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Abstract: Private set intersection (PSI) allows two mu-
tually distrusting parties each with a set as input, to
learn the intersection of both their sets without reveal-
ing anything more about their respective input sets.
Traditionally, PSI studies the static setting where the
computation is performed only once on both parties’
input sets. We initiate the study of updatable private
set intersection (UPST), which allows parties to compute
the intersection of their private sets on a regular basis
with sets that also constantly get updated. We consider
two specific settings. In the first setting called UPSI
with addition, parties can add new elements to their old
sets. We construct two protocols in this setting, one al-
lowing both parties to learn the output and the other
only allowing one party to learn the output. In the sec-
ond setting called UPST with weak deletion, parties can
additionally delete their old elements every t days. We
present a protocol for this setting allowing both par-
ties to learn the output. All our protocols are secure
against semi-honest adversaries and have the guarantee
that both the computational and communication com-
plexity only grow with the set updates instead of the
entire sets. Finally, we implement our UPSI with addi-
tion protocols and compare with the state-of-the-art PSI
protocols. Our protocols compare favorably when the
total set size is sufficiently large, the new updates are
sufficiently small, or in networks with low bandwidth.
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1 Introduction

Private set intersection (PSI) enables two parties, each
holding a private set of elements, to compute the
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intersection of the two sets while revealing nothing
more than the intersection itself. Over the years, PSI
and its related functionalities have found many real-
world privacy-preserving applications including DNA
testing and pattern matching [TPKCO07], remote diag-
nostics [BPSWO07], online advertising [IKNT20], pass-
word breach alerting [TPY ™ 19], mobile private contact
discovery [KRST19], privacy-preserving contact trac-
ing [TSST20, CCF'20], and many more. There has
been tremendous progress made towards realizing PSI
efficiently [KKRT16, RR17, CLR17, PRTY19, CM20,
PRTY20] with both semi-honest and malicious security.

Despite tremendous advancements and improve-
ments in the efficiency of PSI protocols, one drawback
of all the existing protocols is that when parties up-
date their sets to include some new elements or remove
certain existing elements, in order to compute the in-
tersection between the two updated sets, parties have
to perform a fresh PSI computation every time. This
incurs a lot of wasteful computational and communica-
tion overhead, especially in scenarios where the updates
are done very frequently and/or the updates to the ex-
isting sets are small. Indeed, in a lot of real-world sce-
narios such as aggregated ads measurement [[KN20],
password breach monitoring [APP, MIC], digital con-
tact tracing [TSS*20, CCF+20], PSI is performed on a
regular (e.g., daily) basis with updated sets, where the
daily update to the sets could be very small compared
to the entire sets. In this work, we ask the following
question:

Can we design protocols that allow parties to reqularly
update their sets and perform PSI where every time
both the computation and communication costs are only
proportional to their updates instead of the entire sets?

1.1 Our Results

We first formalize the notion of updatable private set in-
tersection (UPSI) as a special case of secure two-party
computation with a reactive functionality that interacts
with both parties over many days and keeps its own pri-
vate internal state between days. There are two types of
updates to consider: adding new elements and deleting
existing elements. In particular, we consider the follow-
ing two settings and present three constructions sum-
marized in Table 1.
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‘ Functionality Output Protocol Comp. Complexity Comm. Complexity ‘
Addition-Only Two-Sided Figure 3 O(N') O(N")
Addition-Only One-Sided Figure 5 O*(N'log N) O*(N’log N)

‘ Weak Deletion Two-Sided Figure 7 O(N' -t) O(N’ -t) ‘

Table 1. Summary of our protocols. N denotes the size of the old
of days when parties refresh their sets in UPSI with weak deletion.

1.1.1 UPSI with Addition

In the first setting, on every day, we allow both parties
to add a new set of elements to their existing old sets.
The output on each day is the intersection of the two
updated entire sets. We construct two protocols:

— Two-Sided UPSI with Addition: A Diffie-Hellman
based protocol that allows both parties to receive
the output on each day. Both the computational
and communication complexity of this protocol only
grow linearly with the size of the added new sets and
are independent of the size of the old sets.

— One-Sided UPSI with Addition: An additively ho-
momorphic encryption based protocol that allows
only one party to receive the output. The overall
complexity may vary on different days, hence we
consider the amortized cost per day over a long
period of days. Both the amortized computational
and communication complexity of this protocol only
grow linearly with the size of the added new sets and
logarithmically with the size of the old sets. Techni-
cally, we develop an ORAM-like tree structure that
allows one party to obliviously update an encrypted
database and another party to obliviously search on
the encrypted database (where the secret key is held
by the first party), which may be of independent in-
terest.

Note that one-sided UPSI with addition is a stronger
functionality in the semi-honest setting because the
output-receiving party can send the output to the other
party so as to achieve two-sided output. We present a
protocol for one-sided UPSI with addition because the
functionality may be desirable in many server-client ap-
plications where only the client is allowed to learn the
output (e.g., password breach monitoring [APP, MIC]).

1.1.2 UPSI with Weak Deletion

In the second setting, we additionally allow both parties
to refresh their sets every ¢ days. Namely, they will add
a set of elements to their sets every day, and delete ele-
ments that were added to their sets ¢ days ago. This
setting is motivated by applications such as privacy-

sets and N’ denotes the size of the updates. ¢ denotes the number
O*(+) denotes amortized complexity.

preserving contact tracing [TSS*20, CCFT20] where
data about people’s interactions from more than e.g.
14 days ago is no longer useful. In this example, one
party’s (server’s) input is the set of people who tested
positive on that day, the other party’s (client’s) input is
the set of people they interacted with on that day. The
output on each day is the list of people the client inter-
acted with in the last ¢ days, who also tested positive in
the last ¢ days.

We construct an oblivious transfer (OT) based proto-
col that allows both parties to receive the output. Both
the computational and communication complexity grow
linearly with the size of the added new sets and t.

1.1.3 Experiments

We implement the two UPSI with addition protocols
and compare with the state-of-the-art PSI protocols. To
demonstrate the updatable property, we consider the
following setting: each party initially holds an empty
set. Then, on every new day, both parties add a new set
of size N/ to their existing sets and wish to learn the
updated set intersection. We repeat this process over a
period of several days (&) till the total set size of each
party is N. We compare the amortized (over the total
number of days) communication cost and running time
of our protocol with the prior PSI protocols [KKRT16,
PRTY19, CM20], where, on any day, the two parties run
a fresh PSI on their updated sets to learn the updated
intersection.

Generally speaking, the (concrete/amortized) com-
munication cost of both our protocols only grows with
N’ and at most logarithmically with NV, hence we have
more advantages in efficiency when the total set size N
is larger, the update size N’ is smaller, and the network
bandwidth is lower. In particular, our two-sided UPSI
with addition protocol beats all the PSI protocols in
communication by 7.5 — 13250% in the settings we con-
sider (where N > N’). As an example for running time,
when N = 220 and N’ = 219, our protocol beats the
best PSI protocol by 1.1 — 7.6x for network bandwidth
between 5 — 50 Mbps. Our one-sided UPSI with addi-
tion protocol beats the PSI protocols in communication



by 2 — 149x in almost all settings we consider. As an
example for running time, when N = 220 and N’/ = 26,
our protocol beats the best PSI protocol by 1.8 — 30.5x
for network bandwidth between 5 — 50 Mbps.

1.2 Related Work

There are various approaches in achieving efficient
semi-honest PSI in different settings, including Diffie-
Hellman-based [Mea86, HFH99], fully homomorphic en-
cryption (FHE)-based [CLR17], circuit-based [HEK12,
PSSZ15, PSWW18, PSTY19], and oblivious transfer
(OT)-based [KKRT16, PRTY19, CM20] protocols. We
refer the reader to [PSZ14, PSZ18] for an overview
of the different paradigms for PSI. Protocols based
on OT [KKRT16, PRTY19, CM20] are currently the
fastest in practice because they can take advantage of
the efficient implementation of OT extension [IKNP03,
ALSZ13].

In the updatable setting, the work of Kiss et al.
[KLS™17] studies PSI with pre-computation between a
server with a large set of size N and a client with a small
set of size N’. In a setup phase, the communication and
computation cost is linear in N while in the online phase
the cost is only linear in N’. It allows the server to up-
date its set without recomputing the setup phase and
the client to run the online phase for new sets. Never-
theless, they do not provide an ideal functionality for
the updatable setting that captures the exact leakage
from their protocols. In particular, if the client’s sets
in the online phase are X1,..., Xy and the server’s up-
dates are Y7,...,Yy, then all of their protocols reveal to
the client X; NY; for all ¢, 5. Such leakage also arises in
our attempt to extend the Diffie-Hellman-based PSI to
the updatable setting, which we discuss in Section 1.3.
In this work, we formalize security by a reactive ideal
functionality that prevents such leakage in the updat-
able setting.

A recent work of Abadi et al. [ATD20] studies del-
egated PSI protocols that support data updates and
multi-party PSI. In particular, clients can upload their
(encrypted) private data to a server and outsource the
PSI computation. Clients can update their sets with
communication and computation only growing with
their updates. However, both the computation and com-
munication of the PSI protocol grow with the entire sets,
and they require the existence of a server.

1.3 Challenges and ldeas

We briefly explain the technical challenges in the de-
sign of our protocols. We start with the addition-only

— 380

Updatable Private Set Intersection

setting. Let X,Y denote the old sets of the two par-
ties Py, P; respectively, and let X', Y’ denote their new
added sets. For simplicity, assume |X| = |[Y| = N and
|X’| = |Y'| = N’. Recall that we are mostly interested
in the scenario when N > N’ and our goal is to make
the computation and communication cost to learn the
new intersection only grow with N/ and not N (except
with logarithmic factors).

First, note that naturally extending existing
FHE-based [CLR17], circuit-based [HEK12, PSSZ15,
PSWW18, PSTY19], or OT-based [KKRT16, PRTY19,
CM20] PSI protocols does not work. In the FHE-based
protocols, while Py (the output-receiving party) can
send Enc(X’) which only grows with N’  the compu-
tation cost of P; would involve homomorphically evalu-
ating to compare with his entire input set Y UY’ (and
also homomorphically compare Y’ with Py’s old set X),
which grows with N. A similar issue arises in circuit-
based protocols where in fact, communication also grows
with N. The OT-based protocols require one party to fix
its input set and the number of OTs (to set up the obliv-
ious pseudorandom function) depends on N, so both
communication and computation would grow.

1.3.1 Two-Sided UPSI

On first thought, the
col [Mea86, HFH99] seems more promising because it

Diffie-Hellman-based proto-

has special algebraic structures that may be suitable
for the updatable setting. To briefly recall the proto-
col, let X,Y be Py and P;’s input sets, respectively.
Both parties first hash their elements into a group where
DDH holds, namely H(X) and H(Y). Each party picks
a secret exponentiation key, that is kg and k; respec-
tively. P; then sends H(Y)*! and Py responds back with
H(Y)kok1. Symmetrically, they can obtain H(X)kok1,
By comparing H(Y)**1 and H(X)ko*1 both parties
can compute the intersection X NY. In the updatable
setting, they can repeat this process on their new ele-
ments X', Y’ ensuring that computation and communi-
cation only grow with the size of the new sets. Unfor-
tunately, this naive adaption to the updatable setting
does not trivially solve the problem as it leaks extra in-
formation than what the parties can learn from the ideal
functionality. In particular, it leaks X’ NY and X' NY’
to Py, which is not available in the ideal world.

Our solution is to get rid of such leakage by investi-
gating what can be inferred from the ideal functionality
and leveraging the nice algebraic structures. In partic-
ular, we split the updated output into two parts, one
of which (that is, X NY”’) can be computed by extend-



ing the above DDH-based protocol and for the other (in
particular, X’ N (Y UY")), we run a fresh PSI instance
on small input sizes. We carefully choose this split and
design the appropriate sub-protocols to ensure no infor-
mation is leaked. We refer to Section 4 for a detailed
overview and the formal construction.

1.3.2 One-Sided UPSI

In our protocol above, we crucially rely on the fact that
both parties learn the output on each day. In particular,
even if we want only Py to learn output, to ensure that
P; uses a small input for the fresh PSI, we require P;
to learn the output of the first part that extends the
DDH-based approach. We now focus on the challenges
and ideas in designing a protocol for one-sided UPSI
where only Py learns the output. At a high level, our key
idea is for P to store an encrypted version of his set on
Py’s storage and on each day, he updates this encrypted
database based only on his new input Y’. Then, we re-
quire a mechanism that allows Py to obliviously query
this database and compute on the encrypted data (by
interacting with P;) to learn the intersection without
leaking any information to P;.

We discuss one natural idea to implement this mech-
anism using FHE. Suppose P; uses FHE to encrypt Y
and stores Enc(Y) on Py. Then Py can use her inputs
to homomorphically compute Enc(X NY'). Both parties
can then run a secure two-party computation (2PC)
protocol where Py’s input is Enc(X N'Y) and P;’s in-
put is secret key sk, from which Py learns the output
(X NY). When there is update, P; can update the en-
crypted database by sending Enc(Y”’) and Py can learn
(X’N(YUY’)) with communication only growing with
N'’. However, Py’s homomorphic computation still grows
with N. Moreover, it requires expensive FHE evaluation
and 2PC for FHE decryption.

To implement this approach efficiently, we take in-
spiration from oblivious RAM [SvDST18]. The crucial
idea is that the encrypted database is maintained in
a tree structure where, on any day, P; only updates
one level of the tree and Py only queries on one path
of the tree, so the (amortized) cost only grows with
the depth of the tree (logarithmic in N and not lin-
ear). We also build an efficient 2PC protocol for de-
cryption using additively homomorphic encryption in-
stead of FHE. We further optimize our protocol by using
Cuckoo hashing [PR04] to store elements in each node
of the tree and leveraging the structure of El Gamal en-
cryption [Gam8&4] in our context. We refer to Section 5
for more details.
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1.3.3 Weak Deletion

We make an interesting observation about OT-based
PSI protocols [KKRT16, PRTY19, CM20]. They work
in a streaming setting where, in a setup phase, only the
output-receiving party’s input set is known. Then, the
sender’s inputs can be fed in a streaming manner and
the protocol allows the receiver to learn the intersec-
tion for each stream. We directly take advantage of this
streaming structure and build on these protocols to de-
sign our weak deletion protocol. We refer to Section 6
for an overview and the construction.

2 Preliminaries

Notation. We use A, o to denote the computational and
statistical security parameters, respectively. By negl())
we denote a negligible function, i.e., a function f such
that f(A) < 1/p(A) holds for any polynomial p(-) and
sufficiently large A\. By % we mean two distributions are
computationally indistinguishable. Let NT denote the
list of positive integers and N denote N U {0}.

Cuckoo Hashing. We define Cuckoo Hashing [PR04]
verbatim from [KKRT16]. To assign n items into b bins,
first choose random functions Hy, He, Hs : {0,1}* —
[b] and initialize empty bins B[l,...,b]. To hash an
item x, first check to see whether any of the bins
B[H;(z)], B[H2(x)], B[H3(z)] are empty. If so, place z
in one of the empty bins and terminate. Otherwise,
choose a random 7 € {1, 2,3}, evict the item currently in
B[H;(z)], replacing it with z, and then recursively try
to insert the evicted item. If this process does not termi-
nate after a certain number of iterations, then the final
evicted element is placed in a special bin called stash.

We define private set intersection, additively homo-
morphic encryption and the Decisional Diffie-Hellman
(DDH) assumption in Appendix A.

3 Updatable PSI

In this section, we formalize the definition of Updatable
Private Set Intersection (UPSI). Consider two parties
Py and P; who wish to run PSI on a daily basis with
updated sets each day. We consider two settings on how
they can update their sets. The first setting, which we
call UPSI with addition, allows both parties to add a
set of elements to their respective sets each day. In the
second setting, which we call UPSI with weak deletion,
both parties can add a set of elements to their sets every
day and delete elements that were added to their set ¢



days before. In other words, each party only holds the
elements added in the most recent ¢t days. Moreover, on
each day, the output learnt is only the intersection of
each party’s new elements with the last ¢ days’ elements
of the other party.

3.1 UPSI with Addition

In the setting of UPSI with addition, two parties Py
and P; each hold a private set and add new elements
to their respective sets each day. They want to jointly
compute their set intersection every day on their up-
dated sets without revealing anything beyond that. We
formalize UPSI with addition as a special case of secure
two-party computation with a reactive functionality de-
fined in Figure 1. For simplicity, we assume that each
party adds the same number of elements as the other
party on each day.

We consider two output scenarios: in two-sided
UPSI with addition Fyps|-add-two; POth parties obtain
output at the end of each day; in one-sided UPSI with
addition Fypsi-add-one, only Py gets the output. Note that
in the semi-honest model, a secure protocol achieving
FUPSI-add-one Can be easily transformed into one achiev-
ing Fupsl-add-two Dy Fo sending the output to P; at the
end, hence Fypsi-add-one iS @ stronger notion in the semi-
honest model.

Initialization: X :=0,Y := 0.
Day d:
— Public parameter: The set size on Day d is Ng.
— Inputs:
Py inputs a set X4 of size Ny where each element is from
{0,1}*, and XgN X = 0.
P inputs a set Yy of size Ng where each element is from
{0,1}*, and Y;NY = 0.

— Update: On receiving the inputs from both parties, the
ideal functionality updates X := X U X4,Y :=Y UYy
and computes Iy = X NY.

— Output:

In Fypsi-add-two, the ideal functionality sends I; to both
parties.

In Fypsi-add-one, the ideal functionality sends I; to only
Po.

Fig. 1. Ideal functionalities Fyps-add-two and Fupsi-add-one for
UPSI with addition.

Consider the first D days: let X{p) = {X1,...,Xp} be
the inputs of Py and Y|p; = {Y1,...,Yp} be the inputs
of P. Let VieWbH’D(X[D],Y[D]) and OUt?’D(X[D],)/[D])
be the view and outputs of P, (b € {0, 1}) in the protocol
IT at the end of D days, respectively. Let f(X(p), Y|p)) :=
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{I1,...,Ip} be the outputs of the ideal functionality in
the D days.

Definition 3.1. (Two-Sided UPSI with Addition.)
A protocol T1 is semi-honest secure with respect to ideal
Sfunctionality Fuypsi-add-two 4 there exists PPT simulators
Simg and Simy such that for any D € NT, any inputs
(Xip1: Y(D))s
1. (Viewy"” (X(py, Yipy), Out!"? (X (py, Yipy)) ~
(Simo(1*, X(py, f(X1p), Y1), £ (X (D), YD)
2. (View)"(X(p), Yipy), Outy ™" (X(p}, Yip))) ~
(Sim1(1*, Y{py, £(X1p), Yip))s £ (X (D), YD)

Definition 3.2. (One-Sided UPSI with Addition.)
1T is semi-honest secure with respect to ideal functional-
1ty FUPSI-add-one if there exists PPT simulators Simg and
Simy such that for any D € Nt any inputs (X1p1; YD1
1. Viewy"” (X(py, Yip)) = Simo (1%, X(py, F(X(p), Yip))):
2. (View{[’D(X[D] , Y[D]), Outgl’D(X[D], Y[D])) ~
(Sim1 (1%, Yipy), F(X(p), V(D))

3.2 UPSI with Weak Deletion

In the setting of UPSI with weak deletion, two parties
Py and P; each hold a private set. Then, on each day,
they add new elements to their respective sets and delete
elements that were added t days before. On each day,
they want to jointly compute the union of the intersec-
tion between their new elements and the other party’s
updated set comprising elements from the last ¢ days,
without revealing anything beyond that. We formalize
UPSI with weak deletion as a special case of secure two-
party computation with a reactive functionality defined
in Figure 2. For simplicity, we assume that each party
adds the same number of elements as the other party
on each day. We only consider two-sided output where
both parties receives the output every day.

Consider the first D days: let Xp] = {X1,...,Xp}
be the inputs of Py, Yip; = {Y1,...,Yp} be the in-
puts of Py and Nip) = {N1,...,Np} be the set sizes.
Let View,"” (X(p},Y[p)) and Out;"” (X[p},Y[p]) be the
view and outputs of P, (b € {0,1}) in the protocol II at
the end of D days, respectively. Let f(X|p),Y[p)) =
{L,..
days.

.,Ip} be the ideal functionality’s output in D

Definition 3.3. (UPSI with Weak Deletion.) A
protocol I is semi-honest secure with respect to ideal
functionality Fuypsi-del if there exists PPT simulators



Initialization: X :=0,Y := (.
Day d:
— Public parameter: The set size on Day d is Ny.
— Inputs:
Py inputs a set Xy of size Ny where each element is from
{0,1}*, and XgN X = 0.
Py inputs a set Yy of size Ny where each element is from
{0,1}*,and Yy NY = 0.
— Update: On receiving the inputs from both parties, the

ideal functionality updates X := (X U Xg) \ X4—¢,Y :=

(YUYy)\Y4—_; and computes Iy = | (XgNY)U(XNYy)

(Fd—t<0,let Xg_y =Yy =0.)
— Output: The ideal functionality sends I; to both par-

ties.

Fig. 2. Ideal functionality Fyps|.del for UPSI with weak deletion.

Simg and Simy such that for any d € NT, any inputs
(X[D]aY[D])
1. (Viewg"” (X(p), Yip)), Outy"” (X{p), ¥ip))) ~
(Simo(1*, X(py, Nipy, f(X(p1, Yip))): £ (X(D), YiD)))-
2. (View;"” (X|p}, Yipy), Outy"” (X}, Yip))) =
(

Sim1 (1%, Y{py, Nipy, (X[}, Vo)), £ (X(p), YD)

Finally, we discuss an alternative ideal functionality for
weak deletion and why we choose Fyps|.de With moti-
vating examples in Appendix B.

4 Two-Sided UPSI with Addition

In this section, we present a two-sided UPSI with addi-
tion protocol satisfying Definition 3.1 based on the DDH
assumption in the random oracle model.

4.1 Construction

Notation. Let G be a group of prime order ¢ with gen-
erator g. Let H : {0,1}* — G be a hash function. For a
set X C {0,1}*, we denote H(X) := {H(x)|z € X} and
H(X)F .= {H(z)F|x € X}.

Construction Overview. Our starting point is the
semi-honest PSI protocol based on the DDH assump-
tion [Mea86, HFH99]. The protocol roughly works as
follows. Both parties first hash their elements into a
group where DDH holds, namely Py and P; compute
H(X) and H(Y) respectively. Each party holds a se-
cret exponentiation key, that is, Py holds ky and P;
holds kj. The parties then use their keys to exponen-
tiate their hashed elements and exchange the results.
They further exponentiate the elements in the received
set and send back the results. At the end, both parties
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obtain H(X)ko*1 and H(Y)kok1  from which they can
derive the intersection X NY.

In the updatable setting, to learn the updated inter-
section I on each Day d, parties only need to learn the
update set Iypdate = I \ Ig—1. Observe that I pdate can
be split into two disjoint sets, Ix old = Xold N Yy (Where
Xold = X[d—l] \Idfl) and IX,new = Xd n Yv[d], both of
which can be inferred by Py from the output of the ideal
functionality and its own input. Therefore, it suffices to
let Py learn both Ix oq and Ix new. Symmetrically, if we
let Yo := Yjg—1] \ fa—1, then I pdate can also be split
into Iyold = Yoid N Xyq and Iynew = Yy ﬂX[d] to allow P;
to compute the output.

Using the ideas from the above DDH-based proto-
col, we first ensure that Py holds a set H(Xoq)k0%t at
the end of Day (d — 1), where Xoig = Xjg—1) \ lg—1-
Then on Day d, P; sends H(Yd)k1 and Py computes
H(Yy)*ok1. From this, Py can derive Ix oq = Xoid N Ya-
Symmetrically P; can learn Iy g = Yoid N Xg.

The next objective is to let Py learn Ix new = Xgq N
Y(q- Naively, the two parties can run a PSI protocol
between the two sets X4 and Y|4}, but the computational
cost of P; would grow at least linearly with the size of
Y4, which is unsatisfactory. Observe that Ix new can
also be split into two disjoint sets, X4 N Yy and X4 N
Y[4—1), the latter being exactly 1'y70|d.1 A natural idea
is to first run a PSI between Xy and Y, so that Py
can learn X4 NYy and then let Py send Iygq to Fy.
Unfortunately, this idea does not work because it leaks
extra information to Py (observe that Py does not learn
X4gNYy in the ideal world). Nevertheless, we notice that
the intersecting elements in Ix new could only come from
either Yy or Iyqg, both of which are relatively small
sets and known to P;. Therefore, we can let Py learn
Ix new by running a PSI with P; on the two sets Xy
and Yy U Iyqg. In this PSI protocol, P; needs to add
dummy elements to hide the size of Yg U Iy o4, but the
set size is at most 2- Ny, hence the PSI is efficient in both
computation and communication. The full protocol is
described in Figure 3.

4.2 Correctness, Efficiency, and Security

Correctness. If both parties follow the protocol hon-
estly, at the end of Day d, we will have the following
guarantees with all but negligible probability:

= Ig = Xig N Y

1 Note that Iy g is defined as X4 N (Yjg—1) \ Ig—1)- Since X4
and I are disjoint, it holds that Iy,oq = Xa N Y[g_1]-
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Initialization:
Py samples kg & Zq and sets Xoig :=0,Hx = 0,1o := 0.
P; samples k1 & Zq and sets Yoq := 0, Hy := 0,1 := 0.

1. Py learns IX,oId = Xog NYy:
(a) Pi computes H(Yy)*® and sends to Pp.

equals to H(Xo|d)k0k1) to learn IX,old = Xold N Yd.

2. Symmetrically, Py learns Iy o1q = Yoid N Xgq-
3. Both parties learn the updated intersection:

the output Ix new-

4. Py updates Xgq and Hx:
(a) Py does the following:

— Sample a uniform random « from Z,.
— Compute H(X/)**0 and send to P;.

(c) Po does the following:

H(X!))kok1,

Day d: Party Py inputs a set Xy of size Ng; party P; inputs a set Yy of size Ny.

(b) On receiving H(Yy)*1, Py raises each element to the power ko to obtain H(Yy)*0F1 and compares with Hx (which

(a) Prlets Yy :=YyUIyoq U Dy where Dy consists of dummy random elements so that D};‘ = 2Ny.
(b) Py and P; run a PSI protocol for Fps; where Py’s input set is X4 and Pi’s input set is Yy, from which only Py learns

(c) Py computes Iypdate := Ix new U Ix old and sends it to Pi.

(d) Both parties compute I := I5_1 U Iypdate and output I for Day d.

— Let X/, := X4\ Iypdate and X[ := X U 5;( where 5; consists of dummy random elements so that |X/,| = Ng.

(b) On receiving H(Xél)"‘kﬂ7 Py raises each element to the power k1 to obtain H(X:l)o‘kok1 and sends back to Po.

— On receiving H(X/,)**0F1 raise each element to the power a~! to obtain H(X/)*0*1 from which derive

— Update Xyq := (Xold \ IX,oId) @] Xz,i and Hx := (HX \H(IX7o|d)k0k1) @] H(X{i)kokl.
5. Symmetrically, P1 updates Yold = (Yold \ IY,oId) @] (Yd \ ]update> and Hy.

Fig. 3. Two-sided UPSI with addition protocol IIypsi-add-two-

— <old :X[d] \Id and Hx :H(Xold)kokl;
— Yo =Yg \ lg and Hy = H (Yopg)Fokr.
We prove this by induction in Appendix C.1.

Complexity. On Day d, both parties perform O(Ny)
exponentiations and a PSI protocol with set sizes
O(Ng). The PSI protocol has both computational and
communication complexity O(Ny). Hence the total com-
putational and communication complexity are both
O(Ng4) and independent of the total set size of each

party.

Security. We defer the security proof to Appendix C.2,
and only state the theorem below.

Theorem 4.1. Assuming the Decisional Diffie-
Hellman (DDH) assumption holds for the group G
and H(-) is modeled as a random oracle, the protocol
Ilypsi-add-two Presented in Figure 3 securely realizes the
ideal functionality FUps-add-two (defined in Figure 1) in
the Fpsi-hybrid model against semi-honest adversaries.

5 One-Sided UPSI with Addition

In this section, we present a one-sided UPSI with addi-
tion protocol satisfying Definition 3.2, where only one
party Py receives the output on each day.

5.1 Construction

Notation. Let A be the computational security pa-
rameter and o be the statistical security parameter.
Let G be a group of prime order ¢ with generator
g. Let Hy : {0,1}* — G be a hash function and
Hy : {0,1}* — {0,1}* be another hash function. Let
AHE = (KeyGen, Enc,Dec) be an additively homomor-
phic encryption scheme where the message space is a
field F,. For a set X C {0,1}*, we denote H;(X) :=
{Hi(z)|z € X} and Hy{(X)* := {H (2)*|z € X}. We
denote Encpi(X) as {Encpk(z)|z € X}.

Let LS1(n) denote the position of the least signif-
icant one in the binary representation of n. In other
words, if n = Zf:o b;-2%, then LS1(n) := min{s : b; = 1}.
For example, LS1(7) = 0 and LS1(12) = 2. For a string
s €{0,1}%, let s11..k) (where 1 < k < /) be the number
whose binary representation is the leading k bits of s.
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[of01 ] [ ] [psl21 ] [os31 ] [ Dslal ] [osfs1 ] [oslel ] [os71 ]
a0l | [(2u] | [ 2al2l | [ Dal3] | [ Dal4] ][ Dals] | [ Dal6l | [ Dal7] ][ Dal8l | [ Dulo]l | [ Dal10] | [ Dalat] | [Dal12] | [ D131 | [ Da0141 | [ Dul15] |
(a) Tree structure by the end of Day 19.

[osl01 ] [ ] [Dsl21 ] [os1 ] [os14 ] [osl51 ] [Dsl6l ] [os71 ]

[ os01 ][ 2alt] J[ 2al2l [ 2u8] | [ 2ul4] ][ 251 ][ Dal6l | [ Dul7] | [ Dul8] ][ D] | [Duft0] | [Da[11] | [Dal12] | [ Da[13] | [ Dul14] | [[Dul15] ]
(b) Tree structure by the end of Day 20.

Fig. 4. Example of update on Day 20. A white node indicates it is empty and a gray node indicates it is non-empty. P; pushes all the

elements in Dy and Dy, along with the new elements, to Da.

For example, for s = 010110, s; 4 = (0101)2 = 5. In
addition, we let sy, 4 =0 for £ =0.

Let a node denote a collection of at most 40 ele-
ments (or encrypted elements). For each ¢ € N, let D;
denote an array of 2¢ nodes on the P; side and let D;[j]
(where j € {0,1,...,2° —1}) be the j-th node in D;.
Similarly, let 251 denote an array of 2¢ nodes (containing
encrypted elements) on the Py side and let D;[j] be the
j-th node in D;.

Construction Overview. For simplicity, we assume
N4 = o on each Day d. We discuss how to extend our
protocol for Ny # o in Appendix E. Without loss of
generality, we assume all the set elements are in the field
F,, namely in the message space of AHE. In case they are
not, we can first apply a hash function H : {0,1}* — F,
on all the elements.

To learn the updated intersection I; on each Day
d, party Py only needs to learn the update set I,pdate =
I4\ I;—1. Similar to the previous protocol IIyps|_add-two
(see Figure 3), Iypdate can be split into two disjoint sets,
IX,oId = Xog NYy and IX,new =X4gN Yv[d] (bOth can be
inferred from the output in the ideal world). We first
use the same approach as in the protocol Ilyps|_add-two
to let Py learn Ix oq. Next we describe how to let Py
learn Ix new without leaking any information to Pi.

At a high level, P; stores all his elements in an en-
crypted form on Py’s storage in such a way that: (a)
P; can efficiently and data-obliviously insert new ele-
ments to the storage, and (b) Py can efficiently query if

her element z is in the storage. We construct a binary
tree structure to achieve the data obliviousness, efficient
data insertion, and efficient data query reminiscent of
constructions for oblivous ram (ORAM) [SvDS™*18]. In
particular, P; stores all his elements in a binary tree,
which can be updated efficiently when new elements are
added to his set. On each day, P; updates his tree struc-
ture and then sends the corresponding updated encryp-
tions to Py, which allows her to update the encrypted
tree. To query if Py’s element zx is in the encrypted tree,
Py will locate a small set of elements that could possibly
contain x. By utilizing additively homomorphic encryp-
tion, Py is able to learn whether x is among these ele-
ments (with P;’s help) without leaking any information
about z to P;.

The binary tree structure works as follows. Initially,
the tree is empty. Each node of the tree has a maximum
capacity O(o). On each day when there are new ele-
ments added to P;’s set, P; will insert the new elements
into the tree. Intuitively speaking, P; starts by adding
the new elements to the root of the tree. If the root
is full (i.e.,
pushes the elements in the root along with the new ele-

reaches the maximum capacity), then P;

ments to the second level of the tree. If the second level
has any full node, then P; pushes all the elements down
to the third level. This process continues — if the first L
levels of the tree contains any full node, then P} pushes
all the elements in the first L levels, along with the new
elements, to the (L + 1)-st level of the tree, and then
empties the first L levels. For a particular level, an ele-



ment y is put into a (pseudo-)random node of that level,
determined by the output of a hash function Hy(y).

To make the above process data oblivious to Py, Py
should not wait until exactly when a node is full because
that may leak information about P;’s elements. Instead,
“pushing” happens in a predetermined way that only
depends on P;’s set sizes (which is public to Py as well)
with the guarantee that no node will reach full capacity
except with negligible probability. As an illustration,
Figure 4 shows the pushing process on Day d = 20,
where P; pushes all the elements in the first two levels
of the tree along with the new elements to the third
level.

After P; updates his local tree structure, he pads
every updated node to the maximum capacity using
dummy elements and then sends them in an encrypted
form to Py, which allows her to update the encrypted
tree structure. Next, when Py wishes to query if an el-
ement x is in the tree, for each x € X4, she can first
locate a root-to-leaf path of the tree that could possi-
bly contain x (by computing Hs(z)). Then, by utilizing
additively homomorphic encryption and with the help
of P, Py can learn whether z is contained in any node
of the path without learning any more information and
without leaking = to P;. The full protocol is described
in Figure 5.

5.2 Correctness, Security, and Extension

Correctness. We can prove correctness by induction
over days. One crucial step is to argue that the protocol
aborts in Step 3 with negligible probability. The intu-
ition is that if we throw N = Poly(o) balls into % bins
uniformly at random, then the probability that any bin
exceeds the size of 40 is negligible. We defer the formal
correctness proof to Appendix D.1.

Security. We defer the security proof to Appendix D.2,
and only state the theorem below.

Theorem 5.1. Given an additively homomorphic en-
cryption scheme AHE, assuming that the Decisional
Diffie-Hellman (DDH) assumption holds for the group
G, and that Hy, Hy are modeled as random oracles, the
protocol Il yps|_add-one Presented in Figure 5 securely real-
izes the ideal functionality Fyps|-add-one (defined in Fig-
ure 1) against semi-honest adversaries.

Extension. We can extend our protocol to the general
setting when the number of elements added by both
parties on any day Ny # o, which we discuss in detail
in Appendix E.

— 386

Updatable Private Set Intersection

5.3 Optimizations

We now discuss some optimizations to improve the con-
crete efficiency of the protocol.

Cuckoo Hashing. In Step 3c, for each element y €
S, instead of adding y to the (end of) node Dp[j],
we store elements in each node using Cuckoo hashing
[PRO4]. In more detail, to implement Cuckoo hashing,
as discussed in Section 2, we pick three hash func-
tions CuHj, CuHs, CuH3. Each node of the tree Dp[j]
is represented as a collection of b bins. We also have
a small stash associated with each node. Now, each
y is inserted into one of these b bins (or the stash)
at any given node depending on the contents of bins
CuH; (y), CuH2(y), CuH3(y). Similarly, we also include
the elements from the stash when defining S and setting
D;[j] = 0 in Step 3.

The advantage is that, in Step 5, for each x € Xy,
i € {0,...,maxL}, non-empty node D;[j] (where j =
Hj(x)(y,... 4)), instead of comparing x with each of the 40
elements in the node, Py needs to compare with only the
three elements at bins CuHj(x), CuHa(z), CuHs(z) and
those in the associated stash. This significantly reduces
the communication and computation cost.

In our implementation (Section 7.3), we set the
Cuckoo hashing parameters according to the work of
Pinkas et al. [PSSZ15]. In particular, we set the num-
ber of bins b = 50 and stash size to be a small constant.

El Gamal Encryption. We instantiate the additively
homomorphic encryption scheme using the exponential
variant of the El Gamal scheme [Gam84] to take ad-
vantage of the efficient elliptic curve operations. Re-
call that in this scheme, Enc(m) = (¢",h" - ¢™) where
the public key consists of a generator g and group ele-
ment h = ¢g*. The secret key is x. In our protocol, let
pko = (9,h0),pky = (g,h1),sko = wo,sky = 1 — that
is, both parties use the same group and generator g.
First, in Step 5c, instead of decrypting ct, entirely,? P,
can just check if the decryption is 0 more efficiently.
In particular, given ct, = (a,b), Py can check if r = 0
by checking if b = a®. Similarly, in Step 5(b)i, given
ctg = (a,b), instead of decrypting to get 3 and then re-

encrypting using pkg, P1 can compute Encyy () directly
b

as (g%, h§ - z#r) where s is randomly sampled.

Reducing Number of Ciphertexts in Cy. We can
reduce communication by modifying Step 5(a)i to allow

2 Decryption of exponential variant of El Gamal requires com-
puting the discrete logarithm of a group element which would
only work for a small message space and be expensive.
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Initialization:

1. Py samples kg & Zq and sets Xog :=0,Hx = 0,Ip := 0, and 51[]} :=Q foralli € Nand all j € {0,1,...
Py samples k1 & Zq and sets D;[j] :== 0 for all i € N and all j € {0,1,...,2¢ —1}.

Both parties set maxL := 0.

2. Py generates (pkg,sko) < KeyGen(1*) and sends pkg to Pi.
P; generates (pky,ski) < KeyGen(1*) and sends pk; to Pp.

Day d: Py inputs set X4 of size o; P; inputs set Yy of size o.
1. P() learns IX,oId = X0|d N Ydl
(a) P1 computes Hi(Yy)*1 and sends to Py.

(b) On receiving Hy(Yy)F1, Py raises each element by ko to obtain Hj(Yy)*0F1 and compares with Hy (which equals to

Hi1(Xoiq)"0"1) to learn Ix olg = Xoid N Y.
2. Both parties let L := LS1(d) and maxL := max{L, maxL}.
3. P; updates D by doing the following:
L-1) j2°—1 .
(a) Let S := (Ui:o i—o Dﬂ]]) UuYy.

) For each i€ {0,1,...,L} and for each j € {0,1,...
(c)
(d) For each j € {0,1,..
Computf D7 [5] + Encpi, (DL I5D)-
(e) Send {DlL[ﬂ}je{o,l,A.A,QL—l} to Pp.

4. Py updates D by doing the following:
(a) Foreachie {0,1,...
(b) For each j € {0,1,...,2F — 1}, set 'ISL[j} = D7 5]

5. Po learns IX,new = Xd n )f[d]Z
Py first sets Ix new := 0. Then for each z € Xg:

(a) Py does the following:

i. Set Co := 0. For each i € {0,...,maxL}, let j := Ha(2)[_q; if 51[]} # 0, then for each ct € ’5,[]]

Sample o & Fp, compute cta + Encyy, (o) and ctg < Encpy, (z + ) © ct, and add a pair (cta, ctg) to Co.

ii. Send Cj to Pj.
(b) P1 does the following:

i. Set C1 := 0. For each pair (cta,ctg) € Cp, sample y & Fp, compute 8 < Decg, (ctg), ctr < 7O (Encyy, (8) Octa)

and add ct, to C1.
ii. Send C in a randomly permuted order to Pj.
(c) Po does the following:

For each ct, € Cq, compute r < Decg, (ctr). Add z to the set Ix new if r = 0.

6. P() outputs Id = Id—l U IX,old @]} IX,neW for Day d.
7. Py updates Xoq and Hx:
(a)

Py does the following:

Let X (/1 := X4 \ I4 and construct X :1 of size o by padding X4 with dummy random elements.
Sample o ﬁ Zgq, compute Hy (X(’i)o‘ko and send to Pj.
P raises each element in Hq (X(’i)akO to the power k; to obtain Hp (X(/i)“k()k1 and sends back to Py.

Py raises each element in Hl(Xé)akokl to the power a~! to obtain Hl(Xél)kUkl, from which it derives Hl(X(’i)kUkl.
Then Py updates Xoa := (Xo \ Ix,on) U X} and Hy := (Hx \ Hi(Ix o) 0F1) U Hy(X/)kok1.

(b)
(c)

,28 — 13}, set D;[j] == 0.
For each element y € S, let j := H2(y)[1..z) and add y into the node D [j]. If the size of Dr [j] exceeds 40, then abort.
.,2F — 1}, construct a node D [j] of size 40 by padding D[] with dummy random elements.

,L —1} and for each j € {0,1,...

, 20 — 1}

L2t — 11, set D;[5] := 0.

Fig. 5. One-sided UPSI with addition protocol IIyps|-add-one-

Py to use the same ct, across all the ciphertext tuples
generated for a given z € X;. In more detail, we rewrite
the step as:
— Sample « & Fp. Compute cty < Encpy (o) and add
cty to Cp.
— For each i € {0,...,maxL}, let j := Ha(x)y 4; if
5i[j] # (), then for each ct € 151[j} compute ctg as
(Encpk1 (@) © Br © (Encpi, (z) © ct)) where S, & F,

and (®, 9, ®) are homomorphic operations. That is,
ctg = Encpi, (@ + Br - (z — y)) where ct = Encp, (y).
— Add ctg to Cp.

This change does not leak any additional information
to P} because, by assumption, since elements added by
P; on any day are distinct, with all but negligible prob-
ability, x = y for at most only one y amongst the plain-
texts encrypted to form ciphertexts {ct} (the negligible
probability error happens if z equals any of the random



(z —y) is
statistically close to a uniform distribution since 3, is

dummy elements too). For any = # y, 5, -

picked uniformly at random and so, reveals no informa-
tion about any x to P;. It is easy to observe that this
optimization does not affect security against a corrupt
Py as well while reducing the size of Cy by half.

5.4 Efficiency

‘We now evaluate the communication and computational
complexity of the protocol (after applying the optimiza-
tions). For simplicity, we analyze the case where Ny = o
and discuss the case of Ng # ¢ in Appendix E. Recall
the notation Num1(n) that denotes the number of 1’s in
the binary representation of n. For any Day d, Num1(d)
is the number of levels of the tree that are non-empty.
Let the stash size (a small constant) for any node in the
tree be denoted by s (which is a small constant). Over
a period of d days, the total number of elements in the
input set of each party is N = o - d.

Communication Complexity. In Step 1, P; sends
o group elements. In Step 3, P; sends (2© - 50) ci-
phertexts, where L = LS1(d). In Step 5, Py first sends
o+ (14 Numl(d) - (s + 3)) ciphertexts and P; responds
back with o - (Num1(d) - (s 4+ 3)) ciphertexts. In Step 7,
both parties send o group elements. Thus, the overall
communication complexity is O(o - (2"51@) + Num1(d)))
group elements. Now, the values of LS1(d) and Num1(d)
differ on every day and so the communication cost
is not the same on each day. We consider amortized
cost over 2¥ days of updates for d € {2’“,2’“ +1,...,

k41
2 1
oLS1(d)

2k+1 _ 1}. The amortized 2LS1(d) g &%27,‘ =

ok 4 i_vfl 9i.gk—1—i ) )
Zl:gk =1+ % The amortized Num1(d) is

ok+1_4q
Zd:2k Num1(d) ok gkl 14 k
2k - 2k - 2"

Thus, the amortized communication cost over 2F
days is O(o - k). Since the total number of elements
N =o0-d, k = O(logN) and so the amortized com-
munication cost is O(o - log N). In particular, it grows
only logarithmically with the total number of elements.

Computational Complexity. First, we analyze the
computation cost for Py. In Step 1, Py performs o ex-
ponentiations. In Step 4, Py stores the 2~ nodes — this
is inexpensive compared to exponentiations. In Step 5,
(I + Numl(d) - (s + 3)) ciphertexts
(and decrypting later to check for 0). In Step 7, Py

Py generates o -

does 20 exponentiations. Hence Fy’s computation cost
is O(o - Num1(d)).

Next, we analyze P;’s cost. In Step 1, P, does o
exponentiations. In Step 3, P; generates (2% - 50) en-
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cryptions, where L = LS1(d). In Step 5, P; performs
o-(14+Numl(d)-(s+3)) encryptions/homomorphic eval-
uations. In Step 7, P; does o exponentiations. So P;’s
computation cost is O(c - (2-51(@) + Num1(d))).

As analyzed above, the amortized computation cost
is O(o - k) over 2F days of updates for d € {2F,2F +
1,...,281 — 1}, Since the total number of elements
N = o -d, we have k = O(log N) and the amortized
computation cost is O(o - log N), which grows only log-
arithmically with the total number of elements.

6 UPSI with Weak Deletion

In this section, we describe an updatable PSI proto-
col satisfying Definition 3.3. That is, besides inserting
new elements to their sets each day, the protocol allows
both parties to delete data that was added t days ago
and compute the intersection privately on these new up-
dated sets. In particular, the output is the union of the
intersection of each party’s new elements with the other
party’s updated set comprising elements over the last
t days. Our protocol allows both parties to learn the
output at the end of each day and is based on oblivious
transfer (OT) and correlation robust hash functions.

We first introduce the notion of sender-streaming
PSI and then use that to build our updatable PSI pro-
tocol with weak deletion.

6.1 Sender-Streaming PSI

Consider two parties - a sender S and a receiver R who
wish to engage in a one-sided PSI protocol to allow R
to learn the intersection without revealing anything else.
However, unlike the typical PSI setting, only R knows
its entire input set Y at the beginning while the sender
only knows a subset Xy. An upper bound Max on the
maximum number of elements in the sender’s set is part
of the public parameters as are the sizes |Y], | Xg|. At this
point, the receiver learns (Xg N'Y). Subsequently, the
sender learns more of its input in a streaming manner
and the two parties interact to allow the receiver to learn
the intersection of its input set with the new streamed
sender input. That is, on receiving an streaming input
X, the two parties engage in a protocol that allows the
receiver to learn (X; NY). We formalize this notion as
a special case of secure two-party computation with a
reactive functionality defined in Figure 6.

Let Xj; = {Xo,...,X;} be the inputs of S
over i streams and Y be the input of R. Let
Viewg’i(X[i],Y, Max), Viewg’i(X[i], Y, Max) be the views
of S and R, respectively, in the protocol II at the end



Initialization:

— Inputs:
S inputs a set X where each element is from {0, 1}*.
R inputs a set Y where each element is from {0,1}*.
The set sizes | Xo[,|Y| and upper bound Max are public
and known to both parties.

— Output:
The ideal functionality sets X = Xg. Then, it computes
and sends Xg NY to R.

Stream i:

— Inputs:
S inputs a set X; where each element is from {0, 1}* and
X; N X = 0. The stream size |X;| is public and known
to R.

— Output:
The ideal functionality sets X = X U X;. Then, if | X| <
Max, it computes and sends I; = X;NY to R. Else, sends
1.

Fig. 6. Ideal functionalities Fssps| for sender-streaming PSI.

of i streams and let Outn7i(X[i],Y, Max) be the outputs
of R at the end of i streams. Let f(X[;,Y,Max) :=
{Io,...,I;} be the outputs of the ideal functionality in
the i streams.

Definition 6.1. (Sender-Streaming PSI.) A proto-
col TI is semi-honest secure with respect to ideal func-
tionality Fssps) if there exists PPT simulators Simg and
Simp such that for any i € N, any inputs (X};),Y) and
any upper bound Max,
1. VieWg’Z(Xm,Y7 Max) ~
Sim]:g(l)‘7 Y, {‘Xj |}j€[i]7 Max, f(X[z] 5 K Max)),
T p c
2. (Viewg (X3, Y, Max), Out'! "(X}), Y, Max)) ~
(Simg (1%, X}, [Y], Max), f (X}, Y, Max)).

Instantiations. We notice that the PSI protocols of
Kolesnikov et al. [KKRT16], Pinkas et al. [PRTY19],
Chase and Miao [CM20] immediately satisfy Defini-
tion 6.1. We state the lemma below and defer the dis-
cussion to Appendix F.

Lemma 6.2. Assuming semi-honest OT and corre-
lation robust hash functions, the PSI protocols of
[KKRT16, PRTY19, CM20] all securely realize the ideal
functionality Fssps against semi-honest adversaries.

6.2 Construction

Notation. On each Day d, let X4 be the elements added
to Py’s set and Yy be added to Py’s set where |Xy4| =
|Y4| = Ny. For any j, we will initialize X; = Y; = 0 if
they have not yet been defined (or j < 0). Further, for
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any d, let Maxg > (2- Ny + Z?iii?l

that Max, is known at the start of Day d - that is, on any

Nj). We assume

day, both parties know an upper bound on the number
of elements they can add over the next (¢ — 1) days.

Since we invoke several instances of Fssps|, we intro-
duce additional notation to identify the sender of Fssps
and on which day of the UPSI protocol the functional-
ity was first invoked. Let fs(gggf) indicate that Py is the
sender of the SS-PSI protocol, P; is the receiver and the
functionality was first invoked on Day d.

Construction Overview. We focus on how Py com-
putes the output - the final protocol is symmetric to
allow P; to compute the output as well. On any Day
d, observe that the output I; can be split into two
disjoint sets: (i) lo,a = (X[g—1] \ X[g—g) N Yq and (ii)
IO,,B = XgN ()f[d] \Yr[d_t]). Then, Iy = IO’QL.JI()’@ (each
of which can be inferred from the output in the ideal
world). Note that X4 NYy is included in Iy g and not
]0704.

To compute Ipq, note that Ipo = (Xg—¢41 N
Yo)U.. . U(X4-1 N Yy), where (X; NYy) (for all j €
{d—t+1,...,d—1}) can be inferred from the output in
the ideal word. Our idea is to use the sender-streaming
PSI (Fssps)) initiated on earlier days to let Py learn
(X; NYy). In more detail, on each of the (¢ — 1) previ-
ous days, invoke fs(gééﬁ) with Py as receiver using input
X, (on Day j) and P; as sender. The upper bound for
the sender’s set size is discussed later. Then, on Day
d, Py’s streamed input for each of these instances is Yy
which allows Py to learn (X; N Yy). The same mech-
anism can be employed symmetrically for P, to learn
Iio = XaN (Ya—1) \ Yia—g)-

Next, to compute Ij g, the idea is to use a new in-
)

input X; and P; as the sender. From the above para-

stance fs(gé’scll on Day d with Py as the receiver using

graph, observe that this instance of Fsspg is also used
to compute terms of Iy o over the following (¢ — 1) days.
Now, since the goal is to compute In g = Xq N (Y[g \
Y{4—¢), sender Pi’s input in its initial stream should
be (Vg \ Yja—yg) whose size is Z;ig_t.u N;. Nonethe-
less, this can be improved. Observe that Ip 3 = (X4 N
Ya)U (Xd A (Vi \Y[dtp) X4 (YaU Ly ). Thus,
)

[T1,o| < |Ngl, size of Py’s input is at most (2-Ng). Py uses

sender P;’s input to }—S(éjlé,slf can be just (YgUI; o). Since
dummy elements to pad the size to be exactly 2 - Ny to
not leak more information about I o to Py. Once again,
Py can similarly learn 1 g = Yy N (X(g) \ X[a—yg)-
Finally, the missing component is an upper bound
on sender P;’s entire input in -Fspslﬁ(él initiated on Day d.



Recall that to compute Iy o, for each of the next (¢ —1)
days, P; uses streamed input Y; on Day j. Hence the
upper bound is (2- Ny + Z;igii_l N;). The protocol is
described in Figure 7.

6.3 Correctness, Security, and Efficiency

Correctness. If both parties follow the protocol hon-
estly, at the end of Day d, we will have the guar-
antee that with all but negligible probability, I; =
(X[ \ Xpa—g) NYa) U (Vg \ Yia—yg) N Xq). We prove
by induction in Appendix G.1.

Security. We defer the security proof to Appendix G.2,
and only state the theorem below.

Theorem 6.3. The protocol llyps|_gel presented in Fig-
ure 7 securely realizes the ideal functionality Fypsi-del
(defined in Figure 2) in the Fssps-hybrid model against
semi-honest adversaries.

Instantiating Fssps) with the protocol of Kolesnikov et
al. [KKRT16] or Pinkas et al.[PRTY19] or Chase and
Miao [CM20], all of which are based on semi-honest OT
and correlation robust hash functions (Lemma 6.2), we
get the following corollary:

Corollary 6.4. Assuming semi-honest OT and corre-
lation robust hash functions, the protocol Ilyps|.del PTeE-
sented in Figure 7 securely realizes the ideal function-
ality Fupsi-del (defined in Figure 2) against semi-honest

adversaries.

Computational and Communication Complex-
ity. On Day d, Fssps) is invoked with a new stream
2-(t—1) times with size of new streamed set as Ny. The
total computational complexity in this step is O(Ng-A-t)
and the communication complexity is O(Ng - o - t) bits.
Besides, two new invocations of Fssps) (the initialization
phase) occur where the receiver’s set size is Nz and the
sender’s set size is 2- Ng. The computational complexity
in this step is O(Ny4-A) and communication complexity is
O(Ng4- ) bits. Thus, the total computational complexity
is O(Ng - A -t) and the total communication complexity
is O(Ng - (0 -t+ X)) bits.

As opposed to our protocols for PSI with addition
which achieve better asymptotic complexity than a fresh
PSI protocol, our weak deletion protocol Ilyps|.del ap-
pears more as an observation on the existing PSI proto-
cols (in particular, their sender-streaming property). In
fact, the weak deletion protocol IIyps|.qel has the same
asymptotic complexity as a fresh PSI, but achieves a
better concrete efficiency by smaller constant factors.
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The protocol is a generic construction from sender-
streaming PSI and its performance depends on the un-
derlying sender-streaming PSI protocol.

7 Experimental Results

We implement our two-sided and one-sided UPSI with
addition protocols (IIypsi.add-two and IIypsiadd-one) inn
C++ and report their performance in this section.

7.1 Implementation Details

We set the computational security parameter to A = 128
and statistical security parameter to ¢ = 40. We use
the CryptoTools library [Rin] for our underlying cryp-
tographic primitives. In particular, we use the Boost
library [Boo] for networking, the Relic library [AGM™]
for the instantiation of elliptic curves, and SHA256 from
OpenSSL [Ope] for the hash functions.

We compare our UPSI with addition protocols with
the state-of-the-art OT extension based semi-honest PSI
protocols which are optimized for different network set-
tings:

— KKRT16 [KKRT16]: computation-optimized and
works best in the setting of LAN networks.

— SpOT-Light [PRTY19]: communication-optimized
and works best in networks with low bandwidth.
They have two variants of the protocol, a speed-
optimized variant (spot-fast) and a communication-
optimized variant (spot-low). We compare our pro-
tocols with both variants.

— CM20 [CM20]: balanced between computation and
communication, and works best in networks with
moderate bandwidth (e.g., 30 — 100 Mbps).

We run all the experiments between two Amazon
AWS virtual machines with Intel(R) Xeon(R) 3.0 GHz
CPU and 32 GB RAM, which communicate over a LAN
network. We simulate the WAN connection using the
Linux tc command, where the RTT latency is set to be
80 ms and we test on various network bandwidths. All
of our experiments use a single thread for each party.

Setting. To demonstrate the updatable property, we
consider the following setting: each party initially holds
an empty set. Then, on every new Day d, both parties
add a new set of size Ny to their existing sets and wish
to learn the updated set intersection. We repeat this
process over a period of several days (1\%) till the total
set size of each party is N. We compare the amortized
(over the total number of days) communication cost and
running time of our protocol with the prior PSI proto-
cols [KKRT16, PRTY19, CM20], where, on any Day d,
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learns output I1 = (X1 NY7).

learns output I; = (X1 NY7).

d—1

(Y5 N Xaq).

d—1

where the set B =Y, U ( Uj:d—tJrl

d

d—1

the set A= X4 U (Uj:d—t+1

5. Output computation:

Day 1: Py has input set X1 and P; has input set Y7. The protocol works as follows:
1. Invoke ]:S?P’Sll with Py as the receiver with input Xi, P; as the sender with initial input Y7 and upper bound Max;. Py
2. Invoke ‘Fsiolgsll with P; as the receiver with input Y7, Py as the sender with initial input X3 and upper bound Max;. P

Day d: Py has new input set Xz and P; has new input set Yy. Pp’s and Pj’s input sets over the last ¢ days are
(Xd,tJrl, Cey Xd,l,Xd) and (Yd,prl, ey Yd,l,Yd) respectively. The protocol works as follows:

1. Ipa = Uj:(d—t+1)(Xj NYy): For each 5 > 0, invoke ‘FS?P,gI with P;’s new streamed input as Yy. Receiver Py learns

2. I = U;l;(ld_t+l)()/']~ N Xg4): For each j > 0, invoke ]_—Slgoﬁg'l with Py’s new streamed input as X;. Receiver P; learns

3. Ipg = (Xd n (Uj:d—u—l Y])) Py computes this as follows:

(a) Invoke ]:Slzlp’sdl with Pp as the receiver with input X4, P as the sender with initial input B and upper bound Maxg,
Y; ﬂXd) UDy where Dy consists of dummy random elements so that |B| = 2- Ny .

, . d . d
(b) Py’s output is (Xd al (Uj:d—t+1 Y})) since (Xd n (Uj:d7t+1 Y])) = (Xd n B).
4. I g = (Yd N (Uj:d7t+l Xj)): P; computes this similar to the above as follows:

(a) Invoke .FSPSOP"Sil with Pj as the receiver with input Yy, Pp as the sender with initial input A and upper bound Max, where
X;N Yd) U 5;( where [/);( consists of dummy random elements so that |A| =2 Ng.

(b) P1’s output is (Ydﬁ (Uj:d—t-}—l Xj)) since (Ydﬂ (szd—t+1 Xj)) = (YdmA).

Py outputs Iy = (Ip,o U Io,5) and Py outputs Iq = (I1,o U171 g).

Fig. 7. Updatable PSI protocol with weak deletion TIyps| gl -

the two parties run a fresh PSI on their updated sets to
learn the updated intersection.

7.2 Two-Sided UPSI with Addition

We implement the two-sided UPSI with addition proto-
col ITyps)-add-two Presented in Section 4, where the PSI
protocol in Step 3b is instantiated with a DDH-based
PSI [Mea86, HFH99]. A detailed comparison for N =
216 922 and N, = 28 —2!2 is presented in Table 2. Note
that for the PSI protocols [KKRT16, PRTY19, CM20],
we only report for N; = 28 because both their commu-
nication and running time are dominated by N (which
is much larger than N;) and do not differ much for other
Ny values.

Communication Improvement. The communication
cost of our protocol on any day is proportional only
to the update size Ny and independent of the size of
the entire set (that grows gradually to N), whereas all
the PSI protocols require communication to grow with
the entire set. Therefore, our protocol beats all the PSI
protocols in amortized communication by 7.5 — 13250 %
in the settings we consider (where N > N).

Computation Improvement. Similar to communica-
tion, our computational cost also grows only with Ny
while all the PSI protocols require computation to grow
with the size of the entire set (that gradually grows to
N). However, our protocol does not beat their compu-
tation in all the settings because all these PSI protocols
only use OT extension [IKNP03, ALSZ13] along with
symmetric cryptographic primitives (AES/hash func-
tions), which are computationally very efficient, while
our protocol requires public-key operations. As a re-
sult, our protocol is computationally more expensive
for smaller values of N but eventually beats all these
protocols when N is sufficiently large. In particular, for
N = 222 and Ny = 28, our protocol beats [KKRT16]
(the computationally most efficient protocol) by 2.6x
in computation.

Overall Running Time. Generally speaking, our pro-
tocol has more advantages in the total running time
when the network bandwidth is lower, the total set size
N is larger, and the update size Ny is smaller. For exam-
ple, if we focus on the setting N = 220, when N, = 28,
our protocol beats the best PSI protocol by 1.1 — 24.5x
for network bandwidth between 5 — 200 Mbps; when
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N Ny Protocol | Comm. (MB) Total Running Time (s)
LAN | 200Mbps | 50Mbps | 5Mbps
KKRT16 3.90 [oos | o1 ] 132 7.11
08 spot-fast 2.32 0.91 1.38 1.38 7.06
spot-low 1.96 4.99 5.23 5.39 6.93
216 CM20 2.65 0.29 1.23
28 0.02 1.65 2.55 2.64
210 Ours 0.06 6.06 6.81 7.22 8.13
212 0.26 23.5 24.2 25.7 29.5
KKRT16 15.9 [025] 19 3.43 27.5
98 spot-fast 9.45 3.49 4.08 4.20
spot-low 7.80 21.2 22.8 23.3
218 CM20 10.7 0.90
28 0.02 1.65
210 Ours 0.06 6.07
212 0.26 23.6
KKRT16 64.2 12.7 109
98 spot-fast 38.2 12.2 13.1 13.7 65.1
spot-low 31.6 110 107 113 146
220 CM20 438 3.50
28 0.02 1.65
210 Ours 0.06 6.08
212 0.26 23.6
KKRT16 265
" spot-fast 157 49.7 51.3 54.8 196
spot-low — — — — —
222 CM20 178 15.0 16.2 31.6 303
28 0.02
210 Ours
212

Table 2. Amortized communication cost (in MB) and running time (in seconds) comparing our protocol IIyps|add-two to [KKRT16],
spot-fast and spot-low [PRTY19], and [CM20]. The LAN network has 20 Gbps bandwidth and 0.1 ms RTT latency. All the other net-
work settings have 80 ms RTT. Cells with “—" denote settings where the programs run out of memory and those in orange indicate

the fastest running time for that setting.

Ny = 219 our protocol beats the best PSI protocol by
1.1 —7.6x for network bandwidth between 5 — 50 Mbps;
when N; = 2!2, our protocol beats the best PSI protocol
by 2.1x for network bandwidth 5 Mbps. On the other
hand, for the setting where N = 222, when N, = 28, our
protocol beats the best PSI protocol by 2.6 — 73.7x for
all networks.

7.3 One-Sided UPSI with Addition

We implement the one-sided UPSI with addition pro-
tocol TIyps-add-one Presented in Section 5 with the opti-
mizations mentioned in Section 5.3. We pick the Cuckoo
hashing parameters according to Pinkas et al. [PSSZ15].
In Figure 5, we set the batch size for both parties (the
number of elements added each day) to be 2¢ = 64 in-

stead of o (which is 40).> To insert n = 4 .26 = 28
elements into the Cuckoo hash table, we set the num-
308 and stash size as 12. A
detailed comparison for N = 216 — 220 and Ny
26 — 210 jg presented in Table 3.# For the PSI pro-
tocols [KKRT16, PRTY19, CM20], we only report for
Ny = 28 as their amortized communication and run-

ber of bins as 1.2n =

3 We use 26 instead of 40 for two reasons: In the parameters
from [PSSZ15], the stash size is available only for n = 28 and
not lower numbers. Also, since we consider daily updates that
are powers of 2, running batches of 26 is more convenient than
40.

4 Unlike Table 2, we don’t include N = 222 as we ran out of

memory for that case.
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N | Ny | Protocol | Comm. (MB) Total Running Time (s)
LAN [ 200Mbps | 50Mbps | 5Mbps

KKRT16 3.90 0.05 1.01 1.32 7.11
o8 spot-fast 2.32 0.91 1.38 1.38 7.06
spot-low 1.96 4.99 5.23 5.39 6.93
216 CM20 2.65 0.29 1.23 1.30 4.94
26 0.30 2.96 3.46 3.55 3.62
28 Ours 0.97 10.6 11.9 12.0 12.1
210 2.95 35.5 37.6 37.7 37.8
KKRT16 15.9 0.25 1.92 3.43 275
98 spot-fast 9.45 3.49 4.08 4.20 12.8
spot-low 7.80 21.2 22.8 23.3 30.4
218 CM20 10.7 0.90 1.73 2.81 18.6
26 0.37 3.38 3.98 4.07 4.16
28 Ours 1.21 125 14.1 14.2 14.3
210 3.88 422 44.7 44.8 44.9
KKRT16 64.2 1.03 2.89 12.7 109
98 spot-fast 38.2 12.2 13.1 13.7 65.1
spot-low 31.6 110 107 113 146
220 CM20 43.8 3.50 4.41 8.43 74.6
26 0.43 3.88 458 4.68 4.78
28 Ours 1.45 14.8 16.6 16.8 16.9
210 4.84 50.6 53.6 53.7 53.8

Table 3. Amortized communication cost (in MB) and running time (in seconds) comparing our protocol IIyps|.add-one to [KKRT16],
spot-fast and spot-low [PRTY19], and [CM20]. The LAN network has 20 Gbps bandwidth and 0.1 ms RTT latency. All the other net-

work settings have 80 ms RTT. Cells with "—" denote settings where the programs run out of memory and those in

the fastest running time for that setting.

ning time are dominated by N and do not differ much
for other N, values.

Communication Improvement. The amortized com-
munication cost of our protocol grows linearly only with
the update size Ny and logarithmically with the size of
the entire set (that grows gradually to N), whereas all
the PSI protocols require communication to grow lin-
early with the entire set. Therefore, our protocol beats
these PSI protocols in amortized communication by
2 —149x in almost all the settings we consider, the only
exception being when N = 216 and N, = 210.

Computation Improvement. Our amortized compu-
tational cost also grows only linearly with N; and loga-
rithmically with the size of the entire set (that grows
gradually to N) while all the PSI protocols require
computation to grow linearly with the entire set. How-
ever, our protocol does not beat [KKRT16, CM20] in
the settings we consider because N is not sufficiently
large. In particular, we expect our protocol to beat both
[KKRT16, CM20] in computation when N = 222 and
Ny = 20 (we currently run out of memory for N = 222).

indicate

We also note that for N = 229 and N; = 2%, our protocol
beats [PRTY19] by 3.1 — 28.3x in computation.

Overall Running Time. Our protocol generally has
more advantages in the total running time when the net-
work bandwidth is lower, the total set size N is larger,
and the update size N; is smaller. For example, con-
sider N = 229: when N; = 25, our protocol beats the
best PSI protocol by 1.8 —30.5x for network bandwidth
between 5— 50 Mbps; when Ny = 28, our protocol beats
the best PSI protocol by 3.9x for network bandwidth 5
Mbps; when Ny = 210 our protocol beats the best PSI
protocol by 1.2x for network bandwidth 5 Mbps.
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A Additional Preliminaries

A.1 Private Set Intersection (PSI)

Private Set Intersection (PSI) is a special case of secure
two-party computation. We follow the standard secu-
rity definition for semi-honest secure two-party compu-
tation. Consider two parties Py, P; with input sets X,Y
of size Ny, N1, respectively. Their goal is to run a two
party secure computation protocol IT at the end of which
party Py learns the set intersection I = X NY.%> The
formal definition of the ideal functionality is shown in
Figure 8.

Parameters: The set size of X is Ng and the set of Y is Ni.

Inputs:

Party Py has an input set X of size Ny where each element
is from {0, 1}*.

Party P; has an input set Y of size N; where each element
is from {0, 1}*.

Output: Py receives the set intersection I = X NY.

Fig. 8. Ideal functionality Fpg for two-party PSI.

Let View() (X, Y) and View}' (X,Y) be the view of P,
and Py in the protocol II, respectively. Let Out''(X,Y")
be the output of Py in the protocol. Let O = f(X,Y) be
the output of Py in the ideal functionality. The protocol
IT is semi-honest secure if there exists PPT simulators
Simg and Sim; such that for all inputs X,Y,

Viewd (X, Y) = Simg (1%, X, N1,0)),
(View[!(X,Y), 0ut™ (X, Y)) = (Sim1 (1}, Y, No), 0) .
A.2 Tools and Assumptions

Additively Homomorphic Encryption. An addi-
tively homomorphic encryption scheme is a public-key

5 Another formulation is allowing both parties to learn the out-
put, which can be easily achieved in the semi-honest model by
Py sending the output I to P; at the end.
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encryption scheme AHE = (KeyGen, Enc, Dec) over mes-
sage space M with correctness, CPA security, and linear
homomorphism.

— (pk,sk) + KeyGen(1%)

— ct < Encpi(m; )

— m/ L + Decg(ct)

— Homomorphic addition: Encpk(m1) @ Encpe(ma) =

Encpk(mq + ma) for Vmy, ma € M.
— Homomorphic multiplication with constant: ¢ ©
Encpi(m) = Encpi(c - m) for Ve,m € M.

We implicitly assume that each homomorphic evalua-
tion is followed by a refresh operation, where the re-
sulting ciphertext is added with an independently gen-
erated encryption of zero. This is required in our proto-
cols to ensure that the randomness of the final cipher-
text is independent of the randomness used in the origi-
nal set of ciphertexts. For the popular additively homo-
morphic encryption schemes such as ElGamal encryp-
tion [Gam84] (based on DDH) and Paillier encryption
[Pai99] (based on the Decisional Composite Residuosity
assumption), a homomorphically evaluated ciphertext
is statistically identical to a fresh ciphertext. We refer
to [Gam84, Pai99] for formal definitions of correctness
and CPA security.

Decisional Diffie-Hellman (DDH) Assumption.
Let G be a cyclic multiplicative group of prime order
q with generator g. Let a, b, ¢ be sampled uniformly at
random from Z,. The DDH assumption states that

C
(9“, 9%, 9") ~ (9% 9", 9°).

B Weak Deletion Functionality

In this section, we discuss the choice of our definition
for the weak deletion functionality. We consider an al-
ternate, arguably more natural functionality for dele-
tion where both parties compute the intersection of their
datasets over the last ¢t days - that is, delete data that
was added more than ¢ days ago and compute the inter-
section on their updated sets. We define this function-
ality Fypsi-del-alt in Figure 9. We make two observations
about Fypsi.del-alt t0 explain why we instead choose to
focus on Fypsi.del in this work.

Leakage from Ideal Functionality. It turns out that
FUPSI-del-ait in fact leaks a lot more information over
the course of several days than what immediately meets
the eye from the functionality description. In particular,
both parties actually learn (X; NYj) for all |i — j| < .
To see why, consider the sequence of t days start-
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Initialization: X :=0,Y := (.
Day d:
— Public parameter: The set size on Day d is Ny.
— Inputs:
Py inputs a set Xy of size Ny where each element is from
{0,1}*, and XgN X = 0.
Py inputs a set Yy of size Ny where each element is from
{0,1}*,and Yy NY = 0.

— Update: On receiving the inputs from the two par-
ties, the ideal functionality updates X := (X U Xg4) \
Xq-¢,Y = (Y UYy)\ Yy and computes [y = X NY.
(Ifd—t<0,let Xgq =Yg +=0.)

— Output: The ideal functionality sends I; to both par-

ties.

Fig. 9. Ideal func. Fyps|.der-ait for UPSI with weak deletion.

ing on Day d and see what Py learns from the out-
put on each day about X;. On Day d, Py can learn
(Xa N (Yig \ Yg—y)) from I;. On Day (d + 1), Py can
infer (X4 N (Y[g41) \ Yja—t41))) from Igyq. From both
the above, Py can immediately deduce (X4 NYy41) and
(XgNYq_¢11). Similarly, for each i € {d+2,...,d+t—1},
Py can learn (Xy3NY;) and (X4 NY;—). Finally, notice
that on Day (d+t—1), Py learns XN (Y[g4¢—1)\ Yia—1))-
From this and the intermediate results on each day, Py
can also learn X N Y. Observe that this leakage does
not occur in Fypsi_del-

Stronger Functionality (Fypsi-del = JFUPSI-del-alt)-
We show that Fyps|_del-ait can be realized given Fypsi_del-
That is, any protocol achieving Fypsi.del can be eas-
ily transformed to achieve Fyps|.del-alt- Intuitively, the
idea is that given the output Ij_1 of Fypsi_del-ait on Day
(d = 1), to obtain the output on Day d, we essentially
need to do two things: (i) Add to I4_; the contribution
of the new inputs X4 and Yy, (ii) Remove from I;_; the
contribution of the deleted data X ;_; and Yy_;. Ob-
serve that (i) is exactly the output of Fypsi.qel on Day
d. For (ii), from the output I;_; and its own inputs,
Py can compute A = Xg_4 N (Y[g—1] \ Yjg—¢—1)) which is
the contribution of X4 to I5_1. Similarly, P; can com-
pute Yy s contribution B = Yy N (X(g_1)\ Xjg—¢—1))-
Then, they can simply exchange this information with
each other in plaintext and this completes (ii). This ex-
change doesn’t leak extra any information because, from
the output of the functionality, I;_1\I; is in fact (AUB).
From this, and the knowledge of A that Py can compute
locally, Py can automatically learn B in the ideal world.
Similarly for P;. For completeness, we describe the pro-
tocol formally in Figure 10.

Motivating Example for Fypsi-gel- Finally, our mo-
tivating example for studying updatable PSI with weak

Notation. For any i < 0, define X; =Y; = 0. Let Iy = ().
Day d: Py
put Yy. Pp’s and Pp’s inputs over the last ¢ days are
(Xd—t+17 ey Xd—11 Xd) and (Yd—t+17 ey Yd—17 Yd) re-
spectively. The protocol works as follows:

has new input X; and P; has new in-

1. Invoke Fypsi-del-alt With Pp’s input on Day d as X4 and

Py’s input as Y;. Both parties learn I, = (Xd N (Yig \
Y[d_t])) U (Yd N (Xa) \X[d—t]))~

2. Let I;_; be the output on Day (d — 1). From I;_1,
Py deduces and sends A = Xg—¢ N (Y[g—1) \ Yja—¢—1])-
Similarly, Pi deduces and sends B = Yy N (X[g—1] \
X(d—t-1])-

3. Both parties output Iy = I, U (Id—l \ (AU B))

Fig. 10. Protocol satisfying Fypsi.del-ait in the Fyps|.qe-hybrid
model.

deletion also holds for Fypsidel- In privacy-preserving
contact tracing, consider the scenario where one party’s
(server’s) input is the set of people who tested positive
on that day, the other party’s (client’s) input is the set
of people they interacted with on that day. The output
on each day is the union of two parts: (a) people who
tested positive in the last ¢ days intersecting with those
clients met on that day, and (b) people who tested pos-
itive on that day intersecting with those clients met in
the last ¢ days. Essentially, this captures whether client
is at risk of having been infected.

C Proofs for HUPSI—add—two
C.1 Correctness Proof

We prove the guarantees presented in Section 4.2 by
induction.

Base Case: These guarantees hold on Day 0 since all
the sets are initialized as empty sets.

Induction Step: Suppose the guarantees hold on Day
(d—1). Let Ty_y, X\ 50, 5D vid=D g{#= he the
sets at the end of Day (d — 1). Now we consider Day d
with new sets X4 and Yy. Let Id,Xéil),Hgg),Yo(lj),H}(fl)
be the sets at the end of Day d. In Step 1, party

Py learns H(Yz)*ok1 and takes the intersection with
Hg?_l) (which equals to H (X(El‘fi_l))k()kl), By the col-
lision resistance of the hash function H, the intersec-
tion would result in Xélcclfl) NYy with all but negligible
probability, namely Ix o4 = X, éifl)ﬂYd. Symmetrically,
Iy old = YO(QFD N Xq.



In Step 3b, by the correctness of the PSI protocol,
the intersection learned by Py is Ix new =:

:deE:Xdﬂ(YdUIY,old UB;)

=XgN (Yd U Iy,0|d) (overwhelming prob.)

= (XqgNYa) U(Xq N Iyola)

= (XgNYy)U (Xd N (Yoﬁj‘l) N Xd))

— (XanYa) U (Xan¥i)

= (XaN YU (Xa V3§ ) U (Xa N Laa)
(XgNIz—1 =0 because XgN Xig-11= 0)

=XygN (Yd U Yo(ljil) U Id—l) =X4N Y[d]

(Yo(lzlfl) Ul4-1 = Y]q_y) by inductive hypothesis)

The set computed in Step 3c is Iypdate =:

— It new U Tx 0 = (Xa N Y]g) U (Xé,‘f,‘” n Yd)
= (X4NYig) U (X(E;fj” N Yd) U(Ig1 NYy)
(Ig—1NYyg =0 because Yq N Yi4_1) = 0)

= (XanYig) U (X5 Ul ) 0 a)

= (X4 N Ya)) U (X[g_1] N Ya)

(X5 Y U la1 = Xjg_y) by inductive hypothesis)

Therefore, the new intersection computed in Step 3d
islg=13_1U Iupdate =

= (Xja—1) N Y1) U (Xa 0 ¥f) U (Xpg1) N Ya)
= (Xja-1) N Yig) U (Xa N Yig) = Xig) N Vg
In Step 4c, Py updates Xoq =:
= (XcEIC(l:i_l) \IX,oId) ) (Xd \ Iupdate)
- (X(E,’ﬂ*l) \ (Xgl‘ffl) N Yd)) U
(Xa\ ((XaNYig) U (Xjg-1)NYa)))
= (xS P\ Ya) U (Xa\ Vi)
= ((Xta—1 \ Yia—11) \ Ya) U (Xa \ Y1)
(

= (Xja-1 \ Yia) U (Xa \ Yig) = X \ Yia = X \ La-

To update Hx, notice that Ix qq = Xc(’laé_l) NnNYy; C
X(E;fj_l)7 thus Py can identify H(IX’OM)kokl from Hg?_l).
For X! = X4\ Iupdate, Po can compute H(X;l)kok1
in Step 4. Therefore, in Step 4c Py obtains Hg?) =

k[)k)l
H (Xél‘?) . Similarly we can prove these guarantees

also hold for Yo(lj) and Hi(/d ), which concludes the proof.
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C.2 Security Proof

In this section, we prove Theorem 4.1 for the security
of our two-sided UPSI with addition protocol.

C.2.1 Security Against Corrupted Py
We construct a PPT Simg that simulates Py’s view
as follows. On input (1)‘,X[D],f(X[D],Y[D])), where

f(Xp), Yipy) = {I1, ..
functionality in the D days, Simg runs the honest Py to

., Ip} are the outputs of the ideal

generate its view and behaves on behalf of an honest P;
with the following exceptions on each Day d € [D]:

— In Step 1la, let Ig(,old = X(g—11 N (Ia \ Ig—1) and
compute H(I;Qold)kl. Let R be a set of Ny — I’ 4]
uniformly randomly sampled group elements in G.
Send H(I}Cold)kl U R to Py on behalf of P;.

— In Step 3b, let IS(, = Xg N (g \ Ig—1).- Receive
Py’s input set as the ideal functionality of Fpg; and

new

new’
~ In Step 5 when Py sends H(Y}))**1 to Py (for a ran-
dom «a € Z), replace it with a set of | N4| uniformly

respond to Py with I’

randomly sampled group elements in G.
Finally Simg outputs FPp’s view.

We then show, via a hybrid argument, that
NT, any (X, YD)
(Views"” (X(p). Yipy), Outy™” (X(py, Yipy) ~
(Simo(1*, X(p), F(X(p], Yip))s £ (X(D), V(D))

for any D € inputs

Hybg : Fy’s view and P;’s output in the real protocol.
Hyb, : Same as Hyb, but P;’s output is replaced with
f(X(p), Y|p)- This is computationally indistinguish-
able from Hyb, because of the correctness of the
protocol shown in Appendix C.1.
Hyb, : Same as Hyb; but in Step 3b of each Day d € [D],
let I}C)new = XgN (Ig\ Ig—1) and let the response
from the ideal functionality of Fpg| to Py be Ig(’new.
We claim that Ix pew = %’new.
We show in Appendix C.1 that Ix new = Xgq N Yiq-
Since X4 N X[g_1) = 0, we have X4N 131 = () and
hence (X4N Y[d]) NIz_1 = 0. Given that Xy ﬂY[d] -
T4, we have Xq N Yig C 14\ la—1, thus X4 N Yy C
Xa N (Ig\ Ig—1), namely Ix new C IS(,new' On the
other hand, Iy C Yg), hence XyN (Ig\14-1) € XqN
Iy € X4 N Y, namely IS(,new C Ix new. Therefore
IX,new = [%,new'
By the correctness of the ideal functionality Fpg,
the two hybrids Hyb; and Hyb, are computationally

indistinguishable.



Hybs : Same as Hyb, but H is replaced with a random
function. This is computationally indistinguishable
to Hyb, because H is modeled a random oracle.

Hyb, : Same as Hybs but in Step la on each Day
d € [D], for each y € Yy \ X[4_1), replace H(y)*
with a uniformly randomly sampled group elements
in G. From Hybs to Hyb,, we actually replace the
elements one by one via a sequence of hybrids
Hybs o, Hybs 4, ..., Hybs ,, where Hybs ; = Hybs and
Hybs ,, = Hyb,. We argue every pair of adjacent hy-
brids are computationally indistinguishable based
on the DDH assumption.

Assume for the purpose of contradiction that there
exits a PPT distinguisher 4 that can distinguish
two adjacent hybrids Hybs; and Hybgs, ., where
H(y)** is replaced by a random group element on
some Day d for some y € Yy \ X[4_1]. We construct a
PPT distinguisher B to break the DDH assumption.
B is given a tuple of group elements (g1, g2,93)
where g1 = g%, g2 = ¢ for random z,y € Z; and
g3 is either g*¥ or g* for a random z € Z,. B gener-
ates Py’s view as in Hybs ; but sets k1 := z (although
x is unknown) and H(y) := ga.

In particular, whenever H(-) is computed, B sam-
ples a random 7 € Z,; and sets the output to be
g". In Step la when P; needs to compute H(y)*1,
since B knows s € Z; such that H(y) = ¢°, it can
compute H(y)* as g5; when P; samples a random
group element for H(y)*1, B can do the same; for 7,
B replaces H(y)* with g3. Since § ¢ X[4—1), we have
y ¢ Xoig and hence § ¢ XoigNYy = Ix od in Step 1b
on Day d, thus it doesn’t affect Py’s computation.
In Step 4b, to compute H(z)***1 since B knows
a, ko, and t € Z, such that H(z) = ¢', it can com-
pute H(z)%kok1 as gio‘ko. Note that for each z in
Step 4b before Day d (not considering the dummy
elements), © # y because y ¢ X[4_1}; for each z
in Step 4b on or after Day d (not considering the
dummy elements), = # y because x is not in the in-
tersection. If we take the dummy elements into con-
sideration, then x # y with all but negligible proba-
bility, hence B doesn’t have to compute H (y)*ko*1,
If g3 = g*¥, then B generates ’s view as in Hybg ;;
otherwise B generates ’s view as in Hybs ;1. Since
A can distinguish these two hybrids, B can break the
DDH assumption. Contradiction.

Hybs : Same as Hyby but in Step 5 on each Day d € [D],
when Py sends H(Y})** to Py (for a random a €
Zq), replace it with a set of | Ng| uniformly randomly
sampled group elements in G. From Hyb, to Hybs,
we in fact replace the elements one by one via a se-
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quence of hybrids Hyb, o,Hyby 1,...,Hyb, ,, where
Hyb, o = Hyb, and Hyb, ,, = Hyb;. We argue that
every pair of adjacent hybrids are computationally
indistinguishable based on the DDH assumption.
Assume for the purpose of contradiction that there
exits a PPT distinguisher A that can distinguish
two adjacent hybrids Hyb,; and Hyb,, ; where
H(y)** is replaced with a random group element
on some Day d for some 3. We construct a PPT
distinguisher B to break the DDH assumption.

B is given a tuple of group elements (g1,92,93)
where g1 = ¢®, g2 = ¢¥ for random z,y € Z, and g3
is either g®¥ or g* for a random z € Z,. B generates
Py’s view as in Hyb, ; but in Step 5 sets a := x on be-
half of P; (although x is unknown) and H(¥) := ga.
In particular, whenever H(:) is computed, B sam-
ples a random r € Z, and sets the output as ¢g". In
Step 5 when P; needs to compute H(y)**' (where
y # Y), since B knows k1 as well as s € Z, such that
H(y) = ¢°, it can compute H(y)** as gfkl; when
Py samples a random group element for H(y)®*
(where y # y), B can do the same; for 3, B replaces
H(p)™* with g5

If g3 = g*¥, then B generates Py’s view as in Hybg ;;
otherwise gé“ is a random group element, hence B
generates Pp’s view as in Hybg ;4. Since A can dis-
tinguish these two hybrids, B can break the DDH
assumption. Contradiction.

Hybg : Same as Hyby except that H is computed as nor-
mal. This is computationally indistinguishable to
Hybs because H is modeled as a random oracle.
We claim that Py’s view in this hybrid is exactly
Simg’s output. The only difference between Hybg
and Simg is that in Step la on each Day d € [D],
H(y)** is computed honestly for all y € Y; N X(d-1]
in Hybg while Simg computes H(y)* honestly for
all y € Iy ,y- We claim that Yq N X(g_q) = Iy j4-
Since X[d,” Nl = X[d,” ﬂY[d] and X[dfl] Nl =
X[dfl]ﬂyf[dfl], we have IS(,oId = X[dfl]m(-[d\ld—l) =
(Xja—1) N 1a) \ (Xpg—1) N La—1) = (X[g—1) N Yiap) \
(Xja—11NYa-1) = Xja— )N Yig) \ Ya—1)) = X[a—1)N
Y4. This concludes the proof.

C.2.2 Security Against Corrupted P;

We construct a PPT Sim; that simulates P;’s view
as follows. On input (1)‘7 Yo, f(X[D]s Y[D])), where
f(Xip),Y|p)) == {I1,...,Ip} are the outputs of the ideal
functionality in the D days, Sim; runs the honest P; to



generate its view and behaves on behalf of an honest Py
with the following exceptions on each Day d € [D]:

— In Step 2 when Py sends H(Xy)0 to Py, let Iy g =
Yia—1) N (Ia \ I5—1) and compute H(Ig/yold)ko. Let R
be a set of Ng— |I§/7O|d| uniformly randomly sampled
group elements in G. Send H(I{,pld)’CO UR to P on
behalf of Py.

— In Step 3c, let IL/jpdate

to P; on behalf of P,.

— In Step 4a, send a set of |Ny| uniformly randomly

= Id \ Id,1 and send Itljpdate

sampled group elements in G to P; on behalf of Fy.

Finally Sim; outputs P;’s view.
We via a hybrid
for any D € NV, any
(View;"” (X(p). Yipy), Outg ™" (X(py, Yipy)) ~
(Sim1(1*, Yoy, f(X1p), Yip), £ (X (D), YiD)))-

argument that,
(X(p1:YiD))>

show,
inputs

Hyb, : Pi’s view and FPy’s output in the real protocol.

Hyb, : Same as Hyb, but Py’s output is replaced with
f(X|p), Y[p))- This is computationally indistinguish-
able from Hyb, because of the correctness of the
protocol shown in Appendix C.1.

Hyb, : Same as Hyb; but in Step 3¢ on each Day d € [D],

let Il’lpdate := I\ I4—1 and send I(deate to P; on be-
half of Py. This is computationally indistinguishable
from Hyb; because of the correctness of the protocol
shown in Appendix C.1.

Hybs : Same as Hyb, but H is replaced with a random
function. This is computationally indistinguishable
to Hyb, because H is modeled a random oracle.

Hyb, : Same as Hybs but in Step 2 on each Day d € [D],
for each = € X4\ Y]4_1], replace H(z)" with a uni-
formly randomly sampled group elements in G. This
hybrid is computationally indistinguishable from
Hybs based on the DDH assumption. The argument
is similar to the proof of Hybg & Hyb, in the security
proof against corrupted Py.

Hybs : Same as Hyb, but in Step 4a on each Day d € [D],
send a set of |Ny| uniformly randomly sampled
group elements in G to P; on behalf of Py. This hy-
brid is computationally indistinguishable from Hyb,
based on the DDH assumption. The argument is
similar to the proof of Hyb, ~ Hybs in the security
proof against corrupted Pp.

Hybg : Same as Hyby except that H is computed as nor-
mal. This is computationally indistinguishable to
Hybs because H is modeled as a random oracle. Fi-
nally, we claim that P;’s view in this hybrid is ex-
actly Simi’s output. The argument is similar to the
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proof in Hybg of the security proof against corrupted
Py. This concludes the proof.

D Proofs for IIypsi-add-one

D.1 Correctness Proof

In this section, we formally prove correctness of our one-
sided UPSI with addition protocol.

Induction for X,q4. Observe that, by induction, we can
show that at the end of any Day d, Xoig = X[g) \ Iq and
Hx = Hi(Xoq) %, This argument is identical to the
one shown in Appendix C.1.

Day 1. In Step 1, P, learns () since X g = (). In Step 2,
both parties set L = maxL = 0. Then, in Step 3, P;
inserts the o elements of Y7 into Dy[0]. Dy[0] is then
padded to size 40 before the encrypted node 56[0] is
sent to Py. In Step 4, Py sets 50[0] = 156[0] In Step 5,
for each x € X1, Py computes a pair (ctq,ctg) for each
element ct in Dy[0]. In each pair, ctg = Encpy, (z+a—y),
where ct = Encpy, (y). P1 decrypts ctg in each pair and
sends back ct, = Encyi, (- (z—y)). Now, Py can decrypt
this and Decg,(ct,) = 0 if and only if = € Y] except
with negligible probability (since P; also adds random
dummy elements). So, Py learns X7 N Y;. Finally, in
Step 7, Py updates X4 and Hx similarly as in the
previous protocol IIypsi_add-two (Figure 3).

Day d. Now, let’s analyze the protocol on any Day
d. In Step 1, as a result of the induction-based ob-
servation above, Py learns Ix o9 = Xog N Yy where
Xold = Xjg—1] \ la—1. The data structure D is a binary
tree of depth maxL, where each node is of size 40. At
any i, we denote the 2¢ nodes as D;[0],...,D;[2! —1]. In
Step 3, all levels ¢ > L remain untouched while levels
0,...,L are completely revamped. In particular, all the
elements (of Y[;_1}) at levels up to (L — 1) along with
the new set Yy are filled into the nodes at level L. Each
element y is inserted into node Dy, [j] where j is the lead-
ing L bits of Ha(y). All nodes in levels up to (L —1) are
emptied. Finally, as before, these nodes are padded to
size 40, encrypted and sent to Fj.

Lemma D.1. The protocol aborts in Step 3 with negli-
gible probability.

Proof. The protocol aborts if the size of any node Dr,[j]
exceeds 40. We show that this happens only with negli-
gible probability. First, assuming hash function Hs(-)
is modeled as a random oracle, any element y € S



is equally likely to be placed into any node Dy, [7] for
j € {0,1,..
lemmas to complete the proof.

.28 — 1}, We now use a couple of sub-

Sub-Lemma D.2. The number of items inserted into
nodes at level L is |S| = 2L - 0.

Proof. Since L = LS1(d), d is of the form d = 0 mod 2%
and d = 2F mod 2F+!. Consider d* = d — 2F, if d* > 0,
then LS1(d*) > L, hence all nodes up to level L are
emptied and contain ) on Day d*. Observe that an el-
ement y in P;’s input that is placed on a node in level
i is later never placed on level i; where i < i. In par-
ticular, elements either remain at the same level or are
pushed further down the tree on each day. From Day
(d*+1,...,d—1), the number of elements added to the
treeis 0 - (d — 1 —d*) = o - (2 — 1). The number of ele-
ments added on Day d is ¢ and hence |S| =20 0. O

Sub-Lemma D.3. Given N = Poly(o) balls distributed
into % bins, where every ball is equally likely to be placed
in any bin, Pr[size of every bin < 4o] > 1 — negl(c).

Proof. Let X; >, be an indicator variable that the i-th
node has at least k& balls. Then

k
N 1 N 1 1
Pr[X; sp = 1] < — < (=) ==0F=
Xz =1 < (k)(N/a)k = (N/a) K7k
1
< oF - (Stirling’s approx.)
2mk (%)

k
S (%)k =
W < 22% By taking a union bound we have

Let k = 40, then we have Pr[X, >, = 1]

N
Pr(3ie N, X; 540 =1] <

5% = negl(o).

O

Combining the above two sub-lemmas, it is easy to see
that no node Dy, [j] has size more than 40 except with
negligible probability. O

In Step 4, Py updates the encrypted database D. In
Step 5, for each x € Xy, for each ¢ € {0,1,..., maxL},
Py computes Ha(x)[1,.. 4 to identify which nodes of
D (at each level) could possibly contain z. Then, for
each such non-empty node, for each ciphertext ct in it,
(ct = Encpk, (y) where y € Y4 or y is a random dummy
element), P computes and sends (Encpy, (), Encp, (2 —
y — a)). P responds back with Encp (v(z — y)) which
Py can decrypt. Observe that this is 0 if and only if
z =y where y € Y|4 except with negligible probability
(if y equals a random dummy element). In this manner,
Py learns whether each element x € X; belongs to Yiq
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and computes Ix new = Xq M Y]g. Finally, in Step 7, Py
updates Xgg and Hx as done in the previous protocol
Hypsl-add-two (Figure 3).

D.2 Security Proof

In this section, we prove Theorem 5.1 for the security
of our one-sided UPSI with addition protocol.

D.2.1 Security Against Corrupted Py

First, let Numl(n) denote the number of 1’s in the
binary representation of n. In other words, if n =
Zf:o b; - 2¢, then Numl(n) := |{i: b; = 1}|. For exam-
ple, Num1(7) = 3 and Numl1(12) = 2. We construct
a PPT Simg that simulates Py’s view as follows. On
input (IA,X[D],f(X[D],YV[D])), where f(X[D]vlf[D]) =
{I1,...,Ip} are the outputs of the ideal functionality
in the D days, Simg runs the honest Py to generate its
view and behaves on behalf of an honest P; with the
following exceptions on each Day d € [D]:

— In Step 1a, let I;(,old = X(g—11 N (Ia \ Ig—1) and
1. Let R be a set of (0 —

‘IS(,oldD randomly sampled group elements in G.

Send 1'171(13(_0|d)k1 U R to Py on behalf of P;.
— In Step 3c, never abort on behalf of P

compute Hi (I 4)*

— In Step 3e, let 5’LM be a set of 40 encryp-

tions of 0 under pk;, namely Ency, (0). Send

5/-} to Py on behalf of P;.
{ 2 je{0,1,...,2L—1} o Py on behalf of P;

— In Step 5(b)ii, if z ¢ Iy, let C; be a set of 4o -
Num1(d) encryptions of random elements under pk,
namely Encyy (r) for r & F,; otherwise, let Cy be
a set containing Encp,(0) and (40 - Numl(d) — 1)
encryptions of random elements under pk,. Send C}
in a randomly permuted order to Py on behalf of P;.

Finally, Simg outputs Py’s view.
Via a hybrid argument, we show that for any D €
NT, any inputs (X(p1: YD)

Viewg’D(X[DpY[D]) ~ Simg (1% X(p}, f(Xp): Yip))

Hybg : Py’s view in the real protocol.

Hyb; : Same as Hyb; but H; is replaced with a random
function. This is computationally indistinguishable
to Hyb, because H; is modeled a random oracle.

Hyb, : Same as Hyb; but in Step la on each Day d € [D],
for each y € Yy \ X[4_q], replace Hy(y)* with
a uniformly randomly sampled group elements in
G. From Hyb; to Hyb,, we actually replace the
elements one by one via a sequence of hybrids

Hybl’o, Hybl’17 ey Hybl’n where Hybl’o = Hyb; and
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Hyb, ,, = Hyby. We argue every pair of adjacent hy- Hyby : Same as Hyb, except that in Step 5(b)ii on each

brids are computationally indistinguishable based day d € [D], if x ¢ 14, let Cy be a set of 40 -Num1(d)
on the DDH assumption. encryptions of random elements under pk,, namely
Assume for the purpose of contradiction that there Encpi, (r) for r S F,. Send C; in a randomly per-
exits a PPT distinguisher A that can distinguish muted order to Py on behalf of P;.

two adjacent hybrids Hyb, ; and Hyb, ;,, where First, our construction guarantees that on each day
H1(y)*" is replaced by a random group element on d € [D], there are exactly Numl(d) levels of the
some Day d for some y € Ya\ X[4—1]- We construct a tree that are non-empty, hence the size of Cy is
PPT distinguisher B to break the DDH assumption. 40-Numl(d). If x ¢ I, then for each pair (ct,,ctg) €
B is given a tuple of group elements (g1,92,9s) Cp, we know that f — a =z —y = 0 with negligible
where g1 = g%, g2 = ¢¥ for random z,y € Zq and probability (note that some y values are randomly
g3 is either g*¥ or g% for a random z € Z4. BB gener- sampled by Pj, so the probability is not 0 but neg-
ates Pp’s view as in Hyb, ; but sets k; := z (although ligible). In case B — a # 0, then v - (8 — «) for a

@ is unknown) and Hi(y) := ga. random ~ & F, is identically distributed from a
In particular, whenever H;(-) is computed, B sam-
P 10) P random value r i F,,. Therefore, this hybrid is sta-
ples a random r € Z, and sets the output to be L. o .
" In Step 1a when Pp needs to compute Hi (y)* tistically indistinguishable from Hyb,.
g ! ! " Hybg : Same as Hyb; except that in Step 5(b)ii on each

day d € [D], if z € I4, let C; be a set containing
Encpk, (0) and (40 - Num1(d) —1) encryptions of ran-

since B knows s € Z4 such that Hq(y) = ¢°, it can
compute Hi(y)* as g;; when P; samples a random
k .

%roup clement for i[l(y) - B ca.n doNthe same; for dom elements under pky. Send C7 in a randomly
y, B replaces Hi(y)" with gs. Since y ¢ X[4_1), we

have y ¢ Xoiq and hence §y ¢ Xoig N Yy = Ix old in
Step 1b on Day d, thus it doesn’t affect Py’s com-
putation.

permuted order to Py on behalf of P;.

If x € I, then there exists one pair (ctq,ctg) € Co

such that § — a = 0; for all other pairs, 8 —a =0
ith ligibl bability. For th i h that

In Step 7b, to compute Hy(z)**oF1, since B knows WIth neghigible probabliity. Tor Bhe palt suc &

B—a=0,v-(8—a) =0 for any v. For all other

a, ko, and t € Z, such that Hi(z) = g, it can com- L
0 4 @) =g pairs, in case f—a # 0, then v- (8 —«) for a random

pute Hy(z)*Fok1 as g’iako. Note that for each z in

$ .. . C .
Step 7b before Day d (not considering the dummy v « F, is identically distributed from a random

elements), = # y because y ¢ Xg_1}; for each z value 7 < F,.

in Step 7b on or after Day d (not considering the Therefore, this hybrid is statistically indistinguish-
dummy elements), x # y because x is not in the in- able from Hybs.

tersection. If we take the dummy elements into con- Hybz : SName as Hybg but in Step 3e on each day d € [D],
sideration, then x # y with all but negligible proba- let D7 [j] be a set of 40 encryptions of 0 under pky,
bility, hence B doesn’t have to compute Hy (y)**ok1. namely Encpy, (0). Send {5’L m}je{o i) to

If g3 = g*¥, then B generates Fy’s view as in Hyb, ;; Py on behalf of P;. This hybrid is computationally

otherwise B generates Fy’s view as in Hyb, ;. Since indistinguishable from Hybg by the CPA security of

A can distinguish these two hybrids, B can break the the additively homomorphic encryption scheme.

DDH assumption. Contradiction. Hybg : Same as Hyb, except that H; is computed as
Hybs : Same as Hyb, but in Step 3c, P never aborts.
By Lemma D.1, the probability that P; aborts is

negligible, hence this hybrid is computationally in-

normal. This is computationally indistinguishable
to Hyb, because H; is modeled as random oracles.
We claim that Py’s view in this hybrid is exactly
distinguishable from Hyb,. Simg’s output. The only difference between Hybg
and Simg is that in Step la on each Day d € [D],
Hi (y)* is computed honestly for all y € YanXg_y
in Hybg while Simg computes Hj(y)*¥* honestly for

all y € I§(7O|d. We claim that Yy N Xjg_1) = IA/X,oId'

Hyb, : Same as Hyb; except that in Step 5(b)ii on each
day d € [D], replace each ct, by a fresh encryption
of v-(8—«) under pkg. This hybrid is statistically in-
distinguishable from Hybs by the re-randomization

property of the additively homomorphic encryption Since Xig_ 1N g = Xjg_1]N Vg and Xg_y)N1g_1 =
scheme. In particular, the encryption ct,, computed X{a_1]NYjg_1), we have Iy g = X[dq]ﬂ(fd\qu) _
from (ctq, 3,7v) by homomorphic operations is sta- (Xig—1 N 1) \ (Xjg—y) N ,Id—l) — (Xjg—1] N Yig) \

tistically indistinguishable from a fresh encryption
of r even given the secret key skg.



(Xpa—11NYg—1) = Xjg—yNYg \ Yja—1) = Xg—1yN
Y;. This concludes the proof.

D.2.2 Security Against Corrupted P;

We construct a PPT Sim; that simulates P;’s view as
follows. On input (l)‘7Y[D]), Simy runs the honest P; to
generate its view and behaves on behalf of an honest Py
with the following exceptions on each Day d € [D]:

— In Step 5(a)ii, let Cy be a set of 40 - Num1(d) pairs
of encryptions (ctq, ctg), where ctq < Encpy, (0) and
ctg < Encpy, (1) for r & Fp. Send Cj to P; on behalf
of Po.

— In Step 7a, send a set of o randomly sampled group
elements in G to P; on behalf of F.

Finally Sim; outputs P;’s view.
Via a hybrid argument, we
any D € NT,

. TI,D I1,D c

(View; ™ (X(p}, Yp)), Outy ™ (X[py, Y(p)) =
(Sim1 (1%, Y(py), f(X(p), Y{p)))-

show that
(X[D] ) }f[D] )7

for any inputs

Hybg : Pi’s view and Fp’s output in the real protocol.

Hyb, : Same as Hyb, but Fy’s output is replaced with
f(X(p}, Y(p))- This is computationally indistinguish-
able from Hyb, because of the correctness of the
protocol shown in Appendix D.1.

Hyb, : Same as Hyb; but H; is replaced with a random
function. This is computationally indistinguishable
to Hyb,; because H; is modeled a random oracle.

Hybs : Same as Hyb, but in Step 7a on each Day d € [D],
send a set of ¢ randomly sampled group elements
in G to P; on behalf of Py. This hybrid is compu-
tationally indistinguishable from Hyb, based on the
DDH assumption. The argument is similar to the
proof of Hyb, 2 Hyb, in the security proof against
corrupted Py.

Hyb, : Same as Hybs except that in Step 5(a)ii on each
day d € [D], replace each ctg by a fresh encryption of
(z+a—y) under pk;. This hybrid is statistically in-
distinguishable from Hybs by the re-randomization
property of the additively homomorphic encryption
scheme.

Hybs : Same as Hyb, except that in Step 5(a)ii on each
day d € [D], replace each ct, by a fresh encryption
of 0 under pky. This hybrid is computationally in-
distinguishable from Hyb, by the CPA security of
the additively homomorphic encryption scheme.

Hybg : Same as Hybs except that in Step 5(a)ii on each
day d € [D], replace each ctg by a fresh encryption
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of  for a random r < F, under pk;. We know that
(z + « —y) is identically distributed from a random

value 7 ¢ F,,. Hence this hybrid is identically indis-
tinguishable from Hyby.

Our construction guarantees that on each day d €
[D], there are exactly Num1(d) levels of the tree that
are non-empty, hence the size of Cy is 40 - Num1(d).
Thus, in this hybrid, Cy contains 40 - Num1(d) pairs
of encryptions (ctq, ctg), where ctq ¢ Encpy, (0) and
ctg « Encpy, (1) for r & Fp.

Hyb, : Same as Hybg except that H; is computed as
normal. This is computationally indistinguishable
to Hybg because H; is modeled as a random oracle.
Py’s view in this hybrid is exactly Simp’s output.
This concludes the proof.

E Extension of Ilypsi-add-one

In this section, we extend our one-sided UPSI with ad-
dition protocol Iypsi.add-one (in Figure 5) to the general
setting when the number of elements added by both
parties on any day Ny # o. For simplicity, let’s assume
Ny is a multiple of o (we can always pad with dummy
elements to make it a multiple of ¢).5 The high level
idea is to split the input into Ny/o batches of length
o and essentially run the basic protocol over multiple
days, with o elements as input on each day. We use a
separate counter d* to track the “day number” of the
basic protocol. We provide more details below.

Let Xd = {X&*7X&*+1, e ’Xé*#»Nd/o‘fl}’ Yd
{v,., Yé*_i_l, A Yé*+Nd/c;71} be the two input sets split

into Ngy/o batches of length o each. First, run the ba-
sic protocol on a fresh day (day d* for the basic pro-
tocol) with inputs X/. and Y. respectively. Let’s call
this sub-day d* to indicate that this is the counter
for the underlying basic protocol. Then, run the ba-
sic protocol on sub-day (d* + 1) with inputs X[.
and Yd/*+1' Repeat this till the basic protocol is run
on sub-day (d* + Ng/o — 1) using inputs X(’i,f_s_j\,d/g_1
and Yd/*-l-Nd/U—l' Finally, before moving to day (d + 1)
where both parties have fresh inputs, we update d* =
(d* + Ng/o). (If Ng = o, we would have d* = d* +1 as
in the basic protocol). While this is the high level ap-
proach, unfortunately, the protocol does not quite work.
Briefly, running the basic protocol on Ng/o sub-days

6 We note that Pp’s input size actually need not be padded to
a multiple of o because she can make queries for each element
z € X4 independently.



leaks the intermediate output each time and this is un-
desirable (and not leaked in the ideal world). Instead,
the idea is to run the steps where the “actual intersec-
tion” is computed only once across these many batches.

In more detail, Step 1 is not run on each sub-
day from d* to (d* + Ny/o — 1) — instead, we run
the step only on day d* with P;’s input as Yy (and
not only Yd’*) to allow Py to learn X g N Yy. Observe
that Step 1 does not require either party’s set to be
of size 0. Next, Step 5 is also not run on each sub-
day — we run steps Step 3 and Step 4 on each sub-
day to update the database and finally, only on day
(d* + Ng/o — 1), execute Step 5 (with Py using entire
input set Xg4) to allow Py to compute X4 N Y[d]. Fur-
ther, as an optimization, even in Step 3, P; need not

send the encrypted database {ﬁ'L [j]} on
jefo,1,...,.2L—1}
each sub-day. Consider two sub-days d,, d, with d, < dp

and L = LS1(d,) = LS1(dy). Now, on sub-day dp, all
the updates to {15'L [j}} overwrite the updates {52 []]}
made to the database on sub-day d,. In particular, the
elements written to the database on sub-day d, are
pushed a level down the tree before the updates on sub-
day d are recorded on level L. Building on this idea,
let maxLgy be the maximum value of L over the sub-
days d*,d* +1,...,(d* + Ngy/o — 1). At the end of sub-

day (d* + Ny/o — 1), Py send {5’ :
ay ( 4/o ), Pp sends 7171 e, 21}

VL € {0,...,maxLy} where {D/ [j]} # 0. Naturally, this
reflects only the “latest state” of any level in the tree.
Finally, execute Step 7 only on sub-day (d*+ Ngy/o—1).

We describe the whole protocol in Figure 11 for
completeness.

Efficiency for Extended Protocol. Finally, we dis-
cuss the efficiency of our extended protocol. Intuitively,
since we run [Ng/o| instances of the basic case (where
inputs are of size ), an upper bound on the communi-
cation and computation cost on any day is [ Ng/o| times
that of the basic case’s cost. We can in fact do better
than just repeating the protocol so many times but we
ignore that for the sake of simplifying the analysis and
provide a relatively loose upper bound. Given the effi-
ciency analysis in Section 5.4 for the basic case, we can
conclude the amortized communication and computa-
tion cost (for each party) in the extended protocol is
O([Ng/c] - o -log N). This grows only logarithmically
with the total number of elements so far.
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F Instantiations of Fsgpg

In this section, we describe how the PSI protocols of
Kolesnikov et al. [KKRT16], Pinkas et al. [PRTY19],
Chase and Miao [CM20] immediately satisfy Defini-
tion 6.1. Each of these protocols is based on semi-honest
OT and correlation robust hash functions. At a high
level, in each of these protocols, the sender’s input is
used only in the last step to compute the oblivious pseu-
dorandom function (OPRF) values before they are sent
to the receiver. As a result, this can be done in a stream-
ing manner so long as the maximum number of values
to be computed upon are known apriori to set up the
OPRF key. We now provide more details.

Protocol Structure. All the three protocols have the
following high level structure. Consider a sender S with
input set X and receiver R with input set Y. In the first
phase, both parties run an interactive protocol to jointly
generate a key K for an OPRF and evaluate R’s input
on this OPRF obliviously. In a bit more detail, at the
end of this interactive protocol, S learns the key K (and
nothing about R’s input) and R learns the evaluations
{OPRF(K,y)}yey (and nothing about the key K). For
each z = OPRF(K,y), the receiver also learns that this
is the evaluation of its corresponding input element y
(that is, the outputs aren’t permuted). In the protocol
of Kolesnikov et al. [KKRT16], R’s inputs are first sep-
arated into various buckets via Cuckoo hashing [PR04]
and a separate instance of this OPRF protocol is run
for each bucket - the sender learns one OPRF key K;
for each bucket and R learns OPRF(Kj;,y) for the ele-
ment y that falls into this bucket. In the protocols of
[PRTY19] and [CM20], a multi-point OPRF is set up
where S learns a single key K and R learns the evalu-
ation of all its points - {OPRF(X,y)}ycy. Our key ob-
servation is that, crucially, so far, the sender does not
need to know its input. Instead, S only needs to know
the size (or an upper bound) of its input set to allow
the key K to be chosen.

In the next phase, S sends evaluations of the OPRF
on its input elements to R. That is, .S, now in possession
of key K locally computes and sends {OPRF (K, z)},ex
(in the case of [KKRT16], S evaluates OPRF(Kj;, z) for
every possible z € X that can fall into bucket i, for each
). The receiver can then compare {OPRF(K, z)},cx
with {OPRF(K,y)},ecy to compute the intersection. The
security guarantee of the OPRF is that for any € X\ I,
OPRF(K,z) appears pseudorandom to R and hence
leaks no information about the element x.



Updatable Private Set Intersection = 404

Initialization: Same as Figure 5. Also, both parties set d* :

Day d: Py inputs a set Xy of size Ng; P; inputs a set Yy of size Ng.
Let Xg = {X/pu, X} {1 X )y b 80d Yo = {Yju Vi 1o
1. Py learns IX,oId = Xog NYy:

(a) Pi computes Hi(Yy)* and sends to P.

(b) On receiving Hy(Yy)F1, Py raises each element to the power kg to obtain Hi(Yy)*0*1 and compares with Hx (which

equals to H1 (Xo|d)k0k1) to learn IX,oId = Xold N Yd.

2. Both parties set maxLy = 0.
3. For each t € {d*,d*+1,...,(d* + Ng/o — 1)}, do the following:

(a) Both parties set L := LS1(t), maxL := max{L, maxL}, maxLy = max(L, maxLg).

(b) P1 updates D by doing the followmg

i. Let S —(U U2 D )UY’
ii. For each i € {0,1,...,L} and for each j € {0,1,...,2" — 1}, set D;[j] := 0.
iii. For each element y € S, let j := Ha(y)[1..z) and add y into the node Dy [j]. If the size of D [j] exceeds 40, then

Y, where each X/, Y/ is of size o.

/
d*+Ng/o— 1}

abort.
iv. Foreach j € {0,1,...
Compute ’D’L 7] « Encpk, (’D’ 7D-
Finally, for each L € {0,...,maxLy}, P1 sends {D []]}

,2F —1}, construct a node D, [4] of size 40 by padding Dy [j] with dummy random elements.

jefon,.pn_1y O T0 if (D[]} # 0.

4. Py updates D by doing the following:
For each L € {0,...,maxLg4}, j € {0,1,...,2F
else, set D [j] := 0.
5. PO learns IX,new = Xd n }f[d]l
Py first sets Ix new := 0. Then for each z € Xg:
(a) Py does the following:
i. Set Cp := 0.
ii. For each i € {0, ...

— 1}: if Py received 5/L [7] from P in the above step, set Dr 7] := 5IL 71

smaxL}, let j := Ha(z)[1, 45 if 51[]] # (), then for each ct € ﬁz[]]

Sample « & Fp, compute cta + Encyy, (), ctp < Encpy, (z + ) © ct, and add (cta, ctg) to Co.
iii. Send Cp to P;.
(b) P1 does the following:
i. Set C7 := 0.
ii. For each pair (ctq,ctg) € Co, sample ~y & Fp, compute 8 + Decg, (ctg) and cty < v © (Encpk, (B) © @) and add
ct, to C1.
iii. Send C in a randomly permuted order to Pj.
(c) Po does the following:
For each ct, € C1, compute r < Decgy, (ctr) and add « to the set Ix new if r = 0.
6. Py computes and outputs Ig := Iq_1 U Ix old U Ix new-
7. Py updates Xy g and Hx as in Figure 5.
8. Finally, both parties update d* := d* + Ng4/o.

Fig. 11. One-sided UPSI with addition protocol Ilyps).add-one When Ny # o.

In sender-streaming PSI, observe that both parties
can run the first phase with the sender only providing an
upper bound of the number of elements it will eventually
stream. Then, for any stream X; (including the initial
one Xj), S can compute and send {OPRF(K,z)},ex,
and R can then immediately learn (X; NY'). The secu-
rity of this protocol immediately follows from that of
the underlying PSI protocol so long as the number of
elements streamed by the sender is less than the upper
bound that was set. Thus, we obtain Lemma 6.2.

Efficiency. We briefly analyze the efficiency of real-
izing Fssps) using each of these three instantiations
[KKRT16, PRTY19, CM20]. In the initialization phase,

to set up the OPRF key (and evaluate R’s input), the
A) and
the communication complexity (from R to S) is O(|Y|-))

computational complexity (per party) is O(]Y] -

bits, where A is the security parameter. Note that the
communication also grows with Max, but the growth
o(ly] -
Max, so we omit it here. Then for each stream X; (in-
cluding Xp), S evaluates and sends the OPRF values
on X;, where the computational complexity (of S) is
O(]X;| - A) and the communication complexity (from S
to R) is O(|X;] -

parameter.

is dominated by A) for any polynomially large

o), where o is the statistical security



G Proofs for I1yps|gel

G.1 Correctness Proof

We prove by induction the guarantee that I; = ((X @\
Xig—1) N Ya) U ((Yg) \ Yja—y) N Xg) in the UPSI with
weak deletion protocol.

It is easy to observe that this guarantee holds on
Day 1 since, by the correctness of the initialization phase
of ]—'SPSI,;S| and ]:SSPSP both parties learn the intersection
(Xl n Yl)

Consider Day d with new input sets X4 and Yy re-
spectively. In Step 1, for each j > 0, by the correctness
of the j** stream of }—SSPSI Py indeed learns X; N Yy.
Thus,

d—1

IO,a = U

i=(d—t+1)
= (Xja—1 \ X[a—g) N Ya.

(XiNYy)

Similarly, in Step 2, for each j > 0, P; indeed learns
§/j N Xg. Thus, I o = ()/[d—l] \}/[d—t]) N Xy.

In Step 3, by the correctness of the initialization
phase of ]:Spslﬁ(élv Py learns Iy g =:

= (XaNB)
d—1
=xanYa)u( | Y; N X4N X4) U(XgN0 Dy)
i=d—t+1
= (XaNYa) U(XaN (Yjg—1) \ Yia—g)) UD

(overwhelming prob. as random 5;)

= XaN (Vg \ Yja—1)

Similarly, in Step 4, 1175 =Y;N (X[d] \X[d—t])-
Finally, Py outputs Iy = Iy, U Iy g =:

— (( Xpa \ Xpa_g) 0 Yd> U (Xd N (Vg \ Y[dt]))
- ((X[d_l] \ Xig_g) N Yd> U

<Xd N Yd) U (Xd N (Y1) \Y[d_t]))

= <(X[d] \ Xpa_q) mYd> U (Xd N (Yig \Y[dt]))

Similarly, we can prove that P; also outputs the same.

G.2 Security Proof

In this section, we prove Theorem 6.3 for the security
of our two-sided UPSI with weak deletion protocol.
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G.2.1 Security Against Corrupted Py

Consider an adversary A that corrupts party
Py. We construct a PPT Simg that, on input

(1 X1}, Nipy, F(X(p), Yip)))s where f(X(p),Yip)) =
{I1,...,Ip} are the outputs of the ideal functionality in
the D days, interacts with adversary A as follows and
outputs A’s view.

Day 1: On behalf of functionality fgﬁlsl, send output
Iy = f(Xp), Yyy) to A.
Day d:
1. Ioa = U= (4_si1)(X;j N Ya): For each j > 0, on be-
half of functionality ‘FSSPSI send (X; N (Ig\ I4-1))

to A. Observe that this is equal to X; N Yy since
X,;’s are mutually disjoint sets.

2. Iypg = <Xdﬂ(UJ d—t+1 ))

1) = (Xqn ( 1\ Y[4—g))- Thus, on behalf of func-
tionality ]:SSPSI send (X4 N Iy) to A.

Observe that (XgzN

We now show that the above simulation strategy
against a corrupt Py is successful via a series of hybrid
arguments where Hyb corresponds to the real world and
Hybs corresponds to the ideal world execution.

1. Hybg: This corresponds to the real world execution
where A interacts with a simulator SimHyb that
plays the role of honest P;.

2. Hyb;: In this hybrid, on Day 1, SimHyb sends output
I to A on behalf of the ideal functionality ‘FSSPSI
This is part of Simg’s input on Day 1 of the protocol.

3. Hyby: In this hybrid, on any Day d, to compute the
termlga,foreachje{d—t—b—l d—1}, 5 >
0, on behalf of functionality fSSPSI’ SlmHyb sends
(X N(Ig\ Id—l)) to A, where X, 14, 14— are part
of Simg’s input.

4. Hybs: In this hybrid, on any Day d, to compute the
term Iy g, on behalf of functionality fSSPSI’ SimHyb
sends (X4 N 1Ig) to A.

We now show that every pair of successive hybrids
is computationally indistinguishable.

Lemma G.1. Hyby is identically distributed to Hyb;.

Proof. In both hybrids, A sends input X7 to ]:é;l,;él. In
Hybg, honest P; sends input (Y7,Max;) to fgﬁél‘ By
the correctness of Fsspsy, A receives output (X3 NY7).
In Hyb,, by the definition of functionality Fyps|.del, the
= f(X1,Y1) sent by SimHyb on behalf of F2&at,
is equal to (X1 NY7). Since there is no other difference

value I

between the two hybrids, they are identical. O



Lemma G.2. Hyb, is identically distributed to Hyb,.

Proof. In Hyb;, to compute the term Ig o, for each j €
{d—t+1,...,d —1}, j > 0, honest P; sends streamed
input Yy to ]-"551,%, and A gets output (X; NYy) by the
correctness of functionality Fsspsi. In Hyb,, for each 7,
SimHyb sends (X;N(Z4\Zs—1)) to A on behalf of Fadsl,.
By the definition of functionality Fypsi.de and the fact
that each party’s input set is mutually disjoint on each
day, (X; N (Ig\ I4—1)) is indeed equal to (X; NYy). O

Lemma G.3. Hyb, is statistically indistinguishable
from Hybs.

Proof. In both hybrids, to compute the term Iy g, A
sends input Xy to ]:SPSlF;(ér In Hyb,, honest P; sends ini-
tial input (B, Maxgy) where B = Y U (U?;;ftJrl Y; N
Xd) U 5; where l/); consists of dummy random ele-
ments. By the correctness of functionality Fssps), except
with negligible probability, A gets output Xgq N (Yjg \
Y[4—¢]) - note that the only scenario when this is not the
output is if 5; N X4 # 0. In this case, the output has
more elements but since 5; consists of dummy random
elements, this occurs only with negligible probability.
In Hybs, SimHyb sends (X4 N I;) to A on behalf
of Fsspsi- By the definition of functionality Fypsi-del,
observe that (X4 N Iy) is indeed equal to Xgq N (Yg \
Y[4—¢)- Since there is no other difference between the
two hybrids, they are statistically indistinguishable. [

G.2.2 Security Against Corrupted P;

Since the protocol is symmetric, the proof is identical
to the above case where Py was corrupt.
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