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Molecular editing of aza-arene C–H bonds by 
distance, geometry and chirality

Zhoulong Fan1,3, Xiangyang Chen2,3, Keita Tanaka1, Han Seul Park1, Nelson Y. S. Lam1, 
Jonathan J. Wong2, K. N. Houk2 ✉ & Jin-Quan Yu1 ✉

Direct molecular editing of heteroarene carbon–hydrogen (C–H) bonds through 
consecutive selective C–H functionalization has the potential to grant rapid access 
into diverse chemical spaces, which is a valuable but often challenging venture to 
achieve in medicinal chemistry1. In contrast to electronically biased heterocyclic C–H 
bonds2–9, remote benzocyclic C–H bonds on bicyclic aza-arenes are especially difficult 
to differentiate because of the lack of intrinsic steric/electronic biases10–12. Here we 
report two conceptually distinct directing templates that enable the modular 
differentiation and functionalization of adjacent remote (C6 versus C7) and 
positionally similar (C3 versus C7) positions on bicyclic aza-arenes through careful 
modulation of distance, geometry and previously unconsidered chirality in template 
design. This strategy enables direct C–H olefination, alkynylation and allylation at 
adjacent C6 and C7 positions of quinolines in the presence of a competing C3 position 
that is spatially similar to C7. Notably, such site-selective, iterative and late-stage C–H 
editing of quinoline-containing pharmacophores can be performed in a modular 
fashion in different orders to suit bespoke synthetic applications. This Article, in 
combination with previously reported complementary methods, now fully 
establishes a unified late-stage ‘molecular editing’ strategy to directly modify bicyclic 
aza-arenes at any given site in different orders.

The efficient generation of diverse analogues with structural modi-
fications at various sites presents a continuing synthetic challenge 
that underpins drug discovery. For a given molecular scaffold or phar-
macophore, the selective and iterative activation of multiple inert 
carbon–hydrogen (C–H) bonds at different sites represents the most 
direct strategy for the rapid and efficient generation of structural diver-
sity1,13. For example, functionalization with ten coupling partners at 
five different sites of a quinoline scaffold could rapidly generate up to 
100,000 structurally unique analogues using a unified editing strategy 
(Fig. 1a). This notionally ideal ‘molecular editing’ approach, however, 
is marred by a lack of reliable methods for late-stage selective func-
tionalization of pharmacophores, curtailing broader realization in a 
translational context14,15. As privileged pharmacophores for diverse 
biological targets, aza-arene heterocycles are particularly dominant 
within the realm of drug discovery. Within the azine component, lev-
eraging a substrate’s intrinsic electronic properties has enabled the 
now-established site-selective functionalizations of C2–H3,4 and C4–
H5,6,8,9 under a nucleophilic metallation regimen, and at C3–H2,7 through 
the corresponding electrophilic metallation process. By contrast, 
selective functionalization of multiple C–H bonds on the benzocyclic 
component of bicyclic aza-arene heterocycles remains to be realized. 
For these chemically similar C–H bonds, leverage of proximity-driven 
effects to selectively direct the catalyst has been limited to benzocyclic 
C8–H bonds adjacent to Lewis basic heteroatoms10–12. Notably, the 
selective editing of remote positions, such as C5–C7 on quinoline-type 

scaffolds, remains inaccessible to the established electronically driven 
or substrate-directed approaches described above (Fig. 1a).

We surmised that this eminent problem could be solved using revers-
ibly binding directing templates capable of selectively positioning the 
catalyst proximate to a target remote C–H bond through a macrocy-
clophanic pretransition state16–20. In this context, bicyclic aza-arene 
scaffolds pose further obstacles for template-directed remote regiose-
lection; in addition to suppressing functionalization at activated sites 
(C2–C4), the multiple adjacent yet minutely inequivalent and unacti-
vated remote benzocyclic positions (C5–C7) demand stringent regi-
ochemical precision for their discrimination and selective activation. 
The feasibility of this template-directed approach for the activation of 
remote benzocyclic C–H bonds was first indicated in 2017, when stoi-
chiometric template loadings to overcome deleterious azine binding 
enabled the singular C5–H palladation and functionalization of quino-
line21,22. In combination with norbornene relay, an indirect C6-selective 
arylation can also be realized on the basis of this C5–H palladation, 
although this strategy only permits arylation with electron-deficient 
aryl iodides, requires a vacant C5 position and fundamentally does 
not provide a solution for the selective C6–H palladation and diverse 
functionalization necessary to achieve molecular editing23. The direct 
activation of C6 and C7 positions, as compared with the marginally 
more nucleophilic C5 and C8 positions, is particularly difficult both 
for the chemical inertness and electronic similarity of the two C–H 
bonds. Careful spatial analysis revealed subtle differences between 
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C6–H and C7–H in both distance (one bond difference) and geometry 
(meta verus para), suggesting the possibility of precise template design 
to differentiate between these two C–H bonds. The same analysis also 
revealed that the sterically similar and more activated C3–H possesses 
a similar distance (one bond difference) but identical geometry (meta 
versus meta) to our desired C7–H bond. The latter challenge suggested 
that judicious spatial tuning of template distance and two-dimensional 
geometry may not be sufficient to impart selectivity for the remote C7 
position. To address these pitfalls, we were further inspired by chiral 
catalyst-controlled regioselective functionalization of chiral poly-
ols24–26. This led to the design of a chiral template, which upon interac-
tion with a matched chiral catalyst, is capable of distinguishing between 
C3–H and C7–H positions thereby providing the desired C7-selective 
functionalization (Fig. 1b).

Here we report two conceptually distinct directing templates that 
enable site-selective C6–H and C7–H activation of bicyclic aza-arenes. 
These catalytic pyridine-based templates recruit the aza-arene sub-
strate through N-coordination, enabling the directing arm to deliver 
the catalyst and precisely activate remote and adjacent C6–H or C7–H 
bonds (Fig. 1c). In parallel, we found that the use of a simple and readily 
prepared template chaperone (TC) can turn over the directing template, 
enabling it to be used catalytically (Supplementary Information Sec-
tion 2.3). Notably, chiral recognition is vital in the granular discrimina-
tion between competing C3–H and C7–H bonds when differentiation 

by distance and geometry is insufficient. Thus, precise spatial and 
chiral recognition of a directing template now enables the iterative 
C–H editing of quinoline pharmacophores at any desired site and order.

Using quinoline 1a as the model substrate, we initially targeted the 
development of a selective C6–H olefination reaction. Considering 
that our previous C5 template is used in stoichiometric amounts, a 
key objective at the outset of our studies was the catalytic use of our 
templates. This was solved by an easily synthetized symmetrical tem-
plate chaperone TC8 (two steps, no chromatography) to mask the 
quinoline nitrogen and facilitate product turnover from the directing 
template. An initial hit was found through a systematic screen of linker 
length in the presence of 2-fluoro-3-phenylpyridyl motif as the directing 
group (T3, Supplementary Table 1)27. A rigidified analogue of T3 bear-
ing an alicyclic two-carbon spacer (T8) was next pursued, which gave a 
marked improvement to both yield and C6 selectivity. Further tuning 
of the directing motif (T9 to T12, Supplementary Table 1) showed that 
yields were improved using 3-phenylpyrimidyl-bearing T12 (Fig. 2a), 
whereas an assessment of the left-hand portion of the template and 
template chaperone scaffolds gave no noticeable improvements in 
reactivity and selectivity. The optimal result with T12 and TC8, both 
bearing 3,5-ditrifluoromethylphenyl side arms, probably arises from 
their structural homology, improving the efficacy of substrate–prod-
uct exchange in the reaction. In all cases, the incorporated palladium 
within the directing template and template chaperones can be easily 
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recovered as the TC–Pd–MeCN complex, and recycled with no loss in 
reaction efficacy (Supplementary Information section 2.9).

With optimized template and conditions in hand, we next evalu-
ated the reaction scope with respect to quinoline and related 

heterocycles (2a to 2ae, Fig. 2b). Various electron-donating and 
electron-withdrawing groups were compatible in the reaction, showing 
little difference in yield or selectivity (2a to 2s), confirming the power 
of our proximity-driven directing approach in overriding inherent 
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electronic preferences. A series of multiply substituted and polycyclic 
quinolines were also well tolerated (2t to 2aa), and we were pleased 
to find that the reaction tolerates a variety of aza-arenes; quinoxaline 
(2ab), benzothiophene (2ac), phenazine (2ad) and thieno[2,3-b]pyri-
dine (2ae) all afforded the desired products in good yields and high 
selectivities. Next, we examined the scope of coupling partners with 
unsubstituted quinoline under the standard conditions (Extended Data 
Fig. 1). A variety of acrylates (2af to 2al), vinylamides (2am and 2an), 
vinylsulfone (2ao), vinylphosphonate (2ap), styrenes (2as to 2au) and 
more complex terpenoid-derived acrylate coupling partners (2aq, 
from l-menthol; 2ar, from tetrahydrogeraniol) were well tolerated, 
delivering the corresponding products in good to excellent yields and 
selectivities.

Density functional theory (DFT) studies were conducted to under-
stand the origin of C6 selectivity in our catalytic templates. Analysis 
of the concerted metalation–deprotonation (CMD) step immediately 
excluded a C7-selective pathway because of higher energies incurred 
by repulsive interactions between the template phenyl ring and ligand 
acetyl groups (Fig. 2c). The analysis also suggested that the initial C–H 
metalation was probably unselective between C5 and C6, which was 
supported by observing unselective substrate deuterium incorporation 
(Supplementary Information Section 2.14). A larger template distor-
tion required to access the C5 position results in a lower energy barrier 
for the C6-selective alkene insertion step relative to C5. Therefore, a 
combination of a more favoured C–H activation (disfavouring C7) and 
alkene insertion steps (disfavouring C5) gives rise to the observed C6 
selectivity for template T12.

The success of our C6-selective catalytic template prompted us to 
investigate whether C7 selectivity was also feasible through judicious 

spatial optimization. Our study commenced with 3-methylquinoline 1d 
bearing no C–H bond at the C3, wherein an initial hit was found using a 
template bearing a two-carbon spacer to the directing 3-pyridyl motif 
(T20, Fig. 3a). Template rigidification (T22 and T24, Fig. 3a) improved 
yield and selectivity, with cis- and trans-T24 notably delivering the 
product 3a in high selectivity. Systematic tuning of the template’s left 
arm identified that a 2,6-dimethoxyphenyl motif provided markedly 
improved C7 yield and selectivity, with the best C7-selective template 
(cis-T25, Fig. 3a) affording 3a in 67% nuclear magnetic resonance (NMR) 
yield with 96:4 selectivity. Using racemic cis-T25 and a Ac-dl-Phe-OH 
ligand, a range of C3-, C4- and C2-substituted quinolines smoothly 
afforded the C7-olefinated products (3a to 3m) in good yield and 
excellent selectivity (Fig. 3a). Other pharmaceutically important het-
erocycles (quinoxaline, benzothiophene and phenanthridine) were 
also compatible, generating distally olefinated products 3n to 3p in 
a site-selective manner. In addition, a diverse set of olefinic coupling 
partners were competent using 1d as the substrate, successfully react-
ing with acrylates (3q to 3t, 3x and 3y), vinyl sulfone (3u), vinyl phos-
phonate (3v) and styrene (3w) in moderate to good yields with excellent 
C7 selectivity (Extended Data Fig. 2).

However, subjecting unsubstituted quinoline 1a with racemic cis-T25 
under our optimized conditions gave a disappointing 50:50 mixture 
of products at the C3 and C7 positions in 56% total yield (Fig. 3b). This 
outcome restricts the order of the iterative C–H activation sequence 
and affirms the initial analyses indicating the similar spatial (distance 
and geometry) positioning of the C3–H and C7–H bonds relative to 
the anchoring azine nitrogen; this is an observation supported by 
DFT calculations (Supplementary Fig. 12). Further inspired by the 
use of chiral catalysts to control site-selective modifications in chiral 

a

N

N

O

O

OHO

Et

H

H N

N

O

O

OHO

Et

H

N

N

O

O

OHO

Et

nBuO2C

8, 63%
Cshown:others = 89:11

H nBuO2C

Camptothecin
(i)

NCl

Cl

N

Cl

NMeO

O

NO2

HO

O

H
N

O
F

Cabozantinib analogue

NCl

Cl

(i) C6-selective alkynylation

H

NMeO

O

H
N

O

H
N

O
F

NCl

HN

Me

N Me

Me

TIPS
TIPS

(i) C6-selective ole�nation

(ii) DIPEA, toluene

H
(iii) Fe, NH4Cl, EtOH/H2O (4/1)

(iv) HATU, DIPEA, DCM

H2N

Me

N Me

Me

MeO

(ii) Pd(OAc)2, DPEPhos, K3PO4, toluene

13, 67%

10, 35% (two steps)

4h, 62%

TIPSBr

HO NO2

1w

1x

Chloroquine analogue

b

c

d

(ii )

N

H

H

H

C3

17 1a

H

C7 C5 C6

Alkynylation

Deuteration

Ole�nation;
reduction

Ole�nation;
reduction 92%

45%58% (two steps)

42% (two steps)

C4 C6 C7

Ole�nation;
cyclopropanation
35% (two steps)

Alkynylation;
oxidation

Alkylation

54% (two steps)

75%
20

N

CO2Et

D[78]

EtO2C

TIPS

HN

EtO2C

Me Me

7

EtO2C

nBuO2C nBuO2C

(C6:C5 = 91:9)

(C5:C6 = 85:15)

EtO2C
EtO2C

EtO2C

12, 58% (two steps)

9, 25%
Cshown:others = 91:9

Fig. 4 | Synthetic applications. a, Late-stage remote site-selective C–H 
modification of camptothecin. Reaction conditions are provided in 
Supplementary Information Section 2.10. b, Synthesis of the cabozantinib 
analogue through C6–H olefination. c, Synthesis of the chloroquine analogue 
through C6–H alkynylation. d, Molecular editing of quinoline through iterative 

C–H activation in different orders. The reaction conditions are provided in 
Supplementary Information Section 2.13. Deuterium incorporation is shown in 
square brackets. DIPEA, N,N-diisopropylethylamine; DPEPhos, 
bis[(2-diphenylphosphino)phenyl] ether; HATU, 1-[bis(dimethylamino)
methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxide hexafluorophosphate.
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polyol-containing natural products24,25, we wondered if a matched 
combination of an enantiopure directing template and a chiral catalyst 
could distinguish between these two highly similar positions. Thus, 
C7 selectivity was re-evaluated against unsubstituted quinoline 1a 
in the presence of enantiopure (R,R)- and (S,S)-T25 with Ac-l-Phe-OH 
as the chiral ligand. We found that the use of (S,S)-T25 matches the 
chiral ligand, providing 3z with high C7 selectivity (C7:C3 = 88:12). The 
mismatched combination of (R,R)-T25 with Ac-l-Phe-OH gave mixture 
products (C7:C3 = 50:50). Further optimization of (S,S)-T25 with chiral 
ligands afforded 3z in 54% yield and selectivity (C7:C3 = 90:10) (Fig. 3b). 
These results indicate that competing C–H bonds that are spatially 
(distance and geometrically) similar can also be distinguished through 
matched chirality recognition. Under the optimal conditions, C5- and 
C6-substituted quinolines, which gave no selectivity in the presence 
of racemic cis-T25 and ligand, provided 3aa to 3ad in moderate yields 
and high C7 selectivities (Fig. 3b).

To rationalize the observed C7 selectivity of the chiral template 
(S,S)-T25, hydrogen/deuterium (H/D) exchange experiments were 
conducted with unsubstituted quinoline 1a. These experiments dem-
onstrated that deuterium incorporation at the C7 position is more 
favoured in the presence of the matched chiral template–ligand com-
bination (Supplementary Information Section 2.14). As these chiral 
ligands are known to participate in the CMD transition state, our DFT 
analysis specifically focused on this crucial step with chiral template 
(S,S)-T25 and ligands Ac-l-Phe-OH or Ac-d-Phe-OH. Despite extensive 
investigation, our free energy profiles obtained did not fully explain 
the high C7 selectivity that was observed experimentally. On the other 
hand, the observed C7 selectivity of 3-methylquinoline 1d with racemic 
template cis-T25 was fully consistent with the DFT analysis (Fig. 3c). 
Cis-T25 gave the lowest energy transition state for all key steps at C7 
compared with other positions (Supplementary Fig. 8). Further inspec-
tion revealed that increased template distortion was required to access 
both the C5 and C6 positions, leaving C7 as the sole favourable pathway 
for this template.

The scope of transformation intercepted from this catalytic 
directed remote C–H palladation was broadened through achieving 
the site-selective C–H alkynylation and allylation of aza-arenes (4a 
to 4j, 5a to 5h, 6a to 6f, Extended Data Fig. 3), representing versatile 
linchpins for further diversification28–30. Uniformly, high site selectivity 
was obtained for the template-assisted C6- and C7-selective alkynyla-
tion reactions. The corresponding allylation reactions were similarly 
effective, giving comparatively higher reactivity, albeit with slightly 
reduced C6 selectivity. In all cases, a range of substitutions were toler-
ated, signalling the robustness of this catalytic template strategy for 
direct remote functionalization.

The applicability of this method in a drug discovery context was first 
exemplified by the divergent late-stage site-selective C–H functionaliza-
tion of the anticancer natural product camptothecin31 (Fig. 4a). Subject-
ing camptothecin to our optimized C6-selective template generated the 
new analogue 8 in 63% yield, whereas the corresponding C7-selective 
template generated its regioisomer 9 in 25% yield. Successful C–H 
editing of key pharmacophores was also demonstrated, providing new 
analogues of the anticancer agent cabozantinib 12 (refs. 32,33; Fig. 4b) 
and the antimalarial agent chloroquine 13 (ref. 34; Fig. 4c). Finally, we 
were keen to address the ultimate challenge of executing sequential 
site-selective late-stage ‘molecular editing’ in any desired order on 
a quinoline scaffold; its feasibility was demonstrated by successful 
iterative C–H activations to access products 17 and 20 bearing diverse 
substitutions (Fig. 4d).

In summary, a unified catalytic remote-directing template strategy 
enabled precise differentiation of remote and adjacent C6–H and C7–H 
bonds, as well as similar C3–H and C7–H bonds of a pharmaceutically 
relevant bicyclic aza-arene scaffold. The modularity of C6/C7 func-
tionalization described herein, combined with previously reported 
methods, completes the suite of reactions required to edit all C–H 

bonds within bicyclic aza-arene scaffolds in different orders. Notably, 
the realization of C7–H selective activation over C3–H also established 
chiral recognition as an effective means in fine-tuning remote site 
selectivity between positionally similar C–H bonds, complement-
ing previously used distance and geometric parameters in directing 
template design.
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Extended Data Fig. 1 | Additional olefin scope for C6 (and related)-selective C–H olefination reactions of quinoline and other heterocycles. All yields are 
isolated yields. aUsing conditions in Extended Data Fig. 3b. nPr, n-propyl; iBu, isobutyl; Hex, n-hexyl.
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Extended Data Fig. 2 | Additional olefin scope for C7 (and related)-selective C–H olefination reactions of quinoline and other heterocycles. All yields are 
isolated yields.



Extended Data Fig. 3 | Site-selective C–H alkynylation and allylation of 
aza-arenes. a, C6 (and related)-selective C–H alkynylation of aza-arenes.  
b, C6 (and related)-selective C–H allylation of aza-arenes. c, C7 (and related)- 
selective C–H alkynylation of aza-arenes. All yields are isolated yields. aUsing 

trans-5-decene (3 equiv). bUsing trans-4-methyl-2-pentene (3 equiv). cUsing 
1-hexene (3 equiv). dUsing (S,S)-T25 (0.3 equiv), Pd(OAc)2 (20 mol%), 
Ac-L-Phe-OH (40 mol%), alkynylation reagent (4 equiv), 100 °C. TBAF, 
tetra-n-butylammonium fluoride.
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