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FAMI L I E S  O F  SYMMETRIES  A N D  T H E  H Y D R O G E N  AT O M

N I G E L  HIGSON A N D  E YA L  SUBAG

A B S T R A C T .  We study a new type of symmetry for the hydrogen atom involv-ing
algebraic families of groups parametrized by the energy value in the time-
independent Schrodinger equation. We construct an algebraic family of Harish-
Chandra modules from the solutions of the Schrodinger equation, and we charac-
terize this family. We show that the subspaces of physical states may be obtained
from our algebraic family using a Jantzen filtration, and we relate our algebraic
methods with spectral theory and scattering theory using the limiting absorption
principle.

1. I N T R O D U C T I O N

It has long been known that, besides its visible rotational symmetries, the Schro-
dinger equation for the hydrogen atom possesses hidden symmetries that explain
the degeneracy of energy eigenspaces, and help determine the eigenvalues and
eigenfunctions [Pau26, Foc35, Bar36]. These larger symmetry groups vary from
energy to energy, although the groups attached to all positive energies, and sepa-
rately those attached to all negative energies, may be—and usually are—identified
with one another.

In this paper we shall develop a different approach. We shall organize the var-
ious symmetry groups into an algebraic family, and analyze the consequences. We
shall determine the physical states of the hydrogen atom algebraically, using the
Jantzen filtration. We shall explain how our algebraic account is parallel to early
analytic work in scattering theory by Heisenberg [Hei43a, Hei43b, Hei44] and Ko-
daira [Kod49]. In fact we shall directly connect the limiting absorption principle
in scattering theory to algebraic families. Along the way we shall prove a clas-
sification result for representations of the kinds of algebraic families introduced
here, give a complete analysis of the Hilbert space spectral decomposition of the
Schrodinger operator from the point of view of representation theory, and prove a
variety of other results.

In physics, one seeks solutions of the time-independent Schrodinger equation
for the hydrogen atom, H =  E  , with definite total angular momentum. One
further imposes the condition that be square-integrable, or almost square inte-
grable. The linear span of all such     , as the angular momentum varies but the
energy E  is fixed, is what we shall call in this paper the physical solution space,
and denote by PhysSol(E). From the physics point of view, the spectrum of the
Schrodinger operator is the set of all real E  for which the physical solution space
is nonzero. In simplified units it has the form

Spec(H) = -  
n 2  : n  =  1; 2; : : : t  [0; 1) :

This is one of the fundamental formulas in non-relativistic quantum mechanics.
1
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The orthogonal group K = O ( 3 )  acts on each of the spaces PhysSol(E), because
the Schrodinger operator H  is O(3)-invariant. But PhysSol(E) is also acted on by a
6-dimensional Lie algebra

>so(3; 1) E  >  0
gE  so(3) n  R 3 E  =  0

so(4) E  <  0:

This was first discovered by Pauli [Pau26] in the case E  <  0, and then developed
further by Fock [Foc35], Bargmann [Bar36] and many others.

Instead of making the identifications in the display above, we shall view the Lie
algebras gE  as (the real forms of) some of the fibers of an algebraic family of Lie al-
gebras defined over the complex affine line. The space of algebraic sections of this
family is a finite-dimensional Lie algebra g  over the algebra O of complex polyno-
mial functions on the line, and it is concretely realized as differential operators on
R3 . Putting it together with the constant family K  whose fiber is the visible sym-
metry group O(3), we obtain an algebraic family (g ; K)  of Harish-Chandra pairs
[BHS20a].

We shall study the solutions of the Schrodinger equation using representation
theory for the family (g; K).  Basic ODE theory provides regular solutions that ex-
tend to entire functions of the radial coordinate. It is a simple matter to realize
the spaces RegSol(E) of regular solutions as the fibers of an O-module RegS ol.
The visible symmetry group K  acts on RegS ol, with each isotypical part being a
free and finitely generated O-module. Our launching point is the following result,
which is by no means evident:

Theorem (See Section 5). The module RegS ol carries the structure of an algebraic family
of Harish-Chandra modules (as in [BHS20a]) for (g; K).

We shall also define a family of spaces of singular solutions (meaning only not
regular, rather than actually singular in any particular way) by taking the quotient
of all solutions by the regular solutions:

SingSol(E) =  Sol(E)= RegSol(E) (E 2  C):

These spaces, too, are the fibers of an algebraic family of Harish-Chandra modules,
which we shall denote by S ingS ol.

Theorem (See Section 5). The Wronskian bilinear form (from elementary differential
equations) defines a twisted-equivariant and nondegenerate pairing

Wr: S ingS ol  RegS ol  !  O:

It follows that the Wronskian induces an isomorphism from the -twisted dual
of the family RegS ol to the family S ingS ol (the type of twisting that is involved
here is explained in Section 3.5). We shall also prove the following result, using
representation theory techniques and without reference to the Wronskian or dif-
ferential equations:

Theorem (See Section 6). There is an essentially unique, generically invertible, algebraic
intertwining operator from the family S ingS ol to the family RegS ol.

Now the space of all regular solutions of the Schrodinger equation is infinite-
dimensional for every energy E, real or complex. It is often much larger than the
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space of all physical solutions, since for some values of E  there are no physical
solutions at all, while for others there is only a finite-dimensional space of physical
solutions. One can therefore ask how the physical solutions can be extracted from
the family RegS ol.

Our answer is that the Jantzen filtration technique from representation theory,
used as in [BHS20b], not only isolates the physical solutions among the regular
solutions, but it also determines unitary inner products on the physical solution
spaces. The technique applies whenever one is given a generically invertible, al-
gebraic family of intertwining operators acting between a family and its dual, as
is the case here thanks to the previous two theorems.

Theorem (See Section 6). The physical spectrum of hydrogen atom coincides with the
set of all energies E 2 C  for which the fiber RegSol(E) has a nonzero infinitesimally unitary
Jantzen quotient. This quotient is unique, and it identifies with PhysSol(E) as a unitary
(gjE; K)-module.

This theorem, which spotlights the role that the algebraic family as a whole
plays in determining the spectrum, calls to mind similar features of scattering the-
ory, and it is to these analytic issues that we turn next.

The Schrodinger operator for the hydrogen atom has a natural self-adjoint ex-
tension on the Hilbert space of square-integrable functions on R3 .  We shall give
a complete analysis of the spectral decomposition of the Schrodinger operator
from the perspective of unitary representation theory, and show that the spectral
subspaces are the irreducible unitary representations obtained by completing the
physical solution spaces. We shall also compute the spectral measure. See Section
9. But here we shall focus on a single issue that relates the Jantzen technique to
scattering theory.

Fix a value E  that is not in the spectrum of the self-adjoint Schrodinger operator
H, and define

Sol0 (E); Sol1 (E)  Sol(E)

to be the spaces of all those (K-finite) solutions of the time-independent Schro-
dinger equation whose restrictions to neighborhoods of 0, respectively 1 ,  coin-
cide with the restrictions of functions in the self-adjoint domain of H. As  a result
of the assumption that E  is not in the self-adjoint spectrum of H, these are comple-
mentary within the space of all solutions:

Sol(E) =  Sol0 (E)  Sol1 (E) :

Moreover it follows from a simple analysis of the self-adjoint domain of H  that

Sol(E)0 =  RegSol(E):

Now, let us say that a family fVE gE2= Spec(H)  of eigenfunctions in the spaces So l 1 (E )
is of Kodaira type if its Wronskian pairing with any algebraic section of RegS ol is
polynomial in E. Such a family determines, and is determined by, an algebraic
section of the family S ingS ol.

The following is a variation on a result used by Kodaira [Kod49] to confirm
Heisenberg’s discovery [Hei43a, Hei43b, Hei44] that the negative spectrum of the
Schrodinger operator is determined by scattering data associated to the positive
spectrum. Kodaira’s result is an instance of the limiting absorption principle in scat-
tering theory.
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Theorem (See Section 8). If fVE gE2= Spec(H)  is a Kodaira-type family in the spaces Sol1 (E) ,
then for every E  >  0 the limits

" ! 0 +  
V E + i " and

" ! 0 +  
V E - i "

both exist.

Now, our result relating the Jantzen filtration to the physical spectrum of the
hydrogen atom is very much in the same spirit as Heisenberg’s discovery. The
following theorem makes an explicit connection between algebraic families and
scattering theory.

Theorem (See Section 8). The difference of the limits in the theorem above is a member
of RegSol(E). After adjusting by a Wronskian factor, the difference varies algebraically
with E, and the morphism

A :  S ingS ol  !  RegS ol:
that is determined in this way is the unique generically invertible intertwining operator
between algebraic families of Harish-Chandra modules for (g ; K)  (from which the physical
states of the hydrogen atom may be obtained using the Jantzen technique).

We believe that this unexpected bridge back to algebra from analysis makes it
apparent that the approach to hidden symmetries via algebraic families, particu-
larly algebraic families of solutions, merits close attention.

Acknowledgments. The late Joseph Birman drew the authors’ attention to the
hydrogen atom system, and suggested that scattering phenomena there should be
investigated further. The authors are also grateful to Joseph Bernstein for many
useful remarks.

2. T H E  FA M I LY  OF H A R I S H - C H A N D R A  PA I R S F O R T H E  H Y D R O G E N  AT O M

In this section we shall associate to the Schrodinger operator (2.1.2) an algebraic
family of Harish-Chandra pairs that organizes the various hidden symmetries of
the Schrodinger equation.

2.1. Rescaled Schrödinger operator. The time-independent Schrodinger equation
for the hydrogen atom is the eigenvalue equation

(2.1.1) H =  E  ;

where is a function on R3 ,  E  is a real number (the energy), and H  is the Schrod-
inger operator

2 2
(2.1.2) H  =  -

2
4  -  

r 
:

Here h̄ is the reduced Planck’s constant,  is the reduced mass, e is the electron
charge and r is the distance in R 3  from the origin. To streamline formulas we shall
work not with the operator H  in (2.1.2) but with the rescaled Schrödinger operator

(2.1.3) T =  
h̄2 H:

It follows from the definition above that T =  -  -  2=r , where
2

(2.1.4)  =  
h̄2 :
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We shall use T and  throughout the paper (we might have chosen units so that
=1, but we resisted the temptation to do so).

To familiarize the reader with the new notation, we note that the computation
of the spectrum of H  mentioned in the introduction is equivalent to the formula

2
Spec(T ) = -

n 2  : n  =  1; 2; : : : t  [0; 1) :

2.2. The infinitesimal hidden symmetries. In this subsection we shall consider T
as an element in the algebra of linear partial differential operators on the space R 3

=  R 3  n f0g with smooth function coefficients. We shall denote by Centralizer(T ) the
centralizer of the rescaled Schrodinger operator in this algebra.

Since T is rotation-invariant, the most evident elements in Centralizer(T ) are the
infinitesimal rotation operators

(2.2.1) L 1  =  x2@3 -  x3@2; L 2  =  x3@1 -  x1@3 and     L 3  =  x1@2 -  x2@1:
But in addition, the centralizer includes the so-called Runge-Lenz operators

R1 =  
p

-1L 3 @ 2  -  L2@3 -  @1 +  
x1  ;

(2.2.2) R2 =  
p

-1L 1 @ 3  -  L3@1 -  @2 +  
x2  ;

R3 = - 1  L2@1 -  L1@2 -  @3 +      
r       

;

which Pauli obtained by quantizing the similarly-named quantities in the classical
Kepler problem (see for example [GS90, Chs. 1&2] or [Hal13, Ch. 18]).

2.2.3. Definition. We shall denote by O the subalgebra of Centralizer(T ) consisting
of polynomials in T . It is an embedded copy of the algebra of polynomial functions
on the line. In addition, we shall denote by g  the O-linear span of the operators

fL1 ; L2 ; L3 g     and     fR1; R2; R3g

within Centralizer(T ).

2.2.4. Lemma. The space g  is a free O-module on the elements in Definition 2.2.3, and a
Lie algebra over O under the commutator bracket.

Proof. By a direct calculation,

[L i ; L j ]  =  - " i j k L k

(2.2.5)                                                  [Ri ; Rj ] =
" i j kT L k  [Li ; Rj ] =  - " i j k R k ;

where " i j k  is the Levi-Civita symbol (which is 0 if an index is repeated, and the
sign of the permutation (i; j; k) otherwise). This shows that g  is a Lie algebra.
Freeness can be checked by examining leading-order terms (that is, the principal
symbols) of the operators T k L i  and T k Ri . The former have order exactly 2k+1, and
for each k are linearly independent over C;  the latter have order exactly 2k+2, and
again for each k  they are linearly independent over C.  The lemma follows from
this.

Because g  is finitely generated and free as a module over O, and also a Lie alge-bra
over O, it may be viewed as (the Lie algebra of global sections of) an algebraic
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family of complex Lie algebras over C,  the maximal ideal spectrum of O. The
individual fibers of the family are the complex Lie algebras

gj =  g = I   g;

where  2  C  and where I   O is the ideal generated by T -  (in the text we shall denote
typical points on the line by  rather than by E  as we did in the introduc-tion).

To better understand these fibers, let us give a concrete realization of the family
g  as an algebraic family of matrix Lie algebras. Define a morphism from the O-
module g  into the 44-matrices over O by

0  0      0      0 0  0  - 1  0 0  - 1  0  0
L 1  ! 0  1      0      0        ; L 2  ! 1  0       0       0 and     L 3  ! 1      0      0  0

(2.2.6)
R1 !  0      0  0      0 ; R2 ! 0      0      0  - 1 and     R3 ! 0  0  0      0 :

T      0  0      0                                        0  - T  0      0                                                      0  0  T      0

The image matrices are linearly indendent over O, so the morphism is injective.
The explicit computations in the proof of Lemma 2.2.4 show that it is also a Lie
algebra homomorphism.

The image of g  is the Lie algebra of all matrices over O of the form
0 e(T ) f(T ) p(T )

6 - e ( T ) 0 g(T ) q(T )7
4 - f ( T ) - g ( T ) 0 r(T ) 5

Tp(T )      Tq(T )     Tr(T )        0

where e, f, g, p, q and r are polynomial functions. The fiber Lie algebra gj is
therefore isomorphic to Lie algebra of all matrices of the same form, but with T
replaced by  2  C.

When =0, the fiber is the semidirect product so(3; C) n C3 . When =0, it is the
complex Lie algebra of infinitesimal symmetries of the symmetric bilinear form

S =  diag(1; 1; 1; -): If

we fix a complex number  such that

(2.2.7)

and if we define

(2.2.8)

2  =  - 1

L j      =  2  ( L j   Rj ) ;

then
[L; L] =  - " i j k L k  ;

and moreover
[ L + ; L - ]  =  0:

So the elements L  determine an isomorphism of complex Lie algebras
(2.2.9) gj  so(3)  so(3)

when =0. The isomorphism depends on the choice of ; the two possible choices lead
to isomorphisms that differ from one another by the flip automorphism of the
product Lie algebra. Note also that under the isomorphism, the subalgebra of gj
spanned by the elements L j  is mapped to the diagonal subalgebra of the product
in (2.2.9).
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From the embedding (2.2.6) we see that g  is the family of Lie algebras associ-
ated to an algebraic family G  of groups (that is, a smooth group scheme over the
complex line; see [BHS20a, Sec. 2.2]), namely
(2.2.10) G  =  (W; ) 2  GL(4; C)C : det(W) =  1 and WSW t =  S  :
The fiber groups are isomorphic to

O (
3;

C )  n  C
3  

=
 0

SO(4; C)  =  0:

Here the action of O(3; C) on C 3  in the semidirect product is given by

(2.2.11) A :  v  !  det(A) - 1 Av:

This is, of course, not quite the standard matrix action on C3 .  But it and the cor-
responding action of the compact group O(3) on R 3  will reappear throughout the
paper.

2.3. The visible symmetries and Harish-Chandra pairs. The constant family of
groups

K  =  O(3; C)C
may be viewed as a subfamily G  via the embedding

 A

!      0      det (A) - 1      :

The family K  acts on the family g  via the isomorphism (2.2.6) and the adjoint ac-
tion. This makes (g; K)  into an algebraic family of Harish-Chandra pairs in the
sense of [BHS20a, BHS20b].

Note that in terms of differential operators, the action of K  on g  is induced from
the action of O(3) on R 0  via the formula (2.2.11).

2.4. Real structure. The family (g ; K)  carries a natural real structure, which is to
say a set of compatible conjugate-linear involutions on O, g  and K .  See [BHS20a,
Sec. 2.5] for details concerning the definition, but the formulas below should make
those details clear.

First, we define a complex-conjugate-linear involution

: O  !  O

by means of the standard formula (p)(z) =  p(z). Here we are viewing elements of
O as polynomial functions on the line. Thinking of them as polynomials in T , the
involution acts by complex-conjugating all the coefficients of the polynomial.

Next, the elements of g, being linear partial differential operators on R3 ,  have
formal adjoints. The family g  is stable under the formal adjoint operation since T is
formally self-adjoint, while each of the operators L i  and Ri  in (2.2.1) and (2.2.2) is
formally skew-adjoint. Using this fact, we define

(2.4.1) g  : g   !  g

by g ( X )  =  - X .  This preserves the Lie bracket and satisfies

(2.4.2) g (p  X )  =  (p)  g ( X )

for all p 2  O and all X  2  g.
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Finally we define an involution on K  by combining the involution on the base
with the antiholomorphic involution

k  !  ( k ) - 1

on the fiber O(3; C). The three involutions so-defined constitute a real structure on
the algebraic family of Harish-Chandra pairs (g; K).

2.5. Cartan involution. There is a second natural complex-conjugate-linear invo-
lution

(2.5.1) g  : g   !  g;

which is defined as follows: each element of g  is a linear differential operator
on R3 ,  and 0 replaces each coefficient function in the operator by its complex
conjugate. Like the involution g , it is compatible with the involution on O in the
sense of the formula (2.4.2). Moreover g  and g  commute with one another. So the
composition

(2.5.2)  =  g   g  : g   !  g

is an O-linear involution of g. Its fixed subalgebra is precisely the algebra k of vis-
ible symmetries, while its - 1  eigenspace is spanned by the Runge-Lenz operators.

2.5.3. Remark. The symmetries of the Schrodinger equation are related to our in-
volutions as follows: the visible symmetries are those elements of g  that are fixed
by both g  and , whereas the hidden symmetries are those fixed by g  alone.

2.6. Involutions at the group level. The involutions  and g  assume a simple form
under the isomorphism in (2.2.6) from g  to a family of 44-matrix Lie alge-bras. On
the matrix fibers, g  is simply entry-wise complex conjugation, whereas  is
conjugation by the matrix

 =  diag(1; 1; 1; -1):

So these involutions lift to the family of groups G.  To summarize:

2.6.1. Theorem. There is an algebraic family of complex algebraic groups G  over the
complex line, together with a real structure  and a commuting involution  such that
(a) The associated algebraic family of Lie algebras is the family g.
(b) The family G  includes the constant family K  with fiber O(3; C) as a subfamily, and the

real structure restricts to the standard real structure on this subfamily given by entry-
wise complex conjugation.

(c) The induced real structure on g  is the involution in (2.4.1), and the fixed groups for
the real structure over the points  2  R  are the hidden symmetry groups

<SO(3; 1)  >  0
Gj  = O(3) n  R 3  =  0

SO(4)  <  0:

(d) The fixed family for the involution  is K ,  and the induced action at the Lie algebra
level is the involution in (2.5.2).

2.6.2. Remark. As  explained in [BHS18], the whole family G  can actually be con-
structed from the commuting involutions  and  on the fiber over =1.
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2.6.3. Remark. Starting from Fock’s work [Foc35], a substantial literature has de-
veloped from the fact that the symmetry groups described in the theorem above
are isomorphic to one another for all negative , and also for all positive . One re-
markable development, with ramifications that continue to be explored, has been
the realization of all the physical solutions of the time-dependent Schrodinger
equation associated to all  inside a single irreducible unitary representation of a
larger group, namely the minimal representation of (the connected component of
the identity of) O(4; 2), called the dynamical symmetry group. See [KO03a, KO03b,
KO03c] for a comprehensive mathematical treatment of the minimal representa-
tion in this case, and see [Mac20] or [MZ11, Men10] for recent accounts from the
physics perspective.

The approach to the symmetries of the hydrogen atom via the minimal rep-
resentation of O(4; 2) is rather different from our aims here, which are to view
the Schrodinger operator as a sort of Casimir operator for an algebraic family of
groups, and then understand how the eigenspaces vary algebraically as individ-
ual irreducible representations of the groups in this family. But it is interesting to
consider possible connections between the two.

To list one such possibility, away from =0, the isomorphisms in Theorem 2.6.1
lead to an embedding of the family of groups studied in this paper into the con-
stant family with fiber (the complexification of) O(4; 2). The embedding becomes
algebraic if one extends O by adjoining a square root of T . (Another way to un-
derstand the embedding is to note that our family, away from  =  0, is naturally a
subfamily of the family of orthogonal groups preserving the forms

Q  =  diag
 

1; 1 ; 1 ; ; -1 ; - - 1 (  =  0);

while conjugation by
A  =  diag

 
1; 1; 1; 1=2 ; 1; -1=2

transforms these orthogonal groups into the standard group O(4; 2).) The embed-
ding of groups is compatible with the embedding of the solutions of the Schrod-
inger equation into the minimal representation. It therefore becomes an interesting
problem to construct the algebraic families of solutions analyzed in this paper by
starting from the minimal representation. We hope to take up this issue elswhere,
and are obliged to the referee for suggesting this type of investigation.

2.7. The enveloping algebra and its center. Denote by U (g) the enveloping al-
gebra of the O-Lie algebra g. See [Bou60, Section 2.7] for general information on
enveloping algebras applicable to Lie algebras over commutative rings, including
for instance the Poincare-Birkhoff-Witt theorem, which applies to our case because
g  is free as a module over O.

We shall be especially concerned with the center Z ( g )  of the enveloping algebra,
and we shall give here an analysis of its structure. It follows from the formulas
(2.2.5) that the elements

(2.7.1) RL     and     TL2 -  R2

belong to the center of the enveloping algebra (we are using standard abbreviated
notation, so that R2 =  R2 +  R2 +  R2, and so on). Moreover these elements are
O(3)-invariant.
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2.7.2. Proposition. The center of the enveloping algebra U (g) is freely generated, as a
commutative O-algebra, by RL and TL2 -  R2.

Proof. View U (g) as a complex associative algebra, and equip it with the increasing
filtration for which

(2.7.3) order(Li ) =  0; order(Ri) =  1     and order(T ) =  0:
The associated graded algebra is the tensor product U (g0 )
C  O; where g0 is the 6-dimensional graded complex Lie algebra with basis elements
‘1 , ‘2 , ‘ 3  in degree 0 and r1 , r2 , r3  in degree 1, and relations

(2.7.4) [ ‘ i ; ‘ j ]  =  - " i j k ‘ k ; [ri ; rj ] =  0     and     [‘ i ; r j ]  =  - " i j k r k ;

compare to formulas (2.2.5) earlier.
Now, the center of the associated graded algebra is Z (g 0 )

C  O; and by an explicit computation Z (g 0 )  is a free commutative algebra over C
on the elements r ‘  and r2 . Compare [Gon88, Theorem 2.1]. The proposition
follows from this by a standard induction argument on the order of elements in
the center of the enveloping algebra.

2.7.5. Remark. The reference [Gon88, Theorem 2.1] actually computes the O(3)-
invariant part of Z (g 0 )  for the standard action of O(3) on C3 ,  not the action (2.2.11).
For that action the invariant part is freely generated by (r ‘)2  and r2 . The element r ‘
is not O(3)-invariant for the standard action; instead, it transforms under A2O(3)
as

r ‘   !  det(A)  r‘:
But the computation of Z (g 0 )  is easily reduced to the computation of the standard
O(3)-invariant part using the formula

Z (g 0 )  =  Z (g0 )O(3);standard  r ‘   Z (g0 )O(3);standard :

2.8. Realization in differential operators. Because g  is defined as a Lie algebra of
linear differential operators commuting with the rescaled Schrodinger operator T ,
there is a canonical morphism of O-algebras

(2.8.1) : U (g)  !  Centralizer(T ):

We shall briefly examine both the image and the kernel of this morphism.
The algebra Centralizer(T ) is filtered by the usual order of differential operators.

The following lemma is proved by a direct computation, which we shall omit:

2.8.2. Lemma. The order 2 part of Centralizer(T ) is spanned by the totality of the ele-
ments

(i) I  (the identity operator)
(ii) T (the rescaled Schrödinger operator)

(iii) L1 , L 2      and L 3
(iv) R1, R2     and R3

(v) L 2  +  L 2  +  L 2

(vi) L 1 L 2  +  L2 L1 ,  L 1 L 3  +  L3 L1 ,  L 2 L 3  +  L3 L2 ,  L 1  -  L 2      and L 2  -  L3 .

We grouped the elements into six separate sets because the operators in each
span an irreducible representation of the group O(3).

The following formulas for the action of Z ( g )  under the morphism  will play
important roles in the sequel. For the proofs, see for example [Hal13, Prop. 18.11].
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2.8.3. Lemma. The images of the central elements RL and TL2 -  R2 in (2.7.1) under the
homomorphism  are given by the formulas

(RL) =  0

and
(TL2 -  R2 ) =  T +  2 I:

2.8.4. Remark. It is evident from Lemma 2.8.2 that the range of (2.8.1) includes the
full second-order part of the centralizer. Indeed it is asserted in [DSS96] that the
full centralizer is generated by g. This is consistent with experience from the study
of classical superintegrable systems, such as the Kepler system, where, in n  di-
mensions there are at most 2 n - 1  functionally independent conserved quantities;
see for example [MPW13, p.11]. The analogous statement for quantum superinte-
grable systems is known in some cases and there are no known counterexamples;
see [MPW13, p.12]. It also seems likely to us that the kernel of the morphism from
U (g) into the centralizer is fully described by the relations in Lemma 2.8.3.

3. FA M I L I E S OF H A R I S H - C H A N D R A  M O D U L E S

In this section, we shall collect some general information about families of Harish-
Chandra modules over the family of Harish-Chandra pairs that we constructed
in the previous section, including definitions and a classification theorem. This
is in preparation for our representation-theoretic analysis of the solutions of the
Schrodinger equation in Section 5.

3.1. Locally finite-dimensional group representations. Let V be a complex vec-
tor space that is equipped with a linear representation of the group K  =  O(3; C).
There is a natural evaluation map

(3.1.1)
M  

W
 HomK (W; V )  !  V;

2 K

where the sum is over the equivalence classes of irreducible (finite-dimensional)
linear representations of the complex algebraic group K, and W is a representa-
tive of the equivalence class .

The representation V is said to be locally finite-dimensional if the map (3.1.1) is a
vector space isomorphism. In any case the image, which we shall denote byVfin,
is a locally finite-dimensional representation of K  in its own right. The individual
images V of the summands in (3.1.1) are the isotypical summands of the represen-
tation. They are the same for V and Vfin.

Denote by O(K) the space of regular functions on K. A locally finite-dimensional
representation of K  on V determines, and is determined by, the vector space mor-
phism

(3.1.2) V  !  O(K)
C  V

for which composition with evaluation at k  2  K  (a map O(K) !  C)  gives the action
of k  on V.

A  dual form of (3.1.2) may be defined as follows. Given any locally finite-
dimensional representation of K  on a vector space V, let us denote by

V =  HomC (V; C)fin
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the locally finite contragredient representation. From the left translation action of
K  on O(K) we obtain in this way

R(K) =  O(K):

The morphism (3.1.2) then corresponds to a morphism

(3.1.3) R(K)

C  V  !  V:

Applying this in the case where V is R(K) itself, we get a morphism of vector spaces

R(K)

C  R(K)  !  R(K):

This is an associative product on R(K) and (3.1.3) is a module action.1     In fact a
locally finite-dimensional representation of K  is exactly the same as a left R(K)-
module that is nondegenerate in the sense that R(K)  V =  V.

Examining (3.1.3) in the case where V is the direct sum of all irreducible repre-
sentations of K, up to equivalence, we obtain the Peter-Weyl isomorphism of algebras

(3.1.4) R(K)  !  
M  

End(W):
2 K

One consequence of the Peter-Weyl isomorphism is that R(K) contains many cen-
tral idempotents, corresponding to the identity operators on the spaces W. The
idempotent associated to the trivial representation will be especially important in
what follows.

3.1.5. Definition. We shall denote by e2R(K) the central idempotent that is mapped
to the identity operator on the trivial representation under (3.1.4), and is mapped
to zero in any other summand of (3.1.4).

Finally, let us establish some notation for later use. Throughout this paper we
shall be considering only representations of K  for which the element - I  2  K  acts
trivially. As  a result, the irreducible representations where - I  acts nontrivially will
play no role. The group K  is the direct product of its 2-element center, generated
by - I ,  and its identity component, which is of course SO(3; C). So effectively we
shall be studying representations of SO(3; C), and we shall call these the SO(3)-
type representations of K. They may be listed as

‘  : ‘  =  0; 1; : : : ;

where ‘  has dimension 2 ‘+1. We shall write W ‘  in place of W ‘  .

3.2. Families of locally finite-dimensional representations. By an algebraic family
of representations of K  we shall mean a locally free, and hence in our context free,
O-module F  that is equipped with a locally finite-dimensional representation of K
by O-module automorphisms.

Each of the isotypical summands of F  is now a free O-module, and we shall
say that F  is admissible if all its isotpyical summands are finitely generated (and
necessarily free) O-modules. Finally the locally finite contragredient of the family
is

(3.2.1) F  =  HomO (F ; O)fin :

1The algebra R(K) is often called the Hecke algebra of K. After fixing a Haar measure on O(3), using
which we can identify elements of R(K) with functions on O(3), the product corresponds to convolution
of functions on O(3). The module structure may also be described using convolution. See [KV95].
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3.3. Algebraic families of Harish-Chandra modules. An admissible algebraic fam-
ily of Harish-Chandra modules for (g ; K)  is an admissible algebraic family of K-
representations F  that is equipped with an O-linear action of g,

g
O  F   !  F ;

that is compatible with the K-action in the sense that the action map is K-equivariant,
and its restriction to k  g  is the infinitesimal form of the K-action.

As was the case with locally finite-dimensional K-actions, it is possible to de-
scribe (g; K)-module structures using an appropriate associative algebra. Form
the tensor product

U (g; K) =  U (g)
U ( k )  R(K):

The actions of g  and K  on F  determine a morphism

(3.3.1)                                                U (g; K)

 O F   !  F :

The O-module U (g; K) itself carries actions of g  and K, the later being the tensor
product of the adjoint and left-translation actions, and so we obtain a morphism

U (g; K)
O  U (g; K)  !  U (g; K)

which is an O-linear associative product on U (g; K). The morphism (3.3.1) gives
F  the structure of a U (g; K)-module, and in this way algebraic families of Harish-
Chandra modules for (g; K)  correspond exactly to U (g; K)-modules that are free as
O-modules and nondegenerate in the sense that U (g; K)  F  =  F .  For all this, see
[KV95] (which treats the case of individual Harish-Chandra modules, but families
may be handled in the same way).

3.4. The spherical Hecke algebra. In this section we shall classify certain alge-
braic families of Harish-Chandra modules. Later on we shall use the classification
to characterize the families that arise from the solution of the Schrodinger equa-
tion (see Sections 5.6 and 6.4) and to prove the existence of intertwining operators
between these families (see Section 6.2).

3.4.1. Definition. Let us say that an algebraic family F  of Harish-Chandra mod-
ules for (g ; K)  is standard and spherical if

(i) The K-isotypical decomposition of F  consists of the full set of SO(3)-type
representations, each occurring with multiplicity one.

(ii) F  is generated by its spherical vectors (that is, by its K-fixed elements) in the
sense that U (g)  F 0  =  F ,  where F 0  is the isotpyical subspace for the trivial
representation of K.

3.4.2. Remark. In most situations involving families of irreducible Harish-Chandra
modules, item (i) above is implied by item (ii).

3.4.3. Definition. If F  is standard and spherical, then the element TL2 - R 2  2  Z ( g )
acts on F 0 ,  and indeed on F ,  as multiplication by some polynomial Q  2  O. We
shall call Q  the value of T L 2 - R 2  on F .

3.4.4. Theorem. A  standard and spherical family of Harish-Chandra modules for (g; K)  is
determined up to isomorphism by the value in O of TL 2 -R 2 .  Moreover any element of O
can arise as the value of T L 2 - R 2  in a standard and spherical family.

We shall prove this by means of the following auxilliary constructions.
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3.4.5. Definition. The spherical Hecke algebra for the family (g ; K)  is the following
O-algebra:

H ( g ; K )  =  e  U (g; K)  e:

Here e 2  R(K) is the idempotent in Defintiion 3.1.5, and we view it as an element
of H ( g ; K )  via the embedding e !  1
e. Let us also define

U H (g; K)  =  U (g; K)  e

This is a U (g; K)-H(g; K)-bimodule by left and right multiplication.

3.4.6. Proposition. The spherical Hecke algebra H ( g ; K )  is freely generated as an O-
algebra by the (tensor) product of TL2 -  R2 2  Z ( g )  with e 2  R(K).

3.4.7. Proposition. The space U H (g; K)  is a free H(g; K)-module. Moreover there is an
isomorphism

U H (g; K)  = W ‘

C  H (g ; K) ;  ‘ 0

of K-modules and H(g; K)-modules.

We shall prove these results in a moment, but first let us explain how they lead
to a proof of Theorem 3.4.4.

If F  is any algebraic family of Harish-Chandra modules, then the trivial iso-
typical summand e F = F 0  is an H(g; K)-module and a free O-module. The tensor
product

U H (g; K)
H ( g ; K )  F 0

is a standard and spherical family, and it is determined up to isomorphism by the
value of TL2 -  R2, since by Proposition 3.4.6 this determines F 0  as an H(g; K)-
module, up to isomorphism. Now the formula X
 f  !  X f  defines a classifying morphism of families

(3.4.8) U H (g; K)
H ( g ; K )  F 0   !  F :

If F  is itself standard and spherical, then (3.4.8) is surjective, and, by counting
dimensions in like isotypical summands using Proposition 3.4.7, we find that it is
in fact an isomorphism. So there is at most one standard and spherical family, up
to isomorphism, for any given value of TL2 -  R2.

In the reverse direction if M  is any H(g; K)-module that is free and of rank one
as an O-module, then the tensor product

(3.4.9) U H (g; K)
H ( g ; K )  M

is a standard and spherical family. So using Proposition 3.4.6 again we can con-
struct standard and spherical families with any given value of TL2 -  R2.

Let us turn now to the proofs of Propositions 3.4.6 and 3.4.7. The family g  may
be decomposed as a K-equivariant direct sum of O-modules

g  =  k  s;

where the summand s  is freely generated as an O-module by the elements R1,
R2 and R3. It will be convenient to denote by s the R-linear span of these three
elements, so that

s  =  O
R  s:
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The three-dimensional real vector space s carries the action (2.2.11) of the compact
group O(3). It also carries an essentially unique invariant inner product, using
which the symmetric and polynomial algebras of s may be identified.

We shall use the following simple and well-known facts concerning the alge-
bra of complex polynomial functions on s. First, the K-invariant polynomials are
freely generated by R2 =  R2 +R2 +R2 . Second, the full polynomial algebra is a free
module over its K-invariant subalgebra. To be more precise, if Harm(s) denotes
the space of harmonic polynomials on s, then the multiplication map

Harm(s)
 Sym(s)K  !  Sym(s)

is a complex vector space isomorphism (this is a very special case of a much more
general theorem of Kostant [Kos63, BL96]).

The degree ‘  harmonic polynomials form a copy of the irreducible SO(3)-type
representation of dimension 2 ‘+1. So the space Harm(s) decomposes as a direct
sum of precisely one copy of W ‘  for each ‘  =  0; 1; 2; : : : .

Proof of Proposition 3.4.6. Filter the algebra U (g; K) by means of the filtration (2.7.3)
on the enveloping algebra and by deeming R(K) to be of order zero. The spherical
Hecke algebra is a filtered subalgebra, and it suffices to show that its associated
graded algebra is freely generated as an O-algebra by the symbol of the order 2
element TL2 -  R2, or equivalently by the symbol of R2.

The composition of the symmetrization map from the K-invariant part of the
symmetric algebra of s  into U (g) with mutliplication with e2R(K) on both sides is
an isomorphism of filtered O-modules

Sym(s)K   !  H (g ; K) :

This is an algebra isomorphism at the level of associated graded algebras, because
the elements in s   U (g) commute with one another up to elements of lower order.
Moreover the invariant part of the symmetric algebra is freely generated by R2, as
we noted above.

Proof of Proposition 3.4.7. Let us use the same filtration of U (g; K) as in the previ-
ous proof, which we shall now restrict to U H(g; K) .  It suffices to show that the
associated graded space is a free module over the associated graded algebra of
the spherical Hecke algebra, and to compute that each K-type occurs in it with
multiplicity one.

The associated graded space is Sym(s), via the same identifications as in the
previous lemma, while associated graded algebra of the spherical Hecke algebra is
Sym(s)K . As  we already noted, the former decomposes as Harm(s)
C  H ( g ; K )  as both a K-module and a module over the invariant functions.

3.5. Twisted dual families. The same formula (3.2.1) used for families of repre-
sentations of K  defines the locally finite-dimensional contragredient F  of an alge-
braic family of Harish-Chandra modules. But it will be a bit more relevant in this
paper to examine the following variants of the locally finite-dimensional contra-
gradient that involve the involutions introduced in Subsections 2.4 and 2.5.

The -twisted dual F ;  is simply F  but with the action of g  twisted by the
involution : for  2  F  and X  2  g  we change the action of X  on  to

X :   !  (X):
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The -twisted dual F ;  is the complex conjugate space F ,  which we consider to
be an O-module via the given involution on O:

p   : =  (p) 8p 2  O 8 2  F :

It is similarly a g-module and a K-module via the involutions on g  and K. See
[BHS20b, Sec. 2.4] for further information.

4. P R I N C I PA L  SE R I E S R E P R E S E N TAT I O N S

To provide some context for our treatment of families of Harish-Chandra mod-
ules in the next section, we shall review here the classification of the irreducible
modules of a single Harish-Chandra pair (gj; K) (see [Wal88, Ch. 3] for basic infor-
mation concerning Harish-Chandra modules, which will in any case be reviewed
in the families context in the next section). We shall focus on the case where  =  0,
and throughout this section  will be a fixed nonzero complex number.

4.1. Parabolically induced representations. The group K = O ( 3 )  is disconnected,
but it is the direct product of its connected identity component K 0 =SO(3 )  and the
two-element center of K. The center acts trivially on gj, and so the irreducible rep-
resentations of the pair (gj; K) are partitioned into set of those where the center of K
acts trivially, and an otherwise identical set of irreducible representations where it
does not. From now on we shall concentrate on the former, which correspond to
irreducible (gj; K0)-modules.

We have seen that (gj; K0 ) is isomorphic to (so(3; C)so(3; C); SO(3)), with
SO(3) acting diagonally. Since the latter is the Harish-Chandra pair associated to
the real reductive group PSL(2; C), we can determine the irreducible repre-
sentations of (gj; K0 ) by computing the irreducible admissible representations of
PSL(2; C) up to infinitesimal equivalence.

The irreducible admissible representations of PSL(2; C), or more generally of
SL(2; C), are well known and may be described using parabolic induction from
the subgroup of upper triangular matrices. Let ( ; ’ )  2  Z C .  The parabolically
induced representation of SL(2; C) associated to the character

0 a -1       !  phase(a)jaj ’

of the diagonal subgroup is either irreducible or has a composition series with
two irreducible factors, one finite-dimensional and one infinite-dimensional. In
either case, the representations, or irreducible factors, at ( ; ’ )  and ( - ; - ’ )  are the
same. See, for example [Kna86, Chap VIII ,  Problems 9-14] for details concern-ing
all the above.

Each infinite-dimensional, irreducible, admissible representation of the real re-
ductive group SL(2; C) arises as a parabolically induced representation, and does
so in a unique way, except for the equivalence just mentioned. Moreover each
finite-dimensional and irreducible representation of SL(2; C) arises as a compo-
sition factor of a unique reducible parabolically induced representation, again ex-
cept for the equivalence between the factors associated to ( ; ’ )  and ( - ; - ’ ) .  We
find, in summary that the admissible dual of SL(2; C) is parametrized by the set

( Z   C ) Z 2 ;



1
2 2

4

1 1

1 1  

4 4

FAMILIES OF SYMMETRIES A N D  T H E  H Y D R O G E N  ATOM 17

where the group Z 2  acts as the involution ( ; ’ )  !  ( - ; - ’ ) .  The irreducible
admissible representations of SL(2; C) that factor through the quotient PLS(2; C),
and so correspond to irreducible Harish-Chandra modules for (gj; K0 ), are those
with parameters in the subset

(2 Z  C ) Z 2   ( Z   C) Z 2 :

4.2. Casimir elements. In this paragraph we shall compute the the action of the
central elements

LR     and     L 2  -  R2

in the enveloping algebra of gj on the principal series representation with param-
eters ( ; ’ ) .

First, it is well known that the so(3) Casimir element

(4.2.1)
 =  L 2  =  L 2  +  L 2  +  L 3

acts as - 1 n ( n  +  2) in the irreducible finite-dimensional representation of so(3) of
dimension n + 1  (this is the representation of highest weight n). It follows from this
that if
 are the Casimir elements associated to the generators L j  in (2.2.8), then

p
-

L R  =

+  -
-  =  4

 
m(m +  2) -  n ( n  +  2)

 
and

L 2  -  R2 =  2
+  +  2
-  =  - 2  m(m +  2) +  n ( n  +  2)

in the representation of gj corresponding under the isomorphism (2.2.9) to the
finite-dimensional, irreducible, tensor product representation of the direct product
so(3)so(3) of highest weight (m; n); the indeterminacy in sign corresponds to the
indeterminacy in the choice of square root of - .

Now the above finite-dimensional representation of (gj; K0 ) arises as a quo-
tient of the principal series representation with parameters

(4.2.2)  =  m -  n      and     ’  =  2 +  m +  n:

Since it follows from (4.2.2) that
’  =  m(m +  2) -  n ( n  +  2)     and     2  +  ’ 2  =  2

 
m(m +  2) +  n ( n  +  2)

 
+  4;

we find that in the principal series representation with parameters ( ; ’ )  as in
(4.2.2), the Casimir elements act as

(4.2.3) LR =  
p

-
’

and     L 2  -  R2 =  
4 -  2  -  ’ 2  

:

Once again the indeterminacy in sign corresponds to the indeterminacy in the
choice of square root, and hence the choice of isomorphism in (2.2.9).2

Although we have computed the formulas (4.2.3) for ( ; ’ )  satisfying (4.2.2)
they must in fact hold for all ( ; ’ )  by a Zariski density argument, since both sides are
regular in ’ .

2The outer automorphism of the pair (so(3)so(3); K0 ) that flips the two so(3)-factors induces the
involution ( ; ’ )  !  ( - ; ’ )  on parameters for irreducible modules.
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4.3. Spherical representations. We are particularly interested in representations
that include K0-fixed vectors. The lowest K0-type in the principal series represen-
tation with parameters ( ; ’ )  has highest weight jj, and so the principal series
representations that include K0-fixed vectors are precisely those for which  =  0.
Hence:

4.3.1. Lemma. The K-types of an irreducible infinite-dimensional representation with
parameters ( 0 ; ’ )  are the full set of SO(3)-types ‘  =  0; 1; 2; : : : , and each occurs with
multiplicity one.

We shall again use the term standard for representations with the above K0-
isotypical structure.

We are also particularly interested in those representations in which the Casimir
element L 2  -  R2 acts as the scalar  +  2; compare Lemma 2.8.3.

4.3.2. Lemma. Let V be a standard representation of (gj; K0 ). If the Casimir element L 2

-  R2 acts on V as the scalar  +  2 , then the irreducible quotient of V including the K0-type
‘= 0  has classification parameters  =  0 and ’ 2  =  -4 2 = .

Proof. It follows from (4.2.3) that

  
’ 2  -  4 

+   +  2  =  R2 -  L 2  +   +  2  =  0;

or in other words that

  
4 

+  2  =  0:

This implies the result.

4.3.3. Corollary. Let V be a standard representation of (gj; K0 ) in which the Casimir
element L 2  -  R2 acts on V as the scalar  +  2. Unless - 4 2 =  is a integer square, V is an
irreducible principal series representation.

Proof. The criterion for reducibility of a parabolically induced representation is that
’  be an integer of the same parity as n, with j ’ j  >  jnj. See [Kna86, Chap VIII ,
Problems 9-14] again. So if ’  is non-integral, then any irreducible representation
with parameters ( 0 ; ’ )  is an irreducible principal series representation. The result
now follows from the Lemma 4.3.2.

4.3.4. Remark. In the next section we shall construct families of representations
using solutions of the rescaled Schrodinger equation. They will satisfy the hy-
potheses of the corollary, and as a result for almost all  the fibers will be irre-
ducible principal series representations with parameters (0; -4 2 =) .  Among
other things our construction will in effect extend the principal series to ’ = 1 ,
where we will obtain a Harish-Chandra module for (gj0 ; K).

5. SO L U T I O N S OF T H E  S C H R O D I N G E R  E Q U AT I O N

In this section, we shall associate to every  2  C  a space RegSol() of “regular”
solutions of the rescaled Schrodinger equation Tf =  f. Then we shall construct a
natural algebraic family of Harish-Chandra modules RegS ol whose fibers are the
spaces RegSol().

The solutions of the Schrodinger equation that are studied in physics are all
regular, but here we shall also examine the “singular” solutions. Contrary to what
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one might expect, the singular solutions will play a decisive role in our study of
the physical solutions of the Schrodinger equation.

5.1. Solutions by separation of variables. In this subsection we shall review the
standard approach to the solution of the (rescaled) Schrodinger equation by sepa-
ration of variables in spherical coordinates.

5.1.1. Definition. For each  2  C  we define

Sol() = 2  C 1 ( R 3 ) fi n  : T =  :

The Laplacian on R 0  may be written as
2

 =  
@r2 +  

r @r 
+  

r2

where
 is the Casimir operator (4.2.1) and where @=@r is differentiation in the radial
direction:

@r 
=  

r 
x1  @x1 

+  x2  @x2 
+  x3  @x3      

:

So the rescaled Schrodinger operator T acts on the ‘-isotypical component of the
space C 1 ( R 3 ) fi n  as

2
(5.1.2) T =  -

@r2 -  
r  @r 

+  
r2  ‘ ( ‘  +  1) -  

r  
:

Using the standard diffeomorphism

(5.1.3)
R 0   !  R +   S2

x  !  kxk ; kxk - 1 x  ;

we find that for any  2  C,  the ‘-isotypical space in Sol() is the tensor prod-uct of
the two-dimensional space of -eigenfunctions of (5.1.2) in C1 (R+ ) with the ‘-
isotypical component of the space C 1 (S 2 )fin .  The latter is a single copy of the
irreducible SO(3)-type representation W ‘ ; as noted in Section 3 it consists of the
spherical harmonic functions of degree ‘, which are the restrictions of harmonic
polynomial functions of degree ‘  to the sphere. We arrive at the following simple
conclusion:

5.1.4. Proposition. For every  2  C  the subspace Sol()  C 1 ( R 3 ) fi n  is invariant under
the action of the Lie algebra g. Moreover the action of g  on Sol() factors through the fiber gj
and gives Sol() the structure of an admissible (gj; K)-module, with each SO(3)-type
representation of K  occurring with multiplicity 2.

5.2. Regular solutions of the Schrödinger equation. Let us examine the radial
operator (5.1.2), acting on smooth functions of r  >  0, a little more closely. Its -
eigenfunctions are precisely the solutions of the differential equation

(5.2.1) r2  
dr2 +  2r 

dr 
-  ‘ ( ‘+ 1 )      +  2r     +  r2 =  0:

This equation is regular-singular at r  =  0, with indicial roots ‘  and - ( ‘+ 1 ) ,  and
general theory (namely the Frobenius method; see [WW96, Chapter X] or [Tes12,
Ch 4]) provides a smooth solution defined on R +  that in fact extends to an entire
function of r 2 C  with a zero of order precisely ‘  at r =  0.
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5.2.2. Definition. We shall denote by F ‘ ;  the unique solution of (5.2.1) that extends
to an analytic function of r  2  C  and has the Taylor series

(5.2.3) F ‘ ; (r)  =  r ‘  +  higher-order terms in r:

General theory also provides a second, linearly independent solution of the
form

(5.2.4) G ‘ ; ( r )  =  H ‘ ; ( r )  +  C ‘ ;  log(r) F ‘ ;(r);

where H ‘ ;  is a meromorphic function of r with a pole of order ‘+1.  The constant C ‘ ;
might be 0. Whether or not that is the case, the scalar multiples of F ‘ ;  are the only
solutions that are bounded near 0 2  R3 .

5.2.5. Definition. We shall denote by RegSol() the subspace of Sol() comprised of
functions that are bounded near 02R3 .  Equivalently, RegSol() is spanned by
functions of the form

R +   S2  3  (r; )  !  F ‘ ; (r)Y ‘ ()

in spherical coordinates (5.1.3), where:
(i) F ‘ ;  is the regular solution of the radial equation (5.2.1) with leading coeffi-

cient 1, as in (5.2.3), and
(ii) Y ‘  is any spherical harmonic function of degree ‘.

5.2.6. Proposition. The subspace RegSol()  Sol() is a (gj; K)-submodule.

To prove this we shall use the following computation of the Runge-Lenz oper-
ators in polar coordinates.

5.2.7. Lemma. After applying the diffeomorphism R 3   R + S 2  in (5.1.3) each of the
Runge-Lenz operators R : C 1 ( R 3 )  !  C 1 ( R 3 )  assumes the form

p
- 1   R =  C  +  

r 
 D  +  @r  E;

where C, D  and E  are linear differential operators on S2  with real coefficients.

Proof. Each coordinate vector field @j on R 0  has the form

hj  @r +  
r 

 X j ;

where hj is a smooth function on the 2-sphere and X j  is a vector field on S2 . The
lemma follows from this and the fact that

- 1   Ri  = Li@j +  @i -  
x i  ;

j = i

keeping in mind that each L i  is a vector field on S2  in spherical coordinates while
xi =r is a smooth function on S2 .

Proof of Proposition 5.2.6. Let =  F ‘ ;   Y ‘  be a generating element of the vector
space RegSol(), as in Definition 5.2.5. It suffices to show that if R is any one of the
Runge-Lenz operators, then the function R is bounded in a neighbourhood
of 0 2  R3 .

When ‘1, boundedness is clear from the formula for the operator R given in
Lemma 5.2.7, since F ‘ ;  vanishes at r=0. But when ‘=0,  the function F ‘ ;  does not
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vanish at r=0, and the formula in Lemma 5.2.7 suggests that R     might behave like
1=r at r=0. So a somewhat closer examination is required.

Suppose then that ‘=0.  Denote by hR i k  the projection of R     into the k-isotypical
component of Sol(), so that

R =  
X

h R  i k :
k 0

The functions hR i k  for k1 must be bounded near r=0, since the space Sol()k

consists of functions that are either bounded near r= 0  or have poles of order k+1,
and k + 1   2, while R behaves at worst like 1=r. As  for the component hR i0 ,  it
follows from the definitions that

hR i 0  =  eRe ;

and we have seen that eRe, like any element of H(g; K) ,  acts on the 0-isotypical
component as a polynomial function of , so that hR i 0  is a scalar multiple of and
is therefore bounded near r= 0  as required.3

5.3. The algebraic family of regular solutions. We shall now assemble the spaces
RegSol() into an algebraic family, as follows.

5.3.1. Definition. We shall denote by RegS ol the complex vector space that is
spanned by functions on C R + S 2  (using spherical coordinates) of the form

(; r; )  !  p()F ‘ ;(r)Y ‘ ();

where
(i) p is any polynomial function, and

(ii) F ‘ ;  and Y ‘  are as in Definition 5.2.5 above.
We give RegS ol the structure of a (free) O-module via the natural action of the
rescaled Schrodinger operator T 2  O on functions, which is in this case of course
multiplication by  since the action is on eigenfunctions.

The group K  acts on RegS ol as O-module automorphisms via the action (2.2.11)
of K  on R0 .  There are obvious K-equivariant isomorphisms

(5.3.2) RegS ol j =  RegSol()

for all  2  C.  We wish to make RegS ol a g-module via the natural action of g  as
differential operators on smooth functions on R3 .  But we need to prove first that
RegS ol is invariant under this action. The following is one of our main results:

5.3.3. Theorem. The vector space RegS ol is invariant under the following action of ele-
ments X  2  g:

h i
X : p  F ‘ ;   Y ‘       !  (; r; ) !  p() X(F ‘ ;Y ‘ )  (r; ) :

As a result, RegS ol carries the structure of an algebraic family of Harish-Chandra mod-
ules.

It is enough to prove that RegS ol is invariant under the action of the Runge-
Lenz operators, and this is what we shall do in the next several lemmas.

3In fact one can compute that eRe=0 in H(g ; K ) ,  so that hR i 0  =  0.
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5.3.4. Lemma. If ‘   1 and if 2  RegS ol ‘ , and if R is any Runge-Lenz operator, then
hR i‘ - 1  2  RegS o l ‘ - 1 .

Proof. Think of as a section  !  of the family of spaces RegSol(). We may
assume that is one of the generators of RegS ol, so that

 =  p()  F ‘ ;   Y ‘ :

Using Lemma 5.2.7 we compute that

(5.3.5)     R  =  p()  ‘   r ‘ - 1   D Y ‘  +  p()  r ‘ - 1   EY ‘

+  higher-order terms in r:

The formula shows that the (‘-1)-component of R
quired.

belongs to RegS ol, as re-

It will be convenient now to introduce a somewhat larger space than RegS ol.
We shall denote by RegS olhol the space defined in exactly the same way as RegS ol,
except that p() is replaced by any entire function h(). Since the eigenfunctions F ‘ ;
depend analytically on , the space RegS olhol is certainly invariant under the action
of g.

5.3.6. Lemma. If ’  2  RegS olhol , and if p  ’  2  RegS ol for some nonzero polynomial p,
then ’  2  RegS ol.

Proof. This follows from the fact that the only entire rational functions are polyno-
mials.

To proceed, let us make note of a simple fact that will be discussed further in the
next section (and in any case the lemma may be proved by direct computation):

5.3.7. Lemma. For all but countably many 2 C  the space RegSol() is an irreducible
(gj; K)-module.

5.3.8. Lemma. If ‘   1, if 2  RegS ol ‘ol , and if hRS i‘ - 1  2  R e gS o l ‘ - 1  for every
Runge-Lenz operator R and every S  2  R(K), then 2  RegS ol .

Proof. Assume that =  hF ‘ ;Y ‘ , with h holomorphic. It follows from the explicit
formula (5.3.5) that hRS i‘ - 1  has the form

h  F ‘ - 1 ;   Z ‘ - 1

for some Z ‘ - 1  in the (‘-1)-isotypical part of C 1 ( S 2 )  that depends on the choices
of R and S.

If Y ‘  is nonzero, then Z ‘ - 1  must be nonzero for some R and some S, for other-
wise the (gj; K)-submodule of RegSol() generated by      would be a proper sub-
module for every , contrary to Lemma 5.3.7. In the case where Z ‘ - 1  is nonzero, if
hRS i‘ - 1  2  RegS ol, then it follows that h is in fact a polynomial function, and
hence that 2  RegS ol, as required.

5.3.9. Lemma. If X  2  U (g; K) and if 2  RegS ol0 , then X 2  RegS ol.

Proof. Fix 2  RegS ol0 . We need to prove that hX i ‘  2  RegS ol for every X  and
every ‘   0. If ‘  =  0, then since

hX i 0  =  eXe      ;
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with eXe 2  H(g ; K) ,  the required result follows for every X  from Proposition 3.4.6
and Lemma 2.8.3, which together show that eXe acts on RegS ol0 as multiplication by
a polynomial in . The cases of higher ‘  are handled by induction on ‘  using
Lemma 5.3.8.

5.3.10. Lemma. If 2  RegS ol, then there exists a nonzero polynomial p, some S0  2
U (g; K) and some     0  2  RegS ol0 , such that p =  S0       0

Proof. It follows from the Peter-Weyl decomposition (3.1.4) and the K-isotypical
decompositon of RegS ol that there is a family of pairwise orthogonal idempotents
f  in R(K) such that

RegS ol = f   RegS ol
and such that each summand on the right is a free O-module of rank one. It suf-
fices to prove the lemma for generators of each of these summands, so let be a
generator for the O-module f   RegS ol. Thanks to Lemma 5.3.7 we can write

 =  ( f       )  =  ( f   S       0 )

for at least one value of , for some S  2  U (g; K) and for some 0  2  RegS ol0 .
This means, in particular that f   S       0  is nonzero, and hence that f   S       0  is nonzero.
Since the latter is an element of a free O-module of rank one, of which
is a generator, we can write

f   S       0  =  p

for some p 2  O, as required.

Proof of Theorem 5.3.3. Given 2  RegS ol and S 2  U (g; K), we wish to prove that
S 2  RegS ol. As  we have already observed, certainly S 2  RegS olhol . But if
p     =  S0       0 , as in Lemma 5.3.10, then

pS =  SS0       0 ;

and so it follows from Lemma 5.3.9 that pS
that S 2  RegS ol, as required.

2  RegS ol. Lemma 5.3.6 now implies

5.4. An explicit formula for the action. It is also possible to prove Theorem 5.3.3
by an explicit computation, although the details are surprisingly intricate. Here
we give a sketch of the method and at the same time give explicit formulas for a
basis of the regular solutions.

To begin, if =0,  then it may be shown that

(5.4.1) F ‘ ; (r)  =  r ‘ e -      - r M  -  p
-

+‘+1 ;  2 ‘+2 ; 2 - r  ;

where M(a; b; z) is Kummer ’s confluent hypergeometric function. (It follows from
Kummer ’s formula

e- z M(a; b; z)  =  M(b -  a; b; -z)
and the fact that Bessel functions of odd order are odd that F ‘ ;  does not depend
on the choice of the square root.) If =0, then

(5.4.2) F ‘ ; (r)  =  
(2 ‘  +  1)! 

p
2 r  

J 2 ‘ + 1 (
p

8 r )



- p
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where J(z) is the Bessel function of the first kind. See for example [LL58, Section
36].

Next, for ‘   m  - ‘ ,  we define ‘ ; m  2  RegS ol by
‘ ; m  =  F ‘ ;   Y ‘ ; m ;

where the functions Y ‘ ; m  are the basis for the spherical harmonic functions of de-
gree ‘  from [AWH13, Chap. 15, eq. 15.137]. Now, form the following combination
of Runge-Lenz vectors:

R -  =  - i R 1  -  R2:
Then it may be calculated that

(5.4.3)     R -       
‘ ; ‘  =  

p
2 ‘ ( 2 ‘

 
+

 
1)‘ ‘ - 1 ; ‘ - 1

                            p
2                  2  +  ( ‘  +  1)2 (2 ‘

+  3)(2‘ +  1)) ( ‘  +  1)(2‘ +  3)
‘ + 1 ; ‘ - 1 :

The computation involves the explicit form of the functions F ‘ ;  along with various
identities for hypergeometric, and other, functions.

It can be shown that the entire g-action is determined by this family of formulas.
The formulas indicate that R -  maps ‘ ; ‘  back into RegS ol, and hence RegS ol is
invariant under the full action of g.

5.5. Singular solutions and the Wronskian form. In this subsection we shall ex-
amine the quotient

SingSol() =  Sol()= RegSol()
as a (gj; K)-module.

5.5.1. Definition. The (modified) Wronskian of two functions ’  and of r >  0 is
the function

wr( ’ ;      )(r) =  r2 d ’ ( r )  
(r) -  ’ ( r )

d  
dr

r)
:

The modification ensures that if ’  and are two solutions of the radial equation
(5.2.1) for the same  and the same ‘, then wr ( ’ ;      )  is a constant function of r; to see
this, differentiate with respect to r. Moreover since all solutions are real-analytic
functions of r >  0, the (modified) Wronskian of two solutions vanishes identically
if and only if the solutions are linearly dependent.

Of course the Wronskian pays no attention to the angular coordinates in S2 . In
order to remedy this, we make the following definition.

5.5.2. Definition. The Wronskian form on Sol() is the bilinear form

Wr: Sol()  Sol()  !  C

defined by

Wr( ’ ;
Z

) =  
4 S 2  

wr ( ’ ;      )  d Area :

The integral is a K-invariant and nondegenerate bilinear form on each K-iso-
typical subspace of Sol(), and moreover distinct isotypical subspaces are orthog-
onal to one another.

5.5.3. Lemma. If ’ ; 2  RegSol(), then Wr( ’ ;      )  =  0.
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Proof. If ’  and      belong to distinct isotypical subspaces, then the integral is zero.
If they belong to the same isotypical space, then, both functions being regular
solutions, their radial parts are linearly dependent, and so the integrand is zero.

Thanks to the lemma, the Wronskian form defines a nondegenerate bilinear
form

Wr: SingSol()  RegSol()  !  C:
We shall prove the following result:

5.5.4. Theorem. Let  2  C,  and let X  2  gj. If ’  2  SingSol() and 2  RegSol(),
then

Wr( X ’ ;      )  +  Wr( ’ ; (X )  )  =  0:
As a result, the Wronskian induces an isomorphism of (gj; K)-modules from SingSol() to
the -twisted dual of RegSol().

5.5.5. Corollary. If  2  R,  then the Wronskian form induces an isomorphism of (gj; K)-
modules from SingSol() to the -twisted dual of RegSol().

Proof of the Corollary. The theorem immediately gives

Wr( X ’ ;      )  +  Wr( ’ ; (X )  )  =  0

for ’  2  SingSol() and  2  RegSol(). But this the same as

Wr( X ’ ;      )  +  Wr( ’ ; (X )  )  =  0;

from which the result follows.

We shall prove the theorem in a sequence of steps. The first concerns the con-
stituents of the formula

(5.5.6)
p

- 1 R  =  C  +  
r  

 D  +  @r  E

for a Runge-Lenz operator that we obtained in Lemma 5.2.7. We shall use the
following notation: if A  is a linear operator on a locally finite-dimensional repre-
sentation space V for K, then we shall denote by

A k  : V k   !  V ‘

the composition of the restriction of A  to the k-isotypical space of V with the pro-
jection onto the ‘-isotpical space.

5.5.7. Lemma. If D  and E  are the operators in (5.5.6), acting on smooth functions on S2 ,
and if ‘   1, then

E ‘ - 1  =  ( 1 - ‘ ) D ‘ - 1

and
E ‘ - 1  =  ( 1 + ‘ ) D ‘ - 1 :

Proof. A short computation reveals that

[
T

; R] =  
r2  @r  

 
2E -  2D -  [

; D]
 
-  

r2   
 
D  +  [

; C]

+  
r3   

 
2[

; D] -  2
D  -  [
; E]:
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Since [T; R] =  0, each of the three terms in parentheses is zero. Our interest is in the
first. Since
 acts as ‘ ( ‘+ 1 )  on the ‘-isotypical space we obtain

2E -  2D +  ‘ ( ‘+ 1 ) D  -  D ( ‘ - 1 ) ‘ ‘ - 1  =  0

and after simplification this becomes
E  -  ( 1 - ‘ ) D ‘ - 1  =  0

as required for the first identity. The second is handled similarly.

5.5.8. Lemma. If Y and Z  are smooth functions on S2 , then

Y  DZ d Area =  - DY  Z d Area
S 2                                                                               S 2

and Z Z Z
Y  EZ d Area = EY  Z d Area - 2 DY  Z d Area :

S 2                                                                     S 2                                                                         S 2

Proof. The operator - 1 R  is formally self-adjoint for the usual inner product of
functions on R3 .  The present lemma follows from the formula for - 1 R  and from
the fact that the formal adjoint of @r is -@r  -  2=r.

5.5.9. Lemma. If ’  2  SingSol() ‘ - 1  and 2  RegSol()‘ , then

Wr(R ’ ;      )  -  Wr( ’ ; R  )  =  0:

Proof. First, we compute that

wr(R ’ ;      )  =  (2 ‘2 + ‘ ) r 0  DY Z - ( 2 ‘+ 1 ) r 0  EY Z +  positive-order terms in r;

for some spherical harmonic functions Y and Z  of degrees ‘ - 1  and ‘, respectively.
Hence Z Z

Wr(R ’ ;      )  =  (2 ‘ 2 + ‘ ) DY  Z d Area - (2 ‘+1) EY  Z d Area;
S 2                                                                                               S 2

and similarly

Wr( ’ ; R
Z Z

) =  - ( 2 ‘ 2 - ‘ ) Y  D Z d A re a - ( 2 ‘ - 1 ) Y  EZ d Area :
S 2                                                                                               S 2

It follows that
Z Z

Wr(R ’ ;      )  -  Wr( ’ ; R  ) =  ( 2 ‘ - 2 ) DY  Z d Area -2 EY  Z d Area;
S 2                                                                             S 2

and to complete the proof we need only apply Lemma 5.5.7.

Proof of Theorem 5.5.4. The Wronskian pairing determines a K-equivariant vector
space isomorphism

(5.5.10) SingSol()  !  RegSol();

(the right-hand side is the -twisted dual). Moreover this isomorphism is com-
patible with the action of the Runge-Lenz operators R from ( ‘ - 1 ) -  to ‘-isotypical
components, for all ‘>0,  thanks to Lemma 5.5.9.

Now, for all but countably many , the (gj; K)-modules in (5.5.10) are irre-
ducible, and moreover they are isomorphic to one another. This follows from the
discussion in Section 4. It therefore follows from Schur’s lemma that for such ,
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(5.5.10) can differ from an isomorphism of (gj; K)-modules only by a multiplica-
tive scalar in each K-isotypical component, since these components have multi-
plicity one. But compatibility with the Runge-Lenz operators, even to the limited
extent we have exhibited it, implies that these scalars must all be equal to one an-
other. So (5.5.10) is indeed an isomorphism of (gj; K)-modules. This proves the
lemma when the modules in (5.5.10) are irreducible. The general case follows by a
continuity argument.

5.6. The algebraic family of singular solutions. In view of the preceding section it
is natural to organize the modules SingSol() into an algebraic family. Linearly
independent solutions to the radial Schrodinger equation are given in (5.2.3) and
(5.2.4), and from the formulas it is clear that the coefficient of r - ( ‘ + 1 )  in a solution
depends only on the class of the solution in SingSol().

5.6.1. Definition. We shall denote by S ingS ol the complex vector space spanned
by sections

C  3    !   2  SingSol()
that are representable in the form

 =  p()G ‘ ;   Y ‘  2  Sol()

where p() is a polynomial function of  and where G ‘ ;  is as in (5.2.4), with coef-
ficient of r - ( ‘ + 1 )  the constant 1.

By repeating computations from the previous two subsections we arrive at the
following result.

5.6.2. Theorem. The space S ingS ol is an algebraic family of Harish-Chandra modules
for (g; K).  The Wronskian form

S ingS ol  RegS ol  !  O

induces an isomorphism of algebraic families from S ingS ol to the -twisted dual of RegS ol.

5.6.3. Proposition. The family S ingS ol is a standard and spherical family of (g; K)-
modules, in the sense of Definition 3.4.1.

Proof. We need to check that S ingS ol is generated by its spherical vectors. It fol-
lows from the formula in Lemma 5.2.7 for the Runge-Lenz operators in polar co-
ordinates that if  =  G ‘ ;Y ‘ ,  then

R       =  - ( ‘ + 1 ) r - ( ‘ + 2 )   D Y ‘       +  r - ( ‘ + 2 )   EY ‘  +  higher-order terms in r:

Thus
hR i ‘ + 1  =  G ‘ + 1 ; Z ‘ + 1

for some spherical harmonic function Z ‘ + 1 .  Now for every ‘0 there is at least one Y ‘ ,
as above, for which Z ‘ + 1  is nonzero, for otherwise every module SingSol() would
be reducible. It follows that

S ingS ol ‘+ 1   U (g)  S ingS ol ‘ ;

and hence that S ingS ol is generated by its spherical vectors, as required.

The following is an immediate consequence of the classification result in Theo-
rem 3.4.4 and Lemma 2.8.3.
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5.6.4. Theorem. Up to isomorphism, S ingS ol is the unique standard and spherical family
for which the Casimir element TL2 -  R2 acts as T +  2 I.

Of course, this result leads to a characterization of RegS ol, since it is the -
twisted dual of S ingS ol.

6. P H Y S I C A L  SO L U T I O N S A N D  J A N T Z E N  Q U O T I E N T S

In this section we shall examine the solution spaces

PhysSol()  RegSol()

for the Schrodinger equation that are used in physics. The physical solutions are
characterized within RegSol() by boundary conditions at infinity in R3 ,  which
imply that the physical solutions are either square-integrable, or nearly square-
integrable. The main purpose of this section is to explain that the physical solu-
tions can also be obtained in a purely representation-theoretic fashion using the
Jantzen technique.

6.1. Physical solution spaces. By the K-finite physical solutions of the (rescaled)
Schrodinger equation we mean the solutions computed in physics texts by sepa-
ration of variables in spherical coordinates. See for example [LL58, Section 36] or
Section 5.4.

For a given 2R,  the space PhysSol() of physical solutions consists of those
functions in RegSol() that converge to zero at infinity. Computations using ex-
plicit formulas show that

(a) PhysSol(-2 =n2 ) is the finite-dimensional subspace of RegSol(-2 =n2 ) com-
prised of the SO(3)-types ‘< n .  It is a Harish-Chandra submodule.

(b) PhysSol() =  RegSol() for all   0 (c)
PhysSol() =  0 otherwise.
Moreover in every case the physical solution space has the structure of an irre-
ducible (gj; K)-module and carries an invariant inner product. See for example
[BI66a], [TdCA98] and [BI66b] for the cases of <0, = 0  and >0, respectively.

6.2. An intertwining operator. In this subsection we shall analyze the intertwin-
ing operator A  from the algebraic family of singular solutions to the regular of
solutions that is characterized by the following diagram:

(6.2.1) S ingS ol A RegS ol

=

U H (g; K)
H ( g ; K )  O

The tensor product at the bottom is that for which the Casimir T L 2 - R 2 2 H ( g ; K )
acts as multiplication by T + 2 I  on O. The diagonal morphisms are the classifying
morphisms (3.4.8) for S ingS ol and RegS ol (we identify the ‘= 0  isotypical parts
of these families with O using any isomorphisms of H(g; K)-modules). The left
classifying morphism is an isomorphism since the -twisted dual is standard and
spherical; see the proof of Theorem 3.4.4. There is therefore a unique morphism A
that makes the diagram commute.
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If B : S ingS ol !  RegS ol is any other intertwining morphism, then since almost
all fibers in the families are irreducible, it follows from Schur’s lemma that there
are nonzero and relatively prime p; q 2  O for which

p  A  =  q  B:

But the morphism A  is nonzero in each fiber since it is an isomorphism on ‘= 0
isotypical spaces, and as a result q must be a constant polynomial. So, up to a
nonzero complex scalar multiple, A  is the unique intertwining morphism that is
nonzero in each fiber.

We can identify all the ‘-isotyopical space RegS ol ‘  as an O-module and a K-
module with O
C  W ‘ , for example by the mapping

RegS ol ‘  3  F ‘ ;   Y ‘   !  1
Y ‘  2  O
C  W ‘ :

Compare Definition 5.2.5. We can do the same for the ‘-isotypical subspace of
S ingS ol. After making these identifications, it follows from Schur’s lemma that
the restriction of A  to the ‘-isotypical parts of our families is multiplication by a di-
agonal coefficient polynomial function A ‘ ( )  that is determined up to multiplication
by a nonzero constant. The constant depends on ‘, and varies with our choices of
identifications.

The diagonal coefficient polynomials may be explicitly computed quite easily
by making an explicit calculation with a single Runge-Lenz operator. The result is
as follows:

6.2.2. Proposition. The intertwining operator A  has diagonal coefficients

A ‘ ( )  =  constant‘  
Y   

n 2  +  2; n = 1

for all ‘   1.

Compare [Sub18, Sec. IV], where essentially the same computation is carried
out for the 2-dimensional hydrogen atom.

6.3. Jantzen quotients. We begin with a quick introduction; see [BHS20b, Sec. 4.1]
for further details, which are given in precisely the context we are discussing.

An intertwiner A :  F  !  H  between algebraic families of Harish-Chandra mod-
ules over C  determines Jantzen filtrations of the fibers of F  and H ,  as follows:

(a) For F ,  the filtration is decreasing, and for p 2  Z  the space F j ( p )  is defined to
be the image in the fiber F j  of all sections f  for which A ( f )  vanishes to order p
or more at .

(b) For H  the filtration is increasing, and H j ( p )  is defined to be the image in the
fiber H j  of the space of all sections h such that (T - ) p  h belongs to the image of A .

The map f  !  (T -  ) - p A ( f )  induces an isomorphism of (gj; K)-modules

(6.3.1) A ( p )  : F j ( p )       F j ( p + 1 )   !  H j ( p )       H j ( p - 1 ) :

For the specific intertwiner introduced in (6.2.1) it is a simple matter to read off
the terms in the Jantzen filtration, and the Jantzen quotients (6.3.1), from Proposi-
tion 6.2.2. We’ll state the results only for the regular solutions; the results for the
singular solutions can of course be inferred from the isomorphism in (6.3.1).
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6.3.2. Proposition. Let  2  C.  The Janzten filtration of the fiber RegSol() determined by
the intertwiner (6.2.1) is as follows:
(a) If  =  - 2 = n 2 ,  then RegSol()(p)  is zero for p<0, it is the direct sum of the ‘-

isotypical subspaces in the range ‘  =  0; 1; 2; : : : ; n-1 for p=0, and it is the full space
RegSol() for p1. There are therefore exactly two nonzero Jantzen quotients. The first
is n2-dimensional with K-types

‘  =  0; 1; 2; : : : ; n-1;

each with multiplicity one. The second is irreducible and infinite-dimensional, with
K-types

‘  =  n; n+1; n+2; : : : ;
each with multiplicity one.

(b) For other values of  the Jantzen filtration of RegSol() is trivial: RegSol()(p)  is zero
for p<0, while it is the full space RegSol() for p0.

6.3.3. Remark. The term Jantzen quotient is standard, but of course a more accurate
term would be Jantzen subquotient. Indeed the Jantzen quotient of most interest in
the proposition above, namely the finite-dimensional Jantzen quotient in item (a),
is in fact a submodule of RegSol().

6.3.4. Corollary. The negative part of the phsyical spectrum of the rescaled Schrödinger
operator T coincides with the set of all  2  C  for which RegSol() has a nontrivial Jantzen
filtration.

6.4. Non-degenerate invariant Hermitian forms. Here we shall use the fact that
S ingS ol is isomorphic to the -twisted dual of RegS ol (this follows from Theo-rem
3.4.4). Intertwiners of the form

A :  RegS ol;   !  RegS ol;

between a family and its -twisted dual were analyzed in [BHS20b, Sec. 4.2], where it
was pointed out that for a suitable c 2  C  the formula

A ( p ) [ ] ; [ ’ ]
 
=  c  (T -  ) - p   ( ’ )

determines an invariant and nondegenerate hermitian form on the p’th Janzten
quotient. Here  and ’  determine elements in the p’th parts of the Jantzen filtra-
tions, as in Subsection 6.3, and [] and [ ’ ]  are the corresponding elements in the
Jantzen quotients. The term on the right is a polynomial in T , and in the formula
we take its value at .

The Hermitian forms, like the Jantzen quotients themselves, are easy to com-
pute using Proposition 6.2.2. Compare [BHS20b, Sec. 5] or [Sub18, Sec. IV]. Doing
so, one obtains the following:

6.4.1. Proposition. For  2  R  the above Hermitian form is definite precisely on the
following Jantzen quotients:
(a) The unique Jantzen quotient when   0.
(b) The finite-dimensional Janzten quotient when  =  - 2 = n 2 ,  for some natural number n

1.

We arrive at the following theorem, which completely recovers both the physi-
cal spectrum of the rescaled Schrodinger operator and the physical solution spaces
themselves from the algebraic family RegS ol.
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6.4.2. Theorem. The physical spectrum of the rescaled Schrödinger operator T coincides
with the set of all  2  R  for which RegSol() has a nonzero infinitesimally unitary Jantzen
quotient. There is in this case a unique infinitesimally unitary Jantzen quotient, and it is
the submodule PhysSol() of RegSol().

7. T H E  S C H R O D I N G E R  OP E R AT O R A S A  S E L F - A D J O I N T OP E R AT O R

In this section we shall begin an examination of the Schrodinger operator from
the point of view of Hilbert space spectral theory by reviewing how one can obtain
a self-adjoint operator (in the technical sense of unbounded operator theory) from
the rescaled Schrodinger operator

(7.0.1) T =  - 4  -  
2

:

There are two well-known approaches, both leading to the same self-adjoint oper-
ator, and we shall need to make use of both of them in what follows.

7.1. The Kato-Rellich theorem. The function - 2 = r  is locally square-integrable on
R3 ,  and therefore the operator (7.0.1) is well-defined as map from C 1 ( R 3 )  into
L 2 (R 3 ) .  Initially, we shall view T as a symmetric operator with this domain. The
domain can then be extended, as follows. Denote by H 2 ( R 3 )  the completion of
C 1 ( R 3 )  in the norm

kfk H 2 ( R 3 )  =  kfk2 +  kfk2;
where—here and below—the unlabelled norms and inner products are to be taken
in L 2 (R 3 ) .  This is a standard Sobolev space, of course. The inclusion of C 1 ( R 3 )
into L 2 ( R 3 )  extends to a continuous inclusion of H 2 ( R 3 )  into L 2 (R 3 ) .  Moreover:

7.1.1. Lemma. The inclusion of C 1 ( R 3 )  into L 1 ( R 3 )  extends to a continuous inclusion
of H 2 ( R 3 )  into L 1 ( R 3 ) .

This is a special case of the Sobolev embedding theorem. As a result of the
lemma, the operator (7.0.1) is in fact well-defined as a bounded linear operator
from H 2 ( R 3 )  into L 2 (R 3 ) .  The following result is well known; see for example
[Kat76, Chap. V, Thm. 5.4] for a proof.

7.1.2. Theorem. The rescaled Schrödinger operator T for the 3-dimensional hydrogen
atom is essentially self-adjoint and bounded below on the domain C 1 ( R 3 ) .  The domain of
the unique self-adjoint extension is the Sobolev space H 2 ( R 3 )   L 2 (R 3 ) .

7.1.3. Remark. Recall for later that to say that T is bounded below on H 2 ( R 3 )  is to
say that there is a constant C 0   0 such that

hTf; fi  - C 0 h f ; f i

for every f  2  H 2 (R 3 ) .  Equivalently, the spectrum of the self-adjoint operator T is
bounded below by - C 0 .

Theorem 7.1.2 is the archetypical application of the Kato-Rellich theorem, [Kat76,
Chap. 5, Thm 4.4], and accordingly we shall call the self-adjoint operator it pro-
vides the Kato-Rellich extension of (7.0.1).

7.1.4. Theorem. The spectrum of the Kato-Rellich extension of T consists of the nonneg-
ative reals [ 0 ; 1 )  together with a countable discrete subset of ( - 1 ; 0 ) ,  each element of
which is an eigenvalue of finite multiplicity.
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This is proved by arguing that the potential term - 2 = r  in the rescaled Schro-
dinger operator is a relatively compact perturbation of the kinetic term; see for
example [Kat76, Chap. V, Thm. 5.7].

By elliptic regularity, the negative energy eigenfunctions for the Kato-Rellich
extension are smooth functions on the open set R 3   R3 .  They are, of course
eigenfunctions, in the ordinary sense there, and they are square-integrable. Con-
versely, the space of all such square-integrable eigenfunctions may be determined
explicitly, as we indicated in Section 6.1, and by Theorem 7.1.2 they all belong to
the domain of the Kato-Rellich extension. So after these explicit computations we
arrive at the following:

7.1.5. Theorem. The spectrum of the Kato-Rellich extension of the rescaled Schrödinger
operator T is the set

2
-

n 2  : n  =  1; 2; : : : [  [0; 1):

7.2. The Friedrichs extension. In this section we shall review the Friedrichs ex-
tension of T . See for instance [Kat76, Chap. VI, Sec. 3] for full details.

We have already seen that T is bounded below on C 1 ( R 3 )  (and indeed on a
larger domain). Choose a constant C 0  >  0 so that

hTf; fi +  C0 hf; fi  0

for every f  2  C 1 ( R 3 ) ,  and then choose C > C 0 .  Using this choice of C,  denote by
F ( R 3 )  the Hilbert space completion of C 1 ( R 3 )  in the norm associated to the inner
product

(7.2.1) hf; g i F ( R 3 )  =  h(T +  C ) f ; g i L 2 ( R 3 ) :

There is a bounded linear map

F ( R 3 )   !  L 2 ( R 3 )

that extends the inclusion of C 1 ( R 3 )  into L 2 (R 3 ) .  The extended map is an inclu-
sion, too, and we can therefore regard F ( R 3 )  as a dense linear subspace of L 2 ( R 3 )
as well as a Hilbert space in its own right.

7.2.2. Theorem. There is a unique extension of the operator (7.0.1) with domain C 1 ( R 3 )  to
a self-adjoint operator on a domain that is included within the subspace F ( R 3 )
L 2 (R 3 ) .  The extension is characterized by the formula

h(T +  C ) - 1 f ; g i F ( R 3 )  =  hf ; g i L 2 ( R 3 )

for all f  2  L 2 ( R 3 )  and all g  2  F (R3 ).

This is the Friedrichs extension of the rescaled Schrodinger operator T from the
initial domain C 1 ( R 3 )  to a self-adjoint operator that is bounded below; see for
example [Kat76, Chap. VI, Thm 2.11].

7.2.3. Theorem. The Friedrichs extension of the Schrödinger operator from Theorem 7.2.2
coincides with the Kato-Rellich extension from Theorem 7.1.2.

Proof. Thanks to the uniqueness assertion in Theorem 7.2.2, it suffices to prove that

H 2 ( R 3 )   F ( R 3 )   L 2 (R 3 ) :
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We shall use the Sobolev space H 1 (R 3 ) ,  which is the completion of C 1 ( R 3 )  in the
norm associated to the inner product

hf ; f i H 1 ( R 3 )  =  - h f ; f i  +  hf; fi:

As  with H 2 ( R 3 )  and F ( R 3 ) ,  the natural map from H 1 ( R 3 )  into L 2 ( R 3 )  is an inclu-
sion, and moreover

H 2 ( R 3 )   H 1 ( R 3 )   L 2 (R 3 ) :
Now it may be shown without difficulty that C 1 ( R 3 )  is dense in H 1 (R 3 ) ,  and
since it is clear from (7.2.1) that

hf ; f i F ( R 3 )   constant  hf ; f i H 1 ( R 3 )

for all f  2  C 1 ( R 3 ) ,  the space H 1 ( R 3 )  is included within F ( R 3 ) .  We see therefore
that

H 2 ( R 3 )   H 1 ( R 3 )   F ( R 3 ) ;

which proves the theorem.

8. R E S O LV E N T S OF T H E  S C H R O D I N G E R  OP E R AT O R

In this section we shall work with the self-adjoint rescaled Schrodinger operator
T , with dom(T)=H 2 (R3 ),  as in Section 7. We shall use the resolvent operators
(T -  ) - 1  to construct new families of eigenfunctions for T . Using these we shall
give an explicit construction of the intertwining operator between the algebraic
families of singular and regular solutions that we examined in Section 6.

8.1. Resolvents and solutions of the Schrödinger equation.

8.1.1. Definition. A  smooth function : R 3  !  C  is a cutoff at 0 if it is compactly
supported and if it is identically equal to 1 in some neighborhood of 0. A smooth
function : R 3  !  C  is a cutoff at 1  if it is identically equal to 1 in the complement of
some compact set.

In the following definition dom(T ) will refer to the self-adjoint domain of T
constructed in Section 7.

8.1.2. Definition. We shall write

dom0(T ) = f : R 0  !  C  : f  2  dom(T ) for some cutoff  at 0 and

dom1 (T ) =  f : R 0  !  C  : f  2  dom(T ) for some cutoff  at 1  :

8.1.3. Remark. Note that dom(T ) is closed under pointwise multiplication by smooth
functions on R 3  that are constant outside of a compact set. It follows that dom(T )
is included in both dom0(T ) and dom1 (T ).

8.1.4. Definition. We shall write

Sol0 () =  Sol() \  dom0(T )     and Sol 1 ( )  =  Sol() \  dom1 (T ):

We shall be most concerned with Sol1 () ,  which according to the definition
consists of those K-finite smooth -eigenfunctions of the rescaled Schrodinger op-
erator T that coincide with elements of dom(T ) near infinity in R3 .  Here is its most
important property, as far as we are concerned:
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8.1.5. Theorem. Suppose that  2= Spec(T ). For every G  2  SingSol() there is a unique V
2  So l 1 ( )  such that

Wr(G; F) =  Wr(V; F) 8F 2  RegSol():

Proof. First we shall prove existence, and for this it suffices to consider each ‘-
isotypical component of SingSol() individually. Suppose that G2 SingSol() is
represented by the product of a -eigenfunction G ‘ ;  of the radial operator (5.1.2) and
a spherical harmonic function Y ‘  of degree ‘. Let f  be a smooth, compactly
supported function on R 3  of the form ’   Y ‘ , where ’  is a smooth, compactly
supported function of r2 ( 0 ; 1 ) .  The function

U  =  (T -  ) - 1 f

is smooth on R 0  thanks to elliptic regularity, and has the form

U  =  Y ‘

for some smooth function of r (which is not necessarily compactly supported)
thanks to the K-equivariance of the rescaled Schrodinger operator. From the equa-
tion

TU =  U  +  f
we see that U  is a -eigenfunction for T outside of the compact set where f  is
supported, and so is a -eigenfunction for the radial operator (5.1.2) outside of a
compact subset of (0 ; 1 ) .

Now every solution of the eigenvalue equation (5.2.1) that is defined on a subin-
terval of ( 0 ; 1 )  may be extended to a solution on (0 ; 1) .  So there are -eigen-
functions 0  and 1  that that agree with near 0 and near 1 ,  respectively. The
corresponding functions

U 0  = 0   Y ‘ and     U 1  = 1   Y ‘

belong to Sol0 () and Sol1 () ,  respectively. Note that since (T -  ) - 1  has dense
range, there is at least one for which U 0  and U 1  are nonzero.

The functions 0  and 1  cannot be linearly dependent, because if they were,
then after adjusting one by a multiplicative scalar the two functions would glue
together to determine a -eigenfunction in dom(T ). This would contradict the
assumption that  2= Spec(T ). So 0  and 1  must span the two-dimensional
space of -eigenfunctions of the radial operator (5.1.2).

Let F ‘ ;  be the regular radial eigenfunction in (5.2.3), and let G ‘ ;  the eigenfunc-tion
from (5.2.4), normalized so that Wr(F ‘ ; ; G ‘ ;)  =  1. From the above we can write

F ‘ ;   Y ‘  =  a   U 0  +  b  U 1 and     G ‘ ;   Y ‘  =  c  U 0  +  d  U 1 ;
for suitable constants a; b; c; d. The scalar d must be nonzero because G ‘ ;  is un-
bounded near 0, and is therefore not an element of dom0(T ); compare Lemma 7.1.1.
It therefore follows from the second equation that U 1  is unbounded near 0, and
from this it follows from the first equation that the scalar b must be zero. This
implies that a  is nonzero, and so we can write

d  U 1  =  G ‘ ;   Y ‘  -  c  U 0  =  G ‘ ;   Y ‘  -  c=a  F ‘ ;   Y ‘ :

It follows that we can take V =  d  U 1 .  This completes the proof of existence.
To prove uniqueness, note first that the above argument shows F ‘ ;   Y ‘      2

Sol0(), and therefore RegSol()  Sol0(). Now it suffices to show that if V 2
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Sol1 () ,  and if Wr(V; F) =  0 for all F 2  RegSol(), then V =  0. But if the Wron-skians
are all 0, then V 2  RegSol(), and hence V 2  Sol0(), so that in fact V 2  dom(T ).
This again contradicts the assumption that  2= Spec(T ).

8.1.6. Remark. The proof shows that if  2= Spec(T ), then

Sol0 () =  RegSol()     and Sol() =  Sol0 ()  Sol1 () :

8.2. The family of Kodaira-type solutions. In this subsection we shall use the
solutions in Theorem 8.1.5 to create an algebraic family of (g; K)-modules. We
shall name the family after Kodaira, in recognition of his fundamental results from
[Kod49] that we shall review in the next subsection.

8.2.1. Theorem. If  2= Spec(T ), if V 2  Sol1 () ,  and if R is any Runge-Lenz operator,
then RV 2  Sol1 ( ) .

Proof. The only issue is whether or not RV 2  dom1 (T ). The smooth, K-finite
function V is in the Sobolev space H 2 (R 3 )  near infinity (that is, V 2  H 2 (R 3 )  for a
suitable cutoff  at infinity). But V is also an eigenfunction for T , so the function
TV =  - V  -  2=rV is in the Sobolev space H 2 ( R 3 )  near infinity. Since the Coulomb
potential has bounded derivatives away from zero, it follows from elliptic
regularity that V lies in the Sobolev space H 4 (R 3 )  near infinity.

Now the Runge-Lenz operators have the form

(8.2.2) -  
p

- 1 R i  =  
x
i  -  @i +  

X
@ j L j :

j = i

Each L j  acts as a bounded operator on any ‘-isotypical part of H4 (R3 ) .  The partial
derivatives map H 4 (R 3 )  into H3 (R3 ) ,  and so into H2 (R3 ) ,  and xi =r maps H 4 (R 3 )
into itself near infinity.

8.2.3. Definition. We shall denote by KodairaS ol the complex vector space spanned
by functions

C  n Spec(T )  R 0   !  C

of the form (; x) !  V(x); where
(i) V 2  Sol1 () ,  and

(ii) if F 2  RegS ol, then Wr(F; V) is a polynomial function of  on the comple-
ment of Spec(T ).

We give KodairaS ol the structure of an O-module via pointwise multiplication by
polynomial functions in , and the structure of a K-module via the actions of K  on the
K-finite solution spaces Sol().

8.2.4. Lemma. The usual action of differential operators on functions gives the O-module
the structure of a (g; K)-module.

Proof. In view of Theorem 8.2.1 it only needs to be shown that if V 2  KodairaS ol,
and if R 2  g  is a Runge-Lenz operator, then Wr(F; RV) is a polynomial function of
. But this follows from Theorem 5.5.4.

The following result shows that the family of Kodaira solutions carries the
structure of an algebraic family of Harish-Chandra modules over (g; K),  despite
being initially defined only over the complement of the spectrum of T .
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8.2.5. Theorem. The O-module morphism

S ingS ol  !  KodairaS ol

that maps each G  2  S ingS ol to the unique V 2  KodairaS ol such that Wr(G; F)

=  Wr(V; F) 8F 2  RegS ol     8 2= Spec(T )

is an isomorphism of (g; K)-modules.

8.2.6. Remark. By definition, if G  2  S ingS ol, then Wr(G; F) is a polynomial func-
tion of . So the function V defined above is indeed an element of KodairaS ol.

Proof. The g-equivariance of the morphism follows from Theorem 5.5.4. The K-
equivariance is clear. The fact that the morphism is an isomorphism follows from
Theorem 5.6.2.

8.3. The limiting absorption principle. The title of this subsection refers to the
idea that physical solutions of the Schrodinger equation for the real eigenvalue

should be expressible as limits, as " ! 0 ,  of rapidly decaying (i")-eigenfunctions
(classically these correspond to solutions of equations with damping terms added).

In mathematics the term has come to refer to the convergence of resolvent op-
erators ( T - ) - 1  in some topology as  converges to the spectrum, but here we

shall keep close to the original meaning. We shall use some decisive contributions
of Kodaira [Kod49] on the limiting absorption principle to obtain an explicit in-
tertwining operator from singular to regular solutions of the rescaled Schrodinger
equation. Later, in Theorem 9.6.3, we shall use the same techniques to fully de-
termine the spectral theory of the rescaled Schrodinger operator; this was one of
Kodaira’s original purposes.

The starting point is the following theorem of Kodaira concerning eigenfunc-
tions for the rescaled Schrodinger operator associated to non-real eigenvalues.

8.3.1. Theorem (See [Kod49, Theorem 5.1]). If Im(k)0 and k=0,  then there is a
unique K-invariant eigenfunction U  for the eigenvalue k2  with

U k (r )   
r  

exp
 p

- 1 k r  +  
 

k

 
1 

log(r) as r !  1 :

As k  varies, the functions U k  vary continuously in the topology of uniform convergence
of smooth functions and all their derivatives on compact subsets of R0 .

In the numerator in the display is the constant  from (2.1.4). Observe that if
Im(k) >  0, then U k  2  dom1 (T ).

8.3.2. Lemma. If k>0, then Wr( U k ; U - k )  =  2ik. In particular, U k  and U - k  are linearly
independent.

Proof. Kodaira shows in [Kod49, Theorem 5.1] that differentiating both sides of
the asymptotic equivalence in Theorem 8.3.1 with respect to r preserves the as-
ymptotic equivalence. The result follows.

Now define a continuous function in the region Im(k)  0 by

(8.3.3) a(k)  =  Wr(F0;; Uk );

where  =  k2 .



 1  

0

+
! 0 +

-
! 0 +

0

+ - + -

1

+          1 - 1

FAMILIES OF SYMMETRIES A N D  T H E  H Y D R O G E N  ATOM 37

8.3.4. Lemma. If k  >  0, and if  =  k2 , then

F0; =  2 i k  a ( - k ) U k  -  a ( k ) U - k  :

Proof. It suffices to compute that the Wronskians of both sides of the asserted
equality with U k  and U - k  are equal, since by Lemma 8.3.2 these two functions
span the spherical -eigenfunctions.

8.3.5. Lemma. If Im(k) >  0 and a(k)=0,  then k2  2  Spec(T ).

Proof. Let =k 2 .  We can write

U k  =  a(k)G 0 ;  +  b(k)F0;;
where F0; and G0 ;  are as in the proof of Theorem 8.1.5, except that we view them
here as K-invariant functions on R3 ,  and b(k) is some scalar. If a(k)=0,  then F0; is
a multiple of Uk ,  and hence belongs to dom1 (T ). It then follows from Remark
8.1.6 that  2  Spec(T ).

8.3.6. Lemma. If k  >  0, then a ( - k ) = a ( k )  and a(k)=0.

Proof. It follows from the uniqueness statement in Theorem 8.3.1 that if k  >  0 then
U k  =  U - k .  Since F0; is real-valued when  is real, it follows from Lemma 8.3.4 that a ( -
k )  =  a(k).  This shows that a(k)  must be nonzero, for otherwise F0; would be
identically zero.

8.3.7. Theorem. Let V0 2  KodairaS ol be the family of K-invariant Kodaira-type eigen-
functions such that

Wr(V0;; F0;) =  1
for every  2= Spec(T ). For every  >  0 the limits

V0; =  
"
lim V 0 ; + i " and     V0; =  

"
lim V 0 ; - i "

exist in the standard topology on C 1 ( R 3 )  of uniform convergence on compact sets of
functions and all their derivatives. The limits are -eigenfunctions, and moreover

V0; -  V0; =  Wr(V ; V )   F0; for

every  >  0.

Proof. To begin, suppose that  2= Spec(T ). Choose k 2 C  such that Im(k) >  0 and k2

=  . By Lemma 8.3.5, a(k)  is nonzero. As  we already noted, U k  2  Sol1 ( ) .
Therefore V0; and U k  are multiples of one another, since the space of K-invariant
functions in So l 1 ( )  is one-dimensional. In fact it follows from (8.3.3) and the
Wronskian condition in the statement of the theorem that

(8.3.8) V0; =  
a (k )

U k

Once again, this formula holds for  2= Spec(T ) and Im(k) >  0 with k2  =  .
Now suppose that  >  0. The existence of the limits in the statement of the

theorem follows from the continuity properties of U k  as a function of k, and from
Lemmas 8.3.5 and 8.3.6. In fact

V0; =  
a (

p
)

U p and     V0; =  
a ( -

p
)

U -
p ;

where in both cases we used the positive square root of . The final formula in the
statement of the theorem is a consequence of Lemma 8.3.4.
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For  >  0 let us now define
p

(8.3.9) w() =  Wr(V0;; V0;) =  
ja(

p
) j

2

as in Theorem 8.3.7.

8.3.10. Theorem. For every V 2  KodairaS ol and for every  >  0 the limits

V =  
"
lim V + i " and     V =  

"
lim V - i "

exist in the standard topology on C 1 ( R 3 )  of uniform convergence on compact sets of
functions and all their derivatives. The limits are -eigenfunctions, and moreover

V -  V 2  RegSol(): In

fact there is a unique F 2  RegS ol such that

V -  V =  w()  F for

every  >  0.

Proof. The case where V is spherical is covered by Theorem 8.3.7. Because the
limits there exist in the C 1  topology, if X  2  U (g), then in addition the limits

(XV 0 ; ) +  =  
"
lim X V 0 ; + i " and     ( XV 0 ; ) -  =  

"
lim X V 0 ; - i "

exist, and if  >  0, then

(XV 0 ; ) +  -  ( X V 0 ; ) -  =  w()  XF0;

This proves the theorem because KodairaS ol is generated by its spherical isotypical
component.

We come now to one of the main results in this paper, which recovers the alge-
braic intertwining operator of Section 6 from analysis and the limiting absorption
principle.

8.3.11. Theorem. Define a morphism of O-modules

A :  KodairaS ol  !  RegS ol

by mapping V 2  KodairaS ol to the unique F 2  RegS ol for which

F =  
w()

 
V -  V 8 >  0;

as in Theorem 8.3.10. This is a morphism of algebraic families of (g; K)-modules, and an
isomorphism on ‘= 0  isotypical components.

Using the isomorphism in Theorem 8.2.5 we obtain from Theorem 8.3.11 an
intertwining operator from S ingS ol to RegS ol. It agrees with the intertwiner an-
alyzed in Subsection 6.2 up to an overall complex multiplicative factor, because
up to a scalar factor there is a unique intertwiner that is an isomorphism on ‘= 0
isotypical components.
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9. T H E  S P E C T R A L  D E C O M P O S I T I O N OF T H E  S C H R O D I N G E R  OP E R AT O R

The spectral theorem for unbounded self-adjoint operators provides a measur-
able family of solution spaces parametrized by the values in the spectrum of the
Schrodinger operator. These spaces, H ,  which are Hilbert spaces, carry actions of
the visible symmetry group K. We shall prove that for almost every  in the
spectrum, the space of K-finite vectors in H  carries a natural action of the hidden
symmetry Lie algebra gj, and that the (gj; K)-module so-obtained coincides with the
physical solution space for .

9.1. Direct integral decomposition. From now on we shall denote by T the Kato-
Rellich extension of the rescaled operator (7.0.1). Since T is self-adjoint, general
theory provides a spectral decomposition of the underlying Hilbert space L 2 (R 3 ) ,
as in the following theorem. See for example [Dix82, A.69] for the terminology
and [Dix82, A.84] for the result.

9.1.1. Theorem. There is a fully-supported Borel measure  on Spec(T ), a -measurable
field of Hilbert spaces f H  g2Spec(T ) , and a unitary isomorphism

L 2 ( R 3 )   ! H  d();
spec(T )

from L 2 ( R 3 )  to the space of -square-integrable sections of the measurable field, such that if
f  2  L 2 (R 3 ) ,  then

[(T  i I ) - 1 f ]  =  (   i I ) - 1 [ f ]
for almost every  (we are writing  !  [f] for the measurable, square-integrable section of
f H  g2Spec(T ) that is attached to f  2  L 2 ( R 3 )  by the unitary isomorphism).

The Hilbert spaces H  for < 0  identify with the -eigenspaces for T in L 2 ( R 3 )  via
the isomorphism in the theorem, and so are easily analyzed. The situation for 0 is
more complicated; it will be explained in the following subsections.

9.2. Visible symmetries. For the sequel, we shall fix a measure  and a -measur-
able field as in Theorem 9.1.1. Our ultimate aim is to equip the fibers of the field
with hidden symmetries, but we shall start here with the easier visible symmetries.

In the following theorem, by a measurable family of unitary actions of K  on the
measurable field fHg we shall mean a family of unitary group actions, one on

each of the fibers H ,  that maps measurable sections to measurable sections.

9.2.1. Theorem. There is a measurable family of unitary K-actions on the measurable
field fHg such that

[g  f] =  g   [f]
for every g 2  K  and almost every .

This is a consequence of the fact that the K-action on L 2 ( R 3 )  maps the domain
of the self-adjoint operator T into itself, and fixes T . See [Dix82, 8.3.1,18.7.6,A.80].

9.3. Hidden symmetries. Our aim in this subsection is to decompose the Runge-
Lenz operators

R : C c  (R 0 )   !  C c  (R0 ):
into families of operators acting on the Hilbert spaces H  in Theorem 9.1.1, al-
though actually it will be necessary to consider only the K-finite vectors in H.  We
shall prove the following result:
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9.3.1. Theorem. There are operators

R : H;fin  !  H;fin

with the following properties:
(a) if ffg is a measurable section of fHg for some  2  K, then fRfg is a measurable section

of fHg; and
(b) if g  2  C 1 ( R 0 )fin ,  then [Rg] =  R[g] for -almost every .

Well-known examples show that care must be taken when attempting to de-
compose one unbounded operator with respect to a direct integral decomposition
of another; see for example [Nel59, Sec. 10]. So we shall proceed cautiously, fol-
lowing a sequence of small steps.

9.3.2. Lemma. Each of the Runge-Lenz operators on C 1 ( R 3 ) fi n  extends to a continuous
linear operator from F (R 3 )fin  into L2 (R3 )fin  (the operator is bounded on each isotypical
subspace, but not uniformly bounded over all isotypical subspaces). The extension maps
the subspace H 2 (R3 )fin   F (R 3 )fin  into F (R 3 )fin

Proof. From (2.7.1) and Lemma 2.8.3

TL2 -  R2 =  T +  2 I

on C 1 ( R 3 )fin .  The operator L 2  in this formula is the Casimir for K, and on each
isotypical component of C 1 ( R 3 ) fi n  it acts as a scalar. Therefore on any such com-
ponent we have

(9.3.3) -  hR2f; fi =  constant  hTf; fi +  constant  hf; fi:

But recall that when viewed as unbounded operators on L 2 ( R 3 )  with domain
C 1 ( R 3 ) ,  the Runge-Lenz operators are skew-symmetric. So it follows from (9.3.3)
that

kR1fk2 +  kR2fk2 +  kR3fk2  constant  kfkF ( R 3 ) :
This proves the first assertion in the lemma.

To prove the second assertion, recall the formula (8.2.2) for Ri . The operators
L j  map each isotypical component of H 2 ( R 3 )  boundedly into itself. The operators
@i;@j are bounded as operators from H 2 ( R 3 )  into H 1 (R 3 ) ,  and hence as opera-
tors from H 2 ( R 3 )  into F ( R 3 ) ;  see the proof of Theorem 7.2.3. Finally, x i =r maps
H 2 ( R 3 )  continuously into H 1 (R 3 ) ,  and hence into F ( R 3 ) .  This is a simple direct
computation using Lemma 7.1.1.

9.3.4. Lemma. If h 2  F ( R 3 )  and g  2  C 1 ( R 3 ) ,  then

hh; giF ( R 3 )  =  hh; (T +  C ) g i L 2 ( R 3 ) :

Proof. In the special case where h 2  C 1 ( R 3 ) ,  the only difference between the
right-hand side of the formula in the lemma and the definition (7.2.1) of the in-
ner product on F ( R 3 )  is the choice of factor in the inner product to which T + C
is applied. So the lemma follows in this special case from the symmetry of T on
C 1 ( R 3 )   L 2 (R 3 ) .  Since both sides of the formula are continuous in h 2  F ( R 3 ) ,  the
general case follows from the special case.

9.3.5. Lemma. If h 2  F (R 3 )fin  and g 2  C 1 ( R 3 ) ,  then

hRi h; gi L 2 ( R 3 )  =  -hh; R i g i L 2 ( R 3 ) :
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Proof. This is obvious for h 2  C 1 ( R 3 )  and follows in general by continuity of the
left-hand and right-hand sides in h 2  F (R3 )fin .

9.3.6. Lemma. The restriction of the operator

Ri (T +  C ) - 1  : L2 (R 3 )fin   !  F (R 3 )fin

to F (R 3 )fin   L2 (R 3 )fin  is equal to ( T + C ) - 1 R i  .

Proof. It suffices to prove that

hRi(T +  C ) - 1 f ; g i F ( R 3 )  =  h(T +  C ) - 1 R i f ; g i F ( R 3 )

for all f; g 2  C 1 ( R 3 )  . Using Lemmas 9.3.4 and 9.3.5 we compute that

R i

(

T

+C)
- 1

f

;

g

F ( R 3 )  =

R i

(

T

+C)
- 1 f ;

(

T + C ) g L 2 ( R 3 )  

=  -

( T + C ) - 1 f ; R i ( T + C ) g  L 2 ( R 3 )  =  -

( T + C ) - 1 f ; ( T + C ) R i g  L 2 ( R 3 )  =  -

f; Ri g L 2 ( R 3 )

= Ri f; g L 2 ( R 3 ) :

The proof is finished by using the characterization in Theorem 7.2.2.

Proof of Theorem 9.3.1. The operators

S i  =  Ri (T +  C ) - 1

are defined on L2 (R 3 )fin  and are bounded on each isotypical component. More-
over it follows immediately from Lemma 9.3.6 that these operators commute with
the resolvent operator ( T + C ) - 1 .  It follows that each S i  decomposes as a bounded
measurable family fSi;g on each isotypical part of the measurable family fHg. The
operators S i ;  have the property that if f  2  L2 (R3 )fin , then

(9.3.7) [Si f]  =  Si ;[f]  for

-almost every . Now we define

Ri ;  =  ( + C ) S i ;  : H;fin  !  H;fin : If g

2  C 1 ( R 3 ) ,  and if f  =  (T +C)g,  then (9.3.7) implies that

[Ri g] =  Ri;[g];

for -almost every , as required.

9.4. Gelfand-Kostyuchenko method. The abstract direct integral decomposition
in Theorem 9.1.1 can be made more concrete using the theory of distributions.
The technique, which sometimes called the Gelfand-Kostyuchenko method, is as
follows.

9.4.1. Theorem. There is a family of continuous linear maps

" : C c  (R 0 )   !  H ( 2  Spec(T ))

such that

(a) for every f  2  C 1 ( R 3 )  the family f"(f)g is a measurable and square-integrable section
of the field fHg;
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(b) for every f  2  C 1 ( R 3 ) ,  the sections f[f]g and f"(f)g are equal, almost everywhere;
and

(c) for almost every  the map "  has dense range.

See [Ber88, Sec. 1] for an account of this result that is especially well suited to
our purposes.

9.4.2. Lemma. The evaluation morphisms in Theorem 9.4.1 may be chosen so that they
are K-equivariant, and in addition so that

"(Tf) =  "(f)      and     "(Ri f)  =  Ri ;"(f)  for all f

2  C c  (R 0 )  and all i  =  1; 2; 3.

Proof. Fix a countable dense set in C 1 ( R 3 ) .  For any element of this set, the dis-
played equations hold almost everywhere. So by redefining "  to be zero on a
suitable nullset of values , we can arrange for the equations to hold for all  and all
elements of our countable dense set. The equations now hold for all f  by conti-
nuity. The property of K-equivariance is handled in the same way.

Now let us denote by D 0 (R3 ) the space of distributions on R3 ;  it is of course the
topological dual space of C 1 ( R 3 ) .  It acquires by duality an action of the group K
and the Lie algebra g.

9.4.3. Definition. For decomposition fHg as in Theorem 9.1.1 and a family of eval-
uation maps f"g as in Theorem 9.4.1 and Lemma 9.4.2, the realization morphisms

 : H   !  D 0 (R3 )
are the complex conjugates of the adjoints of the morphisms ", and hence are
characterized by Z

h"(f); viH      = f   (v); R 0

where the integral on the right denotes the natural pairing between distributions
on R 0  and test functions.

9.4.4. Lemma. For almost every  2  Spec(T ), the realization map  :

H   !  D 0 (R3 )

is injective. For every  the map  is K-equivariant, and its image lies within the space of -
eigendistributions of the Schrödinger operator.

Proof. Injectivity of  follows from the density of the image of ". Equivariance and
the eigendistribution property follow from the equivariance of "  and com-
patibility of "  with T , as in Lemma 9.4.2.

9.5. Comparison with the physical solution spaces. It is a consequence of elliptic
regularity and Lemma 9.4.4 above that the range of the realization morphism in
Definition 9.4.3 in fact lies in the space of smooth -eigenfunctions for T on R3 ,
which we shall denote by C 1 ( R 3 ) .  Of course this space was studied in detail in
Section 5, and we shall use some of the information presented there to compute
the K-equivariant map

 : H;fin  !  C 1 ( R 3 ) ;fin

9.5.1. Theorem. For almost every  there is an action of gj on the space H;fin such that
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(a) the gj-action on H;fin , together with the K-action, gives H;fin the structure of a
(gj; K)-module; and

(b) the realization map  : H;fin !  C 1 ( R 3 ) ;fi n  is an injective morphism of (gj; K)-
modules.

Proof. The K-action and Theorem 9.3.1 give actions of the individual generators L i
and Ri  of gj on H;fin . It follows from Lemma 9.4.2 that these actions commute with
the morphism ", and hence also with . It follows from the injectivity of  that the
actions of the individual generators constitute an action of gj, and indeed a (gj; K)-
module structure.

9.5.2. Theorem. For almost every  2  Spec(T ) the realization morphism  :

H;fin  !  C 1 ( R 3 ) ;fin

is an isomorphism of gj-modules onto the physical solution space PhysSol().

Proof. When  <  0 the theorem follows from the discussion preceding Theo-rem
7.1.5. The singleton set f=0g has -measure zero since there is no = 0  eigen-function
that is square-integrable. So we can concentrate on the case where  >  0.

We have seen that C 1 ( R 3 ) ;fin  is an extension

0  !  PhysSol()  !  C 1 ( R 3 ) ;fin   !  C 1 ( R 3 ) ;fin       PhysSol()  !  0

of one irreducible (gj; K)-module by a second (which is a copy of the first). We
shall show that the composition

(9.5.3) H;fin  !  C 1 ( R 3 ) ;fin   !  C 1 ( R 3 ) ;fi n       PhysSol()

is zero for almost every . This will show that the realization morphism maps the
(gj; K)-module H;fin injectively into a submodule of PhysSol() for almost every .
Since the physical solution space is irreducible, when the realization morphism is
injective the only possibilities are that the map is an isomorphism, or that H;fin is
zero. But since the spectrum of T includes the full half line (0 ; 1 ) ,  the space H;fin ,
and hence H,  can be zero only for a measure zero set of positive energy values. So
if we can show that (9.5.3) is zero, then the proof will be complete.

To prove that (9.5.3) is zero, since the quotient (gj; K)-module is irreducible it
suffices to show that the restriction

H 0   !  C 1 ( R 3 ) 0   !  C 1 ( R 3 ) 0       PhysSol()0

to the trivial K-isotypical part (that is, the ‘= 0  part) is zero. This is what we shall
now do.

The space So l ( ) 0 = C 1 ( R 3 ) 0  is spanned by the regular solution F0; in (5.2.3),
which spans PhysSol()0 , and the solution G0 ;  in (5.2.4). If fvg is a measurable
section of fHg then we may write

(v) =  aF0;  +  bG0;

where a  and b are measurable scalar functions of . We must show that b =  0 for
almost every .

Suppose that for some section fvg the function b is not zero almost everywhere.
After multiplying the section by a suitable scalar function of , we may assume
that b  0 for all ; that v is square-integrable; that v vanishes outside a com-pact set
in (0 ; 1 ) ;  that a  and b are bounded functions; but still b is not zero al-most
everywhere. The square-integrable section fvg corresponds to a function
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g 2  L 2 (R 3 ) .  In fact the function g lies in the domain H 2 ( R 3 )  of the self-adjoint
operator T because the section fvg is square-integrable. But if f  2  C 1 ( R 3 ) ,  then
Z Z

f(x)   g(x) dx = h"(f); vi d()
R 3 Spec(T )

Z Z
= f   (v) d()

Z
Spec(T ) 

Z
R 3

= f(x)   aF0;(x) +  bG0 ;(x) dx d()
Spec(T ) R 3

Z Z
= f(x)  aF0;(x) +  bG0;(x) d() dx:

R 3                                    Spec(T )

This shows that the function g  is equal almost everywhere to the function

x  !  
Z  

aF0;(x) +  bG0;(x)d(): Spec(T )

But this is not an L1 -function on R3 ,  which contradicts Lemma 7.1.1.

9.6. The spectral measure. We conclude by recalling for completeness Kodaira’s
method [Kod49] for computing the measure  in the direct integral of Theorem 9.1.1.
We shall be brief; see the appendix of [HT20] for a more leisurely summary.

The starting point is the following formula of Kodaira and Titchmarsh for the
spectral projection associated to any self-adjoint operator T and any suitable inter-
val (; )  R.

Z
(9.6.1) P( ; )  =  

"
lim 

2i  
( T - - i " ) - 1  -  ( T - + i " ) - 1  d:

This is valid as long as neither  nor  are eigenvalues of T . The limit may be
computed in our case using the following formula, which uses Kodaira’s eigen-
functions U k  from Theorem 8.3.1:

9.6.2. Lemma. Assume that  2= Spec(T ), and that  =  k2 , with Im(k) >  0. If f  is any
smooth and compactly supported K-invariant function on R0 ,  then

Wr(F0;; Uk )  
 
( T - ) - 1 f ( r )

1 r
=  F0;(r) Uk (s)f(s) ds +  U k ( r ) F0;(s)f(s) ds: r

0

Proof. If we denote by (Kf)(r)  the right-hand side of the formula in the statement of
the lemma, then the formula defines a linear operator K  from smooth com-pactly
supported functions on ( 0 ; 1 )  to the vector space of smooth functions in dom(T ).
We compute directly from the definition of the Wronskian that

(T -  )K f  =  Wr(F0;; Uk )f;

It follows that K f  =  Wr(F0;; Uk )  ( T - ) - 1 f ,  as required.
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Now we apply the lemma with   i "  in place of , with  >  0. Using our
previous notation a(k)  for the Wronskian in Lemma 9.6.2 we obtain

"
lim 

 
( T - - i " ) - 1 f  -  ( T - + i " ) - 1 f

Z r

=  F0;(r) 
r Z 

a ( k ) Uk (s)f(s) ds +  a ( k ) U k ( r )  
0  

F0;(s)f(s) ds

+  F0;(r) 
r       

a ( - k ) U - k ( s ) f ( s ) ds  +  a ( - k ) U - k ( r )  
0  

F0;(s)f(s) ds;

where k  is the positive square root of . Taking into account Lemma 8.3.4 we
obtain

"
lim 

 
( T - - i " ) - 1 f  -  ( T - + i " ) - 1 f

 
=  

ja(
p

) j 2  
F0;(r) 

0      
F0;(s)f(s) ds:

We find that on spherical functions that are smooth and compactly supported in
R0 ,

Z  Z 1 p
(P( ; ) f)(r)  =  

      0      
F0;(r)F0;(s)f(s) ds

ja(
p

)j2 
d:

This computation is equivalent to the following result:

9.6.3. Theorem (Compare [Kod49, Theorem 4.1]). If the Hilbert spaces H  in Theo-
rem 9.1.1 are normed so that kF0;k =  1 for all  2  Spec(T ), then on ( 0 ; 1 )  the measure  in
Theorem 9.1.1 is given by the formula

2i  d() =  w()d;

with w() as in (8.3.9).

9.6.4. Remark. It is possible to compute w() by determining the asymptotic be-
havior of the solutions F0;; compare [LL58, (36.27) & (36.28)]. The result is

w() =  4i(1 -  e 2 =
p

) - 1 ( >  0):

Observe this has singularities when  is one of the discrete spectral values - 2 = n 2  for
T . The singularities come from zeros of a (  ), as predicted by a formula
discovered by Heisenberg and proved by Kodaira in [Kod49, Sec. 6]. Compare
Lemma 8.3.5. There is a further essential singularity at 0, even when w is consid-
ered as a function of k  = . This seems to be an inescapable feature in scattering
theory, and so it is interesting that in the algebraic approach there is no kind of
singularity at 0 at all.
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