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ARTICLE INFO ABSTRACT

Keywords: A convolutional neural network (CNN)-based real-time monitoring algorithm is present to detect an abnormal
Real-time monitoring wire + arc additive manufacturing (WAAM) process for molybdenum. The proposed algorithm consists of three
Molybdenum

modules: image conversion, CNN prediction, and real-time monitoring. The image conversion module changes
the form of a time-series voltage waveform data into voltage image data. The CNN prediction module classifies
each voltage image into a normal or abnormal image. The real-time monitoring module expresses the results of
the CNN prediction model on a real-time dashboard. Experiments for single beads of molybdenum materials were
performed to validate the performance of the proposed algorithm. It was observed that abnormal WAAM pro-
cesses are detected in real-time with high accuracy. In addition, a sensitivity analysis with respect to different
intervals and bandwidths of the voltage image data was conducted, which are the main input parameters of the
proposed method. Based on this investigation, guidelines for setting the interval and bandwidth were established.
Finally, the effectiveness of the CNN classifiers was validated by applying a class-activation mapping method. It
was concluded that the CNN classifiers were adequately trained because they captured the critical regions in the

Wire + arc additive manufacturing
Process signatures
Convolutional neural network

voltage images for both normal and abnormal cases.

1. Introduction

Molybdenum (Mo) is a refractory metal with good thermal property,
creep resistance, wear resistance, and thermal expansion and is used in
furnaces, semiconductors, and nuclear power applications that have
specific material property requirements (e.g., high temperature) [1].
However, Mo is a hard-to-machine material owing to its high melting
point and hardness. In addition, it is an expensive material, so sub-
tractive processes are not efficient options, when a part with a high
buy-to-fly ratio is machined. In contrast, additive manufacturing (AM) is
considered as a potential solution to fabricate highly complex and
hard-to-machine Mo structures, saving time and cost. Among metal AM
processes, a wire and arc additive manufacturing (WAAM) process can
fabricate large-scale metal structures owing to the inexpensive system
setup cost, high deposition rates, and energy efficiency [2]. In particular,
the inexpensive cost and energy efficiency can provide a capability to
deposit refractory alloy structures (e.g., tungsten and Mo) [3,4].
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One of difficulties in applying AM is that quality control is largely
limited to offline techniques in the absence of real-time process moni-
toring, resulting in high scrap rates [5,6]. This is more evident when the
costs of materials such as Mo are high. Recently, artificial intelligence
(AD) has drastically advanced monitoring and control in many areas.
Therefore, AM researchers increasingly apply advanced Al to AM,
particularly real-time monitoring and control [7]. However, three dif-
ficulties remain: (1) the lack of data owing to difficulties in measure-
ments in metal AM [8], (2) difficulty in obtaining accurate and reliable
data, and (3) difficulty in developing accurate real-time processing
models.

To cope with these difficulties, methods that can be accurately pro-
cessed in real-time using small datasets should be developed. The data
collected for real-time monitoring during the metal AM process can be
divided into two types: 1) one-dimensional (1D) data, 2D, and 3D data.
1D data include digital signals, such as the power, current, wire feed
rate, temperature, and vibration collected by sensors [9]. They are
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primarily time-series data types in which values are collected over time.
Because of this property, methods such as long short-term memory
(LSTM), which is a type of recurrent neural network (RNN), or an
autoencoder, which is a type of neural network, are primarily used.
However, they are unsupervised learning methods, which have the
disadvantage of decreasing accuracy with small datasets.

2D data are images or video frames collected by cameras. They are
advantageous in that they clearly show whether the AM process is
normal or abnormal; thus, a training dataset can be prepared. Based on
the training dataset, for example, convolutional neural networks (CNN)
model, which shows good classification performances in image classi-
fication can be used. However, it is often difficult to obtain a high quality
of 2D data because metal AM uses high temperatures, special cameras of
high cost are required, and several conditions for video recording such
camera location and installation angle, are significantly affected the
quality of the video frames [10]. 3D data are profiles of surface or in-
ternal scans that are rendered in the form of a 3D file. They also require
special equipment, such as a computer tomography (CT) system or
profilometer, making real-time applications more challenging [11].

In this study, we developed a real-time monitoring algorithm for
WAAM’ed Mo using a CNN model. The proposed real-time monitoring
algorithm overcomes the drawbacks of existing monitoring systems
using both 1D and 2D data. The existing monitoring approaches using
1D data can be easily imiplemented because collecting 1D data is easy;
however, the monitoring based on 1D data often shows low accuracy.
Although the ones using 2D data have high accuracy, they are chal-
lenging to implement due to the harsh recording conditions resulted
from high temperature of the AM process. The proposed method detects
process abnormality based on a particular 1D data, voltage data. Based
on certain bandwidths, voltage data is converted into voltage ‘image’
data. After converting the voltage data to voltage image data, we labeled
the voltage image data by matching them with 2D data. Once the CNN
model is trained based on the labeled data, it detects the abnormality in
the WAAM process whenever 1D data is collected in real-time. We
validated the CNN model in terms of accuracy and achieved an accuracy
of 96%. The proposed method can be easily implemented in the WAAM
process because it works with 1D data, and it can detect the abnormality
of the WAAM process for Mo in real-time with high accuracy by using 2D
data for training the CNN model.

The remainder of this paper is organized as follows. In Section 2,
existing methods related to real-time monitoring for AM, including the
conversion from 1D data to voltage image data, are reviewed. The
proposed algorithm, experiment, and sensitivity analysis are presented
in Section 3. Finally, conclusions are presented in Section 4.

2. Literature review
2.1. Wire + arc additive manufacturing (WAAM)

WAAM has the potential for significant industrial impact owing to its
ability to create large metal components with a high deposition rate, low
equipment cost, high material utilization, and environmental friendli-
ness (Wu et al., 2018). WAAM can be categorized into three techniques
according to the nature of the heat source: (1) gas metal arc welding
(GMAW)-based WAAM, (2) gas tungsten arc welding (GTAW)-based
WAAM, and (3) plasma arc welding (PAW)-based WAAM.

GMAW-based WAAM is a welding process in which an electric arc
forms between a consumable wire electrode and the workpiece metal
[12]. Excessive heat input, metal spatter, and arc wandering are three of
its unavoidable problems, adversely affecting the geometrical accuracy
and quality of the deposited parts [13]. However, the deposition rate is
2-3 times higher than that of the other two methods. GTAW-based
WAAM uses a non-consumable tungsten electrode with a separately
fed wire to produce the weld deposit. This method can effectively avoid
arc wander, and metal spatter and decrease the heat accumulation in the
GMAW-based WAAM deposition process. However, the GTAW
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deposition rate is lower than that of the GMAW-based WAAM. Thus, if a
high deposition rate is prioritized, GMAW may be preferred over GTAW,
although its quality and process stability are generally lower [14,15]. In
PAW-based WAAM, the arc energy density can be thrice that of GTAW,
causing less weld distortion and smaller welds with higher welding
speeds [16]. Although PAW provides the highest energy density elec-
trical arc that enables high travel speeds and high-quality welds with
minimized distortion, it typically requires the most extensive capital
expenditure [17].

2.2. Real-time monitoring for AM

In this section, real-time monitoring methods for AM are reviewed
based on 1D, 2D, and 3D data. First, 3D data-based monitoring methods
are reviewed. In Wang et al. [11], Mo rods were fabricated using the
GTAW-based WAAM process, and internal defects were detected by
scanning them with a CT system. Through statistical data analysis, they
demonstrated three main types of defects in Mo: (1) small spherical
pores, (2) inverted pear-shaped pores, and (3) cavities. Li et al. [18]
proposed a deep-learning-based quality identification method for metal
AM processes. They used a publicly available real-world high-resolution
image dataset from laser-based powder bed fusion processes using a
stereomicroscope. They demonstrated an semisupervised identification
consistency-based method that was robust against poor data quality.
These 3D data-based monitoring methods showed good detection
capability; however, collecting CT or stereomicroscope data is chal-
lenging in practice because due to high cost and long time of collection.
In addition, these approaches cannot provide real-time control, and
defect detection is delayed, causing a waste of time and material. This is
more evident when the cost of materials is high, and the product is large.
The following studies were conducted using 1D or 2D data collected
during the process in real-time to apply real-time monitoring to solve
such problems.

Grasso et al. [19] proposed statistical monitoring for the metal pro-
cess using a support vector data description. Ren et al. [20] demon-
strated an in-situ monitoring and signal processing method for laser
metal AM by combining an unsupervised deep learning technique and
emission spectroscopy. Guo et al. [21] proposed an in-situ monitoring
system for the WAAM process with a hollow electromagnetic acoustic
transducer that could adapt to a high-temperature and high-vacuum
environment. These real-time monitoring systems using 1D data have
efficient acquisition, storage, and analysis costs. However, compared to
2D data, such as video frames, it is difficult to determine the meaning of
the information, the features are difficult to extract, and it is challenging
to determine whether the process is abnormal. This results in low ac-
curacy for detecting abnormality in AM process. In contrast, labeling 2D
data, such as images or video frames, is relatively more straightforward.
Therefore, real-time monitoring systems using 2D data frequently
implement a CNN, facilitating supervised learning with proven effi-
ciency and accuracy. Focusing on these advantages, the following
studies were conducted.

Yang et al. [22] proposed a CNN-based real-time melt-pool classifi-
cation method for AM. The data used were melt-pool images captured
from a laser melting powder fusion build using a high-speed camera.
Their model classification accuracy was approximately 91%. Bacioiu
et al. [23] designed a system for assessing the quality of tungsten inert
gas welding with the potential for application in real-time using a CNN,
achieving an accuracy of 93.4%. The data they used was high dynamic
range images representing the weld pool in visible spectra balance by
offsetting the intense arc light. Caggiano et al. [24] proposed an online
defect recognition platform using a bi-stream deep CNN, and its accu-
racy was as high as 99.4% for selective laser melting. The data they used
was processed images extracted layer-by-layer from videos of the entire
selective laser melting test.

Most of the existing CNN-based monitoring methods follow common
two steps: Step 1) CNN model training & validation, Step 2) process
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Fig. 1. The image conversion module collects the voltage values and converts them into waveform images in real-time. Whenever the converted image is generated,
the CNN prediction module determines whether the WAAM process is normal or abnormal by classifying the converted image. Finally, the real-time monitoring
module transfers the converted images with their classification results to a dashboard. Users can then recognize whether the WAAM process is normal or abnormal in

real-time by observing the dashboard.

monitoring using the trained CNN model. In Step 2, the trained CNN
model judges if the process is abnormal by classifying 2D data such as
video frames that are mostly collected in a real-time basis. That is, the
trained CNN models work based on 2D data in Step 2. However, the
acquisition, storage, and analysis costs of 2D data, particularly high-
temperature metal AM data, are high. Additionally, the 2D data can
be easily affected or differ with respect to the measurement environ-
ment. For example, images can be affected by different viewing angles or
light intensities; they may contain noises, such as fumes and spatter,
which makes acquiring accurate images difficult. For these reasons, the
existing CNN-based monitoring method is often difficult to use in real
practice.

The proposed method suggests a hybrid of 1D and 2D data-based
methods to overcome the aforementioned difficulties. The basic
concept of the proposed method is to convert voltage 1D data into
voltage image data, which are 2D data, and monitor the WAAM process
by analyzing converted voltage image data. Thus, we can combine the
easiness of collecting 1D data and the accuracy of learning a classifica-
tion model from 2D data. Both proposed and existing methods requires
2D data in Step 1. However, the proposed method works based on 1D
data in Step 2 unlike the existing methods. This is the main advantage of
the proposed method over the existing method. On the surface, it seems
that the proposed method also works based on 2D data since the CNN
classifier is used. However, the 2D images used in the proposed method
is a simple representation of 1D voltage time-series data; thus, it can be
easily obtained. This makes the proposed method more practical and be
easy to use in practice. The following section explains the details.
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3. Proposed algorithm

The proposed algorithm aims to build a monitoring system to detect
whether the WAAM process is normal or abnormal in real-time. It col-
lects voltage data from the WAAM process and conducts a real-time
detection system based on that. Fig. 1 shows three modules of the al-
gorithm: image conversion, CNN prediction, and real-time monitoring
modules.

In Section 3.1, the experimental designs of the GTAW-based WAAM
process are explained. Additionally, various data types, such as process
signature, video, and image data collected from the experiments, are
presented. In Section 3.2, the implementation of the three modules is
described. In Section 3.3, the real-time monitoring system using the
three modules is explained.

3.1. Problem definition

The previously developed GTAW-based WAAM process was utilized
to collect the data required to implement the proposed algorithm [25].
According to experimental conditions, the experiments were conducted
as “bead on plate tests,” which generated Mo beads on a plate.

The experimental conditions were determined based on three WAAM
process variables: current, welding speed, and feeding rate. Fig. 2 shows
three process variables and the schematic of the WAAM system. Each
variable had three levels of current: 250, 275, and 300 A; welding speed:
250, 275, and 300 cm/min; and feeding rate: 144, 180, and 216 cm/
min. There were three variables, and each variable had three levels;
theoretically, a total of 27 (=3%) experiments were possible. However,

Wire feeder

L N
e @

GTAW
power
source

T

Fig. 2. The WAAM system consists of 6-axis robot arm with GTAW power source and wire feeder. the three process variables are denoted by red color.
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Table 1
Experimental conditions.
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o el et
(CPM) (CPM)
DOE-1 250 20 180
DOE-2 300 20 180
DOE-3 250 40 180
DOE-4 300 40 180
DOE-5 250 30 180
DOE-6 300 30 144
DOE-7 250 30 216
DOE-8 300 30 216
DOE-9 275 20 144
DOE-10 275 40 144
DOE-11 275 20 216
DOE-12 250 30 180
DOE-13 300 40 216
DOE-14 275 30 180
DOE-15 250 20 144
Rancllom— 275 20 200
Rangom- 275 60 200
Ran;lom— 275 60 200
Ranjom— 300 205 60 200

Bead image

some of them were not feasible; thus, 15 feasible conditions were
selected. Four additional feasible experiments were also added (denoted
as “Random” in Table 1). As a result, 19 bead-on-plate tests were con-
ducted. During the experiments, the other WAAM process variables were
fixed, such as the shield gas (100%) and arc length (5 mm). Table 1 lists
the experimental conditions. Data from the fifteen and four expriments
were used for training and testing the proposed algorithm, respectively.

Three types of data were obtained for each experiment: voltage,
video, and bead image data. The voltage value was measured and

collected by a sensor every 1/3000 s, a nearly real-time collection, and
the video data monitored the process at 50 frames per second (fps). The
last coloumn of Table 1 shows the images for the Mo beads obtained
from the 19 experiments.

3.2. Modules of the proposed algorithm

This section describes the image conversion module, CNN prediction
module, and real-time monitoring module, which are the core of the
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Fig. 3. The horizontal and vertical axes denote T and vy, respectively, at T.
Because w = 3, each V,,;x element includes 9000 voltage values. V3¢5 is the
first voltage value dataset; thus, it includes vq,Va, ..., V9000. Because i = 0.5,
V3052 includes vis01,V2, ..., Vi0s00. Note that any two consecutive voltage value
datasets share 7500 voltage values because w = 3 and i = 0.5.

proposed algorithm.

3.2.1. Image conversion module
The image conversion module converts the voltage values into
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voltage images required to act as the input for the CNN prediction
model. The converted voltage image data is a chart image that indicates
changes in the voltage value with respect to time because the voltage
values are time-series data. For the conversion, an image conversion
module first defines the voltage values. Let v;, be the m-th voltage value
and T be the time point. T is set as 0 when the WAAM process begins. An
initial voltage value of v; is observed at T = 1/3000 because the voltage
value is collected every 1/3000 s. Thus, v, is defined as the voltage
value observed at T = m/3000.

Once vy, is defined, the voltage value datasets can be determined. Let
Vyix denote the kth set of v,,;, where the bandwidth is w and the interval
is i. The bandwidth is the time gap between the earliest and last time
points within the voltage value dataset. The interval indicates the time
gap between two consecutive voltage-value datasets. V,, ;i is formally
defined as

Vi = {vlm € My, i1},

where M, ;i is the set of m. M,, ;i is also defined as
M, = {x+ (k—1)(3000i) |x € N, 1 < x < 3000w}.

Fig. 3 depicts V,,;x when w =3 and i = 0.5. The horizontal and
vertical axes denote T and v, respectively, at T. Because w = 3, each
Vwix element includes 9000 voltage values. V35, is the first voltage
value dataset; thus, it includes v;,Vvs, ..., Vg900. Because i = 0.5, V3052
includes v;s01,Va, ..., V10500- Note that any two consecutive voltage value
datasets share 7500 voltage values because w = 3 and i = 0.5.

When the V,, ;) values are defined, each V,,;; is converted into
voltage image data. These converted images display time-series wave-
forms. Each V,,;x component has a different minimum and maximum v,.

Second Voltage value

0.00000 19.67

0.00033 19.81 »
0.00066 19.71

AT

Fig. 4. Compared with the left voltage image, the right voltage image has a larger maximum value of v,. Thus, the range of the vertical axis of the right voltage
image becomes wider to include a larger voltage value while maintaining the same image size. This adjustment is required to have all the v,, data while maintaining

the same image size.

Fig. 5. The upper left figure is an example of a normal frame where the shape of the Mo bead is stable. The upper right shows an abnormal type where the Mo bead is
cut off from the earlier beads. In the lower left figure, the right part of the arc appears to be normal, while the left part is abnormal. The lower right figure is a frame in
which the WAAM process begins. The two figures in lower side are neither normal nor abnormal; thus, they are classified as neutral.
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Voltage Voltage Label

Notation _value Notation Label

No.  Second

1 0.00000 vy 19.67 N neutral
2000033 v, 19.81 I, neutral

59 001967  wvg 19.51 lss  neutral

60 0.02000  veo 19.53 leo neutral

} 61 002033  wve 1953 le  neutral
62 002067 v 19.11 lez2 neutral

119 003967 vy 18.41 lie neutral

120 0.04000 vy 18.35 ;0  heutral

Fig. 6. All the 120 v,,s are labeled as neutral (i.e., l;,...,l;20 = neutral) because the label of the two frames are neutral.

Subsequently, the size of the images can differ because it is determined
by the minimum and maximum values of v,,. However, CNN requires all
images to have the same size. Therefore, the vertical axes of the images
are adjusted such that every image has the same size of 224 x 224 pixels
(Fig. 4).

The voltage value data were divided into two groups and separately
converted into voltage images since a training dataset was required to
develop the CNN classifier and a test dataset to validate the CNN clas-
sifier. The first group, used for training, included the voltage value data
collected from 15 experiments, denoted as DOE-1, 2,..., 15 in Table 1.
The second, used for testing, had the voltage value data collected from
four experiments, denoted as Random-1, 2, 3, 4 in Table 1. The band-
width was set to 4 s (i.e., w = 4) for both groups, so each voltage image
had 3000 x 4 = 12,000 vp,s. The parameter i was set to 0.2 and 0.02 for
the training and test datasets, respectively. Therefore, the voltage image
was generated every 0.2 s in the training dataset and every 0.02 s in the
test dataset. As a result, 537 and 2505 voltage images were obtained for
the training and test datasets, respectively.

It is worth noting that the number of the training data is larger than
the testing data In the proposed method, we collected training data from
15 beads (DOE-1,2,...,15 in Table 1) and testing data from 4 beads
(Random-1,2,3,4 in Table 1). Thus, it is natural that the number of
training data is larger than the testing. However, the number of data is
also mainly determined by interval i which indicates the time gap be-
tween two consecutive images of voltage values. For a given time, as i
decreases, the number of images increases. For example, for 5 s, only 5
images are generated by setting i = 1 s while 50 images are generated be
setting i = 0.1 s. In this case, we set small i value for generating many
testing data because this makes the testing environment close to real-
time monitoring.

3.2.2. CNN prediction module

As previously mentioned, the converted voltage image is the input to
the CNN prediction module. Each converted voltage image is classified
to determine whether the WAAM process is normal or abnormal. For this
purpose, a CNN classifier should be developed in advance. The CNN
classifier is trained and tested by the training and test dataset which

were generated by labeling the converted voltage images based on the
video data. Labeling consists of three sequential labeling tasks for video
frame, v,,, and voltage image data.

First, the video frames are labeled. The video data has several frames,
and each frame contains information on whether the process is normal
or abnormal. Video labeling is conducted manually by classifying all
frames of the video data. Each frame is categorized into three types:
normal, abnormal, and neutral as shown in Fig. 5.

When the video frames are labeled, vy, is recognized by the labels of
the video data. The label of vy, is denoted as I,,. Similar to video labeling,
vm is classified into the same three types. Note that vy, is collected every
1/3000 s, while the video frame is collected every 1/50 s. Thus, each
video frame includes 60 vy,s. These 60 v,,;s are labeled as the same type of
the associated frame. Fig. 6 illustrates labeling 120 v;,s included in the
first two frames.

Next, voltage images are labeled. In the image conversion module,
each V, ;i is converted into a voltage image. There is a one-to-one
conversion between V, ;. and the voltage image; thus, if V,, ;i is
labeled, its voltage image is labeled samely. Let us denote L, ; x as a set of
lnsin Vi k. Viy ik is labeled based on L, ;x. As described in Section 3.2.1,
two sets of voltage images were generated: the training and test. If V,,,;x
is for training (test), it is labeled according to Algorithm 1(2). In Algo-
rithm 1, V,, ;i is labeled as normal (abnormal) when all of I,;s in V;, ; are
normal (abnormal). In other words, if any I, is neutral or two types of
labels are mixed, V,,x is excluded from the training dataset. The dif-
ference between Algorithms 1 and 2 is that Algorithm 1 assigns labels to
a voltage image only when all I, in V,, ;x are either normal or abnormal.
For example, when i =4, V,,;; includes 12,000 I,s from 200 video
frames and all the 12,000 [,s are either normal or abnormal. Generally,
CNN models are known to exhibit good classification performance when
the training data have clear patterns of objects to be classified. These
pure images better depict the behavior of the time-series voltage data
generated when the WAAM process is either normal or abnormal. Ulti-
mately, this improves the classification performance of the CNN model.

Algorithm 1. Labeling for the training dataset.

1: procedure TrainDataSetLabeling(L,, ; ;)
2: if Ly, ;j only contains ‘Normal’ THEN
3: Label = ‘Normal’

4: elseif L, ; only contains ‘Abnormal’ THEN
3: Label = ‘Abnormal’
6: else

7: Remove V, ; x

8: endif

9: return Label
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Algorithm 2. Labeling for the test dataset.
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1: procedure TestDataSetLabeling(L,, ; ;)

2:  if Ly ; contains ‘Normal’ more than ‘Abnormal’

THEN

3: Label = ‘Normal’

4: else L, ;; contains ‘Abnormal’ more than
‘Normal’ THEN

5: Label = ‘Abnormal’

6: endif

7: return Label

As described in Section 3.2.1, 537 and 2505 voltage images were
obtained for the training and test datasets, respectively. We labeled
these images using three labeling tasks. As a result, the 537 voltage
images were labeled as 390 normal and 147 abnormal images. Similarly,
the 2505 voltage images were labeled as 1495 normal and 1010
abnormal images. We developed and validated a CNN classifier based on
these training and test datasets. DenseNet169 was employed as the CNN
model structure, Adam as an optimizer, with 16 batches, 30 epochs, and
categorical cross-entropy as a loss function to develop the CNN
classifier.

We used 70% of the training dataset to train the CNN classifier and
the remaining 30% of the training dataset as the validation dataset. CNN
model weights were selected at the 29th epoch, where the accuracy of
the validation dataset reached 95%. Subsequently, the classification
performance of the trained CNN classifier was evaluated using the test
dataset. The CNN classifier achieved 96% accuracy for the test dataset.
In addition, it was assessed using the four indices of accuracy, precision,
recall, and fl-score. Accuracy is the ratio between the number of clas-
sified images and the number of images. The total number of images was
2505, and 2405 were correctly classified; thus, the accuracy was
calculated as 0.96 (= 2405 / 2505). The other three indices were
calculated for each label. Precision is regarded as the ratio between the
number of correctly classified images and the number of classified im-
ages for each label. The recall is the ratio between the number of
correctly classified images and the number of images for each label. The
f1-score is a harmonized mean of the precision and recall for each label.
Support denotes the number of images for each label. Table 2 lists the
three indices of the CNN classifier for the normal and abnormal labels.

Table 2

Performance of the CNN classifier.
Label Precision Recall f1-score Support
Normal 0.94 0.99 0.97 1495
Abnormal 0.99 0.90 0.95 1010

For a normal label, 1405 images among 1495 normal images were
correctly classified; thus, the precision was 0.94 (= 1405 / 1495).
Additionally, 1420 images were classified as normal among 2505 im-
ages; thus, the recall was 0.99 (= 1405 / 1420). The fl-score was
calculated as 0.97 using the harmonized mean of 0.94 and 0.99. The
three indices of the abnormal scenario were calculated in a similar
manner. All the indices were larger than 0.90, which meant that the
CNN classifier had a good classification performance. Among the
indices, recall of the abnormal label had the lowest value of 0.90. This
will be investigated in Section 3.3.

3.2.3. Real-time monitoring module

Real-time monitoring is performed simultaneously with image con-
version and CNN prediction modules. Whenever the voltage image is
generated from the image conversion module, the CNN prediction
module classifies it as normal or abnormal through the CNN classifier,
trained and validated in advance. The real-time monitoring module
provides the results of the CNN prediction model in real-time through a
video on a dashboard. Fig. 7 show snapshots of the video on the dash-
board. The video file is attached in the end of this paper. It shows real-
time monitoring performed by classifying the 2505 voltage images of the
test dataset. Whenever the bead shape became abnormal in the video,
the square became red. Additionally, the voltage image became unstable
when the process was abnormal. Overall, we conclude that the proposed
algorithm performed well.

It should be noted that real-time monitoring starts after the first 4 s in
the video. This is because the bandwidth was set to 4 s. After the first 4 s,
the first voltage image was generated, and real-time monitoring started.
Because i = 0.02, the voltage image was generated every 0.02 s; thus,
the real-time monitoring was updated every 0.02 s. Notably, there was a
time gap between the time when the WAAM process changed from
normal to abnormal and when the square changed from green to red.
Suppose that w =4 and the WAAM process changes from normal to
abnormal at time point of 10 s. In such a case, the voltage image at the
time point of 10 s includes vn,,s have been collected from time point of 6 s

Fig. 7. The left parts of both figures show the video frames, and the right part show the voltage image data. The square in the video frame indicates whether the
WAAM is normal or abnormal, with green (left figure) and red (right figure) colors, respectively.
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Table 3
Image conversion by dataset condition.
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to time point 10 s. During the 4 s, the WAAM process is normal; thus, the
voltage image at the time point of 10 s shows a normal time-series
pattern of v,,. Therefore, CNN classifier classifies the image as normal.
As time passes, newly generated voltage images have more v,,s from the
abnormal process; therefore, their time-series pattern of v, become
unstable. The CNN classifier classifies the voltage image as abnormal
when the unstable part becomes larger than the stable part. This is why a
time gap exists between the two images and explains why the recall
score of the abnormal label in Table 3 has a low value.

3.3. Sensitivity analysis for i and w

As described in Section 3.2, we set i = 0.02, w = 4 for the training
dataset, and i = 0.2, w = 4 for the test dataset. The two parameters i and
w are important because they affect the classification performance and

computational costs. Thus, it is investigated by testing the proposed
method with respect to various combinations of i and w. As previously
mentioned, the training and test datasets were prepared through three
labeling tasks: video labeling, v, labeling, and voltage image labeling.
The two parameters are related to the voltage image labeling task
because they determine the interval and bandwidth.

As shown in Fig. 3, a voltage image is generated by sliding the time
window. When i is small, the interval between the time windows is
small; thus, the generated images overlap significantly. The images then
become similar to each other because they share a large number of v,
values. This makes it difficult to extract features when training a CNN
classifier. Additionally, a small i generates a large number of images,
which increases the learning time but helps train the CNN classifier.
Thus, a small i has both advantages and disadvantages. The other
parameter w determines the length of the time window. When w is large,

Table 4
Dataset.

Dataset Training dataset Test dataset

Condition The number of generated images Condition The number of generated images

i w Normal Abnormal Total i w Normal Abnormal Total
DS1 0.02 0.5 5506 2357 7863 0.02 0.5 2072 1133 3205
DS2 0.1 0.5 1106 466 1572 0.02 0.5 2072 1133 3205
DS3 0.2 0.5 543 245 788 0.02 0.5 2072 1133 3205
DS4 0.5 0.5 215 98 313 0.02 0.5 2072 1133 3205
DS5 1 0.5 110 47 157 0.02 0.5 2072 1133 3205
DS6 0.02 1 5205 2166 7371 0.02 1 1910 1195 3105
DS7 0.1 1 1049 424 1473 0.02 1 1910 1195 3105
DS8 0.2 1 508 230 738 0.02 1 1910 1195 3105
DS9 0.5 1 208 86 294 0.02 1 1910 1195 3105
DS10 1 1 106 43 149 0.02 1 1910 1195 3105
DS11 0.02 1.5 4950 1995 6945 0.02 1.5 1764 1241 3005
DS12 0.1 1.5 989 399 1388 0.02 1.5 1764 1241 3005
DS13 0.2 1.5 492 203 695 0.02 1.5 1764 1241 3005
DS14 0.5 1.5 197 80 277 0.02 1.5 1764 1241 3005
DS15 1 1.5 98 40 138 0.02 1.5 1764 1241 3005
DS16 0.02 2 4709 1850 6559 0.02 2 1657 1248 2905
DS17 0.1 2 942 369 1311 0.02 2 1657 1248 2905
DS18 0.2 2 460 196 656 0.02 2 1657 1248 2905
DS19 0.5 2 187 74 261 0.02 2 1657 1248 2905
DS20 1 2 91 42 133 0.02 2 1657 1248 2905
DS21 0.02 3 4284 1620 5904 0.02 3 1570 1135 2705
DS22 0.1 3 865 316 1181 0.02 3 1570 1135 2705
DS23 0.2 3 433 159 592 0.02 3 1570 1135 2705
DS24 0.5 3 168 68 236 0.02 3 1570 1135 2705
DS25 1 3 86 34 120 0.02 3 1570 1135 2705
DS26 0.02 4 3930 1427 5357 0.02 4 1495 1010 2505
DS27 0.1 4 793 280 1073 0.02 4 1495 1010 2505
DS28 0.2 4 390 147 537 0.02 4 1495 1010 2505
DS29 0.5 4 155 59 214 0.02 4 1495 1010 2505
DS30 1 4 81 28 109 0.02 4 1495 1010 2505
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Table 5
Results of the model selection experiments.
Indicators ResNet50 ResNet101 DenseNet121 DenseNet169
DS6 Accuracy 0.847 0.896 0.886 0.900
Learning time 1729.28 2900.20 1849.09 2254.93
Prediction time 5.42 (0.002) 9.39 (0.004) 7.03 (0.003) 8.44 (0.003)
DS16 Accuracy 0.803 0.871 0.844 0.898
Learning time 1523.56 2553.74 1646.17 1992.76
Prediction time 5.67 (0.002) 8.86 (0.004) 5.71 (0.002) 7.55 (0.003)
DS21 Accuracy 0.835 0.854 0.889 0.920
Learning time 1366.24 2288.88 1476.30 1821.41
Prediction time 5.31 (0.002) 8.60 (0.004) 6.04 (0.003) 6.97 (0.003)
Average Accuracy 0.828 0.874 0.873 0.906
Learning time 1539.69 2580.94 1657.19 2023.03
Prediction time 5.47 8.95 6.26 7.65
Table 6 three images significantly overlapped. In contrast, they overlapped less
Results of the dataset selection. when i = 1. The right three images were generated by settingw = 0.5, 2,
- - — and 4 while maintaining i = 2. When w = 0.5, only a small part of the
Data Interval  Bandwidth  Accuracy  Learning Prediction . .
set Time Time time-series plot was shown. In contrast, when w = 4, a large part of the
o1 0.0 o8 Py 3855.04 719 0002 time-series plot was shown. Note that the images had the same size at
DS2 o1 05 0.889 936.01 711 (0'002) 224 x 224 pixels, although w differed.
DS3 0.2 0.5 0.899 569.95 7.20 (0.002) To investigate the effect of w and i, five values; 0.02, 0.1, 02, 0.5, and
DS4 0.5 0.5 0.677 328.25 7.19 (0.002) 1 for i and six values; 0.5, 1, 1.5, 2, 3, and 4 for w were set. Therefore, a
DS5 1 0.5 0.647 249.14 7.17 (0.002) total of 30 combinations of i and w values were obtained. First, voltage
g:g g'(l)z 1 g'zéz 323;2; 2'32 Eg'ggg images were generated for the training dataset according to the 30
DS8 02 1 0.857 540.86 6.97 (0'002) combinations of i and w (left part of Table 4). The voltage values
DS9 0.5 1 0.841 322.65 6.93 (0.002) collected from DOE 1, 2,., 15 in Table 1, were converted into training
DS10 1 1 0.488 246.33 6.89 (0.002) voltage images. We denote the 30 sets of the generated voltage images as
Ds11 0.02 L5 0.887 3583.95 6.71 (0.002) DS1, DS2,..., DS30. As expected, the number of generated images
DS12 0.1 1.5 0.881 835.37 6.74 (0.002) .. . )
DS13 0.2 15 0.680 491.06 6.71 (0.002) decreased as i increased. The number of images decreased slightly as w
DS14 0.5 15 0.715 298.28 6.75 (0.002) increased. The first image was generated after the first w seconds
DS15 1 1.5 0.587 235.01 6.69 (0.002) because it takes w seconds to generate. Thus, as w decreased, the first
Ds16 0.02 2 0.905 3218.37 6.47 (0.002) image appeared earlier, which meant that a larger number of images
g:g 8'; ; g'zgg ii::i Z‘gg Eg‘ggg were generated. However, this increase was not significant compared
DS19 0:5 2 0:571 300:19 6:53 (0:002) with the increase due to i (Table 4). For the test datasets, we fixed
i =0.02 and changed w, as shown in Table 4.
DS20 1 2 0.571 235.16 6.52 (0.002) 8 s
Ds21 0.02 3 0.871 3023.32 6.07 (0.002) Second, we generated voltage images for the test dataset according to
DS22 0.1 3 0.880 754.65 6.06 (0.002) six combinations of i and w (right part of Table 4). In Table 4, iis fixed at
DS23 0.2 3 0.885 464.73 6.06 (0.002) . .
DS24 os 3 0.581 201.14 6.10 (0.002) a small value of 0.02, and only w has six values. This was done to
DS25 1 3 0.581 233.64 6.11 (0.002) generate many images for the test dataset, which is useful for real-time
DS26 0.02 4 0.937 2679.58 5.64 (0.002) monitoring. By setting i as a small value of 0.02s, the images are
Ds27 0.1 4 0.940 706.76 5.70 (0.002) generated every 0.02s; Thus, the proposed algorithm detects the
Ds28 02 4 0.958 440.64 5.65(0.002) abnormal process every 0.02 s, which is very close to real-time. For
DS29 0.5 4 0.598 280.25 5.61 (0.002) .
DS30 1 4 0.538 217.13 5.61 (0.002) example, the training datasets of DS28 and DS26 were generated by

each generated image includes many vy, values; so it is useful for training
the classifier. However, a large w would cause the images to overlap, and
the generated images become similar. This image overlapping problem
is caused not only by a small i but also by a large w. So the optimal values
for i and w should be investigated.

In addition, i and w also affect the real-time monitoring module. As
previously mentioned, real-time monitoring begins after the first w
seconds. Thus, as w increases, real-time monitoring starts with a delay.
The other parameter i determines the time interval between the voltage
images. The WAAM process is determined to be normal or abnormal in
the proposed algorithm whenever the voltage image is generated. When
i used in real-time monitoring is small, the voltage images are frequently
generated; thus, the monitoring becomes closer to real-time. However, a
small i value would require a tremendous computational effort because
the CNN prediction and real-time monitoring modules are performed
and updated whenever the voltage image is generated.

Table 3 shows examples of the voltage images according to several
interval and bandwidth values. The nine left images were generated by
setting i = 0.02 and 0.2 while maintaining w = 2. When i = 0.02, the

setting i = 0.2 s and 0.02 s, respectively, for a same w value; thus, DS28
is a subset of DS26. In case of DS26, the number of training data is larger
than that of testing data because both training and testing datasets were
generated from the same interval (i.e., i = 0.02 s). In DS28, we increased
ifrom 0.02 to 0.2 when generating the training data but did not increase
it when generating testing data in order to make the testing environment
close to real-time monitoring. After preparing all the datasets, we
trained and tested the CNN classifiers on each dataset.

Before training the CNN classifier, an appropriate CNN structure
should be selected in advance. We considered four CNN structures,
ResNet50, ResNet101, DenseNetl121, and DenseNet50 as alternatives
because they are available in Keras applications. It was desirable to
apply the four CNN structures to all 30 datasets. However, this involved
high computational costs, resulting in long training and testing time.
Applying the four structures for the 30 datasets meant 120 CNN classi-
fiers were to be trained. Therefore, we selected only DS6, DS16, and
DS21 among the 30 datasets and applied the four CNN structures to the
selected datasets. Specifically, 70% of the training data for each dataset
were used to train the CNN classifier and the other 30% as a validation
set. During the training, the epoch increased, and the accuracy of the
validation set changed accordingly. The optimal CNN weights were
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Fig. 8. Accuracy (left) is primarily affected by i rather than w, and it drastically decreases as i increases from 0.2 to 0.5. This means that when i is larger than 0.2, the
number of images is insufficient to train the CNN classifiers with high accuracy. Therefore, it is desirable to set i to less than 0.2. However, the learning time (left)
drastically increased when i is less than 0.1. Consequently, it is recommended to set i between 0.1 and 0.2 when considering the tradeoffs between accuracy and
learning time. In contrast, as w increased, the accuracy increased. However, a large w had the disadvantage of a late start of real-time monitoring. Thus, when
determining w, both the accuracy and starting time of real-time monitoring should be considered.
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determined when the accuracy of the validation set was the highest.
Subsequently, the test dataset was used to evaluate the classification
performance of the classifier.

Table 5 shows the accuracy, learning, and prediction times of the
CNN classifiers obtained by applying the four CNN structures. The
learning time is the elapsed time for training the CNN classifier, and the

10

Fig. 9. The eight images in upper side and the other eight
images in lower side are classified as normal and abnormal,
respectively. In the normal cases, the red regions were
located either in the upper or lower parts of the time-series
waveforms in the images, and they appeared stable without
exhibiting drops. In contrast, the red regions in the
abnormal cases were located in the middle of the time-
series waveforms in the images, and they exhibited large
drops compared with the normal figures.

prediction time is the time for classifying the voltage images of the test
dataset. Values in parentheses in prediction time in Table 5 indicate the
average time to predict a single voltage image. All four CNN structures
exhibited a robust performance with respect to the three datasets.
ResNet50 was first excluded because it exhibited the lowest accuracy.
Additionally, ResNet101 was also omitted because it showed the most
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prolonged learning and prediction time. DenseNet169 has better accu-
racy than DenseNet121, whereas DenseNet121 is faster in learning and
prediction. Finally, DenseNet169 was selected because it significantly
increases the accuracy while only slightly sacrificing the learning and
prediction times compared with DenseNet121.

The next step was training the CNN classifiers for the 27 datasets
while excluding DS6, DS16, and DS21, because they were already fitted
to select the appropriate CNN structure. It was observed that Dense-
Net169 was suitable for DS6, DS16, and DS21; thus, it was used again to
train the CNN classifiers for the other 27 datasets. Table 6 lists the ac-
curacy, learning, and prediction times of the CNN classifiers for the 30
datasets. They were fitted by applying DenseNet169. In terms of interval
i, the number of voltage images and learning time increased as i
decreased, as expected. This is because a more significant number of
voltage images were generated as i decreased. In terms of bandwidth w,
the accuracy increased as w increased because a voltage image with a
large w has many v,, values. As the voltage image includes more vy,
values, it includes a larger part of the time-series plot. This is useful for
improving classification performance. Moreover, w slightly affects the
learning time. As w increases, the first image is generated later; thus,
fewer images are generated. A large w leads to short learning time; yet
delays the start of real-time monitoring. Additionally, the prediction
time decreases as w increases for the same reason. However, the average
elapsed time of the prediction time does not change according to i and w.

It was observed that the overall behavior of accuracy, learning, and
prediction times according to i and w was reasonable. Next, we
attempted to determine the optimal i and w for which the accuracy,
learning, and prediction time are desirable. The prediction time was not
considered because the average time is not affected by i and w. Fig. 8
shows the accuracy (left) and learning time (right) according to i and w.
In this example, we recommend setting i between 0.1 and 0.2 and w to 4
where both accuracy and learning time were satisfactory.

On the other hand, it is interesting to compare the proposed method
with the existing CNN method that does not include 1D data. Recently,
[26] suggested another real-time monitoring algorithm using CNN. In
their work, the CNN model was trained from the 2D data which are same
data that we wused. [26] generated 2D images with interval
i =0.033 s/frame and test their CNN model. As a result, their CNN
model showed 96% of accuracy. In case of the proposed method, we
generated 30 datasets (denoted as DS1,2,...,30 in Table 4) by setting
various i and w values. Among them, DS21, which was generated with
i = 0.02 s/frame, is most similar to the data [26] used. As a result, the
proposed CNN model showed 93.7% of accuracy as reported in Table 4.
Both CNN models employed same model structure of DenseNet169 and
similar intervals and were applied; thus, we believe that the comparing
two models is fair. Our accuracy is slightly less than [26] and this is
somewhat expected result because [26]’s model works based on 2D
video frame data while the proposed method works based on simple 1D
voltage data. Although the classification accuracy of the proposed
method is slightly smaller, the proposed method has advantages of using
simple 1D data.

3.4. Validation using Grad-CAM

As described in Sections 3.2 and 3.3, the CNN classifier with a good
classification performance was obtained. We investigated the reason
behind the good classification performance of CNN classifiers and vali-
dated it using a class activation mapping (CAM) method. When the CNN
classifier determines each voltage image, it focuses on particular parts
that express the features of normal and abnormal classes. We employed a
particular CAM method called grad-CAM, which highlights these parts
of the images, which are considered more important than the other
regions.
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Fig. 9 shows examples of grad-CAM for the CNN classifier that was
trained in Section 3.2. Specifically, grad-CAM was applied to the last
convolutional layer. It was implemented using visualize_cam, which is a
Keras visualization function. Visualize_cam expresses the result of grad-
CAM in color in the voltage image. Red regions are important regions
where the CNN classifier focuses on classifying the voltage image. In
contrast, the blue regions represent the regions in which the CNN clas-
sifier does not concentrate. Overall, we concluded that the location and
shape of the red regions of the normal and abnormal figures were
markedly different, which implied that the CNN classifiers were
adequately trained.

4. Concluding remarks

In this study, a CNN-based real-time monitoring algorithm was
developed using the voltage data generated during fabricating Mo beads
by the WAAM process. The algorithm consists of three modules: image
conversion, CNN prediction, and real-time monitoring. The image con-
version module converts the voltage values into voltage images in a
time-series waveform. The CNN prediction module categorizes each
voltage image into normal or abnormal to detect whether the WAAM
process is normal or abnormal. Finally, the real-time monitoring module
expresses the results of the CNN prediction model on a real-time dash-
board. The performance of the proposed algorithm is highly dependent
on two parameters, i and w. Therefore, a sensitivity analysis was con-
ducted for i and w to determine the effects of the two parameters, based
on which guidelines for setting them were obtained. Finally, the CNN
classifiers were validated by applying grad-CAM to visualize regions that
are important for classification. It was concluded that the CNN classifiers
were adequately trained because they captured the critical regions in the
voltage images.

It is interesting to discuss applicability of classical machine learning
(ML) methods to develop the classifier. In the proposed method, CNN
was employed as the classifier because it does not require feature
extraction while the classical ML methods do. In the WAAM process,
voltage data are collected on a real-time basis and the process is judged
as normal or abnormal based on the voltage data. Thus, the algorithm
should be able to classify the time-series data into normal or abnormal.
When learning the classical ML models from the time-series data, fea-
tures should be determined by the users, and then, the models classify
the time-series data based on the features. Thus, the performance of the
classical ML models largely depends on the feature extraction. In
contrast, CNN does not require the feature extraction. The proposed
method converts the time-series data into 2D images and CNN model
classifies the 2D images. Because CNN automatically extracts spatial
features of 2D images, users are not required to determine the features
[27]. In our WAAM process, we had difficulties in defining features of
the voltage data, thus, we used the CNN model for time-series classifi-
cation. On the other hand, this feature-extraction-free approach has a
disadvantage over the classical ML methods in that it is a “black-box”
model. The CNN model cannot explain why it classifies each time-series
data into normal or abnormal. In contrast, the classical ML models, for
example, support vector machine (SVM), can explain the reason because
SVM estimates coefficient for each feature. Thus, we can identify which
features are critical in classifying the WAAM process based on the esti-
mated coefficients. In order to overcome this disadvantage, we addi-
tionally conducted grad-CAM in Section 3.4, to highlight regions of the
images, which serve as critical features in the classification.

From the data mining perspective, our problem can be considered as
a time-series classification problem. Instead of CNN, meta learning can
be employed to train the 1D data (time-series data) classification model.
Main advantage of the meta learning is good performance with a small
learning set. In sptie of this advantage, meta learning methods have not
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been applied to time-series data classification in the WAAM process so
far. We believe that using meta learning methods can be very good when
the learning data is small. However, even if the meta learning methods
are applied, we believe that our approach of mapping 1D to 2D and
training 2D classification model is still useful because meta learning
methods show good performance in image classification problems.

In future research, it will be necessary to generate new types of
waveforms that are not used for learning. There is a limit to adding a
new type of waveform each time, and it is also important to understand
whether a new type has been generated.
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