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Updatable Private Set Intersection
Abstract: Private set intersection (PSI) allows two mu-
tually distrusting parties each with a set as input, to
learn the intersection of both their sets without reveal-
ing anything more about their respective input sets.
Traditionally, PSI studies the static setting where the
computation is performed only once on both parties’
input sets. We initiate the study of updatable private
set intersection (UPSI), which allows parties to compute
the intersection of their private sets on a regular basis
with sets that also constantly get updated. We consider
two specific settings. In the first setting called UPSI
with addition, parties can add new elements to their old
sets. We construct two protocols in this setting, one al-
lowing both parties to learn the output and the other
only allowing one party to learn the output. In the sec-
ond setting called UPSI with weak deletion, parties can
additionally delete their old elements every t days. We
present a protocol for this setting allowing both par-
ties to learn the output. All our protocols are secure
against semi-honest adversaries and have the guarantee
that both the computational and communication com-
plexity only grow with the set updates instead of the
entire sets. Finally, we implement our UPSI with addi-
tion protocols and compare with the state-of-the-art PSI
protocols. Our protocols compare favorably when the
total set size is sufficiently large, the new updates are
sufficiently small, or in networks with low bandwidth.
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1 Introduction
Private set intersection (PSI) enables two parties, each
holding a private set of elements, to compute the
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intersection of the two sets while revealing nothing
more than the intersection itself. Over the years, PSI
and its related functionalities have found many real-
world privacy-preserving applications including DNA
testing and pattern matching [TPKC07], remote diag-
nostics [BPSW07], online advertising [IKN+20], pass-
word breach alerting [TPY+19], mobile private contact
discovery [KRS+19], privacy-preserving contact trac-
ing [TSS+20, CCF+20], and many more. There has
been tremendous progress made towards realizing PSI
efficiently [KKRT16, RR17, CLR17, PRTY19, CM20,
PRTY20] with both semi-honest and malicious security.

Despite tremendous advancements and improve-
ments in the efficiency of PSI protocols, one drawback
of all the existing protocols is that when parties up-
date their sets to include some new elements or remove
certain existing elements, in order to compute the in-
tersection between the two updated sets, parties have
to perform a fresh PSI computation every time. This
incurs a lot of wasteful computational and communica-
tion overhead, especially in scenarios where the updates
are done very frequently and/or the updates to the ex-
isting sets are small. Indeed, in a lot of real-world sce-
narios such as aggregated ads measurement [IKN+20],
password breach monitoring [APP, MIC], digital con-
tact tracing [TSS+20, CCF+20], PSI is performed on a
regular (e.g., daily) basis with updated sets, where the
daily update to the sets could be very small compared
to the entire sets. In this work, we ask the following
question:

Can we design protocols that allow parties to regularly
update their sets and perform PSI where every time

both the computation and communication costs are only
proportional to their updates instead of the entire sets?

1.1 Our Results
We first formalize the notion of updatable private set in-
tersection (UPSI) as a special case of secure two-party
computation with a reactive functionality that interacts
with both parties over many days and keeps its own pri-
vate internal state between days. There are two types of
updates to consider: adding new elements and deleting
existing elements. In particular, we consider the follow-
ing two settings and present three constructions sum-
marized in Table 1.
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Functionality Output Protocol Comp. Complexity Comm. Complexity
Addition-Only Two-Sided Figure 3 O(N ′) O(N ′)
Addition-Only One-Sided Figure 5 O∗(N ′ logN) O∗(N ′ logN)
Weak Deletion Two-Sided Figure 7 O(N ′ · t) O(N ′ · t)

Table 1. Summary of our protocols. N denotes the size of the old sets and N ′ denotes the size of the updates. t denotes the number
of days when parties refresh their sets in UPSI with weak deletion. O∗(·) denotes amortized complexity.

1.1.1 UPSI with Addition

In the first setting, on every day, we allow both parties
to add a new set of elements to their existing old sets.
The output on each day is the intersection of the two
updated entire sets. We construct two protocols:
– Two-Sided UPSI with Addition: A Diffie-Hellman

based protocol that allows both parties to receive
the output on each day. Both the computational
and communication complexity of this protocol only
grow linearly with the size of the added new sets and
are independent of the size of the old sets.

– One-Sided UPSI with Addition: An additively ho-
momorphic encryption based protocol that allows
only one party to receive the output. The overall
complexity may vary on different days, hence we
consider the amortized cost per day over a long
period of days. Both the amortized computational
and communication complexity of this protocol only
grow linearly with the size of the added new sets and
logarithmically with the size of the old sets. Techni-
cally, we develop an ORAM-like tree structure that
allows one party to obliviously update an encrypted
database and another party to obliviously search on
the encrypted database (where the secret key is held
by the first party), which may be of independent in-
terest.

Note that one-sided UPSI with addition is a stronger
functionality in the semi-honest setting because the
output-receiving party can send the output to the other
party so as to achieve two-sided output. We present a
protocol for one-sided UPSI with addition because the
functionality may be desirable in many server-client ap-
plications where only the client is allowed to learn the
output (e.g., password breach monitoring [APP, MIC]).

1.1.2 UPSI with Weak Deletion

In the second setting, we additionally allow both parties
to refresh their sets every t days. Namely, they will add
a set of elements to their sets every day, and delete ele-
ments that were added to their sets t days ago. This
setting is motivated by applications such as privacy-

preserving contact tracing [TSS+20, CCF+20] where
data about people’s interactions from more than e.g.
14 days ago is no longer useful. In this example, one
party’s (server’s) input is the set of people who tested
positive on that day, the other party’s (client’s) input is
the set of people they interacted with on that day. The
output on each day is the list of people the client inter-
acted with in the last t days, who also tested positive in
the last t days.
We construct an oblivious transfer (OT) based proto-
col that allows both parties to receive the output. Both
the computational and communication complexity grow
linearly with the size of the added new sets and t.

1.1.3 Experiments

We implement the two UPSI with addition protocols
and compare with the state-of-the-art PSI protocols. To
demonstrate the updatable property, we consider the
following setting: each party initially holds an empty
set. Then, on every new day, both parties add a new set
of size N ′ to their existing sets and wish to learn the
updated set intersection. We repeat this process over a
period of several days ( NN ′ ) till the total set size of each
party is N . We compare the amortized (over the total
number of days) communication cost and running time
of our protocol with the prior PSI protocols [KKRT16,
PRTY19, CM20], where, on any day, the two parties run
a fresh PSI on their updated sets to learn the updated
intersection.

Generally speaking, the (concrete/amortized) com-
munication cost of both our protocols only grows with
N ′ and at most logarithmically with N , hence we have
more advantages in efficiency when the total set size N
is larger, the update size N ′ is smaller, and the network
bandwidth is lower. In particular, our two-sided UPSI
with addition protocol beats all the PSI protocols in
communication by 7.5− 13250× in the settings we con-
sider (where N � N ′). As an example for running time,
when N = 220 and N ′ = 210, our protocol beats the
best PSI protocol by 1.1− 7.6× for network bandwidth
between 5 − 50 Mbps. Our one-sided UPSI with addi-
tion protocol beats the PSI protocols in communication
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by 2 − 149× in almost all settings we consider. As an
example for running time, when N = 220 and N ′ = 26,
our protocol beats the best PSI protocol by 1.8− 30.5×
for network bandwidth between 5− 50 Mbps.

1.2 Related Work
There are various approaches in achieving efficient
semi-honest PSI in different settings, including Diffie-
Hellman-based [Mea86, HFH99], fully homomorphic en-
cryption (FHE)-based [CLR17], circuit-based [HEK12,
PSSZ15, PSWW18, PSTY19], and oblivious transfer
(OT)-based [KKRT16, PRTY19, CM20] protocols. We
refer the reader to [PSZ14, PSZ18] for an overview
of the different paradigms for PSI. Protocols based
on OT [KKRT16, PRTY19, CM20] are currently the
fastest in practice because they can take advantage of
the efficient implementation of OT extension [IKNP03,
ALSZ13].

In the updatable setting, the work of Kiss et al.
[KLS+17] studies PSI with pre-computation between a
server with a large set of size N and a client with a small
set of size N ′. In a setup phase, the communication and
computation cost is linear in N while in the online phase
the cost is only linear in N ′. It allows the server to up-
date its set without recomputing the setup phase and
the client to run the online phase for new sets. Never-
theless, they do not provide an ideal functionality for
the updatable setting that captures the exact leakage
from their protocols. In particular, if the client’s sets
in the online phase are X1, . . . , Xd and the server’s up-
dates are Y1, . . . , Yd, then all of their protocols reveal to
the client Xi ∩ Yj for all i, j. Such leakage also arises in
our attempt to extend the Diffie-Hellman-based PSI to
the updatable setting, which we discuss in Section 1.3.
In this work, we formalize security by a reactive ideal
functionality that prevents such leakage in the updat-
able setting.

A recent work of Abadi et al. [ATD20] studies del-
egated PSI protocols that support data updates and
multi-party PSI. In particular, clients can upload their
(encrypted) private data to a server and outsource the
PSI computation. Clients can update their sets with
communication and computation only growing with
their updates. However, both the computation and com-
munication of the PSI protocol grow with the entire sets,
and they require the existence of a server.

1.3 Challenges and Ideas
We briefly explain the technical challenges in the de-
sign of our protocols. We start with the addition-only

setting. Let X,Y denote the old sets of the two par-
ties P0, P1 respectively, and let X ′, Y ′ denote their new
added sets. For simplicity, assume |X| = |Y | = N and
|X ′| = |Y ′| = N ′. Recall that we are mostly interested
in the scenario when N � N ′ and our goal is to make
the computation and communication cost to learn the
new intersection only grow with N ′ and not N (except
with logarithmic factors).

First, note that naturally extending existing
FHE-based [CLR17], circuit-based [HEK12, PSSZ15,
PSWW18, PSTY19], or OT-based [KKRT16, PRTY19,
CM20] PSI protocols does not work. In the FHE-based
protocols, while P0 (the output-receiving party) can
send Enc(X ′) which only grows with N ′, the compu-
tation cost of P1 would involve homomorphically evalu-
ating to compare with his entire input set Y ∪ Y ′ (and
also homomorphically compare Y ′ with P0’s old set X),
which grows with N . A similar issue arises in circuit-
based protocols where in fact, communication also grows
with N . The OT-based protocols require one party to fix
its input set and the number of OTs (to set up the obliv-
ious pseudorandom function) depends on N , so both
communication and computation would grow.

1.3.1 Two-Sided UPSI

On first thought, the Diffie-Hellman-based proto-
col [Mea86, HFH99] seems more promising because it
has special algebraic structures that may be suitable
for the updatable setting. To briefly recall the proto-
col, let X,Y be P0 and P1’s input sets, respectively.
Both parties first hash their elements into a group where
DDH holds, namely H(X) and H(Y ). Each party picks
a secret exponentiation key, that is k0 and k1 respec-
tively. P1 then sends H(Y )k1 and P0 responds back with
H(Y )k0k1 . Symmetrically, they can obtain H(X)k0k1 .
By comparing H(Y )k0k1 and H(X)k0k1 , both parties
can compute the intersection X ∩ Y . In the updatable
setting, they can repeat this process on their new ele-
ments X ′, Y ′ ensuring that computation and communi-
cation only grow with the size of the new sets. Unfor-
tunately, this naïve adaption to the updatable setting
does not trivially solve the problem as it leaks extra in-
formation than what the parties can learn from the ideal
functionality. In particular, it leaks X ′ ∩ Y and X ′ ∩ Y ′

to P0, which is not available in the ideal world.
Our solution is to get rid of such leakage by investi-

gating what can be inferred from the ideal functionality
and leveraging the nice algebraic structures. In partic-
ular, we split the updated output into two parts, one
of which (that is, X ∩ Y ′) can be computed by extend-
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ing the above DDH-based protocol and for the other (in
particular, X ′ ∩ (Y ∪ Y ′)), we run a fresh PSI instance
on small input sizes. We carefully choose this split and
design the appropriate sub-protocols to ensure no infor-
mation is leaked. We refer to Section 4 for a detailed
overview and the formal construction.

1.3.2 One-Sided UPSI

In our protocol above, we crucially rely on the fact that
both parties learn the output on each day. In particular,
even if we want only P0 to learn output, to ensure that
P1 uses a small input for the fresh PSI, we require P1
to learn the output of the first part that extends the
DDH-based approach. We now focus on the challenges
and ideas in designing a protocol for one-sided UPSI
where only P0 learns the output. At a high level, our key
idea is for P1 to store an encrypted version of his set on
P0’s storage and on each day, he updates this encrypted
database based only on his new input Y ′. Then, we re-
quire a mechanism that allows P0 to obliviously query
this database and compute on the encrypted data (by
interacting with P1) to learn the intersection without
leaking any information to P1.

We discuss one natural idea to implement this mech-
anism using FHE. Suppose P1 uses FHE to encrypt Y
and stores Enc(Y ) on P0. Then P0 can use her inputs
to homomorphically compute Enc(X ∩ Y ). Both parties
can then run a secure two-party computation (2PC)
protocol where P0’s input is Enc(X ∩ Y ) and P1’s in-
put is secret key sk, from which P0 learns the output
(X ∩ Y ). When there is update, P1 can update the en-
crypted database by sending Enc(Y ′) and P0 can learn
(X ′ ∩ (Y ∪ Y ′)) with communication only growing with
N ′. However, P0’s homomorphic computation still grows
with N . Moreover, it requires expensive FHE evaluation
and 2PC for FHE decryption.

To implement this approach efficiently, we take in-
spiration from oblivious RAM [SvDS+18]. The crucial
idea is that the encrypted database is maintained in
a tree structure where, on any day, P1 only updates
one level of the tree and P0 only queries on one path
of the tree, so the (amortized) cost only grows with
the depth of the tree (logarithmic in N and not lin-
ear). We also build an efficient 2PC protocol for de-
cryption using additively homomorphic encryption in-
stead of FHE. We further optimize our protocol by using
Cuckoo hashing [PR04] to store elements in each node
of the tree and leveraging the structure of El Gamal en-
cryption [Gam84] in our context. We refer to Section 5
for more details.

1.3.3 Weak Deletion

We make an interesting observation about OT-based
PSI protocols [KKRT16, PRTY19, CM20]. They work
in a streaming setting where, in a setup phase, only the
output-receiving party’s input set is known. Then, the
sender’s inputs can be fed in a streaming manner and
the protocol allows the receiver to learn the intersec-
tion for each stream. We directly take advantage of this
streaming structure and build on these protocols to de-
sign our weak deletion protocol. We refer to Section 6
for an overview and the construction.

2 Preliminaries

Notation.We use λ, σ to denote the computational and
statistical security parameters, respectively. By negl(λ)
we denote a negligible function, i.e., a function f such
that f(λ) < 1/p(λ) holds for any polynomial p(·) and
sufficiently large λ. By

c
≈ we mean two distributions are

computationally indistinguishable. Let N+ denote the
list of positive integers and N denote N+ ∪ {0}.

Cuckoo Hashing. We define Cuckoo Hashing [PR04]
verbatim from [KKRT16]. To assign n items into b bins,
first choose random functions H1, H2, H3 : {0, 1}∗ →
[b] and initialize empty bins B[1, . . . , b]. To hash an
item x, first check to see whether any of the bins
B[H1(x)], B[H2(x)], B[H3(x)] are empty. If so, place x
in one of the empty bins and terminate. Otherwise,
choose a random i ∈ {1, 2, 3}, evict the item currently in
B[Hi(x)], replacing it with x, and then recursively try
to insert the evicted item. If this process does not termi-
nate after a certain number of iterations, then the final
evicted element is placed in a special bin called stash.

We define private set intersection, additively homo-
morphic encryption and the Decisional Diffie-Hellman
(DDH) assumption in Appendix A.

3 Updatable PSI
In this section, we formalize the definition of Updatable
Private Set Intersection (UPSI). Consider two parties
P0 and P1 who wish to run PSI on a daily basis with
updated sets each day. We consider two settings on how
they can update their sets. The first setting, which we
call UPSI with addition, allows both parties to add a
set of elements to their respective sets each day. In the
second setting, which we call UPSI with weak deletion,
both parties can add a set of elements to their sets every
day and delete elements that were added to their set t
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days before. In other words, each party only holds the
elements added in the most recent t days. Moreover, on
each day, the output learnt is only the intersection of
each party’s new elements with the last t days’ elements
of the other party.

3.1 UPSI with Addition
In the setting of UPSI with addition, two parties P0
and P1 each hold a private set and add new elements
to their respective sets each day. They want to jointly
compute their set intersection every day on their up-
dated sets without revealing anything beyond that. We
formalize UPSI with addition as a special case of secure
two-party computation with a reactive functionality de-
fined in Figure 1. For simplicity, we assume that each
party adds the same number of elements as the other
party on each day.

We consider two output scenarios: in two-sided
UPSI with addition FUPSI-add-two, both parties obtain
output at the end of each day; in one-sided UPSI with
addition FUPSI-add-one, only P0 gets the output. Note that
in the semi-honest model, a secure protocol achieving
FUPSI-add-one can be easily transformed into one achiev-
ing FUPSI-add-two by P0 sending the output to P1 at the
end, hence FUPSI-add-one is a stronger notion in the semi-
honest model.

Initialization: X := ∅, Y := ∅.

Day d:
– Public parameter: The set size on Day d is Nd.
– Inputs:
P0 inputs a set Xd of size Nd where each element is from
{0, 1}∗, and Xd ∩X = ∅.
P1 inputs a set Yd of size Nd where each element is from
{0, 1}∗, and Yd ∩ Y = ∅.

– Update: On receiving the inputs from both parties, the
ideal functionality updates X := X ∪ Xd, Y := Y ∪ Yd
and computes Id = X ∩ Y .

– Output:
In FUPSI-add-two, the ideal functionality sends Id to both
parties.
In FUPSI-add-one, the ideal functionality sends Id to only
P0.

Fig. 1. Ideal functionalities FUPSI-add-two and FUPSI-add-one for
UPSI with addition.

Consider the first D days: let X[D] = {X1, . . . , XD} be
the inputs of P0 and Y[D] = {Y1, . . . , YD} be the inputs
of P1. Let ViewΠ,D

b (X[D], Y[D]) and OutΠ,Db (X[D], Y[D])
be the view and outputs of Pb (b ∈ {0, 1}) in the protocol
Π at the end ofD days, respectively. Let f(X[D], Y[D]) :=

{I1, . . . , ID} be the outputs of the ideal functionality in
the D days.

Definition 3.1. (Two-Sided UPSI with Addition.)
A protocol Π is semi-honest secure with respect to ideal
functionality FUPSI-add-two if there exists PPT simulators
Sim0 and Sim1 such that for any D ∈ N+, any inputs
(X[D], Y[D]),
1. (ViewΠ,D

0 (X[D], Y[D]),OutΠ,D1 (X[D], Y[D]))
c
≈

(Sim0(1λ, X[D], f(X[D], Y[D])), f(X[D], Y[D]))
2. (ViewΠ,D

1 (X[D], Y[D]),OutΠ,D0 (X[D], Y[D]))
c
≈

(Sim1(1λ, Y[D], f(X[D], Y[D])), f(X[D], Y[D])).

Definition 3.2. (One-Sided UPSI with Addition.)
Π is semi-honest secure with respect to ideal functional-
ity FUPSI-add-one if there exists PPT simulators Sim0 and
Sim1 such that for any D ∈ N+, any inputs (X[D], Y[D]),
1. ViewΠ,D

0 (X[D], Y[D])
c
≈ Sim0(1λ, X[D], f(X[D], Y[D])),

2. (ViewΠ,D
1 (X[D], Y[D]),OutΠ,D0 (X[D], Y[D]))

c
≈

(Sim1(1λ, Y[D]), f(X[D], Y[D])).

3.2 UPSI with Weak Deletion
In the setting of UPSI with weak deletion, two parties
P0 and P1 each hold a private set. Then, on each day,
they add new elements to their respective sets and delete
elements that were added t days before. On each day,
they want to jointly compute the union of the intersec-
tion between their new elements and the other party’s
updated set comprising elements from the last t days,
without revealing anything beyond that. We formalize
UPSI with weak deletion as a special case of secure two-
party computation with a reactive functionality defined
in Figure 2. For simplicity, we assume that each party
adds the same number of elements as the other party
on each day. We only consider two-sided output where
both parties receives the output every day.
Consider the first D days: let X[D] = {X1, . . . , XD}
be the inputs of P0, Y[D] = {Y1, . . . , YD} be the in-
puts of P1 and N[D] = {N1, . . . , ND} be the set sizes.
Let ViewΠ,D

b (X[D], Y[D]) and OutΠ,Db (X[D], Y[D]) be the
view and outputs of Pb (b ∈ {0, 1}) in the protocol Π at
the end of D days, respectively. Let f(X[D], Y[D]) :=
{I1, . . . , ID} be the ideal functionality’s output in D

days.

Definition 3.3. (UPSI with Weak Deletion.) A
protocol Π is semi-honest secure with respect to ideal
functionality FUPSI-del if there exists PPT simulators
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Initialization: X := ∅, Y := ∅.

Day d:
– Public parameter: The set size on Day d is Nd.
– Inputs:
P0 inputs a set Xd of size Nd where each element is from
{0, 1}∗, and Xd ∩X = ∅.
P1 inputs a set Yd of size Nd where each element is from
{0, 1}∗, and Yd ∩ Y = ∅.

– Update: On receiving the inputs from both parties, the
ideal functionality updates X := (X ∪Xd) \Xd−t, Y :=

(Y ∪Yd)\Yd−t and computes Id =
(

(Xd∩Y )∪(X∩Yd)
)
.

(If d− t ≤ 0, let Xd−t = Yd−t = ∅.)
– Output: The ideal functionality sends Id to both par-

ties.
Fig. 2. Ideal functionality FUPSI-del for UPSI with weak deletion.

Sim0 and Sim1 such that for any d ∈ N+, any inputs
(X[D], Y[D]),
1. (ViewΠ,D

0 (X[D], Y[D]),OutΠ,D1 (X[D], Y[D]))
c
≈

(Sim0(1λ, X[D], N[D], f(X[D], Y[D])), f(X[D], Y[D])).
2. (ViewΠ,D

1 (X[D], Y[D]),OutΠ,D0 (X[D], Y[D]))
c
≈

(Sim1(1λ, Y[D], N[D], f(X[D], Y[D])), f(X[D], Y[D])).

Finally, we discuss an alternative ideal functionality for
weak deletion and why we choose FUPSI-del with moti-
vating examples in Appendix B.

4 Two-Sided UPSI with Addition
In this section, we present a two-sided UPSI with addi-
tion protocol satisfying Definition 3.1 based on the DDH
assumption in the random oracle model.

4.1 Construction

Notation. Let G be a group of prime order q with gen-
erator g. Let H : {0, 1}∗ → G be a hash function. For a
set X ⊆ {0, 1}∗, we denote H(X) := {H(x)|x ∈ X} and
H(X)k := {H(x)k|x ∈ X}.

Construction Overview. Our starting point is the
semi-honest PSI protocol based on the DDH assump-
tion [Mea86, HFH99]. The protocol roughly works as
follows. Both parties first hash their elements into a
group where DDH holds, namely P0 and P1 compute
H(X) and H(Y ) respectively. Each party holds a se-
cret exponentiation key, that is, P0 holds k0 and P1
holds k1. The parties then use their keys to exponen-
tiate their hashed elements and exchange the results.
They further exponentiate the elements in the received
set and send back the results. At the end, both parties

obtain H(X)k0k1 and H(Y )k0k1 , from which they can
derive the intersection X ∩ Y .

In the updatable setting, to learn the updated inter-
section Id on each Day d, parties only need to learn the
update set Iupdate = Id \ Id−1. Observe that Iupdate can
be split into two disjoint sets, IX,old = Xold ∩ Yd (where
Xold := X[d−1] \ Id−1) and IX,new = Xd ∩ Y[d], both of
which can be inferred by P0 from the output of the ideal
functionality and its own input. Therefore, it suffices to
let P0 learn both IX,old and IX,new. Symmetrically, if we
let Yold := Y[d−1] \ Id−1, then Iupdate can also be split
into IY,old = Yold∩Xd and IY,new = Yd∩X[d] to allow P1
to compute the output.

Using the ideas from the above DDH-based proto-
col, we first ensure that P0 holds a set H(Xold)k0k1 at
the end of Day (d − 1), where Xold = X[d−1] \ Id−1.
Then on Day d, P1 sends H(Yd)k1 and P0 computes
H(Yd)k0k1 . From this, P0 can derive IX,old = Xold ∩ Yd.
Symmetrically P1 can learn IY,old = Yold ∩Xd.

The next objective is to let P0 learn IX,new = Xd ∩
Y[d]. Naïvely, the two parties can run a PSI protocol
between the two sets Xd and Y[d], but the computational
cost of P1 would grow at least linearly with the size of
Y[d], which is unsatisfactory. Observe that IX,new can
also be split into two disjoint sets, Xd ∩ Yd and Xd ∩
Y[d−1], the latter being exactly IY,old.1 A natural idea
is to first run a PSI between Xd and Yd so that P0
can learn Xd ∩ Yd and then let P1 send IY,old to P0.
Unfortunately, this idea does not work because it leaks
extra information to P0 (observe that P0 does not learn
Xd∩Yd in the ideal world). Nevertheless, we notice that
the intersecting elements in IX,new could only come from
either Yd or IY,old, both of which are relatively small
sets and known to P1. Therefore, we can let P0 learn
IX,new by running a PSI with P1 on the two sets Xd
and Yd ∪ IY,old. In this PSI protocol, P1 needs to add
dummy elements to hide the size of Yd ∪ IY,old, but the
set size is at most 2·Nd, hence the PSI is efficient in both
computation and communication. The full protocol is
described in Figure 3.

4.2 Correctness, Efficiency, and Security

Correctness. If both parties follow the protocol hon-
estly, at the end of Day d, we will have the following
guarantees with all but negligible probability:
– Id = X[d] ∩ Y[d];

1 Note that IY,old is defined as Xd ∩ (Y[d−1] \ Id−1). Since Xd
and Id−1 are disjoint, it holds that IY,old = Xd ∩ Y[d−1].
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Initialization:
P0 samples k0

$←− Zq and sets Xold := ∅, HX = ∅, I0 := ∅.
P1 samples k1

$←− Zq and sets Yold := ∅, HY := ∅, I0 := ∅.

Day d: Party P0 inputs a set Xd of size Nd; party P1 inputs a set Yd of size Nd.
1. P0 learns IX,old = Xold ∩ Yd:

(a) P1 computes H(Yd)k1 and sends to P0.
(b) On receiving H(Yd)k1 , P0 raises each element to the power k0 to obtain H(Yd)k0k1 and compares with HX (which

equals to H(Xold)k0k1 ) to learn IX,old = Xold ∩ Yd.
2. Symmetrically, P1 learns IY,old = Yold ∩Xd.
3. Both parties learn the updated intersection:

(a) P1 lets Ỹd := Yd ∪ IY,old ∪ D̃Y where D̃Y consists of dummy random elements so that |Ỹd| = 2Nd.
(b) P0 and P1 run a PSI protocol for FPSI where P0’s input set is Xd and P1’s input set is Ỹd, from which only P0 learns

the output IX,new.
(c) P0 computes Iupdate := IX,new ∪ IX,old and sends it to P1.
(d) Both parties compute Id := Id−1 ∪ Iupdate and output Id for Day d.

4. P0 updates Xold and HX :
(a) P0 does the following:

– Let X′d := Xd \ Iupdate and X̂′
d

:= X′d ∪ D̂X where D̂X consists of dummy random elements so that |X̂′
d
| = Nd.

– Sample a uniform random α from Zq .
– Compute H(X̂′

d
)αk0 and send to P1.

(b) On receiving H(X̂′
d
)αk0 , P1 raises each element to the power k1 to obtain H(X̂′

d
)αk0k1 and sends back to P0.

(c) P0 does the following:
– On receiving H(X̂′

d
)αk0k1 , raise each element to the power α−1 to obtain H(X̂′

d
)k0k1 , from which derive

H(X′d)k0k1 .
– Update Xold :=

(
Xold \ IX,old

)
∪X′d and HX :=

(
HX \H(IX,old)k0k1

)
∪H(X′d)k0k1 .

5. Symmetrically, P1 updates Yold :=
(
Yold \ IY,old

)
∪
(
Yd \ Iupdate

)
and HY .

Fig. 3. Two-sided UPSI with addition protocol ΠUPSI-add-two.

– Xold = X[d] \ Id and HX = H(Xold)k0k1 ;
– Yold = Y[d] \ Id and HY = H(Yold)k0k1 .

We prove this by induction in Appendix C.1.

Complexity. On Day d, both parties perform O(Nd)
exponentiations and a PSI protocol with set sizes
O(Nd). The PSI protocol has both computational and
communication complexity O(Nd). Hence the total com-
putational and communication complexity are both
O(Nd) and independent of the total set size of each
party.

Security. We defer the security proof to Appendix C.2,
and only state the theorem below.
Theorem 4.1. Assuming the Decisional Diffie-
Hellman (DDH) assumption holds for the group G

and H(·) is modeled as a random oracle, the protocol
ΠUPSI-add-two presented in Figure 3 securely realizes the
ideal functionality FUPSI-add-two (defined in Figure 1) in
the FPSI-hybrid model against semi-honest adversaries.

5 One-Sided UPSI with Addition
In this section, we present a one-sided UPSI with addi-
tion protocol satisfying Definition 3.2, where only one
party P0 receives the output on each day.

5.1 Construction

Notation. Let λ be the computational security pa-
rameter and σ be the statistical security parameter.
Let G be a group of prime order q with generator
g. Let H1 : {0, 1}∗ → G be a hash function and
H2 : {0, 1}∗ → {0, 1}λ be another hash function. Let
AHE = (KeyGen,Enc,Dec) be an additively homomor-
phic encryption scheme where the message space is a
field Fp. For a set X ⊆ {0, 1}∗, we denote H1(X) :=
{H1(x)|x ∈ X} and H1(X)k := {H1(x)k|x ∈ X}. We
denote Encpk(X) as {Encpk(x)|x ∈ X}.

Let LS1(n) denote the position of the least signif-
icant one in the binary representation of n. In other
words, if n =

∑k
i=0 bi ·2

i, then LS1(n) := min{i : bi = 1}.
For example, LS1(7) = 0 and LS1(12) = 2. For a string
s ∈ {0, 1}`, let s[1..k] (where 1 ≤ k ≤ `) be the number
whose binary representation is the leading k bits of s.
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(a) Tree structure by the end of Day 19.
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(b) Tree structure by the end of Day 20.

Fig. 4. Example of update on Day 20. A white node indicates it is empty and a gray node indicates it is non-empty. P1 pushes all the
elements in D0 and D1, along with the new elements, to D2.

For example, for s = 010110, s[1..4] = (0101)2 = 5. In
addition, we let s[1..k] = 0 for k = 0.

Let a node denote a collection of at most 4σ ele-
ments (or encrypted elements). For each i ∈ N, let Di
denote an array of 2i nodes on the P1 side and let Di[j]
(where j ∈ {0, 1, . . . , 2i − 1}) be the j-th node in Di.
Similarly, let D̃i denote an array of 2i nodes (containing
encrypted elements) on the P0 side and let D̃i[j] be the
j-th node in D̃i.

Construction Overview. For simplicity, we assume
Nd = σ on each Day d. We discuss how to extend our
protocol for Nd 6= σ in Appendix E. Without loss of
generality, we assume all the set elements are in the field
Fp, namely in the message space of AHE. In case they are
not, we can first apply a hash function H : {0, 1}∗ → Fp
on all the elements.

To learn the updated intersection Id on each Day
d, party P0 only needs to learn the update set Iupdate =
Id \ Id−1. Similar to the previous protocol ΠUPSI-add-two
(see Figure 3), Iupdate can be split into two disjoint sets,
IX,old = Xold ∩ Yd and IX,new = Xd ∩ Y[d] (both can be
inferred from the output in the ideal world). We first
use the same approach as in the protocol ΠUPSI-add-two
to let P0 learn IX,old. Next we describe how to let P0
learn IX,new without leaking any information to P1.

At a high level, P1 stores all his elements in an en-
crypted form on P0’s storage in such a way that: (a)
P1 can efficiently and data-obliviously insert new ele-
ments to the storage, and (b) P0 can efficiently query if

her element x is in the storage. We construct a binary
tree structure to achieve the data obliviousness, efficient
data insertion, and efficient data query reminiscent of
constructions for oblivous ram (ORAM) [SvDS+18]. In
particular, P1 stores all his elements in a binary tree,
which can be updated efficiently when new elements are
added to his set. On each day, P1 updates his tree struc-
ture and then sends the corresponding updated encryp-
tions to P0, which allows her to update the encrypted
tree. To query if P0’s element x is in the encrypted tree,
P0 will locate a small set of elements that could possibly
contain x. By utilizing additively homomorphic encryp-
tion, P0 is able to learn whether x is among these ele-
ments (with P1’s help) without leaking any information
about x to P1.

The binary tree structure works as follows. Initially,
the tree is empty. Each node of the tree has a maximum
capacity O(σ). On each day when there are new ele-
ments added to P1’s set, P1 will insert the new elements
into the tree. Intuitively speaking, P1 starts by adding
the new elements to the root of the tree. If the root
is full (i.e., reaches the maximum capacity), then P1
pushes the elements in the root along with the new ele-
ments to the second level of the tree. If the second level
has any full node, then P1 pushes all the elements down
to the third level. This process continues – if the first L
levels of the tree contains any full node, then P1 pushes
all the elements in the first L levels, along with the new
elements, to the (L + 1)-st level of the tree, and then
empties the first L levels. For a particular level, an ele-
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ment y is put into a (pseudo-)random node of that level,
determined by the output of a hash function H2(y).

To make the above process data oblivious to P0, P1
should not wait until exactly when a node is full because
that may leak information about P1’s elements. Instead,
“pushing” happens in a predetermined way that only
depends on P1’s set sizes (which is public to P0 as well)
with the guarantee that no node will reach full capacity
except with negligible probability. As an illustration,
Figure 4 shows the pushing process on Day d = 20,
where P1 pushes all the elements in the first two levels
of the tree along with the new elements to the third
level.

After P1 updates his local tree structure, he pads
every updated node to the maximum capacity using
dummy elements and then sends them in an encrypted
form to P0, which allows her to update the encrypted
tree structure. Next, when P0 wishes to query if an el-
ement x is in the tree, for each x ∈ Xd, she can first
locate a root-to-leaf path of the tree that could possi-
bly contain x (by computing H2(x)). Then, by utilizing
additively homomorphic encryption and with the help
of P1, P0 can learn whether x is contained in any node
of the path without learning any more information and
without leaking x to P1. The full protocol is described
in Figure 5.

5.2 Correctness, Security, and Extension

Correctness. We can prove correctness by induction
over days. One crucial step is to argue that the protocol
aborts in Step 3 with negligible probability. The intu-
ition is that if we throw N = Poly(σ) balls into N

σ bins
uniformly at random, then the probability that any bin
exceeds the size of 4σ is negligible. We defer the formal
correctness proof to Appendix D.1.

Security. We defer the security proof to Appendix D.2,
and only state the theorem below.
Theorem 5.1. Given an additively homomorphic en-
cryption scheme AHE, assuming that the Decisional
Diffie-Hellman (DDH) assumption holds for the group
G, and that H1, H2 are modeled as random oracles, the
protocol ΠUPSI-add-one presented in Figure 5 securely real-
izes the ideal functionality FUPSI-add-one (defined in Fig-
ure 1) against semi-honest adversaries.

Extension. We can extend our protocol to the general
setting when the number of elements added by both
parties on any day Nd 6= σ, which we discuss in detail
in Appendix E.

5.3 Optimizations
We now discuss some optimizations to improve the con-
crete efficiency of the protocol.

Cuckoo Hashing. In Step 3c, for each element y ∈
S, instead of adding y to the (end of) node DL[j],
we store elements in each node using Cuckoo hashing
[PR04]. In more detail, to implement Cuckoo hashing,
as discussed in Section 2, we pick three hash func-
tions CuH1,CuH2,CuH3. Each node of the tree DL[j]
is represented as a collection of b bins. We also have
a small stash associated with each node. Now, each
y is inserted into one of these b bins (or the stash)
at any given node depending on the contents of bins
CuH1(y),CuH2(y),CuH3(y). Similarly, we also include
the elements from the stash when defining S and setting
Di[j] = ∅ in Step 3.

The advantage is that, in Step 5, for each x ∈ Xd,
i ∈ {0, . . . ,maxL}, non-empty node D̃i[j] (where j =
H2(x)[1,...,i]), instead of comparing x with each of the 4σ
elements in the node, P0 needs to compare with only the
three elements at bins CuH1(x),CuH2(x),CuH3(x) and
those in the associated stash. This significantly reduces
the communication and computation cost.

In our implementation (Section 7.3), we set the
Cuckoo hashing parameters according to the work of
Pinkas et al. [PSSZ15]. In particular, we set the num-
ber of bins b = 5σ and stash size to be a small constant.

El Gamal Encryption. We instantiate the additively
homomorphic encryption scheme using the exponential
variant of the El Gamal scheme [Gam84] to take ad-
vantage of the efficient elliptic curve operations. Re-
call that in this scheme, Enc(m) = (gr, hr · gm) where
the public key consists of a generator g and group ele-
ment h = gx. The secret key is x. In our protocol, let
pk0 = (g, h0), pk1 = (g, h1), sk0 = x0, sk1 = x1 – that
is, both parties use the same group and generator g.
First, in Step 5c, instead of decrypting ctr entirely,2 P0
can just check if the decryption is 0 more efficiently.
In particular, given ctr = (a, b), P0 can check if r = 0
by checking if b = ax0 . Similarly, in Step 5(b)i, given
ctβ = (a, b), instead of decrypting to get β and then re-
encrypting using pk0, P1 can compute Encpk0

(β) directly
as (gs, hs0 · b

ax1 ) where s is randomly sampled.

Reducing Number of Ciphertexts in C0. We can
reduce communication by modifying Step 5(a)i to allow

2 Decryption of exponential variant of El Gamal requires com-
puting the discrete logarithm of a group element which would
only work for a small message space and be expensive.



Updatable Private Set Intersection 387

Initialization:
1. P0 samples k0

$←− Zq and sets Xold := ∅, HX = ∅, I0 := ∅, and D̃i[j] := ∅ for all i ∈ N and all j ∈ {0, 1, . . . , 2i − 1}.
P1 samples k1

$←− Zq and sets Di[j] := ∅ for all i ∈ N and all j ∈ {0, 1, . . . , 2i − 1}.
Both parties set maxL := 0.

2. P0 generates (pk0, sk0)← KeyGen(1λ) and sends pk0 to P1.
P1 generates (pk1, sk1)← KeyGen(1λ) and sends pk1 to P0.

Day d: P0 inputs set Xd of size σ; P1 inputs set Yd of size σ.
1. P0 learns IX,old = Xold ∩ Yd:

(a) P1 computes H1(Yd)k1 and sends to P0.
(b) On receiving H1(Yd)k1 , P0 raises each element by k0 to obtain H1(Yd)k0k1 and compares with HX (which equals to

H1(Xold)k0k1 ) to learn IX,old = Xold ∩ Yd.
2. Both parties let L := LS1(d) and maxL := max{L,maxL}.
3. P1 updates D by doing the following:

(a) Let S :=
(⋃L−1

i=0

⋃2i−1
j=0 Di[j]

)
∪ Yd.

(b) For each i ∈ {0, 1, . . . , L} and for each j ∈ {0, 1, . . . , 2i − 1}, set Di[j] := ∅.
(c) For each element y ∈ S, let j := H2(y)[1..L] and add y into the node DL[j]. If the size of DL[j] exceeds 4σ, then abort.
(d) For each j ∈ {0, 1, . . . , 2L − 1}, construct a node D′L[j] of size 4σ by padding DL[j] with dummy random elements.

Compute D̃′L[j]← Encpk1 (D′L[j]).
(e) Send

{
D̃′L[j]

}
j∈{0,1,...,2L−1} to P0.

4. P0 updates D̃ by doing the following:
(a) For each i ∈ {0, 1, . . . , L− 1} and for each j ∈ {0, 1, . . . , 2i − 1}, set D̃i[j] := ∅.
(b) For each j ∈ {0, 1, . . . , 2L − 1}, set D̃L[j] := D̃′L[j].

5. P0 learns IX,new = Xd ∩ Y[d]:
P0 first sets IX,new := ∅. Then for each x ∈ Xd:
(a) P0 does the following:

i. Set C0 := ∅. For each i ∈ {0, . . . ,maxL}, let j := H2(x)[1..i]; if D̃i[j] 6= ∅, then for each ct ∈ D̃i[j]:

Sample α $←− Fp, compute ctα ← Encpk0 (α) and ctβ ← Encpk1 (x+ α)	 ct, and add a pair (ctα, ctβ) to C0.
ii. Send C0 to P1.

(b) P1 does the following:
i. Set C1 := ∅. For each pair (ctα, ctβ) ∈ C0, sample γ $←− Fp, compute β ← Decsk1 (ctβ), ctr ← γ� (Encpk0 (β)	ctα)

and add ctr to C1.
ii. Send C1 in a randomly permuted order to P0.

(c) P0 does the following:
For each ctr ∈ C1, compute r ← Decsk0 (ctr). Add x to the set IX,new if r = 0.

6. P0 outputs Id := Id−1 ∪ IX,old ∪ IX,new for Day d.
7. P0 updates Xold and HX :

(a) P0 does the following:
Let X′d := Xd \ Id and construct X̂′

d
of size σ by padding Xd with dummy random elements.

Sample α $←− Zq , compute H1(X̂′
d
)αk0 and send to P1.

(b) P1 raises each element in H1(X̂′
d
)αk0 to the power k1 to obtain H1(X̂′

d
)αk0k1 and sends back to P0.

(c) P0 raises each element in H1(X̂′
d
)αk0k1 to the power α−1 to obtain H1(X̂′

d
)k0k1 , from which it derives H1(X′d)k0k1 .

Then P0 updates Xold :=
(
Xold \ IX,old

)
∪X′d and HX :=

(
HX \H1(IX,old)k0k1

)
∪H1(X′d)k0k1 .

Fig. 5. One-sided UPSI with addition protocol ΠUPSI-add-one.

P0 to use the same ctα across all the ciphertext tuples
generated for a given x ∈ Xd. In more detail, we rewrite
the step as:

– Sample α $←− Fp. Compute ctα ← Encpk0
(α) and add

ctα to C0.
– For each i ∈ {0, . . . ,maxL}, let j := H2(x)[1..i]; if
D̃i[j] 6= ∅, then for each ct ∈ D̃i[j]: compute ctβ as(
Encpk1

(α) ⊕ βr � (Encpk1
(x) 	 ct)

)
where βr

$←− Fp

and (⊕,	,�) are homomorphic operations. That is,
ctβ = Encpk1

(
α+ βr · (x− y)

)
where ct = Encpk1

(y).
– Add ctβ to C0.

This change does not leak any additional information
to P1 because, by assumption, since elements added by
P1 on any day are distinct, with all but negligible prob-
ability, x = y for at most only one y amongst the plain-
texts encrypted to form ciphertexts {ct} (the negligible
probability error happens if x equals any of the random
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dummy elements too). For any x 6= y, βr · (x − y) is
statistically close to a uniform distribution since βr is
picked uniformly at random and so, reveals no informa-
tion about any x to P1. It is easy to observe that this
optimization does not affect security against a corrupt
P0 as well while reducing the size of C0 by half.

5.4 Efficiency
We now evaluate the communication and computational
complexity of the protocol (after applying the optimiza-
tions). For simplicity, we analyze the case where Nd = σ

and discuss the case of Nd 6= σ in Appendix E. Recall
the notation Num1(n) that denotes the number of 1’s in
the binary representation of n. For any Day d, Num1(d)
is the number of levels of the tree that are non-empty.
Let the stash size (a small constant) for any node in the
tree be denoted by s (which is a small constant). Over
a period of d days, the total number of elements in the
input set of each party is N = σ · d.

Communication Complexity. In Step 1, P1 sends
σ group elements. In Step 3, P1 sends (2L · 5σ) ci-
phertexts, where L = LS1(d). In Step 5, P0 first sends
σ · (1 + Num1(d) · (s + 3)) ciphertexts and P1 responds
back with σ · (Num1(d) · (s+ 3)) ciphertexts. In Step 7,
both parties send σ group elements. Thus, the overall
communication complexity is O(σ · (2LS1(d) + Num1(d)))
group elements. Now, the values of LS1(d) and Num1(d)
differ on every day and so the communication cost
is not the same on each day. We consider amortized
cost over 2k days of updates for d ∈ {2k, 2k + 1, . . . ,

2k+1 − 1}. The amortized 2LS1(d) is
∑2k+1−1

d=2k
2LS1(d)

2k =
2k+
∑k−1

i=0
2i·2k−1−i

2k = 1 + k
2 . The amortized Num1(d) is∑2k+1−1

d=2k
Num1(d)

2k = 2k+k·2k−1

2k = 1 + k
2 .

Thus, the amortized communication cost over 2k

days is O(σ · k). Since the total number of elements
N = σ · d, k = O(logN) and so the amortized com-
munication cost is O(σ · logN). In particular, it grows
only logarithmically with the total number of elements.

Computational Complexity. First, we analyze the
computation cost for P0. In Step 1, P0 performs σ ex-
ponentiations. In Step 4, P0 stores the 2L nodes – this
is inexpensive compared to exponentiations. In Step 5,
P0 generates σ · (1 + Num1(d) · (s + 3)) ciphertexts
(and decrypting later to check for 0). In Step 7, P0
does 2σ exponentiations. Hence P0’s computation cost
is O(σ · Num1(d)).

Next, we analyze P1’s cost. In Step 1, P1 does σ
exponentiations. In Step 3, P1 generates (2L · 5σ) en-

cryptions, where L = LS1(d). In Step 5, P1 performs
σ ·(1+Num1(d) ·(s+3)) encryptions/homomorphic eval-
uations. In Step 7, P1 does σ exponentiations. So P1’s
computation cost is O(σ · (2LS1(d) + Num1(d))).

As analyzed above, the amortized computation cost
is O(σ · k) over 2k days of updates for d ∈ {2k, 2k +
1, . . . , 2k+1 − 1}. Since the total number of elements
N = σ · d, we have k = O(logN) and the amortized
computation cost is O(σ · logN), which grows only log-
arithmically with the total number of elements.

6 UPSI with Weak Deletion
In this section, we describe an updatable PSI proto-
col satisfying Definition 3.3. That is, besides inserting
new elements to their sets each day, the protocol allows
both parties to delete data that was added t days ago
and compute the intersection privately on these new up-
dated sets. In particular, the output is the union of the
intersection of each party’s new elements with the other
party’s updated set comprising elements over the last
t days. Our protocol allows both parties to learn the
output at the end of each day and is based on oblivious
transfer (OT) and correlation robust hash functions.

We first introduce the notion of sender-streaming
PSI and then use that to build our updatable PSI pro-
tocol with weak deletion.

6.1 Sender-Streaming PSI
Consider two parties - a sender S and a receiver R who
wish to engage in a one-sided PSI protocol to allow R

to learn the intersection without revealing anything else.
However, unlike the typical PSI setting, only R knows
its entire input set Y at the beginning while the sender
only knows a subset X0. An upper bound Max on the
maximum number of elements in the sender’s set is part
of the public parameters as are the sizes |Y |, |X0|. At this
point, the receiver learns (X0 ∩ Y ). Subsequently, the
sender learns more of its input in a streaming manner
and the two parties interact to allow the receiver to learn
the intersection of its input set with the new streamed
sender input. That is, on receiving an streaming input
Xi, the two parties engage in a protocol that allows the
receiver to learn (Xi ∩ Y ). We formalize this notion as
a special case of secure two-party computation with a
reactive functionality defined in Figure 6.

Let X[i] = {X0, . . . , Xi} be the inputs of S

over i streams and Y be the input of R. Let
ViewΠ,i

S (X[i], Y,Max), ViewΠ,i
R (X[i], Y,Max) be the views

of S and R, respectively, in the protocol Π at the end
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Initialization:
– Inputs:
S inputs a set X0 where each element is from {0, 1}∗.
R inputs a set Y where each element is from {0, 1}∗.
The set sizes |X0|, |Y | and upper bound Max are public
and known to both parties.

– Output:
The ideal functionality sets X = X0. Then, it computes
and sends X0 ∩ Y to R.

Stream i:
– Inputs:
S inputs a set Xi where each element is from {0, 1}∗ and
Xi ∩ X = ∅. The stream size |Xi| is public and known
to R.

– Output:
The ideal functionality sets X = X ∪Xi. Then, if |X| ≤
Max, it computes and sends Ii = Xi∩Y to R. Else, sends
⊥.

Fig. 6. Ideal functionalities FSSPSI for sender-streaming PSI.

of i streams and let OutΠ,i(X[i], Y,Max) be the outputs
of R at the end of i streams. Let f(X[i], Y,Max) :=
{I0, . . . , Ii} be the outputs of the ideal functionality in
the i streams.

Definition 6.1. (Sender-Streaming PSI.) A proto-
col Π is semi-honest secure with respect to ideal func-
tionality FSSPSI if there exists PPT simulators SimS and
SimR such that for any i ∈ N, any inputs (X[i], Y ) and
any upper bound Max,
1. ViewΠ,i

R (X[i], Y,Max)
c
≈

SimR(1λ, Y, {|Xj |}j∈[i],Max, f(X[i], Y,Max)),
2. (ViewΠ,i

S (X[i], Y,Max),OutΠ,i(X[i], Y,Max))
c
≈

(SimS(1λ, X[i], |Y |,Max), f(X[i], Y,Max)).

Instantiations. We notice that the PSI protocols of
Kolesnikov et al. [KKRT16], Pinkas et al. [PRTY19],
Chase and Miao [CM20] immediately satisfy Defini-
tion 6.1. We state the lemma below and defer the dis-
cussion to Appendix F.

Lemma 6.2. Assuming semi-honest OT and corre-
lation robust hash functions, the PSI protocols of
[KKRT16, PRTY19, CM20] all securely realize the ideal
functionality FSSPSI against semi-honest adversaries.

6.2 Construction
Notation. On each Day d, letXd be the elements added
to P0’s set and Yd be added to P1’s set where |Xd| =
|Yd| = Nd. For any j, we will initialize Xj = Yj = ∅ if
they have not yet been defined (or j ≤ 0). Further, for

any d, let Maxd ≥ (2 · Nd +
∑j=d+t−1
j=d+1 Nj). We assume

that Maxd is known at the start of Day d - that is, on any
day, both parties know an upper bound on the number
of elements they can add over the next (t− 1) days.

Since we invoke several instances of FSSPSI, we intro-
duce additional notation to identify the sender of FSSPSI
and on which day of the UPSI protocol the functional-
ity was first invoked. Let F (P0,d)

SSPSI indicate that P0 is the
sender of the SS-PSI protocol, P1 is the receiver and the
functionality was first invoked on Day d.

Construction Overview. We focus on how P0 com-
putes the output - the final protocol is symmetric to
allow P1 to compute the output as well. On any Day
d, observe that the output Id can be split into two
disjoint sets: (i) I0,α = (X[d−1] \ X[d−t]) ∩ Yd and (ii)
I0,β = Xd ∩ (Y[d] \ Y[d−t]). Then, Id = I0,α∪̇I0,β (each
of which can be inferred from the output in the ideal
world). Note that Xd ∩ Yd is included in I0,β and not
I0,α.

To compute I0,α, note that I0,α = (Xd−t+1 ∩
Yd)∪̇ . . . ∪̇(Xd−1 ∩ Yd), where (Xj ∩ Yd) (for all j ∈
{d− t+ 1, . . . , d−1}) can be inferred from the output in
the ideal word. Our idea is to use the sender-streaming
PSI (FSSPSI) initiated on earlier days to let P0 learn
(Xj ∩ Yd). In more detail, on each of the (t − 1) previ-
ous days, invoke F (P1,j)

SSPSI with P0 as receiver using input
Xj (on Day j) and P1 as sender. The upper bound for
the sender’s set size is discussed later. Then, on Day
d, P1’s streamed input for each of these instances is Yd
which allows P0 to learn (Xj ∩ Yd). The same mech-
anism can be employed symmetrically for P1 to learn
I1,α = Xd ∩ (Y[d−1] \ Y[d−t]).

Next, to compute I0,β , the idea is to use a new in-
stance F (P1,d)

SSPSI on Day d with P0 as the receiver using
input Xd and P1 as the sender. From the above para-
graph, observe that this instance of FSSPSI is also used
to compute terms of I0,α over the following (t−1) days.
Now, since the goal is to compute I0,β = Xd ∩ (Y[d] \
Y[d−t]), sender P1’s input in its initial stream should
be (Y[d] \ Y[d−t]) whose size is

∑j=d
j=d−t+1Nj . Nonethe-

less, this can be improved. Observe that I0,β = (Xd ∩

Yd)∪
(
Xd ∩ (Y[d−1] \ Y[d−t])

)
= Xd ∩ (Yd ∪ I1,α). Thus,

sender P1’s input to F (P1,d)
SSPSI can be just (Yd∪I1,α). Since

|I1,α| ≤ |Nd|, size of P1’s input is at most (2·Nd). P1 uses
dummy elements to pad the size to be exactly 2 ·Nd to
not leak more information about I1,α to P0. Once again,
P1 can similarly learn I1,β = Yd ∩ (X[d] \X[d−t]).

Finally, the missing component is an upper bound
on sender P1’s entire input in FP1,d

SSPSI initiated on Day d.
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Recall that to compute I0,α, for each of the next (t− 1)
days, P1 uses streamed input Yj on Day j. Hence the
upper bound is (2 ·Nd +

∑j=d+t−1
j=d+1 Nj). The protocol is

described in Figure 7.

6.3 Correctness, Security, and Efficiency

Correctness. If both parties follow the protocol hon-
estly, at the end of Day d, we will have the guar-
antee that with all but negligible probability, Id =(
(X[d] \X[d−t]) ∩ Yd

)
∪
(
(Y[d] \ Y[d−t]) ∩Xd

)
. We prove

by induction in Appendix G.1.

Security. We defer the security proof to Appendix G.2,
and only state the theorem below.

Theorem 6.3. The protocol ΠUPSI-del presented in Fig-
ure 7 securely realizes the ideal functionality FUPSI-del
(defined in Figure 2) in the FSSPSI-hybrid model against
semi-honest adversaries.

Instantiating FSSPSI with the protocol of Kolesnikov et
al. [KKRT16] or Pinkas et al.[PRTY19] or Chase and
Miao [CM20], all of which are based on semi-honest OT
and correlation robust hash functions (Lemma 6.2), we
get the following corollary:

Corollary 6.4. Assuming semi-honest OT and corre-
lation robust hash functions, the protocol ΠUPSI-del pre-
sented in Figure 7 securely realizes the ideal function-
ality FUPSI-del (defined in Figure 2) against semi-honest
adversaries.

Computational and Communication Complex-
ity. On Day d, FSSPSI is invoked with a new stream
2 · (t−1) times with size of new streamed set as Nd. The
total computational complexity in this step is O(Nd ·λ·t)
and the communication complexity is O(Nd · σ · t) bits.
Besides, two new invocations of FSSPSI (the initialization
phase) occur where the receiver’s set size is Nd and the
sender’s set size is 2 ·Nd. The computational complexity
in this step is O(Nd·λ) and communication complexity is
O(Nd ·λ) bits. Thus, the total computational complexity
is O(Nd · λ · t) and the total communication complexity
is O(Nd · (σ · t+ λ)) bits.

As opposed to our protocols for PSI with addition
which achieve better asymptotic complexity than a fresh
PSI protocol, our weak deletion protocol ΠUPSI-del ap-
pears more as an observation on the existing PSI proto-
cols (in particular, their sender-streaming property). In
fact, the weak deletion protocol ΠUPSI-del has the same
asymptotic complexity as a fresh PSI, but achieves a
better concrete efficiency by smaller constant factors.

The protocol is a generic construction from sender-
streaming PSI and its performance depends on the un-
derlying sender-streaming PSI protocol.

7 Experimental Results
We implement our two-sided and one-sided UPSI with
addition protocols (ΠUPSI-add-two and ΠUPSI-add-one) in
C++ and report their performance in this section.

7.1 Implementation Details
We set the computational security parameter to λ = 128
and statistical security parameter to σ = 40. We use
the CryptoTools library [Rin] for our underlying cryp-
tographic primitives. In particular, we use the Boost
library [Boo] for networking, the Relic library [AGM+]
for the instantiation of elliptic curves, and SHA256 from
OpenSSL [Ope] for the hash functions.

We compare our UPSI with addition protocols with
the state-of-the-art OT extension based semi-honest PSI
protocols which are optimized for different network set-
tings:
– KKRT16 [KKRT16]: computation-optimized and

works best in the setting of LAN networks.
– SpOT-Light [PRTY19]: communication-optimized

and works best in networks with low bandwidth.
They have two variants of the protocol, a speed-
optimized variant (spot-fast) and a communication-
optimized variant (spot-low). We compare our pro-
tocols with both variants.

– CM20 [CM20]: balanced between computation and
communication, and works best in networks with
moderate bandwidth (e.g., 30− 100 Mbps).
We run all the experiments between two Amazon

AWS virtual machines with Intel(R) Xeon(R) 3.0 GHz
CPU and 32 GB RAM, which communicate over a LAN
network. We simulate the WAN connection using the
Linux tc command, where the RTT latency is set to be
80 ms and we test on various network bandwidths. All
of our experiments use a single thread for each party.

Setting. To demonstrate the updatable property, we
consider the following setting: each party initially holds
an empty set. Then, on every new Day d, both parties
add a new set of size Nd to their existing sets and wish
to learn the updated set intersection. We repeat this
process over a period of several days ( NNd ) till the total
set size of each party is N . We compare the amortized
(over the total number of days) communication cost and
running time of our protocol with the prior PSI proto-
cols [KKRT16, PRTY19, CM20], where, on any Day d,
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Day 1: P0 has input set X1 and P1 has input set Y1. The protocol works as follows:

1. Invoke FP1,1
SSPSI with P0 as the receiver with input X1, P1 as the sender with initial input Y1 and upper bound Max1. P0

learns output I1 = (X1 ∩ Y1).
2. Invoke FP0,1

SSPSI with P1 as the receiver with input Y1, P0 as the sender with initial input X1 and upper bound Max1. P1
learns output I1 = (X1 ∩ Y1).

Day d: P0 has new input set Xd and P1 has new input set Yd. P0’s and P1’s input sets over the last t days are(
Xd−t+1, . . . , Xd−1, Xd

)
and

(
Yd−t+1, . . . , Yd−1, Yd

)
respectively. The protocol works as follows:

1. I0,α =
⋃d−1
j=(d−t+1)(Xj ∩ Yd): For each j > 0, invoke FP1,j

SSPSI with P1’s new streamed input as Yd. Receiver P0 learns

(Xj ∩ Yd).
2. I1,α =

⋃d−1
j=(d−t+1)(Yj ∩Xd): For each j > 0, invoke FP0,j

SSPSI with P0’s new streamed input as Xd. Receiver P1 learns

(Yj ∩Xd).

3. I0,β =
(
Xd ∩

(⋃d

j=d−t+1 Yj
))

: P0 computes this as follows:

(a) Invoke FP1,d
SSPSI with P0 as the receiver with input Xd, P1 as the sender with initial input B and upper bound Maxd

where the set B = Yd ∪
(⋃d−1

j=d−t+1 Yj∩Xd
)
∪D̂Y where D̂Y consists of dummy random elements so that |B| = 2 ·Nd.

(b) P0’s output is
(
Xd ∩

(⋃d

j=d−t+1 Yj
))

since
(
Xd ∩

(⋃d

j=d−t+1 Yj
))

=
(
Xd ∩B

)
.

4. I1,β =
(
Yd ∩

(⋃d

j=d−t+1 Xj
))

: P1 computes this similar to the above as follows:

(a) Invoke FP0,d
SSPSI with P1 as the receiver with input Yd, P0 as the sender with initial input A and upper bound Maxd where

the set A = Xd ∪
(⋃d−1

j=d−t+1 Xj ∩ Yd
)
∪ D̂X where D̂X consists of dummy random elements so that |A| = 2 ·Nd.

(b) P1’s output is
(
Yd ∩

(⋃d

j=d−t+1 Xj
))

since
(
Yd ∩

(⋃d

j=d−t+1 Xj
))

=
(
Yd ∩A

)
.

5. Output computation:
P0 outputs Id = (I0,α ∪ I0,β) and P1 outputs Id = (I1,α ∪ I1,β).

Fig. 7. Updatable PSI protocol with weak deletion ΠUPSI-del .

the two parties run a fresh PSI on their updated sets to
learn the updated intersection.

7.2 Two-Sided UPSI with Addition
We implement the two-sided UPSI with addition proto-
col ΠUPSI-add-two presented in Section 4, where the PSI
protocol in Step 3b is instantiated with a DDH-based
PSI [Mea86, HFH99]. A detailed comparison for N =
216−222 and Nd = 28−212 is presented in Table 2. Note
that for the PSI protocols [KKRT16, PRTY19, CM20],
we only report for Nd = 28 because both their commu-
nication and running time are dominated by N (which
is much larger than Nd) and do not differ much for other
Nd values.

Communication Improvement. The communication
cost of our protocol on any day is proportional only
to the update size Nd and independent of the size of
the entire set (that grows gradually to N), whereas all
the PSI protocols require communication to grow with
the entire set. Therefore, our protocol beats all the PSI
protocols in amortized communication by 7.5− 13250×
in the settings we consider (where N � Nd).

Computation Improvement. Similar to communica-
tion, our computational cost also grows only with Nd
while all the PSI protocols require computation to grow
with the size of the entire set (that gradually grows to
N). However, our protocol does not beat their compu-
tation in all the settings because all these PSI protocols
only use OT extension [IKNP03, ALSZ13] along with
symmetric cryptographic primitives (AES/hash func-
tions), which are computationally very efficient, while
our protocol requires public-key operations. As a re-
sult, our protocol is computationally more expensive
for smaller values of N but eventually beats all these
protocols when N is sufficiently large. In particular, for
N = 222 and Nd = 28, our protocol beats [KKRT16]
(the computationally most efficient protocol) by 2.6×
in computation.

Overall Running Time. Generally speaking, our pro-
tocol has more advantages in the total running time
when the network bandwidth is lower, the total set size
N is larger, and the update size Nd is smaller. For exam-
ple, if we focus on the setting N = 220, when Nd = 28,
our protocol beats the best PSI protocol by 1.1− 24.5×
for network bandwidth between 5 − 200 Mbps; when
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N Nd Protocol Comm. (MB) Total Running Time (s)
LAN 200Mbps 50Mbps 5Mbps

216

28

KKRT16 3.90 0.05 1.01 1.32 7.11
spot-fast 2.32 0.91 1.38 1.38 7.06
spot-low 1.96 4.99 5.23 5.39 6.93
CM20 2.65 0.29 1.23 1.30 4.94

28

Ours
0.02 1.65 2.55 2.64 2.66

210 0.06 6.06 6.81 7.22 8.13
212 0.26 23.5 24.2 25.7 29.5

218

28

KKRT16 15.9 0.25 1.92 3.43 27.5
spot-fast 9.45 3.49 4.08 4.20 12.8
spot-low 7.80 21.2 22.8 23.3 30.4
CM20 10.7 0.90 1.73 2.81 18.6

28

Ours
0.02 1.65 2.55 2.63 2.66

210 0.06 6.07 6.84 7.26 8.15
212 0.26 23.6 24.2 25.8 29.6

220

28

KKRT16 64.2 1.03 2.89 12.7 109
spot-fast 38.2 12.2 13.1 13.7 65.1
spot-low 31.6 110 107 113 146
CM20 43.8 3.50 4.41 8.43 74.6

28

Ours
0.02 1.65 2.55 2.63 2.66

210 0.06 6.08 6.85 7.29 8.57
212 0.26 23.6 24.3 25.7 30.0

222

28

KKRT16 265 4.30 8.71 49.1 441
spot-fast 157 49.7 51.3 54.8 196
spot-low — — — — —
CM20 178 15.0 16.2 31.6 303

28

Ours
0.02 1.65 2.55 2.63 2.66

210 0.06 6.08 6.85 7.29 8.84
212 0.26 23.6 24.3 25.8 30.2

Table 2. Amortized communication cost (in MB) and running time (in seconds) comparing our protocol ΠUPSI-add-two to [KKRT16],
spot-fast and spot-low [PRTY19], and [CM20]. The LAN network has 20 Gbps bandwidth and 0.1 ms RTT latency. All the other net-
work settings have 80 ms RTT. Cells with “—” denote settings where the programs run out of memory and those in orange indicate
the fastest running time for that setting.

Nd = 210, our protocol beats the best PSI protocol by
1.1−7.6× for network bandwidth between 5−50 Mbps;
when Nd = 212, our protocol beats the best PSI protocol
by 2.1× for network bandwidth 5 Mbps. On the other
hand, for the setting where N = 222, when Nd = 28, our
protocol beats the best PSI protocol by 2.6− 73.7× for
all networks.

7.3 One-Sided UPSI with Addition
We implement the one-sided UPSI with addition pro-
tocol ΠUPSI-add-one presented in Section 5 with the opti-
mizations mentioned in Section 5.3. We pick the Cuckoo
hashing parameters according to Pinkas et al. [PSSZ15].
In Figure 5, we set the batch size for both parties (the
number of elements added each day) to be 26 = 64 in-

stead of σ (which is 40).3 To insert n = 4 · 26 = 28

elements into the Cuckoo hash table, we set the num-
ber of bins as 1.2n = 308 and stash size as 12. A
detailed comparison for N = 216 − 220 and Nd =
26 − 210 is presented in Table 3.4 For the PSI pro-
tocols [KKRT16, PRTY19, CM20], we only report for
Nd = 28 as their amortized communication and run-

3 We use 26 instead of 40 for two reasons: In the parameters
from [PSSZ15], the stash size is available only for n = 28 and
not lower numbers. Also, since we consider daily updates that
are powers of 2, running batches of 26 is more convenient than
40.
4 Unlike Table 2, we don’t include N = 222 as we ran out of
memory for that case.
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N Nd Protocol Comm. (MB) Total Running Time (s)
LAN 200Mbps 50Mbps 5Mbps

216

28

KKRT16 3.90 0.05 1.01 1.32 7.11
spot-fast 2.32 0.91 1.38 1.38 7.06
spot-low 1.96 4.99 5.23 5.39 6.93
CM20 2.65 0.29 1.23 1.30 4.94

26

Ours
0.30 2.96 3.46 3.55 3.62

28 0.97 10.6 11.9 12.0 12.1
210 2.95 35.5 37.6 37.7 37.8

218

28

KKRT16 15.9 0.25 1.92 3.43 27.5
spot-fast 9.45 3.49 4.08 4.20 12.8
spot-low 7.80 21.2 22.8 23.3 30.4
CM20 10.7 0.90 1.73 2.81 18.6

26

Ours
0.37 3.38 3.98 4.07 4.16

28 1.21 12.5 14.1 14.2 14.3
210 3.88 42.2 44.7 44.8 44.9

220

28

KKRT16 64.2 1.03 2.89 12.7 109
spot-fast 38.2 12.2 13.1 13.7 65.1
spot-low 31.6 110 107 113 146
CM20 43.8 3.50 4.41 8.43 74.6

26

Ours
0.43 3.88 4.58 4.68 4.78

28 1.45 14.8 16.6 16.8 16.9
210 4.84 50.6 53.6 53.7 53.8

Table 3. Amortized communication cost (in MB) and running time (in seconds) comparing our protocol ΠUPSI-add-one to [KKRT16],
spot-fast and spot-low [PRTY19], and [CM20]. The LAN network has 20 Gbps bandwidth and 0.1 ms RTT latency. All the other net-
work settings have 80 ms RTT. Cells with “—” denote settings where the programs run out of memory and those in orange indicate
the fastest running time for that setting.

ning time are dominated by N and do not differ much
for other Nd values.

Communication Improvement. The amortized com-
munication cost of our protocol grows linearly only with
the update size Nd and logarithmically with the size of
the entire set (that grows gradually to N), whereas all
the PSI protocols require communication to grow lin-
early with the entire set. Therefore, our protocol beats
these PSI protocols in amortized communication by
2−149× in almost all the settings we consider, the only
exception being when N = 216 and Nd = 210.

Computation Improvement. Our amortized compu-
tational cost also grows only linearly with Nd and loga-
rithmically with the size of the entire set (that grows
gradually to N) while all the PSI protocols require
computation to grow linearly with the entire set. How-
ever, our protocol does not beat [KKRT16, CM20] in
the settings we consider because N is not sufficiently
large. In particular, we expect our protocol to beat both
[KKRT16, CM20] in computation when N = 222 and
Nd = 26 (we currently run out of memory for N = 222).

We also note that for N = 220 and Nd = 26, our protocol
beats [PRTY19] by 3.1− 28.3× in computation.

Overall Running Time. Our protocol generally has
more advantages in the total running time when the net-
work bandwidth is lower, the total set size N is larger,
and the update size Nd is smaller. For example, con-
sider N = 220: when Nd = 26, our protocol beats the
best PSI protocol by 1.8−30.5× for network bandwidth
between 5−50 Mbps; when Nd = 28, our protocol beats
the best PSI protocol by 3.9× for network bandwidth 5
Mbps; when Nd = 210, our protocol beats the best PSI
protocol by 1.2× for network bandwidth 5 Mbps.
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A Additional Preliminaries
A.1 Private Set Intersection (PSI)
Private Set Intersection (PSI) is a special case of secure
two-party computation. We follow the standard secu-
rity definition for semi-honest secure two-party compu-
tation. Consider two parties P0, P1 with input sets X,Y
of size N0, N1, respectively. Their goal is to run a two
party secure computation protocol Π at the end of which
party P0 learns the set intersection I = X ∩ Y .5 The
formal definition of the ideal functionality is shown in
Figure 8.

Parameters: The set size of X is N0 and the set of Y is N1.

Inputs:
Party P0 has an input set X of size N0 where each element
is from {0, 1}∗.
Party P1 has an input set Y of size N1 where each element
is from {0, 1}∗.

Output: P0 receives the set intersection I = X ∩ Y .

Fig. 8. Ideal functionality FPSI for two-party PSI.

Let ViewΠ
0 (X,Y ) and ViewΠ

1 (X,Y ) be the view of P0
and P1 in the protocol Π, respectively. Let OutΠ(X,Y )
be the output of P0 in the protocol. Let O = f(X,Y ) be
the output of P0 in the ideal functionality. The protocol
Π is semi-honest secure if there exists PPT simulators
Sim0 and Sim1 such that for all inputs X,Y ,

ViewΠ
0 (X,Y )

c
≈ Sim0

(
1λ, X,N1, O)

)
,(

ViewΠ
1 (X,Y ),OutΠ(X,Y )

) c
≈
(
Sim1(1λ, Y,N0), O

)
.

A.2 Tools and Assumptions

Additively Homomorphic Encryption. An addi-
tively homomorphic encryption scheme is a public-key

5 Another formulation is allowing both parties to learn the out-
put, which can be easily achieved in the semi-honest model by
P0 sending the output I to P1 at the end.

encryption scheme AHE = (KeyGen,Enc,Dec) over mes-
sage spaceM with correctness, CPA security, and linear
homomorphism.
– (pk, sk)← KeyGen(1λ)
– ct← Encpk(m; r)
– m/⊥ ← Decsk(ct)
– Homomorphic addition: Encpk(m1) ⊕ Encpk(m2) =

Encpk(m1 +m2) for ∀m1,m2 ∈M.
– Homomorphic multiplication with constant: c �

Encpk(m) = Encpk(c ·m) for ∀c,m ∈M.
We implicitly assume that each homomorphic evalua-
tion is followed by a refresh operation, where the re-
sulting ciphertext is added with an independently gen-
erated encryption of zero. This is required in our proto-
cols to ensure that the randomness of the final cipher-
text is independent of the randomness used in the origi-
nal set of ciphertexts. For the popular additively homo-
morphic encryption schemes such as ElGamal encryp-
tion [Gam84] (based on DDH) and Paillier encryption
[Pai99] (based on the Decisional Composite Residuosity
assumption), a homomorphically evaluated ciphertext
is statistically identical to a fresh ciphertext. We refer
to [Gam84, Pai99] for formal definitions of correctness
and CPA security.

Decisional Diffie-Hellman (DDH) Assumption.
Let G be a cyclic multiplicative group of prime order
q with generator g. Let a, b, c be sampled uniformly at
random from Zq. The DDH assumption states that

(ga, gb, gab)
c
≈ (ga, gb, gc).

B Weak Deletion Functionality
In this section, we discuss the choice of our definition
for the weak deletion functionality. We consider an al-
ternate, arguably more natural functionality for dele-
tion where both parties compute the intersection of their
datasets over the last t days - that is, delete data that
was added more than t days ago and compute the inter-
section on their updated sets. We define this function-
ality FUPSI-del-alt in Figure 9. We make two observations
about FUPSI-del-alt to explain why we instead choose to
focus on FUPSI-del in this work.

Leakage from Ideal Functionality. It turns out that
FUPSI-del-alt in fact leaks a lot more information over
the course of several days than what immediately meets
the eye from the functionality description. In particular,
both parties actually learn (Xi ∩ Yj) for all |i − j| < t.
To see why, consider the sequence of t days start-
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Initialization: X := ∅, Y := ∅.

Day d:
– Public parameter: The set size on Day d is Nd.
– Inputs:
P0 inputs a set Xd of size Nd where each element is from
{0, 1}∗, and Xd ∩X = ∅.
P1 inputs a set Yd of size Nd where each element is from
{0, 1}∗, and Yd ∩ Y = ∅.

– Update: On receiving the inputs from the two par-
ties, the ideal functionality updates X := (X ∪ Xd) \
Xd−t, Y := (Y ∪ Yd) \ Yd−t and computes Id = X ∩ Y .
(If d− t ≤ 0, let Xd−t = Yd−t = ∅.)

– Output: The ideal functionality sends Id to both par-
ties.

Fig. 9. Ideal func. FUPSI-del-alt for UPSI with weak deletion.

ing on Day d and see what P0 learns from the out-
put on each day about Xd. On Day d, P0 can learn
(Xd ∩ (Y[d] \ Y[d−t])) from Id. On Day (d + 1), P0 can
infer (Xd ∩ (Y[d+1] \ Y[d−t+1])) from Id+1. From both
the above, P0 can immediately deduce (Xd ∩ Yd+1) and
(Xd∩Yd−t+1). Similarly, for each i ∈ {d+2, . . . , d+t−1},
P0 can learn (Xd ∩ Yi) and (Xd ∩ Yi−t). Finally, notice
that on Day (d+t−1), P0 learns Xd∩(Y[d+t−1] \Y[d−1]).
From this and the intermediate results on each day, P0
can also learn Xd ∩ Yd. Observe that this leakage does
not occur in FUPSI-del.

Stronger Functionality (FUPSI-del ⇒ FUPSI-del-alt).
We show that FUPSI-del-alt can be realized given FUPSI-del.
That is, any protocol achieving FUPSI-del can be eas-
ily transformed to achieve FUPSI-del-alt. Intuitively, the
idea is that given the output Id−1 of FUPSI-del-alt on Day
(d − 1), to obtain the output on Day d, we essentially
need to do two things: (i) Add to Id−1 the contribution
of the new inputs Xd and Yd, (ii) Remove from Id−1 the
contribution of the deleted data Xd−t and Yd−t. Ob-
serve that (i) is exactly the output of FUPSI-del on Day
d. For (ii), from the output Id−1 and its own inputs,
P0 can compute A = Xd−t ∩ (Y[d−1] \ Y[d−t−1]) which is
the contribution of Xd−t to Id−1. Similarly, P1 can com-
pute Yd−t’s contribution B = Yd−t∩ (X[d−1] \X[d−t−1]).
Then, they can simply exchange this information with
each other in plaintext and this completes (ii). This ex-
change doesn’t leak extra any information because, from
the output of the functionality, Id−1\Id is in fact (A∪̇B).
From this, and the knowledge of A that P0 can compute
locally, P0 can automatically learn B in the ideal world.
Similarly for P1. For completeness, we describe the pro-
tocol formally in Figure 10.

Motivating Example for FUPSI-del. Finally, our mo-
tivating example for studying updatable PSI with weak

Notation. For any i ≤ 0, define Xi = Yi = ∅. Let I0 = ∅.
Day d: P0 has new input Xd and P1 has new in-
put Yd. P0’s and P1’s inputs over the last t days are(
Xd−t+1, . . . , Xd−1, Xd

)
and

(
Yd−t+1, . . . , Yd−1, Yd

)
re-

spectively. The protocol works as follows:

1. Invoke FUPSI-del-alt with P0’s input on Day d as Xd and

P1’s input as Yd. Both parties learn Iz =
(
Xd ∩ (Y[d] \

Y[d−t])
)
∪
(
Yd ∩ (X[d] \X[d−t])

)
.

2. Let Id−1 be the output on Day (d − 1). From Id−1,
P0 deduces and sends A = Xd−t ∩ (Y[d−1] \ Y[d−t−1]).
Similarly, P1 deduces and sends B = Yd−t ∩ (X[d−1] \
X[d−t−1]).

3. Both parties output Id = Iz ∪
(
Id−1 \ (A ∪B)

)
.

Fig. 10. Protocol satisfying FUPSI-del-alt in the FUPSI-del-hybrid
model.

deletion also holds for FUPSI-del. In privacy-preserving
contact tracing, consider the scenario where one party’s
(server’s) input is the set of people who tested positive
on that day, the other party’s (client’s) input is the set
of people they interacted with on that day. The output
on each day is the union of two parts: (a) people who
tested positive in the last t days intersecting with those
clients met on that day, and (b) people who tested pos-
itive on that day intersecting with those clients met in
the last t days. Essentially, this captures whether client
is at risk of having been infected.

C Proofs for ΠUPSI-add-two

C.1 Correctness Proof
We prove the guarantees presented in Section 4.2 by
induction.

Base Case: These guarantees hold on Day 0 since all
the sets are initialized as empty sets.

Induction Step: Suppose the guarantees hold on Day
(d− 1). Let Id−1, X

(d−1)
old , H

(d−1)
X , Y

(d−1)
old , H

(d−1)
Y be the

sets at the end of Day (d − 1). Now we consider Day d
with new sets Xd and Yd. Let Id, X

(d)
old , H

(d)
X , Y

(d)
old , H

(d)
Y

be the sets at the end of Day d. In Step 1, party
P0 learns H(Yd)k0k1 and takes the intersection with

H
(d−1)
X (which equals to H

(
X

(d−1)
old

)k0k1
). By the col-

lision resistance of the hash function H, the intersec-
tion would result in X(d−1)

old ∩ Yd with all but negligible
probability, namely IX,old = X

(d−1)
old ∩Yd. Symmetrically,

IY,old = Y
(d−1)

old ∩Xd.
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In Step 3b, by the correctness of the PSI protocol,
the intersection learned by P0 is IX,new =:

= Xd ∩ Ỹd = Xd ∩
(
Yd ∪ IY,old ∪ D̃y

)
= Xd ∩

(
Yd ∪ IY,old

)
(overwhelming prob.)

= (Xd ∩ Yd) ∪ (Xd ∩ IY,old)

= (Xd ∩ Yd) ∪
(
Xd ∩

(
Y

(d−1)
old ∩Xd

))
= (Xd ∩ Yd) ∪

(
Xd ∩ Y

(d−1)
old

)
= (Xd ∩ Yd) ∪

(
Xd ∩ Y

(d−1)
old

)
∪ (Xd ∩ Id−1)

(Xd ∩ Id−1 = ∅ because Xd ∩X[d−1] = ∅)

= Xd ∩
(
Yd ∪ Y

(d−1)
old ∪ Id−1

)
= Xd ∩ Y[d]

(Y (d−1)
old ∪ Id−1 = Y[d−1] by inductive hypothesis)

The set computed in Step 3c is Iupdate =:

= IX,new ∪ IX,old =
(
Xd ∩ Y[d]

)
∪
(
X

(d−1)
old ∩ Yd

)
=
(
Xd ∩ Y[d]

)
∪
(
X

(d−1)
old ∩ Yd

)
∪ (Id−1 ∩ Yd)

(Id−1 ∩ Yd = ∅ because Yd ∩ Y[d−1] = ∅)

=
(
Xd ∩ Y[d]

)
∪
((
X

(d−1)
old ∪ Id−1

)
∩ Yd

)
=
(
Xd ∩ Y[d]

)
∪ (X[d−1] ∩ Yd)

(X(d−1)
old ∪ Id−1 = X[d−1] by inductive hypothesis)

Therefore, the new intersection computed in Step 3d
is Id = Id−1 ∪ Iupdate =:

=
(
X[d−1] ∩ Y[d−1]

)
∪
(
Xd ∩ Y[d]

)
∪ (X[d−1] ∩ Yd)

=
(
X[d−1] ∩ Y[d]

)
∪
(
Xd ∩ Y[d]

)
= X[d] ∩ Y[d].

In Step 4c, P0 updates Xold =:

=
(
X

(d−1)
old \ IX,old

)
∪
(
Xd \ Iupdate

)
=
(
X

(d−1)
old \

(
X

(d−1)
old ∩ Yd

))
∪(

Xd \
((
Xd ∩ Y[d]

)
∪ (X[d−1] ∩ Yd)

))
=
(
X

(d−1)
old \ Yd

)
∪
(
Xd \ Y[d]

)
=
((
X[d−1] \ Y[d−1]

)
\ Yd

)
∪
(
Xd \ Y[d]

)
=
(
X[d−1] \ Y[d]

)
∪
(
Xd \ Y[d]

)
= X[d] \ Y[d] = X[d] \ Id.

To update HX , notice that IX,old = X
(d−1)
old ∩ Yd ⊆

X
(d−1)
old , thus P0 can identify H(IX,old)k0k1 from H

(d−1)
X .

For X ′d = Xd \ Iupdate, P0 can compute H(X ′d)k0k1

in Step 4. Therefore, in Step 4c P0 obtains H
(d)
X =

H
(
X

(d)
old

)k0k1
. Similarly we can prove these guarantees

also hold for Y (d)
old and H(d)

Y , which concludes the proof.

C.2 Security Proof
In this section, we prove Theorem 4.1 for the security
of our two-sided UPSI with addition protocol.

C.2.1 Security Against Corrupted P0

We construct a PPT Sim0 that simulates P0’s view
as follows. On input

(
1λ, X[D], f(X[D], Y[D])

)
, where

f(X[D], Y[D]) := {I1, . . . , ID} are the outputs of the ideal
functionality in the D days, Sim0 runs the honest P0 to
generate its view and behaves on behalf of an honest P1
with the following exceptions on each Day d ∈ [D]:
– In Step 1a, let I ′X,old := X[d−1] ∩ (Id \ Id−1) and

compute H(I ′X,old)k1 . Let R be a set of Nd− |I ′X,old|
uniformly randomly sampled group elements in G.
Send H(I ′X,old)k1 ∪R to P0 on behalf of P1.

– In Step 3b, let I ′X,new := Xd ∩ (Id \ Id−1). Receive
P0’s input set as the ideal functionality of FPSI and
respond to P0 with I ′X,new.

– In Step 5 when P1 sends H(Ŷ ′d)αk1 to P0 (for a ran-
dom α ∈ Zq), replace it with a set of |Nd| uniformly
randomly sampled group elements in G.

Finally Sim0 outputs P0’s view.
We then show, via a hybrid argument, that

for any D ∈ N+, any inputs (X[D], Y[D]),
(ViewΠ,D

0 (X[D], Y[D]),OutΠ,D1 (X[D], Y[D]))
c
≈

(Sim0(1λ, X[D], f(X[D], Y[D])), f(X[D], Y[D])).

Hyb0 : P0’s view and P1’s output in the real protocol.
Hyb1 : Same as Hyb0 but P1’s output is replaced with

f(X[D], Y[D]). This is computationally indistinguish-
able from Hyb0 because of the correctness of the
protocol shown in Appendix C.1.

Hyb2 : Same as Hyb1 but in Step 3b of each Day d ∈ [D],
let I ′X,new := Xd ∩ (Id \ Id−1) and let the response
from the ideal functionality of FPSI to P0 be I ′X,new.
We claim that IX,new = I ′X,new.
We show in Appendix C.1 that IX,new = Xd ∩ Y[d].
Since Xd ∩X[d−1] = ∅, we have Xd ∩ Id−1 = ∅ and
hence (Xd ∩Y[d])∩ Id−1 = ∅. Given that Xd ∩Y[d] ⊆
Id, we have Xd ∩ Y[d] ⊆ Id \ Id−1, thus Xd ∩ Y[d] ⊆
Xd ∩ (Id \ Id−1), namely IX,new ⊆ I ′X,new. On the
other hand, Id ⊆ Y[d], hence Xd ∩ (Id \ Id−1) ⊆ Xd ∩
Id ⊆ Xd ∩ Y[d], namely I ′X,new ⊆ IX,new. Therefore
IX,new = I ′X,new.
By the correctness of the ideal functionality FPSI,
the two hybrids Hyb1 and Hyb2 are computationally
indistinguishable.
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Hyb3 : Same as Hyb2 but H is replaced with a random
function. This is computationally indistinguishable
to Hyb2 because H is modeled a random oracle.

Hyb4 : Same as Hyb3 but in Step 1a on each Day
d ∈ [D], for each y ∈ Yd \ X[d−1], replace H(y)k1

with a uniformly randomly sampled group elements
in G. From Hyb3 to Hyb4, we actually replace the
elements one by one via a sequence of hybrids
Hyb3,0,Hyb3,1, . . . ,Hyb3,n where Hyb3,0 = Hyb3 and
Hyb3,n = Hyb4. We argue every pair of adjacent hy-
brids are computationally indistinguishable based
on the DDH assumption.
Assume for the purpose of contradiction that there
exits a PPT distinguisher A that can distinguish
two adjacent hybrids Hyb3,i and Hyb3,i+1 where
H(ỹ)k1 is replaced by a random group element on
some Day d for some ỹ ∈ Yd\X[d−1]. We construct a
PPT distinguisher B to break the DDH assumption.
B is given a tuple of group elements (g1, g2, g3)
where g1 = gx, g2 = gy for random x, y ∈ Zq and
g3 is either gxy or gz for a random z ∈ Zq. B gener-
ates P0’s view as in Hyb3,i but sets k1 := x (although
x is unknown) and H(ỹ) := g2.
In particular, whenever H(·) is computed, B sam-
ples a random r ∈ Zq and sets the output to be
gr. In Step 1a when P1 needs to compute H(y)k1 ,
since B knows s ∈ Zq such that H(y) = gs, it can
compute H(y)k1 as gs1; when P1 samples a random
group element for H(y)k1 , B can do the same; for ỹ,
B replacesH(ỹ)k1 with g3. Since ỹ /∈ X[d−1], we have
ỹ /∈ Xold and hence ỹ /∈ Xold ∩Yd = IX,old in Step 1b
on Day d, thus it doesn’t affect P0’s computation.
In Step 4b, to compute H(x)αk0k1 , since B knows
α, k0, and t ∈ Zq such that H(x) = gt, it can com-
pute H(x)αk0k1 as gtαk0

1 . Note that for each x in
Step 4b before Day d (not considering the dummy
elements), x 6= ỹ because ỹ /∈ X[d−1]; for each x

in Step 4b on or after Day d (not considering the
dummy elements), x 6= ỹ because x is not in the in-
tersection. If we take the dummy elements into con-
sideration, then x 6= ỹ with all but negligible proba-
bility, hence B doesn’t have to compute H(ỹ)αk0k1 .
If g3 = gxy, then B generates P0’s view as in Hyb3,i;
otherwise B generates P0’s view as in Hyb3,i+1. Since
A can distinguish these two hybrids, B can break the
DDH assumption. Contradiction.

Hyb5 : Same as Hyb4 but in Step 5 on each Day d ∈ [D],
when P1 sends H(Ŷ ′d)αk1 to P0 (for a random α ∈
Zq), replace it with a set of |Nd| uniformly randomly
sampled group elements in G. From Hyb4 to Hyb5,
we in fact replace the elements one by one via a se-

quence of hybrids Hyb4,0,Hyb4,1, . . . ,Hyb4,m where
Hyb4,0 = Hyb4 and Hyb4,m = Hyb5. We argue that
every pair of adjacent hybrids are computationally
indistinguishable based on the DDH assumption.
Assume for the purpose of contradiction that there
exits a PPT distinguisher A that can distinguish
two adjacent hybrids Hyb4,i and Hyb4,i+1 where
H(ŷ)αk1 is replaced with a random group element
on some Day d for some ŷ. We construct a PPT
distinguisher B to break the DDH assumption.
B is given a tuple of group elements (g1, g2, g3)
where g1 = gx, g2 = gy for random x, y ∈ Zq and g3
is either gxy or gz for a random z ∈ Zq. B generates
P0’s view as in Hyb4,i but in Step 5 sets α := x on be-
half of P1 (although x is unknown) and H(ŷ) := g2.
In particular, whenever H(·) is computed, B sam-
ples a random r ∈ Zq and sets the output as gr. In
Step 5 when P1 needs to compute H(y)αk1 (where
y 6= ŷ), since B knows k1 as well as s ∈ Zq such that
H(y) = gs, it can compute H(y)αk1 as gsk1

1 ; when
P1 samples a random group element for H(y)αk1

(where y 6= ŷ), B can do the same; for ŷ, B replaces
H(ŷ)αk1 with gk1

3 .
If g3 = gxy, then B generates P0’s view as in Hyb3,i;
otherwise gk1

3 is a random group element, hence B
generates P0’s view as in Hyb3,i+1. Since A can dis-
tinguish these two hybrids, B can break the DDH
assumption. Contradiction.

Hyb6 : Same as Hyb5 except that H is computed as nor-
mal. This is computationally indistinguishable to
Hyb5 because H is modeled as a random oracle.
We claim that P0’s view in this hybrid is exactly
Sim0’s output. The only difference between Hyb6
and Sim0 is that in Step 1a on each Day d ∈ [D],
H(y)k1 is computed honestly for all y ∈ Yd ∩X[d−1]
in Hyb6 while Sim0 computes H(y)k1 honestly for
all y ∈ I ′X,old. We claim that Yd ∩ X[d−1] = I ′X,old.
Since X[d−1]∩Id = X[d−1]∩Y[d] and X[d−1]∩Id−1 =
X[d−1]∩Y[d−1], we have I ′X,old = X[d−1]∩(Id\Id−1) =
(X[d−1] ∩ Id) \ (X[d−1] ∩ Id−1) = (X[d−1] ∩ Y[d]) \
(X[d−1]∩Y[d−1]) = X[d−1]∩ (Y[d] \Y[d−1]) = X[d−1]∩
Yd. This concludes the proof.

C.2.2 Security Against Corrupted P1

We construct a PPT Sim1 that simulates P1’s view
as follows. On input

(
1λ, Y[D], f(X[D], Y[D])

)
, where

f(X[D], Y[D]) := {I1, . . . , ID} are the outputs of the ideal
functionality in the D days, Sim1 runs the honest P1 to
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generate its view and behaves on behalf of an honest P0
with the following exceptions on each Day d ∈ [D]:

– In Step 2 when P0 sends H(Xd)k0 to P1, let I ′Y,old :=
Y[d−1] ∩ (Id \ Id−1) and compute H(I ′Y,old)k0 . Let R
be a set of Nd−|I ′Y,old| uniformly randomly sampled
group elements in G. Send H(I ′Y,old)k0 ∪R to P1 on
behalf of P0.

– In Step 3c, let I ′update := Id \ Id−1 and send I ′update
to P1 on behalf of P0.

– In Step 4a, send a set of |Nd| uniformly randomly
sampled group elements in G to P1 on behalf of P0.

Finally Sim1 outputs P1’s view.
We show, via a hybrid argument that,

for any D ∈ N+, any inputs (X[D], Y[D]),
(ViewΠ,D

1 (X[D], Y[D]),OutΠ,D0 (X[D], Y[D]))
c
≈

(Sim1(1λ, Y[D], f(X[D], Y[D])), f(X[D], Y[D])).

Hyb0 : P1’s view and P0’s output in the real protocol.
Hyb1 : Same as Hyb0 but P0’s output is replaced with

f(X[D], Y[D]). This is computationally indistinguish-
able from Hyb0 because of the correctness of the
protocol shown in Appendix C.1.

Hyb2 : Same as Hyb1 but in Step 3c on each Day d ∈ [D],
let I ′update := Id \ Id−1 and send I ′update to P1 on be-
half of P0. This is computationally indistinguishable
from Hyb1 because of the correctness of the protocol
shown in Appendix C.1.

Hyb3 : Same as Hyb2 but H is replaced with a random
function. This is computationally indistinguishable
to Hyb2 because H is modeled a random oracle.

Hyb4 : Same as Hyb3 but in Step 2 on each Day d ∈ [D],
for each x ∈ Xd \ Y[d−1], replace H(x)k0 with a uni-
formly randomly sampled group elements in G. This
hybrid is computationally indistinguishable from
Hyb3 based on the DDH assumption. The argument
is similar to the proof of Hyb3

c
≈ Hyb4 in the security

proof against corrupted P0.
Hyb5 : Same as Hyb4 but in Step 4a on each Day d ∈ [D],

send a set of |Nd| uniformly randomly sampled
group elements in G to P1 on behalf of P0. This hy-
brid is computationally indistinguishable from Hyb4
based on the DDH assumption. The argument is
similar to the proof of Hyb4

c
≈ Hyb5 in the security

proof against corrupted P0.
Hyb6 : Same as Hyb5 except that H is computed as nor-

mal. This is computationally indistinguishable to
Hyb5 because H is modeled as a random oracle. Fi-
nally, we claim that P1’s view in this hybrid is ex-
actly Sim1’s output. The argument is similar to the

proof in Hyb6 of the security proof against corrupted
P0. This concludes the proof.

D Proofs for ΠUPSI-add-one

D.1 Correctness Proof
In this section, we formally prove correctness of our one-
sided UPSI with addition protocol.

Induction for Xold. Observe that, by induction, we can
show that at the end of any Day d, Xold = X[d] \ Id and
HX = H1(Xold)k0k1 . This argument is identical to the
one shown in Appendix C.1.

Day 1. In Step 1, P0 learns ∅ since Xold = ∅. In Step 2,
both parties set L = maxL = 0. Then, in Step 3, P1
inserts the σ elements of Y1 into D0[0]. D0[0] is then
padded to size 4σ before the encrypted node D̃′0[0] is
sent to P0. In Step 4, P0 sets D̃0[0] = D̃′0[0]. In Step 5,
for each x ∈ X1, P0 computes a pair (ctα, ctβ) for each
element ct in D̃0[0]. In each pair, ctβ = Encpk1

(x+α−y),
where ct = Encpk1

(y). P1 decrypts ctβ in each pair and
sends back ctr = Encpk0

(γ ·(x−y)). Now, P0 can decrypt
this and Decsk0(ctr) = 0 if and only if x ∈ Y1 except
with negligible probability (since P1 also adds random
dummy elements). So, P0 learns X1 ∩ Y1. Finally, in
Step 7, P0 updates Xold and HX similarly as in the
previous protocol ΠUPSI-add-two (Figure 3).

Day d. Now, let’s analyze the protocol on any Day
d. In Step 1, as a result of the induction-based ob-
servation above, P0 learns IX,old = Xold ∩ Yd where
Xold = X[d−1] \ Id−1. The data structure D is a binary
tree of depth maxL, where each node is of size 4σ. At
any i, we denote the 2i nodes as Di[0], . . . ,Di[2i− 1]. In
Step 3, all levels i > L remain untouched while levels
0, . . . , L are completely revamped. In particular, all the
elements (of Y[d−1]) at levels up to (L − 1) along with
the new set Yd are filled into the nodes at level L. Each
element y is inserted into node DL[j] where j is the lead-
ing L bits of H2(y). All nodes in levels up to (L− 1) are
emptied. Finally, as before, these nodes are padded to
size 4σ, encrypted and sent to P0.

Lemma D.1. The protocol aborts in Step 3 with negli-
gible probability.

Proof. The protocol aborts if the size of any node DL[j]
exceeds 4σ. We show that this happens only with negli-
gible probability. First, assuming hash function H2(·)
is modeled as a random oracle, any element y ∈ S
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is equally likely to be placed into any node D̃L[j] for
j ∈ {0, 1, . . . , 2L − 1}. We now use a couple of sub-
lemmas to complete the proof.

Sub-Lemma D.2. The number of items inserted into
nodes at level L is |S| = 2L · σ.

Proof. Since L = LS1(d), d is of the form d = 0 mod 2L

and d = 2L mod 2L+1. Consider d∗ = d− 2L, if d∗ > 0,
then LS1(d∗) > L, hence all nodes up to level L are
emptied and contain ∅ on Day d∗. Observe that an el-
ement y in P1’s input that is placed on a node in level
i is later never placed on level i1 where i1 < i. In par-
ticular, elements either remain at the same level or are
pushed further down the tree on each day. From Day
(d∗+ 1, . . . , d− 1), the number of elements added to the
tree is σ · (d− 1− d∗) = σ · (2L − 1). The number of ele-
ments added on Day d is σ and hence |S| = 2L · σ.

Sub-Lemma D.3. Given N = Poly(σ) balls distributed
into N

σ bins, where every ball is equally likely to be placed
in any bin, Pr[size of every bin ≤ 4σ] ≥ 1− negl(σ).

Proof. Let Xi,≥k be an indicator variable that the i-th
node has at least k balls. Then

Pr[Xi,≥k = 1] ≤
(
N

k

)
1

(N/σ)k
≤
(

N

N/σ

)k 1
k! = σk

1
k!

≤ σk 1
√

2πk
(
k
e

)k (Stirling’s approx.)

Let k = 4σ, then we have Pr[Xi,≥k = 1] ≤ σk

( 4σ
e )k =

1
(4/e)4σ ≤ 1

22σ . By taking a union bound we have

Pr [∃i ∈ N,Xi,≥4σ = 1] ≤ N

22σ = negl(σ).

Combining the above two sub-lemmas, it is easy to see
that no node DL[j] has size more than 4σ except with
negligible probability.

In Step 4, P0 updates the encrypted database D̃. In
Step 5, for each x ∈ Xd, for each i ∈ {0, 1, . . . ,maxL},
P0 computes H2(x)[1,...,i] to identify which nodes of
D̃ (at each level) could possibly contain x. Then, for
each such non-empty node, for each ciphertext ct in it,
(ct = Encpk1

(y) where y ∈ Y[d] or y is a random dummy
element), P0 computes and sends (Encpk0

(α),Encpk1
(x−

y − α)). P1 responds back with Encpk0
(γ(x − y)) which

P0 can decrypt. Observe that this is 0 if and only if
x = y where y ∈ Y[d] except with negligible probability
(if y equals a random dummy element). In this manner,
P0 learns whether each element x ∈ Xd belongs to Y[d]

and computes IX,new = Xd ∩ Y[d]. Finally, in Step 7, P0
updates Xold and HX as done in the previous protocol
ΠUPSI-add-two (Figure 3).

D.2 Security Proof
In this section, we prove Theorem 5.1 for the security
of our one-sided UPSI with addition protocol.

D.2.1 Security Against Corrupted P0

First, let Num1(n) denote the number of 1’s in the
binary representation of n. In other words, if n =∑k
i=0 bi · 2

i, then Num1(n) := |{i : bi = 1}|. For exam-
ple, Num1(7) = 3 and Num1(12) = 2. We construct
a PPT Sim0 that simulates P0’s view as follows. On
input

(
1λ, X[D], f(X[D], Y[D])

)
, where f(X[D], Y[D]) :=

{I1, . . . , ID} are the outputs of the ideal functionality
in the D days, Sim0 runs the honest P0 to generate its
view and behaves on behalf of an honest P1 with the
following exceptions on each Day d ∈ [D]:
– In Step 1a, let I ′X,old := X[d−1] ∩ (Id \ Id−1) and

compute H1(I ′X,old)k1 . Let R be a set of (σ −
|I ′X,old|) randomly sampled group elements in G.
Send H1(I ′X,old)k1 ∪R to P0 on behalf of P1.

– In Step 3c, never abort on behalf of P1.
– In Step 3e, let D̃′L[j] be a set of 4σ encryp-

tions of 0 under pk1, namely Encpk1
(0). Send{

D̃′L[j]
}
j∈{0,1,...,2L−1}

to P0 on behalf of P1.

– In Step 5(b)ii, if x /∈ Id, let C1 be a set of 4σ ·
Num1(d) encryptions of random elements under pk0,
namely Encpk0

(r) for r $←− Fp; otherwise, let C1 be
a set containing Encpk0

(0) and (4σ · Num1(d) − 1)
encryptions of random elements under pk0. Send C1
in a randomly permuted order to P0 on behalf of P1.

Finally, Sim0 outputs P0’s view.
Via a hybrid argument, we show that for any D ∈

N+, any inputs (X[D], Y[D]),

ViewΠ,D
0 (X[D], Y[D])

c
≈ Sim0

(
1λ, X[D], f(X[D], Y[D])

)
Hyb0 : P0’s view in the real protocol.
Hyb1 : Same as Hyb1 but H1 is replaced with a random

function. This is computationally indistinguishable
to Hyb0 because H1 is modeled a random oracle.

Hyb2 : Same as Hyb1 but in Step 1a on each Day d ∈ [D],
for each y ∈ Yd \ X[d−1], replace H1(y)k1 with
a uniformly randomly sampled group elements in
G. From Hyb1 to Hyb2, we actually replace the
elements one by one via a sequence of hybrids
Hyb1,0,Hyb1,1, . . . ,Hyb1,n where Hyb1,0 = Hyb1 and
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Hyb1,n = Hyb2. We argue every pair of adjacent hy-
brids are computationally indistinguishable based
on the DDH assumption.
Assume for the purpose of contradiction that there
exits a PPT distinguisher A that can distinguish
two adjacent hybrids Hyb1,i and Hyb1,i+1 where
H1(ỹ)k1 is replaced by a random group element on
some Day d for some ỹ ∈ Yd\X[d−1]. We construct a
PPT distinguisher B to break the DDH assumption.
B is given a tuple of group elements (g1, g2, g3)
where g1 = gx, g2 = gy for random x, y ∈ Zq and
g3 is either gxy or gz for a random z ∈ Zq. B gener-
ates P0’s view as in Hyb1,i but sets k1 := x (although
x is unknown) and H1(ỹ) := g2.
In particular, whenever H1(·) is computed, B sam-
ples a random r ∈ Zq and sets the output to be
gr. In Step 1a when P1 needs to compute H1(y)k1 ,
since B knows s ∈ Zq such that H1(y) = gs, it can
compute H1(y)k1 as gs1; when P1 samples a random
group element for H1(y)k1 , B can do the same; for
ỹ, B replaces H1(ỹ)k1 with g3. Since ỹ /∈ X[d−1], we
have ỹ /∈ Xold and hence ỹ /∈ Xold ∩ Yd = IX,old in
Step 1b on Day d, thus it doesn’t affect P0’s com-
putation.
In Step 7b, to compute H1(x)αk0k1 , since B knows
α, k0, and t ∈ Zq such that H1(x) = gt, it can com-
pute H1(x)αk0k1 as gtαk0

1 . Note that for each x in
Step 7b before Day d (not considering the dummy
elements), x 6= ỹ because ỹ /∈ X[d−1]; for each x

in Step 7b on or after Day d (not considering the
dummy elements), x 6= ỹ because x is not in the in-
tersection. If we take the dummy elements into con-
sideration, then x 6= ỹ with all but negligible proba-
bility, hence B doesn’t have to compute H1(ỹ)αk0k1 .
If g3 = gxy, then B generates P0’s view as in Hyb1,i;
otherwise B generates P0’s view as in Hyb1,i+1. Since
A can distinguish these two hybrids, B can break the
DDH assumption. Contradiction.

Hyb3 : Same as Hyb2 but in Step 3c, P1 never aborts.
By Lemma D.1, the probability that P1 aborts is
negligible, hence this hybrid is computationally in-
distinguishable from Hyb2.

Hyb4 : Same as Hyb3 except that in Step 5(b)ii on each
day d ∈ [D], replace each ctr by a fresh encryption
of γ ·(β−α) under pk0. This hybrid is statistically in-
distinguishable from Hyb3 by the re-randomization
property of the additively homomorphic encryption
scheme. In particular, the encryption ctr computed
from (ctα, β, γ) by homomorphic operations is sta-
tistically indistinguishable from a fresh encryption
of r even given the secret key sk0.

Hyb5 : Same as Hyb4 except that in Step 5(b)ii on each
day d ∈ [D], if x /∈ Id, let C1 be a set of 4σ ·Num1(d)
encryptions of random elements under pk0, namely
Encpk0

(r) for r $←− Fp. Send C1 in a randomly per-
muted order to P0 on behalf of P1.
First, our construction guarantees that on each day
d ∈ [D], there are exactly Num1(d) levels of the
tree that are non-empty, hence the size of C0 is
4σ ·Num1(d). If x /∈ Id, then for each pair (ctα, ctβ) ∈
C0, we know that β − α = x− y = 0 with negligible
probability (note that some y values are randomly
sampled by P1, so the probability is not 0 but neg-
ligible). In case β − α 6= 0, then γ · (β − α) for a
random γ

$←− Fp is identically distributed from a
random value r $←− Fp. Therefore, this hybrid is sta-
tistically indistinguishable from Hyb4.

Hyb6 : Same as Hyb5 except that in Step 5(b)ii on each
day d ∈ [D], if x ∈ Id, let C1 be a set containing
Encpk0

(0) and (4σ ·Num1(d)− 1) encryptions of ran-
dom elements under pk0. Send C1 in a randomly
permuted order to P0 on behalf of P1.
If x ∈ Id, then there exists one pair (ctα, ctβ) ∈ C0
such that β − α = 0; for all other pairs, β − α = 0
with negligible probability. For the pair such that
β − α = 0, γ · (β − α) = 0 for any γ. For all other
pairs, in case β−α 6= 0, then γ ·(β−α) for a random
γ

$←− Fp is identically distributed from a random
value r $←− Fp.
Therefore, this hybrid is statistically indistinguish-
able from Hyb5.

Hyb7 : Same as Hyb6 but in Step 3e on each day d ∈ [D],
let D̃′L[j] be a set of 4σ encryptions of 0 under pk1,
namely Encpk1

(0). Send
{
D̃′L[j]

}
j∈{0,1,...,2L−1}

to

P0 on behalf of P1. This hybrid is computationally
indistinguishable from Hyb6 by the CPA security of
the additively homomorphic encryption scheme.

Hyb8 : Same as Hyb7 except that H1 is computed as
normal. This is computationally indistinguishable
to Hyb7 because H1 is modeled as random oracles.
We claim that P0’s view in this hybrid is exactly
Sim0’s output. The only difference between Hyb8
and Sim0 is that in Step 1a on each Day d ∈ [D],
H1(y)k1 is computed honestly for all y ∈ Yd∩X[d−1]
in Hyb8 while Sim0 computes H1(y)k1 honestly for
all y ∈ I ′X,old. We claim that Yd ∩X[d−1] = I ′X,old.
Since X[d−1]∩Id = X[d−1]∩Y[d] and X[d−1]∩Id−1 =
X[d−1]∩Y[d−1], we have I ′X,old = X[d−1]∩(Id\Id−1) =
(X[d−1] ∩ Id) \ (X[d−1] ∩ Id−1) = (X[d−1] ∩ Y[d]) \
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(X[d−1]∩Y[d−1]) = X[d−1]∩ (Y[d] \Y[d−1]) = X[d−1]∩
Yd. This concludes the proof.

D.2.2 Security Against Corrupted P1

We construct a PPT Sim1 that simulates P1’s view as
follows. On input

(
1λ, Y[D]

)
, Sim1 runs the honest P1 to

generate its view and behaves on behalf of an honest P0
with the following exceptions on each Day d ∈ [D]:
– In Step 5(a)ii, let C0 be a set of 4σ · Num1(d) pairs

of encryptions (ctα, ctβ), where ctα ← Encpk0
(0) and

ctβ ← Encpk1
(r) for r $←− Fp. Send C0 to P1 on behalf

of P0.
– In Step 7a, send a set of σ randomly sampled group

elements in G to P1 on behalf of P0.
Finally Sim1 outputs P1’s view.

Via a hybrid argument, we show that
for any D ∈ N+, any inputs (X[D], Y[D]),
(ViewΠ,D

1 (X[D], Y[D]),OutΠ,D0 (X[D], Y[D]))
c
≈

(Sim1(1λ, Y[D]), f(X[D], Y[D])).

Hyb0 : P1’s view and P0’s output in the real protocol.
Hyb1 : Same as Hyb0 but P0’s output is replaced with

f(X[D], Y[D]). This is computationally indistinguish-
able from Hyb0 because of the correctness of the
protocol shown in Appendix D.1.

Hyb2 : Same as Hyb1 but H1 is replaced with a random
function. This is computationally indistinguishable
to Hyb1 because H1 is modeled a random oracle.

Hyb3 : Same as Hyb2 but in Step 7a on each Day d ∈ [D],
send a set of σ randomly sampled group elements
in G to P1 on behalf of P0. This hybrid is compu-
tationally indistinguishable from Hyb2 based on the
DDH assumption. The argument is similar to the
proof of Hyb1

c
≈ Hyb2 in the security proof against

corrupted P0.
Hyb4 : Same as Hyb3 except that in Step 5(a)ii on each

day d ∈ [D], replace each ctβ by a fresh encryption of
(x+α−y) under pk1. This hybrid is statistically in-
distinguishable from Hyb3 by the re-randomization
property of the additively homomorphic encryption
scheme.

Hyb5 : Same as Hyb4 except that in Step 5(a)ii on each
day d ∈ [D], replace each ctα by a fresh encryption
of 0 under pk0. This hybrid is computationally in-
distinguishable from Hyb4 by the CPA security of
the additively homomorphic encryption scheme.

Hyb6 : Same as Hyb5 except that in Step 5(a)ii on each
day d ∈ [D], replace each ctβ by a fresh encryption

of r for a random r
$←− Fp under pk1. We know that

(x+α− y) is identically distributed from a random
value r $←− Fp. Hence this hybrid is identically indis-
tinguishable from Hyb5.
Our construction guarantees that on each day d ∈
[D], there are exactly Num1(d) levels of the tree that
are non-empty, hence the size of C0 is 4σ ·Num1(d).
Thus, in this hybrid, C0 contains 4σ ·Num1(d) pairs
of encryptions (ctα, ctβ), where ctα ← Encpk0

(0) and
ctβ ← Encpk1

(r) for r $←− Fp.
Hyb7 : Same as Hyb6 except that H1 is computed as

normal. This is computationally indistinguishable
to Hyb6 because H1 is modeled as a random oracle.
P1’s view in this hybrid is exactly Sim1’s output.
This concludes the proof.

E Extension of ΠUPSI-add-one

In this section, we extend our one-sided UPSI with ad-
dition protocol ΠUPSI-add-one (in Figure 5) to the general
setting when the number of elements added by both
parties on any day Nd 6= σ. For simplicity, let’s assume
Nd is a multiple of σ (we can always pad with dummy
elements to make it a multiple of σ).6 The high level
idea is to split the input into Nd/σ batches of length
σ and essentially run the basic protocol over multiple
days, with σ elements as input on each day. We use a
separate counter d∗ to track the “day number” of the
basic protocol. We provide more details below.

Let Xd = {X ′d∗ , X ′d∗+1, . . . , X
′
d∗+Nd/σ−1}, Yd =

{Y ′d∗ , Y ′d∗+1, . . . , Y
′
d∗+Nd/σ−1} be the two input sets split

into Nd/σ batches of length σ each. First, run the ba-
sic protocol on a fresh day (day d∗ for the basic pro-
tocol) with inputs X ′d∗ and Y ′d∗ respectively. Let’s call
this sub-day d∗ to indicate that this is the counter
for the underlying basic protocol. Then, run the ba-
sic protocol on sub-day (d∗ + 1) with inputs X ′d∗+1
and Y ′d∗+1. Repeat this till the basic protocol is run
on sub-day (d∗ + Nd/σ − 1) using inputs X ′d∗+Nd/σ−1
and Y ′d∗+Nd/σ−1. Finally, before moving to day (d + 1)
where both parties have fresh inputs, we update d∗ =
(d∗ + Nd/σ). (If Nd = σ, we would have d∗ = d∗ + 1 as
in the basic protocol). While this is the high level ap-
proach, unfortunately, the protocol does not quite work.
Briefly, running the basic protocol on Nd/σ sub-days

6 We note that P0’s input size actually need not be padded to
a multiple of σ because she can make queries for each element
x ∈ Xd independently.
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leaks the intermediate output each time and this is un-
desirable (and not leaked in the ideal world). Instead,
the idea is to run the steps where the “actual intersec-
tion” is computed only once across these many batches.

In more detail, Step 1 is not run on each sub-
day from d∗ to (d∗ + Nd/σ − 1) – instead, we run
the step only on day d∗ with P1’s input as Yd (and
not only Y ′d∗) to allow P0 to learn Xold ∩ Yd. Observe
that Step 1 does not require either party’s set to be
of size σ. Next, Step 5 is also not run on each sub-
day – we run steps Step 3 and Step 4 on each sub-
day to update the database and finally, only on day
(d∗ + Nd/σ − 1), execute Step 5 (with P0 using entire
input set Xd) to allow P0 to compute Xd ∩ Y[d]. Fur-
ther, as an optimization, even in Step 3, P1 need not
send the encrypted database

{
D̃′L[j]

}
j∈{0,1,...,2L−1}

on

each sub-day. Consider two sub-days da, db with da < db
and L = LS1(da) = LS1(db). Now, on sub-day db, all
the updates to

{
D̃′L[j]

}
overwrite the updates

{
D̃′L[j]

}
made to the database on sub-day da. In particular, the
elements written to the database on sub-day da are
pushed a level down the tree before the updates on sub-
day db are recorded on level L. Building on this idea,
let maxLd be the maximum value of L over the sub-
days d∗, d∗ + 1, . . . , (d∗ +Nd/σ − 1). At the end of sub-
day (d∗ + Nd/σ − 1), P0 sends

{
D̃′L[j]

}
j∈{0,1,...,2L−1}

∀L ∈ {0, . . . ,maxLd} where {D̃′L[j]} 6= ∅. Naturally, this
reflects only the “latest state” of any level in the tree.
Finally, execute Step 7 only on sub-day (d∗+Nd/σ−1).

We describe the whole protocol in Figure 11 for
completeness.

Efficiency for Extended Protocol. Finally, we dis-
cuss the efficiency of our extended protocol. Intuitively,
since we run dNd/σe instances of the basic case (where
inputs are of size σ), an upper bound on the communi-
cation and computation cost on any day is dNd/σe times
that of the basic case’s cost. We can in fact do better
than just repeating the protocol so many times but we
ignore that for the sake of simplifying the analysis and
provide a relatively loose upper bound. Given the effi-
ciency analysis in Section 5.4 for the basic case, we can
conclude the amortized communication and computa-
tion cost (for each party) in the extended protocol is
O(dNd/σe · σ · logN). This grows only logarithmically
with the total number of elements so far.

F Instantiations of FSSPSI

In this section, we describe how the PSI protocols of
Kolesnikov et al. [KKRT16], Pinkas et al. [PRTY19],
Chase and Miao [CM20] immediately satisfy Defini-
tion 6.1. Each of these protocols is based on semi-honest
OT and correlation robust hash functions. At a high
level, in each of these protocols, the sender’s input is
used only in the last step to compute the oblivious pseu-
dorandom function (OPRF) values before they are sent
to the receiver. As a result, this can be done in a stream-
ing manner so long as the maximum number of values
to be computed upon are known apriori to set up the
OPRF key. We now provide more details.

Protocol Structure. All the three protocols have the
following high level structure. Consider a sender S with
input set X and receiver R with input set Y . In the first
phase, both parties run an interactive protocol to jointly
generate a key K for an OPRF and evaluate R’s input
on this OPRF obliviously. In a bit more detail, at the
end of this interactive protocol, S learns the key K (and
nothing about R’s input) and R learns the evaluations
{OPRF(K, y)}y∈Y (and nothing about the key K). For
each z = OPRF(K, y), the receiver also learns that this
is the evaluation of its corresponding input element y
(that is, the outputs aren’t permuted). In the protocol
of Kolesnikov et al. [KKRT16], R’s inputs are first sep-
arated into various buckets via Cuckoo hashing [PR04]
and a separate instance of this OPRF protocol is run
for each bucket - the sender learns one OPRF key Ki
for each bucket and R learns OPRF(Ki, y) for the ele-
ment y that falls into this bucket. In the protocols of
[PRTY19] and [CM20], a multi-point OPRF is set up
where S learns a single key K and R learns the evalu-
ation of all its points - {OPRF(K, y)}y∈Y . Our key ob-
servation is that, crucially, so far, the sender does not
need to know its input. Instead, S only needs to know
the size (or an upper bound) of its input set to allow
the key K to be chosen.

In the next phase, S sends evaluations of the OPRF
on its input elements to R. That is, S, now in possession
of key K locally computes and sends {OPRF(K,x)}x∈X
(in the case of [KKRT16], S evaluates OPRF(Ki, x) for
every possible x ∈ X that can fall into bucket i, for each
i). The receiver can then compare {OPRF(K,x)}x∈X
with {OPRF(K, y)}y∈Y to compute the intersection. The
security guarantee of the OPRF is that for any x ∈ X\I,
OPRF(K,x) appears pseudorandom to R and hence
leaks no information about the element x.



Updatable Private Set Intersection 404

Initialization: Same as Figure 5. Also, both parties set d∗ := 1.

Day d: P0 inputs a set Xd of size Nd; P1 inputs a set Yd of size Nd.
Let Xd = {X′d∗ , X

′
d∗+1, . . . , X

′
d∗+Nd/σ−1} and Yd = {Y ′d∗ , Y

′
d∗+1, . . . , Y

′
d∗+Nd/σ−1} where each X′i, Y

′
i is of size σ.

1. P0 learns IX,old = Xold ∩ Yd:
(a) P1 computes H1(Yd)k1 and sends to P0.
(b) On receiving H1(Yd)k1 , P0 raises each element to the power k0 to obtain H1(Yd)k0k1 and compares with HX (which

equals to H1(Xold)k0k1 ) to learn IX,old = Xold ∩ Yd.
2. Both parties set maxLd = 0.
3. For each t ∈ {d∗, d∗ + 1, . . . , (d∗ +Nd/σ − 1)}, do the following:

(a) Both parties set L := LS1(t), maxL := max{L,maxL}, maxLd = max(L,maxLd).
(b) P1 updates D by doing the following:

i. Let S :=
(⋃L−1

i=0

⋃2i−1
j=0 Di[j]

)
∪ Y ′t .

ii. For each i ∈ {0, 1, . . . , L} and for each j ∈ {0, 1, . . . , 2i − 1}, set Di[j] := ∅.
iii. For each element y ∈ S, let j := H2(y)[1..L] and add y into the node DL[j]. If the size of DL[j] exceeds 4σ, then

abort.
iv. For each j ∈ {0, 1, . . . , 2L−1}, construct a node D′L[j] of size 4σ by padding DL[j] with dummy random elements.

Compute D̃′L[j]← Encpk1 (D′L[j]).
Finally, for each L ∈ {0, . . . ,maxLd}, P1 sends

{
D̃′L[j]

}
j∈{0,1,...,2L−1} to P0 if {D̃′L[j]} 6= ∅.

4. P0 updates D̃ by doing the following:
For each L ∈ {0, . . . ,maxLd}, j ∈ {0, 1, . . . , 2L − 1}: if P0 received D̃′L[j] from P1 in the above step, set D̃L[j] := D̃′L[j];
else, set D̃L[j] := ∅.

5. P0 learns IX,new = Xd ∩ Y[d]:
P0 first sets IX,new := ∅. Then for each x ∈ Xd:
(a) P0 does the following:

i. Set C0 := ∅.
ii. For each i ∈ {0, . . . ,maxL}, let j := H2(x)[1..i]; if D̃i[j] 6= ∅, then for each ct ∈ D̃i[j]:

Sample α $←− Fp, compute ctα ← Encpk0 (α), ctβ ← Encpk1 (x+ α)	 ct, and add (ctα, ctβ) to C0.
iii. Send C0 to P1.

(b) P1 does the following:
i. Set C1 := ∅.
ii. For each pair (ctα, ctβ) ∈ C0, sample γ $←− Fp, compute β ← Decsk1 (ctβ) and ctr ← γ � (Encpk0 (β)	 α) and add

ctr to C1.
iii. Send C1 in a randomly permuted order to P0.

(c) P0 does the following:
For each ctr ∈ C1, compute r ← Decsk0 (ctr) and add x to the set IX,new if r = 0.

6. P0 computes and outputs Id := Id−1 ∪ IX,old ∪ IX,new.
7. P0 updates Xold and HX as in Figure 5.
8. Finally, both parties update d∗ := d∗ +Nd/σ.

Fig. 11. One-sided UPSI with addition protocol ΠUPSI-add-one when Nd 6= σ.

In sender-streaming PSI, observe that both parties
can run the first phase with the sender only providing an
upper bound of the number of elements it will eventually
stream. Then, for any stream Xi (including the initial
one X0), S can compute and send {OPRF(K,x)}x∈Xi
and R can then immediately learn (Xi ∩ Y ). The secu-
rity of this protocol immediately follows from that of
the underlying PSI protocol so long as the number of
elements streamed by the sender is less than the upper
bound that was set. Thus, we obtain Lemma 6.2.

Efficiency. We briefly analyze the efficiency of real-
izing FSSPSI using each of these three instantiations
[KKRT16, PRTY19, CM20]. In the initialization phase,

to set up the OPRF key (and evaluate R’s input), the
computational complexity (per party) is O(|Y | · λ) and
the communication complexity (from R to S) is O(|Y |·λ)
bits, where λ is the security parameter. Note that the
communication also grows with Max, but the growth
is dominated by O(|Y | · λ) for any polynomially large
Max, so we omit it here. Then for each stream Xi (in-
cluding X0), S evaluates and sends the OPRF values
on Xi, where the computational complexity (of S) is
O(|Xi| · λ) and the communication complexity (from S

to R) is O(|Xi| · σ), where σ is the statistical security
parameter.
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G Proofs for ΠUPSI-del

G.1 Correctness Proof
We prove by induction the guarantee that Id =

(
(X[d] \

X[d−t]) ∩ Yd
)
∪
(
(Y[d] \ Y[d−t]) ∩ Xd

)
in the UPSI with

weak deletion protocol.
It is easy to observe that this guarantee holds on

Day 1 since, by the correctness of the initialization phase
of FP1,1

SSPSI and F
P0,1
SSPSI, both parties learn the intersection

(X1 ∩ Y1).
Consider Day d with new input sets Xd and Yd re-

spectively. In Step 1, for each j > 0, by the correctness
of the jth stream of FP1,j

SSPSI, P0 indeed learns Xj ∩ Yd.
Thus,

I0,α =
d−1⋃

i=(d−t+1)

(Xi ∩ Yd)

= (X[d−1] \X[d−t]) ∩ Yd.

Similarly, in Step 2, for each j > 0, P1 indeed learns
Yj ∩Xd. Thus, I1,α = (Y[d−1] \ Y[d−t]) ∩Xd.

In Step 3, by the correctness of the initialization
phase of FP1,d

SSPSI, P0 learns I0,β =:

= (Xd ∩B)

= (Xd ∩ Yd) ∪
( d−1⋃
i=d−t+1

Yi ∩Xd ∩Xd
)
∪ (Xd ∩ D̂Y )

= (Xd ∩ Yd) ∪ (Xd ∩ (Y[d−1] \ Y[d−t])) ∪ ∅

(overwhelming prob. as random D̂Y )
= Xd ∩ (Y[d] \ Y[d−t])

Similarly, in Step 4, I1,β = Yd ∩ (X[d] \X[d−t]).
Finally, P0 outputs Id = I0,α ∪ I0,β =:

=
(

(X[d−1] \X[d−t]) ∩ Yd
)
∪
(
Xd ∩ (Y[d] \ Y[d−t])

)
=
(

(X[d−1] \X[d−t]) ∩ Yd
)
∪(

Xd ∩ Yd
)
∪
(
Xd ∩ (Y[d−1] \ Y[d−t])

)
=
(

(X[d] \X[d−t]) ∩ Yd
)
∪
(
Xd ∩ (Y[d] \ Y[d−t])

)
Similarly, we can prove that P1 also outputs the same.

G.2 Security Proof
In this section, we prove Theorem 6.3 for the security
of our two-sided UPSI with weak deletion protocol.

G.2.1 Security Against Corrupted P0

Consider an adversary A that corrupts party
P0. We construct a PPT Sim0 that, on input(
1λ, X[D], N[D], f(X[D], Y[D])

)
, where f(X[D], Y[D]) :=

{I1, . . . , ID} are the outputs of the ideal functionality in
the D days, interacts with adversary A as follows and
outputs A’s view.

Day 1: On behalf of functionality FP1,1
SSPSI, send output

I1 = f(X[1], Y[1]) to A.

Day d:
1. I0,α =

⋃d−1
j=(d−t+1)(Xj ∩ Yd): For each j > 0, on be-

half of functionality FP1,j
SSPSI, send

(
Xj ∩ (Id \ Id−1)

)
to A. Observe that this is equal to Xj ∩ Yd since
Xi’s are mutually disjoint sets.

2. I0,β =
(
Xd ∩

(⋃d
j=d−t+1 Yj

))
: Observe that (Xd ∩

Id) =
(
Xd ∩ (Y[d] \Y[d−t])

)
. Thus, on behalf of func-

tionality FP1,d
SSPSI, send (Xd ∩ Id) to A.

We now show that the above simulation strategy
against a corrupt P0 is successful via a series of hybrid
arguments where Hyb0 corresponds to the real world and
Hyb3 corresponds to the ideal world execution.
1. Hyb0: This corresponds to the real world execution

where A interacts with a simulator SimHyb that
plays the role of honest P1.

2. Hyb1: In this hybrid, on Day 1, SimHyb sends output
I1 to A on behalf of the ideal functionality FP1,1

SSPSI.
This is part of Sim0’s input on Day 1 of the protocol.

3. Hyb2: In this hybrid, on any Day d, to compute the
term I0,α, for each j ∈ {d − t + 1, . . . , d − 1}, j >
0, on behalf of functionality FP1,j

SSPSI, SimHyb sends(
Xj ∩ (Id \ Id−1)

)
to A, where Xj , Id, Id−1 are part

of Sim0’s input.
4. Hyb3: In this hybrid, on any Day d, to compute the

term I0,β , on behalf of functionality FP1,d
SSPSI, SimHyb

sends (Xd ∩ Id) to A.
We now show that every pair of successive hybrids

is computationally indistinguishable.

Lemma G.1. Hyb0 is identically distributed to Hyb1.

Proof. In both hybrids, A sends input X1 to FP1,1
SSPSI. In

Hyb0, honest P1 sends input (Y1,Max1) to FP1,1
SSPSI. By

the correctness of FSSPSI, A receives output (X1 ∩ Y1).
In Hyb1, by the definition of functionality FUPSI-del, the
value I1 = f(X1, Y1) sent by SimHyb on behalf of FP1,1

SSPSI
is equal to (X1 ∩ Y1). Since there is no other difference
between the two hybrids, they are identical.
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Lemma G.2. Hyb1 is identically distributed to Hyb2.

Proof. In Hyb1, to compute the term I0,α, for each j ∈
{d − t + 1, . . . , d − 1}, j > 0, honest P1 sends streamed
input Yd to FP1,j

SSPSI and A gets output (Xj ∩ Yd) by the
correctness of functionality FSSPSI. In Hyb2, for each j,
SimHyb sends

(
Xj∩(Id\Id−1)

)
to A on behalf of FP1,j

SSPSI.
By the definition of functionality FUPSI-del and the fact
that each party’s input set is mutually disjoint on each
day,

(
Xj ∩ (Id \ Id−1)

)
is indeed equal to (Xj ∩ Yd).

Lemma G.3. Hyb2 is statistically indistinguishable
from Hyb3.

Proof. In both hybrids, to compute the term I0,β , A
sends input Xd to FP1,d

SSPSI. In Hyb2, honest P1 sends ini-
tial input (B,Maxd) where B = Yd ∪

(⋃d−1
j=d−t+1 Yj ∩

Xd
)
∪ D̂Y where D̂Y consists of dummy random ele-

ments. By the correctness of functionality FSSPSI, except
with negligible probability, A gets output Xd ∩ (Y[d] \
Y[d−t]) - note that the only scenario when this is not the
output is if D̂Y ∩ Xd 6= ∅. In this case, the output has
more elements but since D̂Y consists of dummy random
elements, this occurs only with negligible probability.

In Hyb3, SimHyb sends (Xd ∩ Id) to A on behalf
of FSSPSI. By the definition of functionality FUPSI-del,
observe that (Xd ∩ Id) is indeed equal to Xd ∩ (Y[d] \
Y[d−t]). Since there is no other difference between the
two hybrids, they are statistically indistinguishable.

G.2.2 Security Against Corrupted P1

Since the protocol is symmetric, the proof is identical
to the above case where P0 was corrupt.
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