 0 < X < x < 2X and satisfies ¢U)(z) <; X7 for all
j >0, then fort € R we have

q'ﬁ(t), é(t)’ (&(t) <

1+|logX|(1—|—X)l
I+xX \1+[

for any 1 > 0.
(b) If () is supported on 0 < X < x < 2X and satisfies ¢\9) (x) <; (£)77 for all j > 0, then

fort e (=1, ﬁ), we have
14+ (%)72|St|

1+(2)

(c) If ¢(x) = e*®Y(x), where a = +i, and P(x) is supported on 1 < X < x < 2X and satisfies
P (z) < X7 for all j > 0, then for t € R, we have

o), p(t) < X3+,

o(1),0(t) <

For |t| > X2+, we have
(1), o(t) < (It + X) 7' X°
for any 1 > 0.
Proof. For parts (a) and (b), see [3, Lemma 1], and for part (c), see [15, Lemma 3, Remark 1]. O

Given two singular cusps a and b of I'o(IN), define

(k= 1) py ()
D DR DR e A PIE
R

_ 1 e Pga (n)Pgu (m)
M= D iy e

gEB(N,3)

£=3 [ Tresmi "Oeucrati)

M/ _ Z 1 qg(tg)p!]n(in)pgu (m)

2
o, coshity) ol

Y e

We now state a special case of Kuznetsov’s theorem which we will need.
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Theorem 2.5. Keep the notation of section 2.3. Suppose that the level N = rs, where the modulus
of ¥ divides v, and (r,s) =1. Let a = co and b = 1/s (these are singular cusps). Let ¢ be a smooth
function compactly supported on the positive reals. For n,m > 1 we have
1 — 3 41/
Z 7¢(C)6<E)S(mﬁn,cs)¢( T nm) =H+M+E,
= cs\/r r cs\/r

(e,r)=1

Z ﬁ@(e)e(m?g)by(—m?,n, cs)¢(4:;/\;?) =M +¢&,

(e,r)=1

where the Fourier coefficients in H, M,E, M’ E" are determined by a suitable choice of scaling ma-
trices.

Proof. See [7, Lemmas 4.3 and 4.5]. The first of these lemmas indicates the scaling matrices that
we need. 0

2.5. Bessel functions. In this section we collect various estimates for Bessel functions.
Lemma 2.6. For (qgp)~!%° <z < (pq)¢, we have
Ji—1(dmzx) = 2Wi(x)
where W1 (x) is a smooth function satisfying Wl(j)(x < (gp)° for all j > 0. For x > (gp)°, we have

e(j;) Wg(x)>,

Ji—1(4mx) = §R(
where Wy is a smooth function satisfying
W (2) < 1
for all j > 0.
Proof. When x < (gp)~¢, use the power series [9, equation 8.440],

_ 0 (_1)Z(m/2)k71+2€
J’H(x)’; nk+o0r

When z > (gp) ¢, use the integral representation [26, page 206]

B e(2x) e(f§+l) < K3 iu k—2
Jk_1(47rx)—§R< NG ﬂﬂl"(kz—gé)/o e “u (1+87mc) du).

]
Lemma 2.7. (a) For x > (qp)¢, we have Ko(z) < (gp) 1%, and for (gp) 1% < x < (qp)¢, we have
Ky (2) <5 (ap)"(1+77)

for j >0.
(b) For x > (qp)°, we have

eix
(2.6) Yo(z) = %(—W(m)),
for some smooth function W with =7 W0U)(z) <; 1 for j > 0. For (gp)~'%° < x < (gp)¢, we have

Y (@) < (gp) (1 +27)
for j > 0.
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Proof. (a) By [26, page 208], we have
Ko(x) = e v / efumufé(l + %u)f%du.
0

Suppose first that > (¢gp)€. In this range, the integral is O(1) and due to the exponential decay of
the e~ factor in front of the integral, we we get the desired bound Ky(r) < (gp)~1°°. Now suppose
(gp) 1% < 2 < (gp)¢. To see the claim in this range, observe that

00 . ) 1 . max(1,z~2) oo
/ e uT (14 Ju) 7du < / u” z2du —|—/ utdu —|—/ e "du < (qp)*,
0 0 1 max(1,x—2)

and
dj e s} N ) Sl .
—ur, —3 1,\—5 -1 _—ux -
—/ e "um2(1+ ju) 2du<</ wreT du < a7
dxI 0 0

for j > 1.
(b) By [26, page 206], we have

(2.7) Yo(z) = %( ¢
where

2x

For x > (qp)¢, we have W) (z) <« 27 for j > 0. Now consider the range (qp) % < z < (gp)°. For
the subrange (¢p) ¢ < x < (¢p)¢, we use the integral representation above to see that %Yo(x) <
(gp)¢. For (qp)~1% < o < (gp)~¢, we use the power series [9, equations 8.402, 8.403.2],

2 L = (=) 2 &
Yole) = %(ln(iw) +1) 3 (4l(z!))2 =Y 41?2 £

=0

W(z) = g /000 ety (1 + Z.fu)iédu.

to get that K)(j)(x) < (gp)¥(1 +277) for j > 0. O
2.6. Voronoi summation. In this section we state some summation formulae for divisor type

functions. Define
Tx2(n) = ZXZ(Z), T(n) = Z L.

ln ln

Lemma 2.8. Let g be a smooth function compactly supported on the positive reals. Let x be a
primitive Dirichlet character of modulus p, and ¢, b integers with (¢,pb) = 1. We have

28) X xtnrme("2) o) = =2 S e y-mrte( 20 [T (L gt

= p 7(X) = c cp
v ;j%;x@)x(n)f(n)e(”fb) [ (M g,
(2.9) )
3wt e(F ot = = 5 S xtme e TE) [0 (T Yoty
oy St e() [ aa (T Yo

where Yy and Ky denote Bessel functions.
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Proof. We first consider (2.8). Using [12, equation (3.12)], we have

(2.10) S x(n) (nb) )Y T(n)e (% + %b)g(n)

7, Y

n>1 X a mod p n>1
1 n(ac + bp)
i, B, TG e

We can restrict to (a,p) = 1 since otherwise Y(a) = 0. Observe that the inverse of ac + bp in Z,

is ¢(€)2(a), + p(p)Z(b)e, where (¢), denotes the inverse of ¢ in Z7 , etc. Now, applying the Voronoi
summation formula for the divisor function [12, equation (4.49)], we get that (2.10) equals

(2.11) b Z* y(a)é /Oo(loga: + 2y — 2log(cp))g(z)dx

7(X) o mod p 0

BRI X(a)ZT(H)€<—n(c(c)§(a)z+p(p)§(b)c)> /0°°YO (%ﬂﬁ) o(2)dz

ep 7(X) P cp

a mod p n>1

PEBEIR z_}(n)e("(c(c)%(a)”+p(p)3(b)6))/OOO KO(4W\/%)Q(x)dx

cp 7(X) cp

We write
2

e(—n(C(E)g(ﬁ)p +P(T?)<2:(b)c)) B e(—nE 6)6<—n172b)
cp D c
and evaluate the a-sums in (2.11). By [12, equation (3.9)], we get that the first sum vanishes, and
by using [12, equation (3.12)] for the other sums, we get the required formula (2.8).
Now we turn to (2.9). If x is quadratic, then 7¢2(n) = 7(n) for (n,p) = 1, so we can refer to (2.8).
If x is not quadratic, then (2.9) is justified the same way as (2.8), except that we use the summation

formula [12, equation (4.67)] for 72 (n) instead of the Voronoi summation formula for 7(n). O

2.7. Approximate functional equation. In this section, we get a handle on the fourth power
of the central L-value by expressing it in terms of a Dirichlet series. The main point to note is
the introduction of the root number (from the functional equation) into this expression, following
[5]. This way, when we later apply Voronoi summation to the n and m sums below, it will not be
circular.

Lemma 2.9. Let f € Bj(q). We have that |L(%, fxx)|* equals a linear combination of
(2.12)

qz

2d =2 d2 d2
> Nl el w18y (M5 1 og-iee
dy,dz>1 192 m>1 n2 m2 qp qp?

(d1dz2,pq)=1 (m,q)=1

and the same sum with x(m) replaced by X(m) and x?(dz) replaced by X*(d2), where

1 ING 2d
(477290)_54(2 +5) as

V Xr) = —
(@) 21 J (o) 1"(%)2 s

for x > 0, and the constants involved in the linear combination are of modulus 1 and independent of

f-
Proof. For f € Bj(q), we have by the functional equation (2.1), that

IL(5 f x )| = |L(5, f x OPL(5. f x X)L(5, f xX) = (f x D|L(5, f x )PL(5. f x x)*



10 RIZWANUR KHAN

Using the functional equations of |L(s, f x x)|? and L(s, f x x)?, we can express their central values
by approximate functional equations [12, Theorem 5.3] as follows:

|L (Q,fXX) Z pr(ni)x (n1)pf(n2) (n2)v<n1n2)

ni,ne>1 (’I’Llle) qp2

and

|

L(%uf % X)2 _ Z pf(ml)X(ml)Pf(m2)X(m2)V<m1m2)

(mlmz) 2 qp?

mi,me>1

te(fx x> Pf(ml)?(ml)ﬂf(mﬂﬂmz)V(mlmg)’

(m1 mg) % qp2

mi,mp2>1

where V(z) is a weight function as defined in the lemma, which effectively restricts the sums to
ning < g +p?te and mymy < ¢ ep*te. For 2 > (gp) 1%, have 27V ) (2) <; (gp)€ for all j > 0 by
moving the line of integration to R(u) = €. Note that since pf(q)q’% = 41, we have that e(f x x)?
is independent of f. Thus the fourth power |L(3, f x x)|* equals a constant of modulus 1, depending
on x,p, and g, times

" Z pr(ni)x (nl)/’f(nz) (nz)v(nlm)Pf(ml)x(ml)ﬁf(mz)x(mz)V(mlmg)7

p
s (1 712) qp? qp>

N

ni,ne>1 (m1m2)

mi,mo>1

plus a similar sum with x(m1), x(ms) replaced with y(m;1), x(m2). Using the Hecke multiplicativity
relations for f € B} (q), we have

pr@prmpsn) = 3 pr(Tp®)

d1|(n1,n2)
(d1,9)=1

We replace ni,ns by nidi,nod; and then write n = ninsg, and similarly for m,mo. We observe

that
3 xm)x(ne) = x(n) 3 W(na),

ning=n naln

and similarly for the my,mg sum. Writing p¢(m) = py(m) since the Fourier coefficients are anyway
real, we obtain the main term of the lemma without the condition (m,q) = 1. If we impose this
extra condition then we must separately consider the contribution of the terms with m = m/q. Using
that py(ng) and p,(m/q) are each bounded by ¢~ 2+¢, we obtain by trivially summing over n and m’
that this separate contribution is bounded by the error displayed in the lemma. O

2.8. Mellin inversion. We will use Mellin inversion to separate variables in the argument of a
function.

Lemma 2.10. Let W (x) be a real valued 5m00t~h function compactly supported on (qp) 1% < x < oo,
satisfying 2 W) (x) <; (qp)© for j > 0. Let W(s) denote the Mellin transform. We have

1 [iap)* - 100
W(z)=5— @ *W(s)ds + O((gp)~ ),
211 J —i(qp)

where W (s) < (qp)¢ within the limits of the integral.

s) = /0C>O W (z)z* " dx

Proof. The Mellin transform
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exists for all s € C and satisfies W (it) <; (gp)(1 + |t|)~7 for all j > 0, by bounding trivially for
[t| <1 and integrating by parts with respect to z for |¢| > 1. By Mellin inversion, we have

W(z) = —— / T (s)ds.

211 —i0o

The bound given above for W (it) can be used to restrict the integral to |t| < (gp)¢ up to an error of
O((gp)~). O

3. PRELIMINARY WORK

The goal in this section is to reduce Theorem 1.2 to a problem on estimating a sum of Kloosterman
sums, which will be our main object of study.

Lemma 3.1. To prove Theorem 1.2, it suffices to establish

1 x(n)752(n) x(m)r(m) S(n,mg, c 4m\/nm nd? md3
31 — > x (m)r(m) 5( )J_( v )v(—;)v( 22)
qz2 nome>1 n2 m2 C C\/(? qp qp
(e:pg)=1

c 9 1
< (qp)pPq 7,

for any dy,ds < (gp)1°°, and the same bound with x(m) replaced by X(m).

Proof. Using (2.4), for Theorem 1.2 we need to prove

M L 1 4 . 9 —%4-19
feBZ;@ amiigs, LG S0l < lap)p+pia ).

We write |L(%7 f x x)|* using Lemma 2.9. Then Lemma 3.3, which is presented after this proof, is
used to enlarge the sum ZfeB;(q) to ZfeBk(qy up to an error. Thus, it suffices to show

2 2 2
i x*(da) X(n)Ty2 (n) x(m)7(m) ndy md3
3.2 2 E E 174 v
( ) ! di,d2>1 dy s n,m>1 n% m% <qp2> ( qp2 )
(d1dz2,pq)=1 (m,q)=1

3 T s (m) < (@) (0 + %),
feB (4m)5=1(f, f)
k(q)

and the same bound with y(m) replaced by X(m) and x2(d2) replaced by X?(d2). Note that the
required error term in (3.2) absorbs the contribution of the error terms seen in Lemma 2.9 and
Lemma 3.3. We apply the Petersson trace formula to the innermost sum on the left hand side. The
contribution of the d,4=p, ‘diagonal’ terms is zero because of the condition (m,q) = 1. Thus we are
left to consider the ‘off-diagonal’ terms, for which it suffices to prove, after forsaking cancellation in
the dy, ds-sums, that

33 ¢ Y x(n)Tyz(n)x(m)T(m)S(Rq,m,CQ)Jk_1(4w\/m>v(n7d%)v(m7d§)

ns m3 cq cq qp? qp?

n,m,c>1
(m,q)=1

< (gp)(p+p*q2™)
for any dy,ds < (gp)*°°. Next we wish to restrict to (c,p) = 1, but we relegate most of the work to

a separate lemma. The contribution of the terms in (3.3) with ¢ = ¢/p, using the Petersson trace
formula to sum over ¢’ > 1, equals

S x(n)Ty’z(n)x(m)T(m)V(Lﬁ)V<@) T (F(k—l)

qp> ap? 4m)k~1(g. g) Pg(nq)pg(m).

1 1
n,m>1 nz m2
(m,q)=1

9€ B (pq)
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This satisfies the bound O(gp!*¢) using Lemma 3.2 below, which is an admissible error in (3.3).
We now simplify the Kloosterman sum in (3.3). Write ¢ = ¢/q! with (¢/,q) = 1. If I > 1, we claim

that S(ng, m,cq) = 0. To see this, oberve by [12, equation (1.59)] that
S(ng,m,cq) = S(ng,m,c'q""*) = S(ng',m, 7", ¢)S(ngc’,mc, ¢'*)

and

S(ngc,md,¢"*1) =

ngc’(a + bg') +mdc’'(a + bqt)
> ¢ e )
0<a<q' 0<b<q
(a,9)=1

ngc'a + mc'(a — a*bq')
Z Z e( P > =0,

0<a<q! 0<b<g
(a,q)=1

because the b-sum vanishes. This uses (m,q) = 1. So we can assume that (¢,¢) = 1, in which case
we have

S(nQa m, CQ) = S(na mg, C)S(O7 mc, Q) = —S(?’l, mg, C)'
Thus to prove (3.3), it suffices to establish

(3.4) q*% Z X(TL)TXZ(”) X(m)i(m) S(nncnq, c) Jk—1(4ﬂ-c\\/[7) (nd2>V(TZpd§)

1

2 2
n,m,c>1 n m
(m,q)=1

(e,pg)=1
< (qp)pPq~ .
At this point we can remove the restriction (m,q) = 1 because the terms with m = m/q contribute,
after using inclusion-exclusion to express the condition (¢, pq) = 1,

> / / o
-1 X (d2) X(n) 752 (n) x(m'q)T(m’q) S(n,m’, ')
q E w(l) E A2 E :
Upq di,d2>1 dids n,m’,c'>1 n (m/)% cl
(d1d2,pq)=1

4dmv/nm nd3 m'd3
B () (G V()
l qp? P’
Using the Petersson trace formula, the ¢’-sum can be evaluated as a sum over f € Bg(l) plus a
‘diagonal’ sum involving 6, —,). The diagonal is easily estimated. For the sum over f € By(l),
the Cauchy-Schwarz inequality and the spectral large sieve (see section 2.3) then give that (3.5) is
bounded by O(q*%“pl“), which is admissible. For details on the application of the large sieve, see
its usage in the proof of Lemma 3.2. O

Parts of the proof of Lemma 3.1 were relegated to auxiliary results which we now present below.

Lemma 3.2. For any di,ds < (qp)'®°

(3.6) . Z X(n)T?(n)X(m)t(m)V<nd%> (mdz) Z pg(n <g7g> )<<qep1+6

2
a ar’ 9€ Bk (pq)

, we have

n,m>1 nz= m=

(mflI):l
Proof. Writing By, (pq) in terms of newforms using Lemma 2.1, we get that the left hand side of (3.6)
equals

(3.7)

4 Y Y Y Y Dws(ra)ri g x(n )T2(71)x(m)z(m)v(nici;)‘/(mici%%g(nq)w

T2

(9, 9)pq nz m3 ap qp

n.m>1 6tlpq r1|(8,nq) g€ By (£)
(@)=l r|(6,m)

).
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for some coefficients v5(r1),v5(r2) < (gp)°, where (g, g)pq is the Petersson norm with respect to
T'o(pg). This normalization by (g, g)pq serves to L2-normalize with respect to I'o(pq), so that we get
an orthonormal basis as indicated in Lemma 2.1. By (2.5), we have (g, g),q > (gp)'~¢.

Consider first the case ¢|¢ in (3.7). In this case we may replace n by nry (because q 19, so g1 rq,
so the condition 71|ng implies 1|n) and replace m by mry so that (3.7) is bounded by

(3.8)
e _1+EZZ Z ‘ Z x(nry) ? nTl)X(mw)z(mm)v(nmg%)V(mm;l%)pg(nq)pg(m)-

8¢|pg r1|6 g€B;(£) n,m>1 m?2 qp qp
qlt 72| (m,q)=1

1

We write pg(ng) = py(n)pg(q) using Hecke multiplicativity and note that py(¢) < ¢~2. The sum
(3.8) can then be estimated using the Cauchy-Schwarz inequality, the spectral large sieve, and (2.5)
to get the bound

e (0 | Y %pg( ‘)é( > ¥ &;pg(m)‘z)

fpa gEB;(£) n<qltepte gEB;(£) m<qltepte me
_ _ 1 1
<q T (ap + ap?)E (ap + ap?)F < g P,
for some complex numbers a,, 3,, bounded by (gp)©.

Now consider the case ¢ 1 ¢ in (3.7). Replacing n by n(qT;l) and m by mrq, we get get that (3.7)
is bounded by

1 nr
i, (r1,9)2x (q h)) (7((1,}1)) x(mra)7(mrs)
69 ST S | S el G e,
,m>

2 2
3¢|pq 1|8 g€ B} (£) 1 n m

att 2|5 (m,q)=1
2 2
V( (qvf:ll)dqlﬁ ) V<quij )pg ( (:flq) ) po(m) ‘ '

This sum is also ultimately treated using the spectral large sieve. However we do not apply it right
away because we no longer have the saving pq(¢) < q*% available as the level of g is coprime to
q. We only show the details for the most difficult case: the contribution to (3.9) of the terms with
£=p,6=gq,rp =q,ro = 1. This is the most difficult because, keeping in mind that the large sieve
will give a bound in terms of the level and sum lengths, £ = p is the largest possible level under the
condition ¢ t £, any choice other than r5 = 1 would result in a shorter m-sum, r; = ¢ introduces

a large factor (r1,q)%, and any choice other than r; = ¢ would result in a shorter n-sum. The
contribution of such terms is bounded by

10) gy Y |y Xmemirmy ndly ndy),

gEB(p) mn,m2>1 ap qp
m,q)=1

mz2

To treat this, we first remove the condition (m,¢) = 1 up to an admissible error. The contribution of
the terms with m = m/q is O(¢°p**¢), using Hecke multiplicativity for p,(m’q), the Cauchy-Schwarz
inequality, and the spectral large sieve. Next we use the definition of V' given in Lemma 2.9 to write

(3. 11)
) 2 S1TS82

§+52
m>1 mi,ma>1 mgy
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for some function G(s) which is analytic for R(s) > 0 and decays exponentially as |J(s)| — oo.
Using the Hecke multiplicativity relations, we get that (3.11) equals

/ / (e)X2(e)X(ml)X(m2)pg(m1)pg(m2> (ﬁ)51+S2G(81)G(82)d81d«92
(2) J(2)

1 1 2
61+51+52m2+51m§+52 d2

mi,ma,e>1

n(e)x*(e) (qp?ysrts:
/2) /2) +517g X X)L( + 82,9 X X) €1+51+82 ( d% ) G(SI)G(SQ)dSIdSZ-

The integrals can now be moved to the lines %(sz) = € and restricted to [3(s;)| < (gp)¢ by the
exponential decay of G(s). Similarly, the n-sum in (3.10) can be written in terms of integrals
involving L(3 + s1,9 x X)L(3 + s2,9 x X) for |s;| < (gp)°. Thus using Cauchy-Schwarz, we get that
(3.10) without the condition (m,q) = 1, is bounded by

max _¢p T Y |L(E 45,9 x )|
[s|<(gp)° -
9€B; (p)

Since the analytic conductor of L(% +s5,gx ) is bounded by ¢“p?>*¢, by using a standard approximate
functional equation, |L(3 + s,g x x)|? can be expressed as a Dirichlet series of length ¢“p*>™¢. The
spectral large sieve then gives a bound of

¢p e (p+p?) < gp'te.
O

Remark. Lemma 3.2 gives rise to the error term O(q'*¢p!*¢) in Theorem 1.2. The main input in
this lemma is the large sieve, and as such is not very deep. Thus with more effort, it may be possible
to do better, at least in some ranges of ¢ and p. However we are content with this result because
the other error term O(p*T¢q2+?+¢) in Theorem 1.2 is anyway also O(¢*+p!™¢) on the Ramanujan
Conjecture when p?~¢ < ¢ < p?>*+¢, which is our main range of interest.

The other auxiliary result needed to complete the proof of Lemma 3.1 is the following.

Lemma 3.3. For (m,q) =1, we have

_Tk=1) o _Tk—b ot e

Proof. The sum over By(q) can be expressed as a sum over Bj(q) plus a sum over oldforms, which
we need to bound by the error term. To do this, we use a more refined version of Lemma 2.1 in this
special case. By [13, equations (2.48) and (2.36)], we have

T(k—1 T(k—1
2 (47T)(“<f,)f>p rng)ps(m)= Y MW(”Q)P}‘(W)

f€Bk(q) feB;(9)
k—1) Af(ng,q)Ar(m,q
12 O sz
renr ¢ ’ —a(*57)

where (f, f)q is the Petersson inner product for I'y(g), and where, using (m,q) =1,

Ag(m,q) = pg(m)
and
1 q n
As(ng,q) = ()5 .
1(n4:9) = =7 pr(na) = =05 () dain
By (2.5), we can use the bound (f, f), > ¢'~¢ in (3.12). The lemma follows. O
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Now we return to Lemma 3.1, and restrict the sum to dyadic intervals. It suffices to prove that

NI 2 XU t)xm)(m)S(on,mi, o) 1(4”\/; i () ( (&)

n,m,c>1
(e,pq)=1

< (gp)pPq~ 3+,

for any

(3.13) 1< N,M < g'tep*te

and C' > 1, and weight functions V; compactly supported on (1,2) and satisying Vi(j ) (2) <, (qp)°.
Note that these weight functions are arbitrary, and we will redefine them (and others like them)
from line to line to suit our needs. For example, \/nV () equals VN \/%V(%), which may simply
be written as VNV (%) after redefining /zV (z) to equal V(z).

Using Lemma 2.6, we need to establish

C%q WX’CIN X(m) 72 ()X ()7 (m) S (n, i, €)W ( %)% (N) V) (M> Vs <C> < (ap)P°q "’
(e.pa)=1

in the case that ¥ f < (gp)¢, and

L e T e
(c,pg)=1

< (qp)pPq Y

in the case that VC f > (gp)¢, some some real functions Wi and Ws satisfying bounds as given in

the lemma. (We are assuming these are real by taking real and imaginary parts; this is also why the

+ arises in the exponential factor.) We may write Wi ( P\"}”) and Wa( "m) in terms of their real
and imaginary parts, use Lemma 2.10 to separate the variables n,m, and ¢, and then absorb the

resulting factors n=2,m~ 2, and ¢® into the functions Vi, Va, and V3. Thus it suffices to prove

B1) g 3 xwmexmrm)Smmzavi(§) (5 V(E) < et

n,m,c>1
(e,pq)=1

for any N < ¢'Tep?*e, M < ¢'tep?te, M < (gp)¢, and

C

g

(315) WWzgﬂX<n>rx2<n>x(m>7<m>s<n,mq,c> (B2 w(3)v(5)vw(5)

(c,pq)=1

< (qp)p2q 2t

for any N < ¢'Tep?te, M < gltep?te, 7% > (gp)¢. We may also assume the crude bound

(3.16) C < (q0)™

This is clear in the case VCAf[ (gp)€, while in the complementary case we may make this assumption

by summing trivially using the Weil bound in (3.14).
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4. THE OSCILLATORY CASE

In this section we prove (3.15). This case is more involved than (3.14) analytically because the

weight function in the sum has the oscillatory factor e(2v "m) We keep in mind that in this case,
we have

vVNM .
(4.1) > (qp)*

i

4.1. Application of Voronoi summation. We write

Snmg.) = Y oMY,
b mod ¢

and apply Lemma 2.8 to the n and m sums in (3.15). Thus we apply Voronoi summation twice, and
after a substitution in the integral transforms, we get that it suffices to prove

(4.2) N ];4 3 X )72 (n)x(m) 7 (m) S (ng, mp*, ¢)
?c’;fqﬂ
/ / ﬂ‘/i) (4FT)B2<4WT)VI($)V2( )Vs(c)dxdy < (qp)p*q 2",

for each combination of Bessel functions {By, Bo} = {Yy, Ko} and for each choice of sign +. The
two occurences of + are independent of each other, but when B; = By = Y), then the sign inside
the Kloosterman sum is positive.

We claim that we need only consider the case By = By = Yj in (4.2). For if B; = Ky, say,

then either ¥ "N > (gp)¢, in which case K is tiny by Lemma 2.7 and the bound in (4.2) follows,

or Vc’fp (qp) But in this case we can integrate by parts repeatedly in (4.2) with respect to

+2/N

Cf
derivatives of Ky, this will show that the integral is bounded by (gp) 1% so that (4.2) is established.
Thus we can assume By = By = Yj, in which case the sign inside the Kloosterman sum in (4.2) is

+. We can also assume that

x, integrating e(Z2Y==""Y) and differentiating the rest. Using Lemma 2.7 to control the size of

3
d

> (qp)°, > (qp)°,

cp cp
for if ¥V
cp

size of derivatives of Yp, to show the bound required in (4.2). Now, using (2.6), we need to prove

< (gp)¢, say, then we can once again integrate by parts, using Lemma 2.7 to control the

NiMi x(c?) (\/W\/W i2\/7)

) xretxmrmsa e [~ [T

Czqi i Ap?\ cp ep
(e:pg)=1
() (R (A (L vt <

for some real functions Wi, Wy satistying Wi(j )(33) < x77 for j > 0, and where each sign + is
independent. Making the substituting /z — = and ,/y — y, and redefining the weight functions,
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we need to show

43 Lt Y ety (m XL [T (E2N =2/

1 1 1
qiC nim1

[N

n,m,c>1
(c;pq)=1

() (G m (M (Qﬁy)

cp

Writing 74 (z) = Wl(%)‘/l (x), Z2(y) = WQ(in)VQ(y) and evaluating the z-integral in terms
of the Fourier transform Zl, we need to show

Vi) Valu)Va (& ) dudy < (ap) a7,

P 1 x(¢*)S(ng, mp*, c)
T Y X)) (n)x(m)r(m) ;
qiC'2 S nimi cp
(¢,pg)=1
s+ 2vmMyN 5 22V NMy | 2v/nN 1
VA + |% d EEARS
/O e( s )1( /i o ) ()3(0) y < (qp)p*q*
Now we make the substitution =2 CV 7a My 4 2V N y to see that what we need to prove is
qipCs 1 x(c?)S(ng, mp*, c)
(4'4) N%M% . mzc:>1 n%mi X(’I’L)TX2 (n)X(m)T(m) Cp2
(c:pa)=1
:l:2./nmq) /°° (j:,/mq ) . +c\/qy /g 9
o TN [, Z1(9) % + )V( Jay < 3+
( e ; N 1(3/)22\/W v y < (qp)P°q
By repeated integration by parts, we have
5 () G e - L
(4.5) Z17 (y) = a7 e(—zy)Zi(z)de <, (gp)°min(1,y™")

for any j,I > 0, so that that we may restrict the integral to |y| < (gp)©.
We end this section by observing that in (4.4), we may restrict to

< (ap)*
C\f cp2 - C\f
This is because by repeatedly integrating by parts the y-integral in (4.4), integrating the exponential
and differentiating the rest, we can assume that

% < (qp)*,

otherwise the left hand side of (4.4) is bounded by (gp)~1°°. This uses (4.1). Similarly, by returning
to (4.3) and evaluating the y-integral instead of the x-integral, we can assume that

\/\/gp < (qp)°.

Next we show that we can assume the lower bounds

(4.6) (gp)~°

Vg _ Vg _
—=(p) . = =),
VNp vV Mp

after which (4.6) will follow. Suppose that these lower bounds don’t hold; say

Vg
Vil < (qp)

—€
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Then by the support of Zs, we have that VC]% <Ly <K VCJY/%I in in (4.4). But then by (4.1) and
(4.5), the left hand side of (4.4) is bounded by (gp)~1°°.

47 /nm
(=5=)

4.2. Application of Kuznetsov’s formula. By (4.6), we can insert in in (4.4) a function v o)

such that ¢(z) is smooth, supported on X < z < 2X, and satisfies 1) (z) < X7, with

vVNM
Cyaq N
Thus in (4.4), we may replace (nm)~% by its typical size (NM)~ip~lq2, by redefining 1. We
may apply Lemma 2.10 to and Z(z + \/ﬁ) and V3(z) to separate factors ¢—* for |s| < (gp)¢ from

Zz(;[\;ﬁ + V7 A )Va(&), and absorb them into 1/1(47” "y, Thus it suffices to prove

%

—€

(qp) < X < (gp)°

3 ~1
:L;@(cm):l
and
(4.8)
qics Z Z " )S(ng, mp*, cq) (iQ\/TWQ)w(M\/W) < (qp)p2q 7’
NiM3 e o1 P cqp? cqp? cqp? ’
n= (e.;p)=1
NP

mx=

where a,,, B, are arbitrary complex numbers bounded by (¢p)¢ and where we write n =< Mp® g,

2 2
mean (qp)_EMTp <n< (qp)EMTp, and so on (for these inequalities, see the end of section 4.1). We
have two sums because we used inclusion-exclusion to remove the condition (¢, ¢) = 1 from (4.4).

We insert e(3) in (4.7) and e(73! 7Y in (4.8), which we can do since 3, are anyway arbitrary, and

then apply Theorem 2.5. Thus we are reduced to showing

3 1 0. 1(m)
gict Pg.00(n9)Pg.1 (M) pq Y
" ( ’ ?) o
wo (Y 5 )<l
gE€Bo(p™,x )
vapz
and
(4 10) q%C% ( Z pg 00 qu Py, 1( ) 4+ H 4 (C/’) < (qp)5p2q7%+19
. INEIVE cosh 7rt lgll? ,

g€Bo(ap*X*)

)(

where

d(x) = e ep(x)
satisfies U )(x) < 1, and we have only written out the Maass form contribution M. We will not
show the details for H and £ because their treatment is similar and easier because there are no issues

with the Ramanujan conjecture.
We only show the details for the Maass form contribution in (4.9), as (4.10) is similarly treated.
By Lemma 2.4 (c), for real ¢, we can restrict to

ty < (qp)e(
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in which range we have

VNM\ -3
o)

Using the Cauchy-Schwarz inequality, for the Maass contribution of real t; to (4.9) we need to show

alts) < (ap)*(

qC 1 3
wm g X ng%%h Z awpace(na)] )
g€ Bo (p 7X ?) ) MP
ty<(ap)* (L)%
1 : 1
(3 P 2 Pl )" < i
g€Bo(p*,x?)
ty<(ap)* (L)

We first see what we should expect: if we were working with newforms and had pg oo(1)pg,00(q)
instead of py o0 (ng), then we could use pg (q) < ¢’ T and the spectral large sieve to get that the
left hand side of (4.11) is bounded by

(4.12) q

9ie o GC (\/NM+iMp2)Mp2 ? (\/NM+in2)Np2 ?
P M Cyag p* g q Cvg ' q/ q

We have that max(p%Mf,p%Nf) < ()% f because max(N, M) < g¢'*<p*t¢ by (3.13) and

VCA\%I > (gp)¢ by (4.1). Thus we get that is O(p>+cq— 277+ as required. In order to rigorously

separate n and ¢, we write Bo(p*, x?) in terms of newforms using Lemma 2.1, to get that

1
Z llgl2 Cosh ‘ Z QnPg,00(nq) ‘

g€Bo(p* 7X ) )
tg<(qp) (ML Mz
1 ng
B Z Z <9 g> Cosh ‘ Z Z vs(r “anpgo@( )‘
ol 9€B;5 (£x%) ’ qu r|(ng,d)

tg<(ap)* (A )3

for some coefficients vs(r) < (gp)¢, where (g, g}, is the Petersson norm with respect to Io(p?). We
have (g,g)A%)_6 LA(g, g)pr < <g,g>e(§)€ by the remarks at the end of section 2.3. We also have

Y vt (")] < Gy

ne= ]\4:2 r|(ngq,d) r|§

1 2
2 Z OnrPg,00(nq) ’

Mp2
qr

nx

after replacing n by nr, and

Z QnrPg,00 nq Z Z anrﬂg,oo (%)pg,oo( ) < (JME Z ’ Z QndrPg,o0 )

= Mp2 (n,q) < Mp2 dlq
qr qr

’I’qud
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using the Hecke relations. Thus we get that the square of the left hand side of (4.11) is bounded by

(35 ™ At n (Y ppmme] D teeseeon)])’

se|p* gEB] (é 2) g Mo
r1|d,r2|8 . M2
dillq,dz‘\q ty<(qp)* (ML )2
1 1 23
X 1 o )
( 2 lg]|? cosh(t,) D CnadarsPg00(n2)pg, ‘ )
g€EB; (Z,X ) [ = M p?
3 qdgra
ty<(qp)* (KL M)z
1 1 L )
X 1 - |
( 2 g2 cosh(mfg)‘ >, B pg71(m)‘ )
g€ By (p X2) ) me;Q
tg<(ap) (K )2

Now applying the large sieve gives the bound O(p*T¢q~277+¢) as we expected.
Now we return to (4.9) and consider the contribution the exceptional eigenvalues. We have by

Lemma 2.4 (b) with Z = YNM that ¢(t,) < (gp)°. Thus using the Cauchy-Schwarz inequality, the

Vi
Maass contribution of imaginary t, in (4.9) is bounded by
3 1 1
q:C>2 1 ,
4.13 ( ‘ ’ )
Y NiM Z ||g||2 cosh wty) Z Qnpg,o0(ng
g€Bo (p*
tg
1 "
X » '
( Z4 ||9||2 COSh ity) ‘ Z Bom. Py, ‘ )
9€Bo(pt X2

g

If instead of pg oo (ng) we had pg o0 (1)pg,00(q), then by the spectral large sieve and the Ramanujan
bound for py(q), we would get that (4.13) is bounded by

1 1
(4.14) q"Tp* ALk (1+iMp2>Mp2 | (1+in2)Np2 :
NiMi pt g q pt g q
M) <

g Tep?T<, we get that (4.14) is bounded by

Using again that max(N,

1
q7%+19+5p2+e< \/gC )2 < q7%+19+ep2+e’

vVNM
using (4.1). We can rigorously separate n and ¢ just as we did for real ¢, and arrive at the same
conclusion.

5. THE NON-OSCILLATORY CASE

In this section we prove (3.14). Unlike the previous case, the weight function in the sum does not
have an oscillatory factor, and thus is somewhat easier. We will keep the details concise.
Keep in mind that in this case, we have

(5.1) q

using (3.16). Also recall that

(5.2)

using N, M < (gp)cqp>.



SUBCONVEXITY BOUNDS FOR TWISTED L-FUNCTIONS, II 21

5.1. Application of Voronoi summation. On applying the Voronoi summation formula twice in
(3.14) and making a substitution in the resulting integral transforms, we need to prove

NM x(c?)_ _
63 T 3 SR xS ng, mpt, o)
n,m,c>1
(c,pg)=1
47r nN dm/mMy c )2 149
/ / )B (T)Vl(w)%(y)%(g)dxdy < (gp)p°q :

for each combination of Bessel functlons {B1, B2} = {Yy, Ky} and for each choice of sign +. We
claim that we can assume
02p2 C2p2

< € .

N M ()
Clearly this follows for n when B; = Ky, by Lemma 2.7. If By = Yy and n > (gp)© «(© ) , then
we may apply (2.7) and integrate by parts repeatedly in (4.2) with respect to z to see that the
contribution of such terms is less than (gp)~1%°. Arguing the same way for m and Bs, the claim
follows. Thus we can work in dyadic intervals of n and m, restricting the range of summation in
(5.3) to N’ <n < 2N’ and M’ <m < 2M’, where
2,2 C2p2

Cp P
5.4 1< N' < e 1< M< € .
(5.4) < N' < (qp) N LS < (qp) i
4, /nmq

Then we can insert a function ¢(T)’ such that ¢(x) is smooth, supported on X < = < 2X,
and satisfies ¢V (2) < X7, with

< (qp)*

—€

(qp)
Thus it suffices to prove

(5.5) NM Z Z Oén/ﬁm (inq7mp c)¢(47r\/m

C3q cp? cp?

) < (qp)pPq~ 37,
N'<n<2N’ c2>1
M'<n<2M’ (c,p)=1

and

NM Z Z Oénﬁm )S(£ng, mp*, cq)¢(47r\/m

1
< (gp)p*q 2,
C3q cqp? cqp? ) (

N'<n<2N’ c¢>1
M'<n<2M’ (c,p)=1

where av,, B, are arbitrary complex numbers bounded by (gp)¢. We have two sums because we used
inclusion-exclusion to remove the condition (¢, ¢) = 1 from (4.4).

5.2. Application of Kuznetsov’s formula. Now we apply Kuznetsov’s formula followed by the
spectral large sieve, as in section 4.2. We provide brief details, only for (5.5) and only for the
resulting Maass form contribution M of Theorem 2.5. We consider two cases.

5.2.1. Case I. Suppose that
NTMq
Cp?
By Lemma 2.4 (a), for real t; we may restrict to t; < (gqp)¢, for which we have ¢(t;) < (qp)c. We
need to prove the following analogue of (4.12):

51) qwepe%((l * M>N/) : (1= g)M/); < (qp)pq 2.

(5.6) <1.
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We consider the cross terms on the left hand side one by one: We have

€ ENM 1 1 e —i € NM\? N/M/q e —% €
(5.8) **p T%(N/)Q(M/)Q — pegm o+ (VC\/Q ) G & pPregmErot
on using (5.1) and (5.6); we have
(5.9)
qﬁ-‘repe NM (M /)% %M/)% q_%+19+£ 2+4¢€ V v (V )2 < p2+eq—2+19+e
C3q P C’f qu Cp?

(5 10) ’l9+6 6 %

(
on using (5.1), ( 2) and (5.6); and we have
V(G

M); _ g htrepte VNM VN'M'q VM'M VN « g Brepte
Cyq Cp Cp p\[
on using (5.1), (5 6), (5.4), and N < (qp)<qp>.
If t; is imaginary, then ¢; < 1 and ¢(ts) < (gp)© (7”\[//) 29 by taking Z = 1 in Lemma 2.4 (b).
The large sieve for the contribution of the exceptional elgenvalues then works in the same Way as
above, except that on the right hand sides of (5.8), (5.9), and (5.10), we replace a factor of

with (7VPM)1 29 Since 1 — 29 > 0, we end up with the same final bound O(q 2+0+6p2+6).

5.2.2. Case II. Suppose that
N'M'q
Cp?
Let T := Y ]é "9 By Lemma 2.4 (a), for real ty we may restrict to t; < (¢gp)°T, for which we have
d(t7) < (gp)*T~'. We need to prove the following analogue of (4.12):
NM N’ M’ 3 1
q19+6p6 - T (<T2 + 7)NI) <<T2 + T)M/) 2 < (qp)ep2q—§+19.
C3q p
We consider the cross terms on the left one by one: We have
gre NM NN’ MM
p C3q C2p2 C2p?
on using (5.4); we have

> 1.

q T—l(TQN/>% (T2M )% _ p2+eq—l+19+e < p2+eq—§+19+5

NM /N’ 3 /M 3

Y+e, € / Vi 2+e —S+0+e

qa P ( N) ( ) <p gz
C3q \ p* p*

as already seen in (5.9); and we have

NM v M 3 1
V+e€, € T—l TQN/ 5(7M/) < —5+i+e 2+€.
g (T°N") o q p
as already seen in (5.10).
If t; is imaginary, then t; < 1 and ¢(ty) < (gp)¢ by taking Z = 1 in Lemma 2.4 (b). The large
sieve for the contribution of the exceptional eigenvalues then amounts to proving (5.7), which we
have already done.
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