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Abstract. We prove hybrid subconvexity bounds for twisted L-functions L(s, f×χ) at the central

point using a fourth moment estimate, including a new instance of the Burgess subconvexity bound.

1. Introduction

Let f be a holomorphic Hecke cusp form for the congruence group Γ0(q), and χ a primitive
Dirichlet character of modulus p, where q and p are distinct odd primes. The twisted L-function
L(s, f ×χ) corresponds by Atkin-Lehner theory to a newform of level qp2 and nebentypus χ2. Thus
the analtyic conductor of this L-function in the level aspect is qp2, and the (hybrid) subconvexity
problem is to obtain the bound

L( 1
2 , f × χ)� (qp2)κ+ε

for some 0 ≤ κ < 1
4 , where we have normalized so that s = 1

2 is the central point. Such a bound
is known for all ranges of q and p, by work of Blomer, Harcos, and Michel [3]. Their subconvexity
bound (κ = 1

4 −
1

1889 ) has the advantage of being very general, but much stronger bounds are known
in certain ranges. Such bounds are contained in various works, each of which has its unique strength.
Blomer and Harcos [2] proved the subconvexity bound

L( 1
2 , f × χ)� (qp2)

1
4+ε(p−

1
8 + q

1
4 p−

1
4 ).(1.1)

For any fixed δ > 0, this gives subconvexity in the range q ≤ p1−δ, and is particularly strong when
q ≤ pε, for then it is of Burgess quality (κ = 3

16 ). In [17], we established the subconvexity bound

L( 1
2 , f × χ)� (qp2)

1
4+ε(q

1
4 p−

1
2 + q−

1
4 )(1.2)

for pδ ≤ q ≤ p2−δ. This bound is particularly strong for p1−ε ≤ q ≤ p1+ε, where it is of Weyl quality
(κ = 1

6 ). In the special case that χ is real, Petrow and Young [24] proved the bound

L( 1
2 , f × χ)� (qp2)

1
4+εq

1
12 p−

1
6 ,

which gives subconvexity for q ≤ p2−δ and is of Weyl quality for q ≤ pε.
In this paper, we prove a new subconvexity bound which has the advantage of covering at once

essentially all ranges of p and q (except when they are very small) and being particularly strong for
p2−ε ≤ q ≤ p2+ε, which is a new feature. We aimed particularly to address this latter range, for this
is the point at which (1.2) fails to give any subconvexity bound.

Theorem 1.1. Let f be a holomorphic newform with weight k ≥ 2, prime level q and trivial
nebentypus. Let χ be a primitive Dirichlet character of prime modulus p. Suppose that (q, p) = 1.
We have

L( 1
2 , f × χ)�k,ε (qp2)

1
4+ε(p−

1
4 + q−

1
8+

ϑ
4 ),
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where ϑ = 7
64 denotes current best exponent towards the GL(2) Ramanujan Conjecture, due to Kim

and Sarnak [18].

On the Ramanujan Conjecture, for any fixed δ > 0 our bound gives level aspect subconvexity as
long as p ≥ qδ and q ≥ pδ, and in the subrange p2−ε ≤ q ≤ p2+ε we get the Burgess bound
L( 1

2 , f × χ)� (qp2)
3
16+ε. This latter bound is the best our result can do.

While the subconvexity bound (1.2) of [17] was deduced from an estimate for the second moment
of L( 1

2 , f ×χ), averaging over the newforms f , in this paper the main result Theorem 1.1 is deduced
from a fourth moment estimate. This is deeper than our previous paper and requires the spectral
theory of automorphic forms.

Theorem 1.2. Keep the notation in the statement of Theorem 1.1. For k ≥ 2, we have∑
f∈B∗k(q)

|L( 1
2 , f × χ)|4 �k,ε (qp)ε(qp+ p2q

1
2+ϑ)(1.3)

for any ε > 0.

This fourth moment estimate immediately yields Theorem 1.1. For comparison, we note that the
large sieve would give the bound O(q1+εp2+ε) for the left hand side of (1.3) (see Lemma 2.9 and
Theorem 2.3). Of course, the best expected bound is essentially O(q1+ε) on the Lindelöf Hypothesis.

The study of the fourth moment of GL(2) automorphic L-functions in the level aspect has a
long history. In their influential paper [8], Duke, Friedlander, and Iwaniec were the first to prove
a non-trivial upper bound for an amplified fourth moment, and from this the first subconvexity
bound for automorphic L-functions in the level aspect. Kowalski, Michel, and VanderKam [20] went
further to prove an asymptotic for a mollified fourth moment, from which they obtained nonvanishing
results in this context. Blomer, Harcos, Michel [3] proved estimates for an amplified fourth moment
involving more general forms, allowing for non-trivial nebentypus. More recently, new techniques
were introduced, which avoid the so-called shifted convolution problem that had been central to
the aforementioned works. Kiral and Young [19] proved an estimate for the fifth moment that is
sharp on the Ramanujan Conjecture. Blomer and Khan [4] established a ‘reciprocity’ relation for
the twisted fourth moment, and from this an estimate for an amplified fourth moment where the
amplifier can be taken so long that it yields the fifth moment. This was generalized to the case of
non-trivial nebentypus by the same authors in [5].

In this paper, we study the fourth moment in a different direction. Instead of trying to insert
a longer amplifier or mollifier, our goal is to reduce the family size in the fourth moment. Indeed
in (1.3), the L-functions are associated to forms of level qp2, but we average over only those which
arise as lifts of forms of level q. Note that in the range p2−ε ≤ q ≤ p2+ε, where we get our strongest
subconvexity bound, the log(conductor) to log(family size) ratio is 8. The fourth moment in small
families has also been studied for other types of L-functions. See [23] for Dirichlet L-functions and
[16] for automorphic L-functions in the spectral aspect.

The general plan of attack is to introduce a root number into |L( 1
2 , f × χ)|4 using the functional

equation, following [5]. We then express the L-values as Dirichlet series using approximate functional
equations, and apply the Petersson trace formula to obain a sum of Kloosterman sums. We dualize
the sum by applying Voronoi summation, obtaining a new sum of Kloosterman sums. To this we
apply Kuznetsov’s formula in reverse to return to a sum of automorphic objects. The final step is
to bound this using the spectral large sieve. The term O(p2+εq

1
2+ϑ+ε) seen in (1.3) arises from this

process. The other term O(q1+εp1+ε) arises from a diagonal term earlier on in the calculation (see
Lemma 3.2). The sketch just described is part of a familiar sort of strategy in a classical approach
to ‘spectral reciprocity’. We have already mentioned a few works in this regard. See also [1, 11, 6]
for a further sample of the growing literature on spectral reciprocity type problems. From [4], for
example, one sees that the fourth moment of L( 1

2 , f) over a family of level q forms is related to a
fourth moment of level 1 forms, times the Hecke eigenvalue at q. In our problem, we consider the
fourth moment of L( 1

2 , f × χ) over a family of level q forms. Although we do not develop a precise
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reciprocity relation, we will roughly see that on the dual side, we get a fourth moment over level p4

forms with nebentypus χ2, times the Hecke eigenvalue at q.
Throughout, we follow the ε-convention: that is, ε will always be positive number which can be

taken as small as we like, but may differ from one occurence to another. All implied constants may
depend on ε and k.

Acknowledgement. I am grateful to Matthew P. Young for helpful comments and to Zhao Xu
for pointing out a mistake in an earlier version of the paper.

2. Background

2.1. Automorphic forms and L-functions. Most of the facts in this subsection may be found
in [12, Chapter 14]. Let Sk(q) denote the space of holomorphic cusp forms of prime level q, weight
k, and trivial nebentypus. Let S∗k(q) ⊂ Sk(q) denote the space of newforms. Every f ∈ Sk(q) has a
Fourier series expansion

f(z) =
∞∑
n=1

ρf (n)n
k−1
2 e(nz)

for =(z) > 0. Let Bk(q) denote an orthogonal basis of Sk(q), which contains a basis B∗k(q) of S∗k(q),
normalized so that ρf (1) = 1 for every f ∈ B∗k(q). Thus for f ∈ B∗k(q), the n-th Fourier coefficient
equals the n-th Hecke eigenvalue.

Let χ be primitive Dirichlet character of prime modulus p. For f ∈ Bk(q), define

(f × χ)(z) =

∞∑
n=1

χ(n)ρf (n)n
k−1
2 e(nz).

For f ∈ B?k(q), this is a newform of level qp2, weight k, and nebentypus χ2. The associated L-function
is entire and for <(s) > 1 equals

L(s, f × χ) =
∞∑
n=1

χ(n)ρf (n)

ns
.

This satisfies the functional equation

Λ(s, f × χ) :=
(pq 1

2

2π

)s
Γ(s+ k−1

2 )L(s, f × χ) = ε(f × χ)Λ(1− s, f × χ),(2.1)

where

ε(f × χ) = −ikρf (q)q
1
2χ(q)

τ(χ)2

p

is of modulus 1. Thus the analytic conductor at s = 1
2 is kp2q, or just p2q in the level aspect.

We now consider more general automorphic forms. Let N ≥ 1 be an integer, ψ a Dirichlet
character of modulus N , and let cond(ψ) denote the modulus of the primitive character which
induces ψ. Suppose that ψ is even and cond(ψ) is squarefree and odd, since this is the case which
we will need. Let Bk(N,ψ) denote an orthogonal basis of holomorphic cusp forms of weight k and
nebentypus ψ with respect to Γ0(N). Let B(N,ψ) denote an orthogonal basis of Maass cusp forms
with nebentypus ψ with respect to Γ0(N), with tg denoting the spectral parameter of g ∈ B(N,ψ). It
is conjectured that tg is real, but the possibility of purley imaginary tg with |tg| ∈ (0, 12 ) has not been
disproven (these are called exceptional eigenvalues). Whenever we wish to work with orthonormal
bases, we will divide by the L2-norm ‖g‖ of the forms. Let Ec(·, 12 + it) denote the Eisenstein
series of nebentypus ψ associated to a cusp c which is singular for ψ (see [27] for definitions). For
σ = ( ∗ ∗c d ) ∈ SL2(R), let j(σ, z) := cz + d. We write the Fourier expansions of these objects around
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a singular cusp a associated to a scaling matrix σa as follows:

g(σaz)j(σa, z)−k =
∞∑
n=1

ρga(n)n
k−1
2 e(nz) for g ∈ Bk(N,ψ),

g(σaz) =
∑
n6=0

ρga(n)n−
1
2W0,itf (4π|n|y)e(nx) for g ∈ B(N,ψ),

Ec(σaz,
1
2 + it) = c1,c(t)y

1
2+it + c2,c(t)y

1
2−it +

∑
n6=0

ρca(n, t)n−
1
2W0,itf (4π|n|y)e(nx),

where

W0,itf (4π|n|y) =
√
nπyKitf (2π|n|y)

is a Whittaker function and Kit is a Bessel function. For a =∞, we simply write

ρga(n) = ρg(n) and ρca(n, t) = ρc(n, t),

and this matches the notation seen above.
Let B∗k(N,ψ) ⊂ Bk(N,ψ) and B∗(N,ψ) ⊂ B(N,ψ) denote orthogonal bases of the space of

newforms, normalized so that ρg(1) = 1. For g in B∗k(N,ψ) or B∗(N,ψ), we have the Hecke
multiplicativity relations

ρg(n)ρg(m) =
∑

d|(n,m)

ψ(d)ρg

(nm
d2

)
, ρg(nm) =

∑
d|(n,m)

µ(d)ψ(d)ρg

(n
d

)
ρg

(m
d

)
.

For g in B∗k(N,ψ), we have the Ramanujan bound (due to Deligne),

ρg(n)� nε,

and for g ∈ B∗(N,ψ), we have the Kim-Sarnak bound [18]

ρg(n)� nϑ+ε,

where ϑ = 7
64 . For g ∈ B∗k(N) and r dividing the square-free part of N , we have [21, Theorem 2]

|ρg(r)| = r−
1
2 .

Thus for f ∈ B∗k(q), we have ρf (q) = ±q− 1
2 .

In order to appeal to the properties above, which are restricted to newforms, it will be useful to
have bases Bk(N,ψ) and B(N,ψ) expressible in terms of lifts of newforms.

Lemma 2.1. We have an orthogonal basis

Bk(N,ψ) =
⋃
δ`|N

{g(δ) : g ∈ B∗k(`, ψ)},(2.2)

where

g(δ)(z) =
∑
r|δ

νδ(r)r
1
2 g(rz)

for some complex numbers νδ(r) depending on r, δ, and g, such that νδ(r)� (rδ)ε, where the under-
standing is that B∗k(`, ψ) is empty if ψ is not a character mod `. Further, this basis is orthonormal
if every g ∈ B∗k(`, ψ) for `|N is L2-normalized with respect to Γ0(N).

The same type of statement with obvious notational modification holds for B(N,ψ).

Proof. See [22, Proposition 7.1] and [23, Section 6.6]. �

We do not reproduce it here, but analogous to Lemma 2.1, for the continuous spectrum we have
an ‘orthonormal’ basis involving newform Eisenstein series, whose Fourier coefficients satisfy the
Hecke relations. This theory was developed in [27]. See the remarks following [23, Lemma 6.11].
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2.2. Petersson trace formula. We state the Petersson trace formula.

Theorem 2.2. We have∑
f∈Bk(N)

Γ(k − 1)

(4π)k−1〈f, f〉
ρf (n1)ρf (n2) = δ(n1=n2) + 2πi−k

∑
c≥1

S(n1, n2, cN)

cN
Jk−1

(4π
√
n1n2
cN

)
,(2.3)

where S(n1, n2, cN) is the Kloosterman sum, 〈f, f〉 is the Petersson inner product for Γ0(N), Jk−1(x)
is a J-Bessel function, and δP equals 1 if the statement P is true, and 0 otherwise.

Proof. See [12, Corollary 14.23]. �

By [14, equation (2.24)], for N square-free and f ∈ B∗k(N), we have

Γ(k − 1)

(4π)k−1〈f, f〉
=

2π2

N(k − 1)L(1, sym2f)
,(2.4)

where L(s, sym2f) is the associated symmetric square L-function and N−ε � L(1, sym2f)� N ε by
[10].

2.3. Spectral large sieve. We state the spectral large sieve inequality.

Theorem 2.3. For any sequence {αn} of complex numbers, we have∑
k≤T

k≡0 mod 2

(k − 1)!

(4π)k−1

∑
g∈Bk(N,ψ)

1

‖g‖2
∣∣∣ ∑
M≤m≤2M

αmρga(m)
∣∣∣2 � (

T 2 +
M1+ε

N

)
‖α‖2,

∑
g∈B(N,ψ)
tf≤T

1

‖g‖2
1

cosh(πtg)

∣∣∣ ∑
M≤m≤2M

αmρga(m)
∣∣∣2 � (

T 2 +
M1+ε

N

)
‖α‖2,

∑
c singular

∫ ∞
−∞

1

cosh(πt)

∣∣∣ ∑
M≤m≤2M

αmρca(m, t)
∣∣∣2 � (

T 2 +
M1+ε

N

)
‖α‖2,

where ‖g‖2 is the Petersson inner product of g with itself and ‖α‖2 =
∑
M≤m≤2M |αm|2.

Proof. This is almost given by [7, Proposition 4.7], except that there, the bounds on the right hand

side equal (T 2 + cond(ψ)
1
2
M1+ε

N )‖a‖2. Under the assumption that cond(ψ) is squarefree and odd, it

was observed in [28, Proposition 2.5] that this extra factor cond(ψ)
1
2 can be removed. �

When the sums on the left hand side of the large sieve inequality are restricted to newforms,
normalized to have first Fourier coefficient equal to 1, we can use

N1−εk−ε
(k − 1)!

(4π)k−1
� ‖g‖2 � N1+εkε

(k − 1)!

(4π)k−1
(2.5)

for g holomorphic, and

N1−ε(1 + |tg|)−ε
1

cosh(πtg)
� ‖g‖2 � N1+ε(1 + |tg|)ε

1

cosh(πtg)

for g a Maass form. See [25, Equation (2.3)]. For analogous bounds for newform Eisenstein series,
see [25, Equation (2.7)].
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2.4. Kuznetsov’s trace formula. Follow the notation from the previous section. Let φ be a
smooth function compactly supported on the positive reals. Define the following transforms of φ
against Bessel functions:

φ̇(k) =
ik

π

∫ ∞
0

Jk−1(x)φ(x)
dx

x
,

φ̃(t) =
2πi

sinh(πt)

∫ ∞
0

(J2it(x)− J−2it(x))φ(x)
dx

x
,

φ̌(t) = 8 cosh(πt)

∫ ∞
0

K2it(x)φ(x)
dx

x
.

We have the following estimates for these transforms.

Lemma 2.4. (a) If φ(x) is supported on 0 < X < x < 2X and satisfies φ(j)(x) �j X
−j for all

j ≥ 0, then for t ∈ R we have

φ̇(t), φ̃(t), φ̌(t)�l
1 + | logX|

1 +X

(1 +X

1 + |t|

)l
for any l ≥ 0.

(b) If φ(x) is supported on 0 < X < x < 2X and satisfies φ(j)(x) �j (XZ )−j for all j ≥ 0, then

for t ∈ (− i
4 ,

i
4 ), we have

φ̃(t), φ̌(t)�
1 + (XZ )−2|=t|

1 + (XZ )
.

(c) If φ(x) = eaxψ(x), where a = ±i, and ψ(x) is supported on 1 ≤ X < x < 2X and satisfies
ψ(j)(x)�j X

−j for all j ≥ 0, then for t ∈ R, we have

φ̇(t), φ̃(t)� X−
1
2+ε.

For |t| > X
1
2+ε, we have

φ̇(t), φ̃(t)�l (|t|+X)−lXε

for any l ≥ 0.

Proof. For parts (a) and (b), see [3, Lemma 1], and for part (c), see [15, Lemma 3, Remark 1]. �

Given two singular cusps a and b of Γ0(N), define

H =
∑
k>0

k≡0 mod 2

∑
g∈Bk(N,ψ)

φ̇(k)
(k − 1)!

(4π)k−1
ρga(n)ρga(m)

‖g‖2

M =
∑

g∈B(N,ψ)

1

cosh(tg)
φ̃(tg)

ρga(n)ρga(m)

‖g‖2
,

E =
∑
c

∫ ∞
−∞

1

4π cosh(t)
φ̃(t)ρac(n)ρca(m)

M′ =
∑

g∈B(N,ψ)

1

cosh(tg)
φ̌(tg)

ρga(−n)ρga(m)

‖g‖2

E ′ =
∑
c

∫ ∞
−∞

1

4π cosh(t)
φ̌(t)ρac(−n)ρca(m).

We now state a special case of Kuznetsov’s theorem which we will need.
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Theorem 2.5. Keep the notation of section 2.3. Suppose that the level N = rs, where the modulus
of ψ divides r, and (r, s) = 1. Let a =∞ and b = 1/s (these are singular cusps). Let φ be a smooth
function compactly supported on the positive reals. For n,m ≥ 1 we have∑

c≥1
(c,r)=1

1

cs
√
r
ψ(c)e

(ms
r

)
S(mr, n, cs)φ

(4π
√
nm

cs
√
r

)
= H+M+ E ,

∑
c≥1

(c,r)=1

1

cs
√
r
ψ(c)e

(ms
r

)
S(−mr, n, cs)φ

(4π
√
nm

cs
√
r

)
=M′ + E ′,

where the Fourier coefficients in H,M, E ,M′, E ′ are determined by a suitable choice of scaling ma-
trices.

Proof. See [7, Lemmas 4.3 and 4.5]. The first of these lemmas indicates the scaling matrices that
we need. �

2.5. Bessel functions. In this section we collect various estimates for Bessel functions.

Lemma 2.6. For (qp)−100 ≤ x ≤ (pq)ε, we have

Jk−1(4πx) = xW1(x)

where W1(x) is a smooth function satisfying W
(j)
1 (x)�j (qp)ε for all j ≥ 0. For x > (qp)ε, we have

Jk−1(4πx) = <
(e(2x)√

x
W2(x)

)
,

where W2 is a smooth function satisfying

xjW
(j)
2 (x)�j 1

for all j ≥ 0.

Proof. When x ≤ (qp)−ε, use the power series [9, equation 8.440],

Jk−1(x) =
∞∑
`=0

(−1)`(x/2)k−1+2`

`!(k + `)!
.

When x > (qp)−ε, use the integral representation [26, page 206]

Jk−1(4πx) = <

(
e(2x)√
x

e(−k4 + 1
8 )

π
√

2Γ(k − 1
2 )

∫ ∞
0

e−uuk−
3
2

(
1 +

iu

8πx

)k− 3
2

du

)
.

�

Lemma 2.7. (a) For x ≥ (qp)ε, we have K0(x)� (qp)−100, and for (qp)−100 < x < (qp)ε, we have

K
(j)
0 (x)�j (qp)ε(1 + x−j)

for j ≥ 0.
(b) For x ≥ (qp)ε, we have

Y0(x) = =
( eix√

x
W (x)

)
,(2.6)

for some smooth function W with x−jW (j)(x)�j 1 for j ≥ 0. For (qp)−100 < x < (qp)ε, we have

Y
(j)
0 (x)�j (qp)ε(1 + x−j)

for j ≥ 0.
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Proof. (a) By [26, page 208], we have

K0(x) = e−x2−
1
2

∫ ∞
0

e−uxu−
1
2 (1 + 1

2u)−
1
2 du.

Suppose first that x ≥ (qp)ε. In this range, the integral is O(1) and due to the exponential decay of
the e−x factor in front of the integral, we we get the desired bound K0(x)� (qp)−100. Now suppose
(qp)−100 < x < (qp)ε. To see the claim in this range, observe that∫ ∞

0

e−uxu−
1
2 (1 + 1

2u)−
1
2 du�

∫ 1

0

u−
1
2 du+

∫ max(1,x−2)

1

u−1du+

∫ ∞
max(1,x−2)

e−uxdu� (qp)ε,

and
dj

dxj

∫ ∞
0

e−uxu−
1
2 (1 + 1

2u)−
1
2 du�

∫ ∞
0

uj−1e−uxdu� x−j .

for j ≥ 1.
(b) By [26, page 206], we have

Y0(x) = =
( eix√

x
W (x)

)
,(2.7)

where

W (x) =

√
2

π

∫ ∞
0

e−uu−
1
2

(
1 +

iu

2x

)− 1
2

du.

For x ≥ (qp)ε, we have W (j)(x)� x−j for j ≥ 0. Now consider the range (qp)−100 < x < (qp)ε. For

the subrange (qp)−ε < x < (qp)ε, we use the integral representation above to see that dj

dxj Y0(x)�j

(qp)ε. For (qp)−100 < x < (qp)−ε, we use the power series [9, equations 8.402, 8.403.2],

Y0(x) =
2

π

(
ln( 1

2x) + γ
) ∞∑
l=0

(−x2)l

4l(l!)2
+

2

π

∞∑
l=0

(−x2)l

4l(l!)2

l+1∑
i=1

1

i
,

to get that Y
(j)
0 (x)�j (qp)ε(1 + x−j) for j ≥ 0. �

2.6. Voronoi summation. In this section we state some summation formulae for divisor type
functions. Define

τχ2(n) =
∑
l|n

χ2(l), τ(n) =
∑
l|n

1.

Lemma 2.8. Let g be a smooth function compactly supported on the positive reals. Let χ be a
primitive Dirichlet character of modulus p, and c, b integers with (c, pb) = 1. We have∑

n≥1

χ(n)τ(n)e
(nb
c

)
g(n) = −2π

cp

τ(χ)

τ(χ)

∑
n≥1

χ(c2)χ(−n)τ(n)e
(−np2b

c

)∫ ∞
0

Y0

(4π
√
nx

cp

)
g(x)dx(2.8)

+
4

cp

τ(χ)

τ(χ)

∑
n≥1

χ(c2)χ(−n)τ(n)e
(np2b

c

)∫ ∞
0

K0

(4π
√
nx

cp

)
g(x)dx,

∑
n≥1

χ(n)τχ2(n)e
(nb
c

)
g(n) =− 2π

cp

∑
n≥1

χ(−n)τχ2(n)e
(−np2b

c

)∫ ∞
0

Y0

(4π
√
nx

cp

)
g(x)dx

(2.9)

+
4

cp

∑
n≥1

χ(n)τχ2(n)e
(np2b

c

)∫ ∞
0

K0

(4π
√
nx

cp

)
g(x)dx,

where Y0 and K0 denote Bessel functions.
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Proof. We first consider (2.8). Using [12, equation (3.12)], we have∑
n≥1

χ(n)τ(n)e
(nb
c

)
g(n) =

1

τ(χ)

∑
a mod p

χ(a)
∑
n≥1

τ(n)e
(na
p

+
nb

c

)
g(n)(2.10)

=
1

τ(χ)

∑
a mod p

χ(a)
∑
n≥1

τ(n)e
(n(ac+ bp)

cp

)
g(n).

We can restrict to (a, p) = 1 since otherwise χ(a) = 0. Observe that the inverse of ac + bp in Z∗cp
is c(c)2p(a)p + p(p)2c(b)c, where (c)p denotes the inverse of c in Z∗p , etc. Now, applying the Voronoi
summation formula for the divisor function [12, equation (4.49)], we get that (2.10) equals

1

τ(χ)

∑?

a mod p

χ(a)
1

cp

∫ ∞
0

(log x+ 2γ − 2 log(cp))g(x)dx(2.11)

− 2π

cp

1

τ(χ)

∑?

a mod p

χ(a)
∑
n≥1

τ(n)e
(−n(c(c)2p(a)p + p(p)2c(b)c)

cp

)∫ ∞
0

Y0

(4π
√
nx

cp

)
g(x)dx

+
4

cp

1

τ(χ)

∑?

a mod p

χ(a)
∑
n≥1

τ(n)e
(n(c(c)2p(a)p + p(p)2c(b)c)

cp

)∫ ∞
0

K0

(4π
√
nx

cp

)
g(x)dx.

We write

e
(−n(c(c)2p(a)p + p(p)2c(b)c)

cp

)
= e
(−nc2a

p

)
e
(−np2b

c

)
and evaluate the a-sums in (2.11). By [12, equation (3.9)], we get that the first sum vanishes, and
by using [12, equation (3.12)] for the other sums, we get the required formula (2.8).

Now we turn to (2.9). If χ is quadratic, then τχ2(n) = τ(n) for (n, p) = 1, so we can refer to (2.8).
If χ is not quadratic, then (2.9) is justified the same way as (2.8), except that we use the summation
formula [12, equation (4.67)] for τχ2(n) instead of the Voronoi summation formula for τ(n). �

2.7. Approximate functional equation. In this section, we get a handle on the fourth power
of the central L-value by expressing it in terms of a Dirichlet series. The main point to note is
the introduction of the root number (from the functional equation) into this expression, following
[5]. This way, when we later apply Voronoi summation to the n and m sums below, it will not be
circular.

Lemma 2.9. Let f ∈ B∗k(q). We have that |L( 1
2 , f × χ)|4 equals a linear combination of

q
1
2

∑
d1,d2≥1

(d1d2,pq)=1

χ2(d2)

d1d2

∑
n,m≥1
(m,q)=1

χ(n)τχ2(n)ρf (nq)

n
1
2

χ(m)τ(m)ρf (m)

m
1
2

V
(nd21
qp2

)
V
(md22
qp2

)
+O(q−

1
2+εp2+ε),

(2.12)

and the same sum with χ(m) replaced by χ(m) and χ2(d2) replaced by χ2(d2), where

V (x) =
1

2πi

∫
(2)

(4π2x)−s
Γ(k2 + s)2

Γ(k2 )2
ds

s

for x > 0, and the constants involved in the linear combination are of modulus 1 and independent of
f .

Proof. For f ∈ B∗k(q), we have by the functional equation (2.1), that

|L( 1
2 , f × χ)|4 = |L( 1

2 , f × χ)|2L( 1
2 , f × χ)L( 1

2 , f × χ) = ε(f × χ)|L( 1
2 , f × χ)|2L( 1

2 , f × χ)2.
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Using the functional equations of |L(s, f ×χ)|2 and L(s, f ×χ)2, we can express their central values
by approximate functional equations [12, Theorem 5.3] as follows:

|L( 1
2 , f × χ)|2 = 2

∑
n1,n2≥1

ρf (n1)χ(n1)ρf (n2)χ(n2)

(n1n2)
1
2

V
(n1n2
qp2

)
and

L( 1
2 , f × χ)2 =

∑
m1,m2≥1

ρf (m1)χ(m1)ρf (m2)χ(m2)

(m1m2)
1
2

V
(m1m2

qp2

)
+ε(f × χ)2

∑
m1,m2≥1

ρf (m1)χ(m1)ρf (m2)χ(m2)

(m1m2)
1
2

V
(m1m2

qp2

)
,

where V (x) is a weight function as defined in the lemma, which effectively restricts the sums to
n1n2 ≤ q1+εp2+ε and m1m2 ≤ q1+εp2+ε. For x� (qp)−100, have xjV (j)(x)�j (qp)ε for all j ≥ 0 by

moving the line of integration to <(u) = ε. Note that since ρf (q)q−
1
2 = ±1, we have that ε(f × χ)2

is independent of f . Thus the fourth power |L( 1
2 , f×χ)|4 equals a constant of modulus 1, depending

on χ, p, and q, times

ρf (q)q
1
2

∑
n1,n2≥1
m1,m2≥1

ρf (n1)χ(n1)ρf (n2)χ(n2)

(n1n2)
1
2

V
(n1n2
qp2

)ρf (m1)χ(m1)ρf (m2)χ(m2)

(m1m2)
1
2

V
(m1m2

qp2

)
,

plus a similar sum with χ(m1), χ(m2) replaced with χ(m1), χ(m2). Using the Hecke multiplicativity
relations for f ∈ B∗k(q), we have

ρf (q)ρf (n1)ρf (n2) =
∑

d1|(n1,n2)
(d1,q)=1

ρf

(qn1n2
d21

)
.

We replace n1, n2 by n1d1, n2d1 and then write n = n1n2, and similarly for m1,m2. We observe
that ∑

n1n2=n

χ(n1)χ(n2) = χ(n)
∑
n2|n

χ2(n2),

and similarly for the m1,m2 sum. Writing ρf (m) = ρf (m) since the Fourier coefficients are anyway
real, we obtain the main term of the lemma without the condition (m, q) = 1. If we impose this
extra condition then we must separately consider the contribution of the terms with m = m′q. Using
that ρg(nq) and ρg(m′q) are each bounded by q−

1
2+ε, we obtain by trivially summing over n and m′

that this separate contribution is bounded by the error displayed in the lemma. �

2.8. Mellin inversion. We will use Mellin inversion to separate variables in the argument of a
function.

Lemma 2.10. Let W (x) be a real valued smooth function compactly supported on (qp)−100 < x <∞,

satisfying xjW (j)(x)�j (qp)ε for j ≥ 0. Let W̃ (s) denote the Mellin transform. We have

W (x) =
1

2πi

∫ i(qp)ε

−i(qp)ε
x−sW̃ (s)ds+O((qp)−100),

where W̃ (s)�j (qp)ε within the limits of the integral.

Proof. The Mellin transform

W̃ (s) =

∫ ∞
0

W (x)xs−1dx
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exists for all s ∈ C and satisfies W̃ (it) �j (qp)ε(1 + |t|)−j for all j ≥ 0, by bounding trivially for
|t| ≤ 1 and integrating by parts with respect to x for |t| > 1. By Mellin inversion, we have

W (x) =
1

2πi

∫ i∞

−i∞
x−sW̃ (s)ds.

The bound given above for W̃ (it) can be used to restrict the integral to |t| ≤ (qp)ε up to an error of
O((qp)−100). �

3. Preliminary work

The goal in this section is to reduce Theorem 1.2 to a problem on estimating a sum of Kloosterman
sums, which will be our main object of study.

Lemma 3.1. To prove Theorem 1.2, it suffices to establish

(3.1)
1

q
1
2

∑
n,m,c≥1
(c,pq)=1

χ(n)τχ2(n)

n
1
2

χ(m)τ(m)

m
1
2

S(n,mq, c)

c
Jk−1

(4π
√
nm

c
√
q

)
V
(nd21
qp2

)
V
(md22
qp2

)

� (qp)εp2q−
1
2+ϑ,

for any d1, d2 ≤ (qp)100, and the same bound with χ(m) replaced by χ(m).

Proof. Using (2.4), for Theorem 1.2 we need to prove∑
f∈B∗k(q)

Γ(k − 1)

(4π)k−1〈f, f〉
|L( 1

2 , f × χ)|4 � (qp)ε(p+ p2q−
1
2+ϑ).

We write |L( 1
2 , f × χ)|4 using Lemma 2.9. Then Lemma 3.3, which is presented after this proof, is

used to enlarge the sum
∑
f∈B∗k(q)

to
∑
f∈Bk(q), up to an error. Thus, it suffices to show

(3.2) q
1
2

∑
d1,d2≥1

(d1d2,pq)=1

χ2(d2)

d1d2

∑
n,m≥1
(m,q)=1

χ(n)τχ2(n)

n
1
2

χ(m)τ(m)

m
1
2

V
(nd21
qp2

)
V
(md22
qp2

)

×
∑

f∈Bk(q)

Γ(k − 1)

(4π)k−1〈f, f〉
ρf (nq)ρf (m)� (qp)ε(p+ p2q−

1
2+ϑ),

and the same bound with χ(m) replaced by χ(m) and χ2(d2) replaced by χ2(d2). Note that the
required error term in (3.2) absorbs the contribution of the error terms seen in Lemma 2.9 and
Lemma 3.3. We apply the Petersson trace formula to the innermost sum on the left hand side. The
contribution of the δnq=m ‘diagonal’ terms is zero because of the condition (m, q) = 1. Thus we are
left to consider the ‘off-diagonal’ terms, for which it suffices to prove, after forsaking cancellation in
the d1, d2-sums, that

(3.3) q
1
2

∑
n,m,c≥1
(m,q)=1

χ(n)τχ2(n)

n
1
2

χ(m)τ(m)

m
1
2

S(nq,m, cq)

cq
Jk−1

(4π
√
nmq

cq

)
V
(nd21
qp2

)
V
(md22
qp2

)

� (qp)ε(p+ p2q−
1
2+ϑ)

for any d1, d2 ≤ (qp)100. Next we wish to restrict to (c, p) = 1, but we relegate most of the work to
a separate lemma. The contribution of the terms in (3.3) with c = c′p, using the Petersson trace
formula to sum over c′ ≥ 1, equals

q
1
2

∑
n,m≥1
(m,q)=1

χ(n)τχ2(n)

n
1
2

χ(m)τ(m)

m
1
2

V
(nd21
qp2

)
V
(md22
qp2

) ∑
g∈Bk(pq)

Γ(k − 1)

(4π)k−1〈g, g〉
ρg(nq)ρg(m).
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This satisfies the bound O(qεp1+ε) using Lemma 3.2 below, which is an admissible error in (3.3).
We now simplify the Kloosterman sum in (3.3). Write c = c′ql with (c′, q) = 1. If l ≥ 1, we claim
that S(nq,m, cq) = 0. To see this, oberve by [12, equation (1.59)] that

S(nq,m, cq) = S(nq,m, c′ql+1) = S(nql,m, ql+1, c′)S(nqc′,mc′, ql+1)

and

S(nqc′,mc′, ql+1) =
∑

0≤a<ql
(a,q)=1

∑
0≤b<q

e
(nqc′(a+ bql) +mc′(a+ bql)

ql+1

)

=
∑

0≤a<ql
(a,q)=1

∑
0≤b<q

e
(nqc′a+mc′(a− a2bql)

ql+1

)
= 0,

because the b-sum vanishes. This uses (m, q) = 1. So we can assume that (c, q) = 1, in which case
we have

S(nq,m, cq) = S(n,mq, c)S(0,mc, q) = −S(n,mq, c).

Thus to prove (3.3), it suffices to establish

(3.4) q−
1
2

∑
n,m,c≥1
(m,q)=1
(c,pq)=1

χ(n)τχ2(n)

n
1
2

χ(m)τ(m)

m
1
2

S(n,mq, c)

c
Jk−1

(4π
√
nm

c
√
q

)
V
(nd21
qp2

)
V
(md22
qp2

)

� (qp)εp2q−
1
2+ϑ.

At this point we can remove the restriction (m, q) = 1 because the terms with m = m′q contribute,
after using inclusion-exclusion to express the condition (c, pq) = 1,

(3.5) q−1
∑
l|pq

µ(l)
∑

d1,d2≥1
(d1d2,pq)=1

χ2(d2)

d1d2

∑
n,m′,c′≥1

χ(n)τχ2(n)

n
1
2

χ(m′q)τ(m′q)

(m′)
1
2

S(n,m′, c′l)

c′l

Jk−1

(4π
√
nm′

c′l

)
V
(nd21
qp2

)
V
(m′d22

p2

)
.

Using the Petersson trace formula, the c′-sum can be evaluated as a sum over f ∈ Bk(l) plus a
‘diagonal’ sum involving δ(n′=m). The diagonal is easily estimated. For the sum over f ∈ Bk(l),
the Cauchy-Schwarz inequality and the spectral large sieve (see section 2.3) then give that (3.5) is

bounded by O(q−
1
2+εp1+ε), which is admissible. For details on the application of the large sieve, see

its usage in the proof of Lemma 3.2. �

Parts of the proof of Lemma 3.1 were relegated to auxiliary results which we now present below.

Lemma 3.2. For any d1, d2 ≤ (qp)100, we have

q
1
2

∑
n,m≥1
(m,q)=1

χ(n)τχ2(n)

n
1
2

χ(m)τ(m)

m
1
2

V
(nd21
qp2

)
V
(md22
qp2

) ∑
g∈Bk(pq)

ρg(nq)ρg(m)

〈g, g〉
� qεp1+ε.(3.6)

Proof. Writing Bk(pq) in terms of newforms using Lemma 2.1, we get that the left hand side of (3.6)
equals

q
1
2

∑
n,m≥1
(m,q)=1

∑
δ`|pq

∑
r1|(δ,nq)
r2|(δ,m)

∑
g∈B∗k(`)

νδ(r1)νδ(r2)r
1
2
1 r

1
2
2

〈g, g〉pq
χ(n)τχ2(n)

n
1
2

χ(m)τ(m)

m
1
2

V
(nd21
qp2

)
V
(md22
qp2

)
ρg

(nq
r1

)
ρg

(m
r2

)
,

(3.7)
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for some coefficients νδ(r1), νδ(r2) � (qp)ε, where 〈g, g〉pq is the Petersson norm with respect to
Γ0(pq). This normalization by 〈g, g〉pq serves to L2-normalize with respect to Γ0(pq), so that we get
an orthonormal basis as indicated in Lemma 2.1. By (2.5), we have 〈g, g〉pq � (qp)1−ε.

Consider first the case q|` in (3.7). In this case we may replace n by nr1 (because q - δ, so q - r1,
so the condition r1|nq implies r1|n) and replace m by mr2 so that (3.7) is bounded by

q−
1
2+εp−1+ε

∑
δ`|pq
q|`

∑
r1|δ
r2|δ

∑
g∈B∗k(`)

∣∣∣ ∑
n,m≥1
(m,q)=1

χ(nr1)τχ2(nr1)

n
1
2

χ(mr2)τ(mr2)

m
1
2

V
(nr1d21
qp2

)
V
(mr2d22

qp2

)
ρg(nq)ρg(m)

∣∣∣.
(3.8)

We write ρg(nq) = ρg(n)ρg(q) using Hecke multiplicativity and note that ρg(q) � q−
1
2 . The sum

(3.8) can then be estimated using the Cauchy-Schwarz inequality, the spectral large sieve, and (2.5)
to get the bound

q−1+εp−1+ε max
`|pq

( ∑
g∈B∗k(`)

∣∣∣ ∑
n≤q1+εp2+ε

αn

n
1
2

ρg(n)
∣∣∣2) 1

2
( ∑
g∈B∗k(`)

∣∣∣ ∑
m≤q1+εp2+ε

βm

m
1
2

ρg(m)
∣∣∣2) 1

2

� q−1+εp−1+ε(qp+ qp2)
1
2 (qp+ qp2)

1
2 � qεp1+ε,

for some complex numbers αn, βm bounded by (qp)ε.
Now consider the case q - ` in (3.7). Replacing n by n r1

(q,r1)
and m by mr2, we get get that (3.7)

is bounded by

(3.9) q−
1
2+εp−1+ε

∑
δ`|pq
q-`

∑
r1|δ
r2|δ

∑
g∈B∗k(`)

∣∣∣ ∑
n,m≥1
(m,q)=1

(r1, q)
1
2χ( nr1

(q,r1)
)τχ2( nr1

(q,r1)
)

n
1
2

χ(mr2)τ(mr2)

m
1
2

V
( nr1d

2
1

(q, r1)qp2

)
V
(mr2d22

qp2

)
ρg

( nq

(r1, q)

)
ρg(m)

∣∣∣.
This sum is also ultimately treated using the spectral large sieve. However we do not apply it right
away because we no longer have the saving ρg(q) � q−

1
2 available as the level of g is coprime to

q. We only show the details for the most difficult case: the contribution to (3.9) of the terms with
` = p, δ = q, r1 = q, r2 = 1. This is the most difficult because, keeping in mind that the large sieve
will give a bound in terms of the level and sum lengths, ` = p is the largest possible level under the
condition q - `, any choice other than r2 = 1 would result in a shorter m-sum, r1 = q introduces

a large factor (r1, q)
1
2 , and any choice other than r1 = q would result in a shorter n-sum. The

contribution of such terms is bounded by

(3.10) qεp−1+ε
∑

g∈B∗k(p)

∣∣∣ ∑
n,m≥1
(m,q)=1

χ(n)τχ2(n)

n
1
2

χ(m)τ(m)

m
1
2

V
(nd21
qp2

)
V
(md22
qp2

)
ρg(n)ρg(m)

∣∣∣.
To treat this, we first remove the condition (m, q) = 1 up to an admissible error. The contribution of
the terms with m = m′q is O(qεp1+ε), using Hecke multiplicativity for ρg(m

′q), the Cauchy-Schwarz
inequality, and the spectral large sieve. Next we use the definition of V given in Lemma 2.9 to write

∑
m≥1

χ(m)τ(m)

m
1
2

V
(md22
qp2

)
ρg(m) =

∫
(2)

∫
(2)

∑
m1,m2≥1

χ(m1)χ(m2)ρg(m1m2)

m
1
2+s1
1 m

1
2+s2
2

(qp2
d22

)s1+s2
G(s1)G(s2)ds1ds2,

(3.11)
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for some function G(s) which is analytic for <(s) > 0 and decays exponentially as |=(s)| → ∞.
Using the Hecke multiplicativity relations, we get that (3.11) equals∫

(2)

∫
(2)

∑
m1,m2,e≥1

µ(e)χ2(e)χ(m1)χ(m2)ρg(m1)ρg(m2)

e1+s1+s2m
1
2+s1
1 m

1
2+s2
2

(qp2
d22

)s1+s2
G(s1)G(s2)ds1ds2

=

∫
(2)

∫
(2)

L( 1
2 + s1, g × χ)L( 1

2 + s2, g × χ)
∑
e≥1

µ(e)χ2(e)

e1+s1+s2

(qp2
d22

)s1+s2
G(s1)G(s2)ds1ds2.

The integrals can now be moved to the lines <(si) = ε and restricted to |=(si)| ≤ (qp)ε by the
exponential decay of G(s). Similarly, the n-sum in (3.10) can be written in terms of integrals
involving L( 1

2 + s1, g × χ)L( 1
2 + s2, g × χ) for |si| ≤ (qp)ε. Thus using Cauchy-Schwarz, we get that

(3.10) without the condition (m, q) = 1, is bounded by

max
|s|≤(qp)ε

qεp−1+ε
∑

g∈B∗k(p)

|L( 1
2 + s, g × χ)|4.

Since the analytic conductor of L( 1
2 +s, g×χ) is bounded by qεp2+ε, by using a standard approximate

functional equation, |L( 1
2 + s, g × χ)|2 can be expressed as a Dirichlet series of length qεp2+ε. The

spectral large sieve then gives a bound of

qεp−1+ε(p+ p2)� qεp1+ε.

�

Remark. Lemma 3.2 gives rise to the error term O(q1+εp1+ε) in Theorem 1.2. The main input in
this lemma is the large sieve, and as such is not very deep. Thus with more effort, it may be possible
to do better, at least in some ranges of q and p. However we are content with this result because
the other error term O(p2+εq

1
2+ϑ+ε) in Theorem 1.2 is anyway also O(q1+εp1+ε) on the Ramanujan

Conjecture when p2−ε < q < p2+ε, which is our main range of interest.
The other auxiliary result needed to complete the proof of Lemma 3.1 is the following.

Lemma 3.3. For (m, q) = 1, we have∑
f∈B∗k(q)

Γ(k − 1)

(4π)k−1〈f, f〉
ρf (nq)ρf (m) =

∑
f∈Bk(q)

Γ(k − 1)

(4π)k−1〈f, f〉
ρf (nq)ρf (m) +O(q−2+ε) +O(q−1+εδq|n).

.

Proof. The sum over Bk(q) can be expressed as a sum over B∗k(q) plus a sum over oldforms, which
we need to bound by the error term. To do this, we use a more refined version of Lemma 2.1 in this
special case. By [13, equations (2.48) and (2.36)], we have∑

f∈Bk(q)

Γ(k − 1)

(4π)k−1〈f, f〉
ρf (nq)ρf (m) =

∑
f∈B∗k(q)

Γ(k − 1)

(4π)k−1〈f, f〉
ρf (nq)ρf (m)

+
∑

f∈B∗k(1)

Γ(k − 1)

(4π)k−1〈f, f〉q
Af (nq, q)Af (m, q)

1− q(ρf (q)q+1 )2
,(3.12)

where 〈f, f〉q is the Petersson inner product for Γ0(q), and where, using (m, q) = 1,

Af (m, q) = ρf (m)

and

Af (nq, q) =
1

q + 1
ρf (nq)− q

q + 1
ρf

(n
q

)
δq|n.

By (2.5), we can use the bound 〈f, f〉q � q1−ε in (3.12). The lemma follows. �
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Now we return to Lemma 3.1, and restrict the sum to dyadic intervals. It suffices to prove that

1

N
1
2M

1
2Cq

1
2

∑
n,m,c≥1
(c,pq)=1

χ(n)τχ2(n)χ(m)τ(m)S(n,mq, c)Jk−1

(4π
√
nm

c
√
q

)
V1

( n
N

)
V2

(m
M

)
V3

( c
C

)

� (qp)εp2q−
1
2+ϑ,

for any

1 ≤ N,M ≤ q1+εp2+ε(3.13)

and C ≥ 1, and weight functions Vi compactly supported on (1, 2) and satisying V
(j)
i (x) �j (qp)ε.

Note that these weight functions are arbitrary, and we will redefine them (and others like them)

from line to line to suit our needs. For example,
√
nV ( nN ) equals

√
N
√

n
N V ( nN ), which may simply

be written as
√
NV ( nN ) after redefining

√
xV (x) to equal V (x).

Using Lemma 2.6, we need to establish

1

C2q

∑
n,m,c≥1
(c,pq)=1

χ(n)τχ2(n)χ(m)τ(m)S(n,mq, c)W1

(√nm
c
√
q

)
V1

( n
N

)
V2

(m
M

)
V3

( c
C

)
� (qp)εp2q−

1
2+ϑ

in the case that
√
NM
C
√
q ≤ (qp)ε, and

1

N
3
4M

3
4C

1
2 q

1
4

∑
n,m,c≥1
(c,pq)=1

χ(n)τχ2(n)χ(m)τ(m)S(n,mq, c)e
(±2
√
nm

c
√
q

)
W2

(√nm
c
√
q

)
V1

( n
N

)
V2

(m
M

)
V3

( c
C

)

� (qp)εp2q−
1
2+ϑ

in the case that
√
NM
C
√
q > (qp)ε, some some real functions W1 and W2 satisfying bounds as given in

the lemma. (We are assuming these are real by taking real and imaginary parts; this is also why the

± arises in the exponential factor.) We may write W1(
√
nm
c
√
q ) and W2(

√
nm
c
√
q ) in terms of their real

and imaginary parts, use Lemma 2.10 to separate the variables n,m, and c, and then absorb the
resulting factors n−

s
2 ,m−

s
2 , and cs into the functions V1, V2, and V3. Thus it suffices to prove

1

C2q

∑
n,m,c≥1
(c,pq)=1

χ(n)τχ2(n)χ(m)τ(m)S(n,mq, c)V1

( n
N

)
V2

(m
M

)
V3

( c
C

)
� (qp)εp2q−

1
2+ϑ(3.14)

for any N ≤ q1+εp2+ε, M ≤ q1+εp2+ε,
√
NM
C
√
q ≤ (qp)ε, and

(3.15)
1

N
3
4M

3
4C

1
2 q

1
4

∑
n,m,c≥1
(c,pq)=1

χ(n)τχ2(n)χ(m)τ(m)S(n,mq, c)e
(±2
√
nm

c
√
q

)
V1

( n
N

)
V2

(m
M

)
V3

( c
C

)

� (qp)εp2q−
1
2+ϑ

for any N ≤ q1+εp2+ε, M ≤ q1+εp2+ε,
√
NM
C
√
q > (qp)ε. We may also assume the crude bound

C ≤ (qp)50.(3.16)

This is clear in the case
√
NM
C
√
q > (qp)ε, while in the complementary case we may make this assumption

by summing trivially using the Weil bound in (3.14).



16 RIZWANUR KHAN

4. The oscillatory case

In this section we prove (3.15). This case is more involved than (3.14) analytically because the

weight function in the sum has the oscillatory factor e( 2
√
nm

c
√
q ). We keep in mind that in this case,

we have

√
NM

C
√
q
> (qp)ε.(4.1)

4.1. Application of Voronoi summation. We write

S(n,mq, c) =
∑?

b mod c

e
(nb+mqb

c

)
,

and apply Lemma 2.8 to the n and m sums in (3.15). Thus we apply Voronoi summation twice, and
after a substitution in the integral transforms, we get that it suffices to prove

(4.2)
N

1
4M

1
4

C
1
2 q

1
4

∑
n,m,c≥1
(c,pq)=1

χ(c2)

c2p2
χ(n)τχ2(n)χ(m)τ(m)S(±nq,mp4, c)

∫ ∞
0

∫ ∞
0

e
(±2
√
NMxy

c
√
q

)
B1

(4π
√
nNx

cp

)
B2

(4π
√
mMy

cp

)
V1(x)V2(y)V3

( c
C

)
dxdy � (qp)εp2q−

1
2+ϑ,

for each combination of Bessel functions {B1, B2} = {Y0,K0} and for each choice of sign ±. The
two occurences of ± are independent of each other, but when B1 = B2 = Y0, then the sign inside
the Kloosterman sum is positive.

We claim that we need only consider the case B1 = B2 = Y0 in (4.2). For if B1 = K0, say,

then either
√
nN
Cp ≥ (qp)ε, in which case K0 is tiny by Lemma 2.7 and the bound in (4.2) follows,

or
√
nN
Cp < (qp)ε. But in this case we can integrate by parts repeatedly in (4.2) with respect to

x, integrating e(±2
√
NMxy
c
√
q ) and differentiating the rest. Using Lemma 2.7 to control the size of

derivatives of K0, this will show that the integral is bounded by (qp)−100 so that (4.2) is established.
Thus we can assume B1 = B2 = Y0, in which case the sign inside the Kloosterman sum in (4.2) is
+. We can also assume that

√
nN

cp
≥ (qp)ε,

√
mM

cp
≥ (qp)ε,

for if
√
nN
cp < (qp)ε, say, then we can once again integrate by parts, using Lemma 2.7 to control the

size of derivatives of Y0, to show the bound required in (4.2). Now, using (2.6), we need to prove

N
1
4M

1
4

C
1
2 q

1
4

∑
n,m,c≥1
(c,pq)=1

χ(c2)

c2p2

(√mM
cp

√
nN

cp

)− 1
2

χ(n)τχ2(n)χ(m)τ(m)S(nq,mp4, c)

∫ ∞
0

∫ ∞
0

e
(±2
√
NMxy

c
√
q

)

e
(±2
√
nNx

cp

)
e
(±2
√
mMy

cp

)
W1

(2
√
nNx

cp

)
W2

(2
√
mMy

cp

)
V1(x)V2(y)V3

( c
C

)
dxdy � (qp)εp2q−

1
2+ϑ,

for some real functions W1,W2 satisfying W
(j)
i (x) �j x

−j for j ≥ 0, and where each sign ± is
independent. Making the substituting

√
x → x and

√
y → y, and redefining the weight functions,
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we need to show

(4.3)
p

q
1
4C

1
2

∑
n,m,c≥1
(c,pq)=1

1

n
1
4m

1
4

χ(n)τχ2(n)χ(m)τ(m)
χ(c2)S(nq,mp4, c)

cp2

∫ ∞
0

∫ ∞
0

e
(±2
√
NMxy

c
√
q

)

e
(±2
√
nNx

cp

)
e
(±2
√
mMy

cp

)
W1

(2
√
nNx

cp

)
W2

(2
√
mMy

cp

)
V1(x)V2(y)V3

( c
C

)
dxdy � (qp)εp2q−

1
2+ϑ.

Writing Z1(x) = W1( 2
√
nNx
cp )V1(x), Z2(y) = W2( 2

√
nNy
cp )V2(y) and evaluating the x-integral in terms

of the Fourier transform Ẑ1, we need to show

p

q
1
4C

1
2

∑
n,m,c≥1
(c,pq)=1

1

n
1
4m

1
4

χ(n)τχ2(n)χ(m)τ(m)
χ(c2)S(nq,mp4, c)

cp2

∫ ∞
0

e
(±2
√
mMy

cp

)
Ẑ1

(±2
√
NMy

c
√
q

± 2
√
nN

cp

)
Z2(y)V3

( c
C

)
dy � (qp)εp2q−

1
2+ϑ.

Now we make the substitution ±2
√
NMy

c
√
q ± 2

√
nN
cp → y to see that what we need to prove is

(4.4)
q

1
4 pC

1
2

N
1
2M

1
2

∑
n,m,c≥1
(c,pq)=1

1

n
1
4m

1
4

χ(n)τχ2(n)χ(m)τ(m)
χ(c2)S(nq,mp4, c)

cp2

e
(±2
√
nmq

cp2

)∫ ∞
0

e
(±√mq
√
Np

y
)
Ẑ1(y)Z2

( ±c√qy
2
√
NM

±
√
nq

p
√
M

)
V3

( c
C

)
dy � (qp)εp2q−

1
2+ϑ.

By repeated integration by parts, we have

Ẑ1
(j)

(y) =
dj

dyj

∫ ∞
−∞

e(−xy)Z1(x)dx�j,l (qp)ε min(1, y−l)(4.5)

for any j, l ≥ 0, so that that we may restrict the integral to |y| � (qp)ε.
We end this section by observing that in (4.4), we may restrict to

(qp)−ε
√
NM

C
√
q
≤
√
nmq

cp2
≤ (qp)ε

√
NM

C
√
q
.(4.6)

This is because by repeatedly integrating by parts the y-integral in (4.4), integrating the exponential
and differentiating the rest, we can assume that

√
mq
√
Np
≤ (qp)ε,

otherwise the left hand side of (4.4) is bounded by (qp)−100. This uses (4.1). Similarly, by returning
to (4.3) and evaluating the y-integral instead of the x-integral, we can assume that

√
nq

√
Mp
≤ (qp)ε.

Next we show that we can assume the lower bounds
√
mq
√
Np
≥ (qp)−ε,

√
nq

√
Mp
≥ (qp)−ε,

after which (4.6) will follow. Suppose that these lower bounds don’t hold; say
√
nq

√
Mp

< (qp)−ε.
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Then by the support of Z2, we have that
√
NM
C
√
q � y �

√
NM
C
√
q in in (4.4). But then by (4.1) and

(4.5), the left hand side of (4.4) is bounded by (qp)−100.

4.2. Application of Kuznetsov’s formula. By (4.6), we can insert in in (4.4) a function ψ(
4π
√
nmq

cp2 ),

such that ψ(x) is smooth, supported on X < x < 2X, and satisfies ψ(j)(x)� X−j , with

(qp)−ε
√
NM

C
√
q
≤ X ≤ (qp)ε

√
NM

C
√
q
.

Thus in (4.4), we may replace (nm)−
1
4 by its typical size (NM)−

1
4 p−1q

1
2 , by redefining ψ. We

may apply Lemma 2.10 to and Z2(x±
√
nq

p
√
M

) and V3(x) to separate factors c−s for |s| < (qp)ε from

Z2(
±c√qy
2
√
NM
±
√
nq

p
√
M

)V3( cC ), and absorb them into ψ(
4π
√
nmq

cp2 ). Thus it suffices to prove

(4.7)
q

3
4C

1
2

N
3
4M

3
4

∑
n�Mp

2

q

m�Np
2

q

∑
c≥1

(c,p)=1

αnβm
χ(c2)S(nq,mp4, c)

cp2
e
(±2
√
nmq

cp2

)
ψ
(4π
√
nmq

cp2

)
� (qp)εp2q−

1
2+ϑ,

and

(4.8)

q
3
4C

1
2

N
3
4M

3
4

∑
n�Mp

2

q

m�Np
2

q

∑
c≥1

(c,p)=1

αnβm
χ(c2)S(nq,mp4, cq)

cqp2
e
(±2
√
nmq

cqp2

)
ψ
(4π
√
nmq

cqp2

)
� (qp)εp2q−

1
2+ϑ,

where αn, βm are arbitrary complex numbers bounded by (qp)ε and where we write n � Mp2

q to

mean (qp)−ε Mp2

q ≤ n ≤ (qp)ε Mp2

q , and so on (for these inequalities, see the end of section 4.1). We

have two sums because we used inclusion-exclusion to remove the condition (c, q) = 1 from (4.4).

We insert e(mp2 ) in (4.7) and e(mqp2 ) in (4.8), which we can do since βm are anyway arbitrary, and

then apply Theorem 2.5. Thus we are reduced to showing

q
3
4C

1
2

N
3
4M

3
4

( ∑
g∈B0(p

4,χ2)

φ̃(tg)

cosh(πtg)

∑
n�Mp

2

q

m�Np
2

q

ρg,∞(nq)ρg,1(m)

‖g‖2
+H+ E

)
� (qp)εp2q−

1
2+ϑ,(4.9)

and

q
3
4C

1
2

N
3
4M

3
4

( ∑
g∈B0(qp

4,χ2)

φ̃(tg)

cosh(πtg)

∑
n�Mp

2

q

m�Np
2

q

ρg,∞(nq)ρg,1(m)

‖g‖2
+H+ E

)
� (qp)εp2q−

1
2+ϑ,(4.10)

where

φ(x) = e±ixψ(x)

satisfies φ(j)(x) � 1, and we have only written out the Maass form contribution M. We will not
show the details for H and E because their treatment is similar and easier because there are no issues
with the Ramanujan conjecture.

We only show the details for the Maass form contribution in (4.9), as (4.10) is similarly treated.
By Lemma 2.4 (c), for real tg we can restrict to

tg � (qp)ε
(√NM
C
√
q

) 1
2

,
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in which range we have

φ̃(tg)� (qp)ε
(√NM
C
√
q

)− 1
2

.

Using the Cauchy-Schwarz inequality, for the Maass contribution of real tf to (4.9) we need to show

(4.11)
qC

NM

( ∑
g∈B0(p

4,χ2)

tg≤(qp)ε(
√
NM
C
√
q )

1
2

1

‖g‖2
1

cosh(πtg)

∣∣∣ ∑
n�Mp2q

αnρg,∞(nq)
∣∣∣2) 1

2

×
( ∑

g∈B0(p
4,χ2)

tg≤(qp)ε(
√
NM
C
√
q )

1
2

1

‖g‖2
1

cosh(πtg)

∣∣∣ ∑
m�Np2q

βmρg,1(m)
∣∣∣2) 1

2 � (qp)εp2q−
1
2+ϑ.

We first see what we should expect: if we were working with newforms and had ρg,∞(n)ρg,∞(q)
instead of ρg,∞(nq), then we could use ρg,∞(q) � qϑ+ε and the spectral large sieve to get that the
left hand side of (4.11) is bounded by

qϑ+εpε
qC

NM

((√NM
C
√
q

+
1

p4
Mp2

q

)Mp2

q

) 1
2
((√NM

C
√
q

+
1

p4
Np2

q

)Np2
q

) 1
2

.(4.12)

We have that max( 1
p4
Mp2

q , 1
p4
Np2

q ) ≤ (qp)ε
√
NM
C
√
q because max(N,M) ≤ q1+εp2+ε by (3.13) and

√
NM
C
√
q ≥ (qp)ε by (4.1). Thus we get that is O(p2+εq−

1
2+ϑ+ε), as required. In order to rigorously

separate n and q, we write B0(p4, χ2) in terms of newforms using Lemma 2.1, to get that

∑
g∈B0(p

4,χ2)

tg≤(qp)ε(
√
NM
C
√
q )

1
2

1

‖g‖2
1

cosh(πtg)

∣∣∣ ∑
n�Mp2q

αnρg,∞(nq)
∣∣∣2

=
∑
δ`|p4

∑
g∈B∗0 (`,χ

2)

tg≤(qp)ε(
√
NM
C
√
q )

1
2

1

〈g, g〉2p4
1

cosh(πtg)

∣∣∣ ∑
n�Mp2q

∑
r|(nq,δ)

νδ(r)r
1
2αnρg,∞

(nq
r

)∣∣∣2

for some coefficients νδ(r)� (qp)ε, where 〈g, g〉p4 is the Petersson norm with respect to Γ0(p4). We

have 〈g, g〉`(p
4

` )−ε � 〈g, g〉p4 � 〈g, g〉`(p
4

` )ε by the remarks at the end of section 2.3. We also have

∣∣∣ ∑
n�Mp2q

∑
r|(nq,δ)

νδ(r)r
1
2αnρg,∞

(nq
r

)∣∣∣2 � (qp)ε
∣∣∣∑
r|δ

r
1
2

∑
n�Mp2qr

αnrρg,∞(nq)
∣∣∣2

after replacing n by nr, and

∑
n�Mp2qr

αnrρg,∞(nq) =
∑
d|(n,q)

∑
n�Mp2qr

µ(d)χ2(d)αnrρg,∞

(n
d

)
ρg,∞

( q
d

)
� qϑ+ε

∑
d|q

∣∣∣ ∑
n�Mp2qdr

αndrρg,∞(n)
∣∣∣
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using the Hecke relations. Thus we get that the square of the left hand side of (4.11) is bounded by

(qp)ε
( qC

NM

)2
q2ϑ+ε

∑
δ`|p4

r1|δ,r2|δ
d1|q,d2|q

r
1
2
1 r

1
2
2

`

p4

( ∑
g∈B∗0 (`,χ

2)

tg≤(qp)ε(
√
NM
C
√
q )

1
2

1

‖g‖2
1

cosh(πtg)

∣∣∣ ∑
n1� Mp2

qd1r1

αn1d1r2ρg,∞(n1)
)∣∣∣2) 1

2

×
( ∑

g∈B∗0 (`,χ
2)

tg≤(qp)ε(
√
NM
C
√
q )

1
2

1

‖g‖2
1

cosh(πtg)

∣∣∣ ∑
n2� Mp2

qd2r2

αn2d2r2ρg,∞(n2)ρg,∞

∣∣∣2) 1
2

×
( ∑

g∈B0(p
4,χ2)

tg≤(qp)ε(
√
NM
C
√
q )

1
2

1

‖g‖2
1

cosh(πtg)

∣∣∣ ∑
m�Np2q

βmρg,1(m)
∣∣∣2).

Now applying the large sieve gives the bound O(p2+εq−
1
2+ϑ+ε) as we expected.

Now we return to (4.9) and consider the contribution the exceptional eigenvalues. We have by

Lemma 2.4 (b) with Z =
√
NM
C
√
q that φ̃(tg)� (qp)ε. Thus using the Cauchy-Schwarz inequality, the

Maass contribution of imaginary tg in (4.9) is bounded by

q
3
4C

1
2

N
3
4M

3
4

( ∑
g∈B0(p

4,χ2)
tg�1

1

‖g‖2
1

cosh(πtg)

∣∣∣ ∑
n�Mp2q

αnρg,∞(nq)
∣∣∣2) 1

2

(4.13)

×
( ∑
g∈B0(p

4,χ2)
tg�1

1

‖g‖2
1

cosh(πtg)

∣∣∣ ∑
m�Np2q

βmρg,1(m)
∣∣∣2) 1

2

.

If instead of ρg,∞(nq) we had ρg,∞(n)ρg,∞(q), then by the spectral large sieve and the Ramanujan
bound for ρg(q), we would get that (4.13) is bounded by

qϑ+εpε
q

3
4C

1
2

N
3
4M

3
4

((
1 +

1

p4
Mp2

q

)Mp2

q

) 1
2
((

1 +
1

p4
Np2

q

)Np2
q

) 1
2

.(4.14)

Using again that max(N,M) ≤ q1+εp2+ε, we get that (4.14) is bounded by

q−
1
2+ϑ+εp2+ε

( √qC
√
NM

) 1
2 � q−

1
2+ϑ+εp2+ε,

using (4.1). We can rigorously separate n and q just as we did for real tg and arrive at the same
conclusion.

5. The non-oscillatory case

In this section we prove (3.14). Unlike the previous case, the weight function in the sum does not
have an oscillatory factor, and thus is somewhat easier. We will keep the details concise.

Keep in mind that in this case, we have

q−100 ≤
√
NM

C
√
q
≤ (qp)ε,(5.1)

using (3.16). Also recall that
√
NM

qp2
< (qp)ε(5.2)

using N,M ≤ (qp)εqp2.
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5.1. Application of Voronoi summation. On applying the Voronoi summation formula twice in
(3.14) and making a substitution in the resulting integral transforms, we need to prove

(5.3)
NM

C2q

∑
n,m,c≥1
(c,pq)=1

χ(c2)

c2p2
χ(n)τχ2(n)χ(m)τ(m)S(±nq,mp4, c)

∫ ∞
0

∫ ∞
0

B1

(4π
√
nNx

cp

)
B2

(4π
√
mMy

cp

)
V1(x)V2(y)V3

( c
C

)
dxdy � (qp)εp2q−

1
2+ϑ,

for each combination of Bessel functions {B1, B2} = {Y0,K0} and for each choice of sign ±. We
claim that we can assume

n ≤ (qp)ε
C2p2

N
, m ≤ (qp)ε

C2p2

M
.

Clearly this follows for n when B1 = K0, by Lemma 2.7. If B1 = Y0 and n > (qp)ε (Cp)
2

N , then
we may apply (2.7) and integrate by parts repeatedly in (4.2) with respect to x to see that the
contribution of such terms is less than (qp)−100. Arguing the same way for m and B2, the claim
follows. Thus we can work in dyadic intervals of n and m, restricting the range of summation in
(5.3) to N ′ ≤ n ≤ 2N ′ and M ′ ≤ m ≤ 2M ′, where

1 ≤ N ′ ≤ (qp)ε
C2p2

N
, 1 ≤M ′ ≤ (qp)ε

C2p2

M
.(5.4)

Then we can insert a function φ(
4π
√
nmq

cp2 ), such that φ(x) is smooth, supported on X < x < 2X,

and satisfies φ(j)(x)� X−j , with

(qp)−ε
√
N ′M ′q

Cp2
≤ X ≤ (qp)ε

√
N ′M ′q

Cp2
.

Thus it suffices to prove

NM

C3q

∑
N ′≤n≤2N ′
M ′≤n≤2M ′

∑
c≥1

(c,p)=1

αnβm
χ(c2)S(±nq,mp4, c)

cp2
φ
(4π
√
nmq

cp2

)
� (qp)εp2q−

1
2+ϑ,(5.5)

and

NM

C3q

∑
N ′≤n≤2N ′
M ′≤n≤2M ′

∑
c≥1

(c,p)=1

αnβm
χ(c2)S(±nq,mp4, cq)

cqp2
φ
(4π
√
nmq

cqp2

)
� (qp)εp2q−

1
2+ϑ,

where αn, βm are arbitrary complex numbers bounded by (qp)ε. We have two sums because we used
inclusion-exclusion to remove the condition (c, q) = 1 from (4.4).

5.2. Application of Kuznetsov’s formula. Now we apply Kuznetsov’s formula followed by the
spectral large sieve, as in section 4.2. We provide brief details, only for (5.5) and only for the
resulting Maass form contribution M of Theorem 2.5. We consider two cases.

5.2.1. Case I. Suppose that
√
N ′M ′q

Cp2
≤ 1.(5.6)

By Lemma 2.4 (a), for real tf we may restrict to tf � (qp)ε, for which we have φ̃(tf )� (qp)ε. We
need to prove the following analogue of (4.12):

qϑ+εpε
NM

C3q

((
1 +

N ′

p4

)
N ′
) 1

2
((

1 +
M ′

p4

)
M ′
) 1

2 � (qp)εp2q−
1
2+ϑ.(5.7)
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We consider the cross terms on the left hand side one by one: We have

qϑ+εpε
NM

C3q
(N ′)

1
2 (M ′)

1
2 = p2+εq−

1
2+ϑ+ε

(√NM
C
√
q

)2√N ′M ′q
Cp2

� p2+εq−
1
2+ϑ+ε(5.8)

on using (5.1) and (5.6); we have

qϑ+εpε
NM

C3q

(N ′
p4
N ′
) 1

2
(M ′
p4
M ′
) 1

2

= q−
1
2+ϑ+εp2+ε

√
NM

C
√
q

√
NM

qp2

(√N ′M ′q
Cp2

)2
� p2+εq−

1
2+ϑ+ε

(5.9)

on using (5.1), (5.2) and (5.6); and we have

qϑ+εpε
NM

C3q
(N ′)

1
2

(M ′
p4
M ′
) 1

2

= q−
1
2+ϑ+εp2+ε

√
NM

C
√
q

√
N ′M ′q

Cp2

√
M ′M

Cp

√
N

p
√
q
� q−

1
2+ϑ+εp2+ε.(5.10)

on using (5.1), (5.6), (5.4), and N ≤ (qp)εqp2.

If tf is imaginary, then tf � 1 and φ̃(tf )� (qp)ε(
√
N ′M ′q
Cp2 )−2ϑ by taking Z = 1 in Lemma 2.4 (b).

The large sieve for the contribution of the exceptional eigenvalues then works in the same way as

above, except that on the right hand sides of (5.8), (5.9), and (5.10), we replace a factor of
√
N ′M ′q
Cp2

with (
√
N ′M ′q
Cp2 )1−2ϑ. Since 1− 2ϑ > 0, we end up with the same final bound O(q−

1
2+ϑ+εp2+ε).

5.2.2. Case II. Suppose that √
N ′M ′q

Cp2
> 1.

Let T :=
√
N ′M ′q
Cp2 . By Lemma 2.4 (a), for real tf we may restrict to tf � (qp)εT , for which we have

φ̃(tf )� (qp)εT−1. We need to prove the following analogue of (4.12):

qϑ+εpε
NM

C3q
T−1

((
T 2 +

N ′

p4

)
N ′
) 1

2
((
T 2 +

M ′

p4

)
M ′
) 1

2 � (qp)εp2q−
1
2+ϑ.

We consider the cross terms on the left one by one: We have

qϑ+εpε
NM

C3q
T−1(T 2N ′)

1
2 (T 2M ′)

1
2 = p2+εq−

1
2+ϑ+ε

NN ′

C2p2
MM ′

C2p2
� p2+εq−

1
2+ϑ+ε

on using (5.4); we have

qϑ+εpε
NM

C3q

(N ′
p4
N ′
) 1

2
(M ′
p4
M ′
) 1

2 � p2+εq−
1
2+ϑ+ε

as already seen in (5.9); and we have

qϑ+εpε
NM

C3q
T−1(T 2N ′)

1
2

(M ′
p4
M ′
) 1

2 � q−
1
2+ϑ+εp2+ε.

as already seen in (5.10).

If tf is imaginary, then tf � 1 and φ̃(tf )� (qp)ε by taking Z = 1 in Lemma 2.4 (b). The large
sieve for the contribution of the exceptional eigenvalues then amounts to proving (5.7), which we
have already done.
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