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A B S T R A C T   

A convolutional neural network (CNN)-based real-time monitoring algorithm is present to detect an abnormal 
wire + arc additive manufacturing (WAAM) process for molybdenum. The proposed algorithm consists of three 
modules: image conversion, CNN prediction, and real-time monitoring. The image conversion module changes 
the form of a time-series voltage waveform data into voltage image data. The CNN prediction module classifies 
each voltage image into a normal or abnormal image. The real-time monitoring module expresses the results of 
the CNN prediction model on a real-time dashboard. Experiments for single beads of molybdenum materials were 
performed to validate the performance of the proposed algorithm. It was observed that abnormal WAAM pro
cesses are detected in real-time with high accuracy. In addition, a sensitivity analysis with respect to different 
intervals and bandwidths of the voltage image data was conducted, which are the main input parameters of the 
proposed method. Based on this investigation, guidelines for setting the interval and bandwidth were established. 
Finally, the effectiveness of the CNN classifiers was validated by applying a class-activation mapping method. It 
was concluded that the CNN classifiers were adequately trained because they captured the critical regions in the 
voltage images for both normal and abnormal cases.   

1. Introduction 

Molybdenum (Mo) is a refractory metal with good thermal property, 
creep resistance, wear resistance, and thermal expansion and is used in 
furnaces, semiconductors, and nuclear power applications that have 
specific material property requirements (e.g., high temperature) [1]. 
However, Mo is a hard-to-machine material owing to its high melting 
point and hardness. In addition, it is an expensive material, so sub
tractive processes are not efficient options, when a part with a high 
buy-to-fly ratio is machined. In contrast, additive manufacturing (AM) is 
considered as a potential solution to fabricate highly complex and 
hard-to-machine Mo structures, saving time and cost. Among metal AM 
processes, a wire and arc additive manufacturing (WAAM) process can 
fabricate large-scale metal structures owing to the inexpensive system 
setup cost, high deposition rates, and energy efficiency [2]. In particular, 
the inexpensive cost and energy efficiency can provide a capability to 
deposit refractory alloy structures (e.g., tungsten and Mo) [3,4]. 

One of difficulties in applying AM is that quality control is largely 
limited to offline techniques in the absence of real-time process moni
toring, resulting in high scrap rates [5,6]. This is more evident when the 
costs of materials such as Mo are high. Recently, artificial intelligence 
(AI) has drastically advanced monitoring and control in many areas. 
Therefore, AM researchers increasingly apply advanced AI to AM, 
particularly real-time monitoring and control [7]. However, three dif
ficulties remain: (1) the lack of data owing to difficulties in measure
ments in metal AM [8], (2) difficulty in obtaining accurate and reliable 
data, and (3) difficulty in developing accurate real-time processing 
models. 

To cope with these difficulties, methods that can be accurately pro
cessed in real-time using small datasets should be developed. The data 
collected for real-time monitoring during the metal AM process can be 
divided into two types: 1) one-dimensional (1D) data, 2D, and 3D data. 
1D data include digital signals, such as the power, current, wire feed 
rate, temperature, and vibration collected by sensors [9]. They are 
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primarily time-series data types in which values are collected over time. 
Because of this property, methods such as long short-term memory 
(LSTM), which is a type of recurrent neural network (RNN), or an 
autoencoder, which is a type of neural network, are primarily used. 
However, they are unsupervised learning methods, which have the 
disadvantage of decreasing accuracy with small datasets. 

2D data are images or video frames collected by cameras. They are 
advantageous in that they clearly show whether the AM process is 
normal or abnormal; thus, a training dataset can be prepared. Based on 
the training dataset, for example, convolutional neural networks (CNN) 
model, which shows good classification performances in image classi
fication can be used. However, it is often difficult to obtain a high quality 
of 2D data because metal AM uses high temperatures, special cameras of 
high cost are required, and several conditions for video recording such 
camera location and installation angle, are significantly affected the 
quality of the video frames [10]. 3D data are profiles of surface or in
ternal scans that are rendered in the form of a 3D file. They also require 
special equipment, such as a computer tomography (CT) system or 
profilometer, making real-time applications more challenging [11]. 

In this study, we developed a real-time monitoring algorithm for 
WAAM’ed Mo using a CNN model. The proposed real-time monitoring 
algorithm overcomes the drawbacks of existing monitoring systems 
using both 1D and 2D data. The existing monitoring approaches using 
1D data can be easily imiplemented because collecting 1D data is easy; 
however, the monitoring based on 1D data often shows low accuracy. 
Although the ones using 2D data have high accuracy, they are chal
lenging to implement due to the harsh recording conditions resulted 
from high temperature of the AM process. The proposed method detects 
process abnormality based on a particular 1D data, voltage data. Based 
on certain bandwidths, voltage data is converted into voltage ‘image’ 
data. After converting the voltage data to voltage image data, we labeled 
the voltage image data by matching them with 2D data. Once the CNN 
model is trained based on the labeled data, it detects the abnormality in 
the WAAM process whenever 1D data is collected in real-time. We 
validated the CNN model in terms of accuracy and achieved an accuracy 
of 96%. The proposed method can be easily implemented in the WAAM 
process because it works with 1D data, and it can detect the abnormality 
of the WAAM process for Mo in real-time with high accuracy by using 2D 
data for training the CNN model. 

The remainder of this paper is organized as follows. In Section 2, 
existing methods related to real-time monitoring for AM, including the 
conversion from 1D data to voltage image data, are reviewed. The 
proposed algorithm, experiment, and sensitivity analysis are presented 
in Section 3. Finally, conclusions are presented in Section 4. 

2. Literature review 

2.1. Wire + arc additive manufacturing (WAAM) 

WAAM has the potential for significant industrial impact owing to its 
ability to create large metal components with a high deposition rate, low 
equipment cost, high material utilization, and environmental friendli
ness (Wu et al., 2018). WAAM can be categorized into three techniques 
according to the nature of the heat source: (1) gas metal arc welding 
(GMAW)-based WAAM, (2) gas tungsten arc welding (GTAW)-based 
WAAM, and (3) plasma arc welding (PAW)-based WAAM. 

GMAW-based WAAM is a welding process in which an electric arc 
forms between a consumable wire electrode and the workpiece metal 
[12]. Excessive heat input, metal spatter, and arc wandering are three of 
its unavoidable problems, adversely affecting the geometrical accuracy 
and quality of the deposited parts [13]. However, the deposition rate is 
2–3 times higher than that of the other two methods. GTAW-based 
WAAM uses a non-consumable tungsten electrode with a separately 
fed wire to produce the weld deposit. This method can effectively avoid 
arc wander, and metal spatter and decrease the heat accumulation in the 
GMAW-based WAAM deposition process. However, the GTAW 

deposition rate is lower than that of the GMAW-based WAAM. Thus, if a 
high deposition rate is prioritized, GMAW may be preferred over GTAW, 
although its quality and process stability are generally lower [14,15]. In 
PAW-based WAAM, the arc energy density can be thrice that of GTAW, 
causing less weld distortion and smaller welds with higher welding 
speeds [16]. Although PAW provides the highest energy density elec
trical arc that enables high travel speeds and high-quality welds with 
minimized distortion, it typically requires the most extensive capital 
expenditure [17]. 

2.2. Real-time monitoring for AM 

In this section, real-time monitoring methods for AM are reviewed 
based on 1D, 2D, and 3D data. First, 3D data-based monitoring methods 
are reviewed. In Wang et al. [11], Mo rods were fabricated using the 
GTAW-based WAAM process, and internal defects were detected by 
scanning them with a CT system. Through statistical data analysis, they 
demonstrated three main types of defects in Mo: (1) small spherical 
pores, (2) inverted pear-shaped pores, and (3) cavities. Li et al. [18] 
proposed a deep-learning-based quality identification method for metal 
AM processes. They used a publicly available real-world high-resolution 
image dataset from laser-based powder bed fusion processes using a 
stereomicroscope. They demonstrated an semisupervised identification 
consistency-based method that was robust against poor data quality. 
These 3D data-based monitoring methods showed good detection 
capability; however, collecting CT or stereomicroscope data is chal
lenging in practice because due to high cost and long time of collection. 
In addition, these approaches cannot provide real-time control, and 
defect detection is delayed, causing a waste of time and material. This is 
more evident when the cost of materials is high, and the product is large. 
The following studies were conducted using 1D or 2D data collected 
during the process in real-time to apply real-time monitoring to solve 
such problems. 

Grasso et al. [19] proposed statistical monitoring for the metal pro
cess using a support vector data description. Ren et al. [20] demon
strated an in-situ monitoring and signal processing method for laser 
metal AM by combining an unsupervised deep learning technique and 
emission spectroscopy. Guo et al. [21] proposed an in-situ monitoring 
system for the WAAM process with a hollow electromagnetic acoustic 
transducer that could adapt to a high-temperature and high-vacuum 
environment. These real-time monitoring systems using 1D data have 
efficient acquisition, storage, and analysis costs. However, compared to 
2D data, such as video frames, it is difficult to determine the meaning of 
the information, the features are difficult to extract, and it is challenging 
to determine whether the process is abnormal. This results in low ac
curacy for detecting abnormality in AM process. In contrast, labeling 2D 
data, such as images or video frames, is relatively more straightforward. 
Therefore, real-time monitoring systems using 2D data frequently 
implement a CNN, facilitating supervised learning with proven effi
ciency and accuracy. Focusing on these advantages, the following 
studies were conducted. 

Yang et al. [22] proposed a CNN-based real-time melt-pool classifi
cation method for AM. The data used were melt-pool images captured 
from a laser melting powder fusion build using a high-speed camera. 
Their model classification accuracy was approximately 91%. Bacioiu 
et al. [23] designed a system for assessing the quality of tungsten inert 
gas welding with the potential for application in real-time using a CNN, 
achieving an accuracy of 93.4%. The data they used was high dynamic 
range images representing the weld pool in visible spectra balance by 
offsetting the intense arc light. Caggiano et al. [24] proposed an online 
defect recognition platform using a bi-stream deep CNN, and its accu
racy was as high as 99.4% for selective laser melting. The data they used 
was processed images extracted layer-by-layer from videos of the entire 
selective laser melting test. 

Most of the existing CNN-based monitoring methods follow common 
two steps: Step 1) CNN model training & validation, Step 2) process 
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monitoring using the trained CNN model. In Step 2, the trained CNN 
model judges if the process is abnormal by classifying 2D data such as 
video frames that are mostly collected in a real-time basis. That is, the 
trained CNN models work based on 2D data in Step 2. However, the 
acquisition, storage, and analysis costs of 2D data, particularly high- 
temperature metal AM data, are high. Additionally, the 2D data can 
be easily affected or differ with respect to the measurement environ
ment. For example, images can be affected by different viewing angles or 
light intensities; they may contain noises, such as fumes and spatter, 
which makes acquiring accurate images difficult. For these reasons, the 
existing CNN-based monitoring method is often difficult to use in real 
practice. 

The proposed method suggests a hybrid of 1D and 2D data-based 
methods to overcome the aforementioned difficulties. The basic 
concept of the proposed method is to convert voltage 1D data into 
voltage image data, which are 2D data, and monitor the WAAM process 
by analyzing converted voltage image data. Thus, we can combine the 
easiness of collecting 1D data and the accuracy of learning a classifica
tion model from 2D data. Both proposed and existing methods requires 
2D data in Step 1. However, the proposed method works based on 1D 
data in Step 2 unlike the existing methods. This is the main advantage of 
the proposed method over the existing method. On the surface, it seems 
that the proposed method also works based on 2D data since the CNN 
classifier is used. However, the 2D images used in the proposed method 
is a simple representation of 1D voltage time-series data; thus, it can be 
easily obtained. This makes the proposed method more practical and be 
easy to use in practice. The following section explains the details. 

3. Proposed algorithm 

The proposed algorithm aims to build a monitoring system to detect 
whether the WAAM process is normal or abnormal in real-time. It col
lects voltage data from the WAAM process and conducts a real-time 
detection system based on that. Fig. 1 shows three modules of the al
gorithm: image conversion, CNN prediction, and real-time monitoring 
modules. 

In Section 3.1, the experimental designs of the GTAW-based WAAM 
process are explained. Additionally, various data types, such as process 
signature, video, and image data collected from the experiments, are 
presented. In Section 3.2, the implementation of the three modules is 
described. In Section 3.3, the real-time monitoring system using the 
three modules is explained. 

3.1. Problem definition 

The previously developed GTAW-based WAAM process was utilized 
to collect the data required to implement the proposed algorithm [25]. 
According to experimental conditions, the experiments were conducted 
as “bead on plate tests,” which generated Mo beads on a plate. 

The experimental conditions were determined based on three WAAM 
process variables: current, welding speed, and feeding rate. Fig. 2 shows 
three process variables and the schematic of the WAAM system. Each 
variable had three levels of current: 250, 275, and 300 A; welding speed: 
250, 275, and 300 cm/min; and feeding rate: 144, 180, and 216 cm/ 
min. There were three variables, and each variable had three levels; 
theoretically, a total of 27 (=33) experiments were possible. However, 

Fig. 1. The image conversion module collects the voltage values and converts them into waveform images in real-time. Whenever the converted image is generated, 
the CNN prediction module determines whether the WAAM process is normal or abnormal by classifying the converted image. Finally, the real-time monitoring 
module transfers the converted images with their classification results to a dashboard. Users can then recognize whether the WAAM process is normal or abnormal in 
real-time by observing the dashboard. 

Fig. 2. The WAAM system consists of 6-axis robot arm with GTAW power source and wire feeder. the three process variables are denoted by red color.  
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some of them were not feasible; thus, 15 feasible conditions were 
selected. Four additional feasible experiments were also added (denoted 
as “Random” in Table 1). As a result, 19 bead-on-plate tests were con
ducted. During the experiments, the other WAAM process variables were 
fixed, such as the shield gas (100%) and arc length (5 mm). Table 1 lists 
the experimental conditions. Data from the fifteen and four expriments 
were used for training and testing the proposed algorithm, respectively. 

Three types of data were obtained for each experiment: voltage, 
video, and bead image data. The voltage value was measured and 

collected by a sensor every 1/3000 s, a nearly real-time collection, and 
the video data monitored the process at 50 frames per second (fps). The 
last coloumn of Table 1 shows the images for the Mo beads obtained 
from the 19 experiments. 

3.2. Modules of the proposed algorithm 

This section describes the image conversion module, CNN prediction 
module, and real-time monitoring module, which are the core of the 

Table 1 
Experimental conditions.  
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proposed algorithm. 

3.2.1. Image conversion module 
The image conversion module converts the voltage values into 

voltage images required to act as the input for the CNN prediction 
model. The converted voltage image data is a chart image that indicates 
changes in the voltage value with respect to time because the voltage 
values are time-series data. For the conversion, an image conversion 
module first defines the voltage values. Let vm be the m-th voltage value 
and T be the time point. T is set as 0 when the WAAM process begins. An 
initial voltage value of v1 is observed at T = 1/3000 because the voltage 
value is collected every 1/3000 s. Thus, vm is defined as the voltage 
value observed at T = m/3000. 

Once vm is defined, the voltage value datasets can be determined. Let 
Vw,i,k denote the kth set of vm, where the bandwidth is w and the interval 
is i. The bandwidth is the time gap between the earliest and last time 
points within the voltage value dataset. The interval indicates the time 
gap between two consecutive voltage-value datasets. Vw,i,k is formally 
defined as 

Vw,i,k =
{

vm|m ∈ Mw,i,k
}

,

where Mw,i,k is the set of m. Mw,i,k is also defined as 

Mw,i,k = {x + (k − 1)(3000i) |x ∈ N, 1 ≤ x ≤ 3000w}.

Fig. 3 depicts Vw,i,k when w = 3 and i = 0.5. The horizontal and 
vertical axes denote T and vm, respectively, at T. Because w = 3, each 
Vw,i,k element includes 9000 voltage values. V3,0.5,1 is the first voltage 
value dataset; thus, it includes v1, v2, …, v9000. Because i = 0.5, V3,0.5,2 

includes v1501,v2,…,v10500. Note that any two consecutive voltage value 
datasets share 7500 voltage values because w = 3 and i = 0.5. 

When the Vw,i,k values are defined, each Vw,i,k is converted into 
voltage image data. These converted images display time-series wave
forms. Each Vw,i,k component has a different minimum and maximum vm. 

Fig. 3. The horizontal and vertical axes denote T and vm, respectively, at T. 
Because w = 3, each Vw,i,k element includes 9000 voltage values. V3,0.5,1 is the 
first voltage value dataset; thus, it includes v1, v2, …, v9000. Because i = 0.5, 
V3,0.5,2 includes v1501,v2, …,v10500. Note that any two consecutive voltage value 
datasets share 7500 voltage values because w = 3 and i = 0.5. 

Fig. 4. Compared with the left voltage image, the right voltage image has a larger maximum value of vm. Thus, the range of the vertical axis of the right voltage 
image becomes wider to include a larger voltage value while maintaining the same image size. This adjustment is required to have all the vm data while maintaining 
the same image size. 

Fig. 5. The upper left figure is an example of a normal frame where the shape of the Mo bead is stable. The upper right shows an abnormal type where the Mo bead is 
cut off from the earlier beads. In the lower left figure, the right part of the arc appears to be normal, while the left part is abnormal. The lower right figure is a frame in 
which the WAAM process begins. The two figures in lower side are neither normal nor abnormal; thus, they are classified as neutral. 
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Subsequently, the size of the images can differ because it is determined 
by the minimum and maximum values of vm. However, CNN requires all 
images to have the same size. Therefore, the vertical axes of the images 
are adjusted such that every image has the same size of 224 × 224 pixels 
(Fig. 4). 

The voltage value data were divided into two groups and separately 
converted into voltage images since a training dataset was required to 
develop the CNN classifier and a test dataset to validate the CNN clas
sifier. The first group, used for training, included the voltage value data 
collected from 15 experiments, denoted as DOE-1, 2,…, 15 in Table 1. 
The second, used for testing, had the voltage value data collected from 
four experiments, denoted as Random-1, 2, 3, 4 in Table 1. The band
width was set to 4 s (i.e., w = 4) for both groups, so each voltage image 
had 3000 × 4 = 12,000 vms. The parameter i was set to 0.2 and 0.02 for 
the training and test datasets, respectively. Therefore, the voltage image 
was generated every 0.2 s in the training dataset and every 0.02 s in the 
test dataset. As a result, 537 and 2505 voltage images were obtained for 
the training and test datasets, respectively. 

It is worth noting that the number of the training data is larger than 
the testing data In the proposed method, we collected training data from 
15 beads (DOE-1,2,…,15 in Table 1) and testing data from 4 beads 
(Random-1,2,3,4 in Table 1). Thus, it is natural that the number of 
training data is larger than the testing. However, the number of data is 
also mainly determined by interval i which indicates the time gap be
tween two consecutive images of voltage values. For a given time, as i 
decreases, the number of images increases. For example, for 5 s, only 5 
images are generated by setting i = 1 s while 50 images are generated be 
setting i = 0.1 s. In this case, we set small i value for generating many 
testing data because this makes the testing environment close to real- 
time monitoring. 

3.2.2. CNN prediction module 
As previously mentioned, the converted voltage image is the input to 

the CNN prediction module. Each converted voltage image is classified 
to determine whether the WAAM process is normal or abnormal. For this 
purpose, a CNN classifier should be developed in advance. The CNN 
classifier is trained and tested by the training and test dataset which 

were generated by labeling the converted voltage images based on the 
video data. Labeling consists of three sequential labeling tasks for video 
frame, vm, and voltage image data. 

First, the video frames are labeled. The video data has several frames, 
and each frame contains information on whether the process is normal 
or abnormal. Video labeling is conducted manually by classifying all 
frames of the video data. Each frame is categorized into three types: 
normal, abnormal, and neutral as shown in Fig. 5. 

When the video frames are labeled, vm is recognized by the labels of 
the video data. The label of vm is denoted as lm. Similar to video labeling, 
vm is classified into the same three types. Note that vm is collected every 
1/3000 s, while the video frame is collected every 1/50 s. Thus, each 
video frame includes 60 vms. These 60 vms are labeled as the same type of 
the associated frame. Fig. 6 illustrates labeling 120 vms included in the 
first two frames. 

Next, voltage images are labeled. In the image conversion module, 
each Vw,i,k is converted into a voltage image. There is a one-to-one 
conversion between Vw,i,k and the voltage image; thus, if Vw,i,k is 
labeled, its voltage image is labeled samely. Let us denote Lw,i,k as a set of 
lms in Vw,i,k. Vw,i,k is labeled based on Lw,i,k. As described in Section 3.2.1, 
two sets of voltage images were generated: the training and test. If Vw,i,k 

is for training (test), it is labeled according to Algorithm 1(2). In Algo
rithm 1, Vw,i,k is labeled as normal (abnormal) when all of lms in Vw,i,k are 
normal (abnormal). In other words, if any lm is neutral or two types of 
labels are mixed, Vw,i,k is excluded from the training dataset. The dif
ference between Algorithms 1 and 2 is that Algorithm 1 assigns labels to 
a voltage image only when all lm in Vw,i,k are either normal or abnormal. 
For example, when i = 4, Vw,i,k includes 12,000 lms from 200 video 
frames and all the 12,000 lms are either normal or abnormal. Generally, 
CNN models are known to exhibit good classification performance when 
the training data have clear patterns of objects to be classified. These 
pure images better depict the behavior of the time-series voltage data 
generated when the WAAM process is either normal or abnormal. Ulti
mately, this improves the classification performance of the CNN model. 

Algorithm 1. Labeling for the training dataset.  

Fig. 6. All the 120 vms are labeled as neutral (i.e., l1,…, l120 = neutral) because the label of the two frames are neutral.  
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Algorithm 2. Labeling for the test dataset. 

As described in Section 3.2.1, 537 and 2505 voltage images were 
obtained for the training and test datasets, respectively. We labeled 
these images using three labeling tasks. As a result, the 537 voltage 
images were labeled as 390 normal and 147 abnormal images. Similarly, 
the 2505 voltage images were labeled as 1495 normal and 1010 
abnormal images. We developed and validated a CNN classifier based on 
these training and test datasets. DenseNet169 was employed as the CNN 
model structure, Adam as an optimizer, with 16 batches, 30 epochs, and 
categorical cross-entropy as a loss function to develop the CNN 
classifier. 

We used 70% of the training dataset to train the CNN classifier and 
the remaining 30% of the training dataset as the validation dataset. CNN 
model weights were selected at the 29th epoch, where the accuracy of 
the validation dataset reached 95%. Subsequently, the classification 
performance of the trained CNN classifier was evaluated using the test 
dataset. The CNN classifier achieved 96% accuracy for the test dataset. 
In addition, it was assessed using the four indices of accuracy, precision, 
recall, and f1-score. Accuracy is the ratio between the number of clas
sified images and the number of images. The total number of images was 
2505, and 2405 were correctly classified; thus, the accuracy was 
calculated as 0.96 (= 2405 / 2505). The other three indices were 
calculated for each label. Precision is regarded as the ratio between the 
number of correctly classified images and the number of classified im
ages for each label. The recall is the ratio between the number of 
correctly classified images and the number of images for each label. The 
f1-score is a harmonized mean of the precision and recall for each label. 
Support denotes the number of images for each label. Table 2 lists the 
three indices of the CNN classifier for the normal and abnormal labels. 

For a normal label, 1405 images among 1495 normal images were 
correctly classified; thus, the precision was 0.94 (= 1405 / 1495). 
Additionally, 1420 images were classified as normal among 2505 im
ages; thus, the recall was 0.99 (= 1405 / 1420). The f1-score was 
calculated as 0.97 using the harmonized mean of 0.94 and 0.99. The 
three indices of the abnormal scenario were calculated in a similar 
manner. All the indices were larger than 0.90, which meant that the 
CNN classifier had a good classification performance. Among the 
indices, recall of the abnormal label had the lowest value of 0.90. This 
will be investigated in Section 3.3. 

3.2.3. Real-time monitoring module 
Real-time monitoring is performed simultaneously with image con

version and CNN prediction modules. Whenever the voltage image is 
generated from the image conversion module, the CNN prediction 
module classifies it as normal or abnormal through the CNN classifier, 
trained and validated in advance. The real-time monitoring module 
provides the results of the CNN prediction model in real-time through a 
video on a dashboard. Fig. 7 show snapshots of the video on the dash
board. The video file is attached in the end of this paper. It shows real- 
time monitoring performed by classifying the 2505 voltage images of the 
test dataset. Whenever the bead shape became abnormal in the video, 
the square became red. Additionally, the voltage image became unstable 
when the process was abnormal. Overall, we conclude that the proposed 
algorithm performed well. 

It should be noted that real-time monitoring starts after the first 4 s in 
the video. This is because the bandwidth was set to 4 s. After the first 4 s, 
the first voltage image was generated, and real-time monitoring started. 
Because i = 0.02, the voltage image was generated every 0.02 s; thus, 
the real-time monitoring was updated every 0.02 s. Notably, there was a 
time gap between the time when the WAAM process changed from 
normal to abnormal and when the square changed from green to red. 
Suppose that w = 4 and the WAAM process changes from normal to 
abnormal at time point of 10 s. In such a case, the voltage image at the 
time point of 10 s includes vms have been collected from time point of 6 s 

Fig. 7. The left parts of both figures show the video frames, and the right part show the voltage image data. The square in the video frame indicates whether the 
WAAM is normal or abnormal, with green (left figure) and red (right figure) colors, respectively. 

Table 2 
Performance of the CNN classifier.  

Label Precision Recall f1-score Support 

Normal  0.94  0.99  0.97  1495 
Abnormal  0.99  0.90  0.95  1010  
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to time point 10 s. During the 4 s, the WAAM process is normal; thus, the 
voltage image at the time point of 10 s shows a normal time-series 
pattern of vm. Therefore, CNN classifier classifies the image as normal. 
As time passes, newly generated voltage images have more vms from the 
abnormal process; therefore, their time-series pattern of vm become 
unstable. The CNN classifier classifies the voltage image as abnormal 
when the unstable part becomes larger than the stable part. This is why a 
time gap exists between the two images and explains why the recall 
score of the abnormal label in Table 3 has a low value. 

3.3. Sensitivity analysis for i and w 

As described in Section 3.2, we set i = 0.02, w = 4 for the training 
dataset, and i = 0.2, w = 4 for the test dataset. The two parameters i and 
w are important because they affect the classification performance and 

computational costs. Thus, it is investigated by testing the proposed 
method with respect to various combinations of i and w. As previously 
mentioned, the training and test datasets were prepared through three 
labeling tasks: video labeling, vm labeling, and voltage image labeling. 
The two parameters are related to the voltage image labeling task 
because they determine the interval and bandwidth. 

As shown in Fig. 3, a voltage image is generated by sliding the time 
window. When i is small, the interval between the time windows is 
small; thus, the generated images overlap significantly. The images then 
become similar to each other because they share a large number of vm 
values. This makes it difficult to extract features when training a CNN 
classifier. Additionally, a small i generates a large number of images, 
which increases the learning time but helps train the CNN classifier. 
Thus, a small i has both advantages and disadvantages. The other 
parameter w determines the length of the time window. When w is large, 

Table 3 
Image conversion by dataset condition.  

Table 4 
Dataset.  

Dataset Training dataset Test dataset 

Condition The number of generated images Condition The number of generated images 

i w Normal Abnormal Total i w Normal Abnormal Total 

DS1  0.02  0.5  5506  2357  7863  0.02  0.5  2072  1133  3205 
DS2  0.1  0.5  1106  466  1572  0.02  0.5  2072  1133  3205 
DS3  0.2  0.5  543  245  788  0.02  0.5  2072  1133  3205 
DS4  0.5  0.5  215  98  313  0.02  0.5  2072  1133  3205 
DS5  1  0.5  110  47  157  0.02  0.5  2072  1133  3205 
DS6  0.02  1  5205  2166  7371  0.02  1  1910  1195  3105 
DS7  0.1  1  1049  424  1473  0.02  1  1910  1195  3105 
DS8  0.2  1  508  230  738  0.02  1  1910  1195  3105 
DS9  0.5  1  208  86  294  0.02  1  1910  1195  3105 
DS10  1  1  106  43  149  0.02  1  1910  1195  3105 
DS11  0.02  1.5  4950  1995  6945  0.02  1.5  1764  1241  3005 
DS12  0.1  1.5  989  399  1388  0.02  1.5  1764  1241  3005 
DS13  0.2  1.5  492  203  695  0.02  1.5  1764  1241  3005 
DS14  0.5  1.5  197  80  277  0.02  1.5  1764  1241  3005 
DS15  1  1.5  98  40  138  0.02  1.5  1764  1241  3005 
DS16  0.02  2  4709  1850  6559  0.02  2  1657  1248  2905 
DS17  0.1  2  942  369  1311  0.02  2  1657  1248  2905 
DS18  0.2  2  460  196  656  0.02  2  1657  1248  2905 
DS19  0.5  2  187  74  261  0.02  2  1657  1248  2905 
DS20  1  2  91  42  133  0.02  2  1657  1248  2905 
DS21  0.02  3  4284  1620  5904  0.02  3  1570  1135  2705 
DS22  0.1  3  865  316  1181  0.02  3  1570  1135  2705 
DS23  0.2  3  433  159  592  0.02  3  1570  1135  2705 
DS24  0.5  3  168  68  236  0.02  3  1570  1135  2705 
DS25  1  3  86  34  120  0.02  3  1570  1135  2705 
DS26  0.02  4  3930  1427  5357  0.02  4  1495  1010  2505 
DS27  0.1  4  793  280  1073  0.02  4  1495  1010  2505 
DS28  0.2  4  390  147  537  0.02  4  1495  1010  2505 
DS29  0.5  4  155  59  214  0.02  4  1495  1010  2505 
DS30  1  4  81  28  109  0.02  4  1495  1010  2505  
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each generated image includes many vm values; so it is useful for training 
the classifier. However, a large w would cause the images to overlap, and 
the generated images become similar. This image overlapping problem 
is caused not only by a small i but also by a large w. So the optimal values 
for i and w should be investigated. 

In addition, i and w also affect the real-time monitoring module. As 
previously mentioned, real-time monitoring begins after the first w 
seconds. Thus, as w increases, real-time monitoring starts with a delay. 
The other parameter i determines the time interval between the voltage 
images. The WAAM process is determined to be normal or abnormal in 
the proposed algorithm whenever the voltage image is generated. When 
i used in real-time monitoring is small, the voltage images are frequently 
generated; thus, the monitoring becomes closer to real-time. However, a 
small i value would require a tremendous computational effort because 
the CNN prediction and real-time monitoring modules are performed 
and updated whenever the voltage image is generated. 

Table 3 shows examples of the voltage images according to several 
interval and bandwidth values. The nine left images were generated by 
setting i = 0.02 and 0.2 while maintaining w = 2. When i = 0.02, the 

three images significantly overlapped. In contrast, they overlapped less 
when i = 1. The right three images were generated by setting w = 0.5, 2, 
and 4 while maintaining i = 2. When w = 0.5, only a small part of the 
time-series plot was shown. In contrast, when w = 4, a large part of the 
time-series plot was shown. Note that the images had the same size at 
224 × 224 pixels, although w differed. 

To investigate the effect of w and i, five values; 0.02, 0.1, 02, 0.5, and 
1 for i and six values; 0.5, 1, 1.5, 2, 3, and 4 for w were set. Therefore, a 
total of 30 combinations of i and w values were obtained. First, voltage 
images were generated for the training dataset according to the 30 
combinations of i and w (left part of Table 4). The voltage values 
collected from DOE 1, 2,., 15 in Table 1, were converted into training 
voltage images. We denote the 30 sets of the generated voltage images as 
DS1, DS2,…, DS30. As expected, the number of generated images 
decreased as i increased. The number of images decreased slightly as w 
increased. The first image was generated after the first w seconds 
because it takes w seconds to generate. Thus, as w decreased, the first 
image appeared earlier, which meant that a larger number of images 
were generated. However, this increase was not significant compared 
with the increase due to i (Table 4). For the test datasets, we fixed 
i = 0.02 and changed w, as shown in Table 4. 

Second, we generated voltage images for the test dataset according to 
six combinations of i and w (right part of Table 4). In Table 4, i is fixed at 
a small value of 0.02, and only w has six values. This was done to 
generate many images for the test dataset, which is useful for real-time 
monitoring. By setting i as a small value of 0.02 s, the images are 
generated every 0.02 s; Thus, the proposed algorithm detects the 
abnormal process every 0.02 s, which is very close to real-time. For 
example, the training datasets of DS28 and DS26 were generated by 
setting i = 0.2 s and 0.02 s, respectively, for a same w value; thus, DS28 
is a subset of DS26. In case of DS26, the number of training data is larger 
than that of testing data because both training and testing datasets were 
generated from the same interval (i.e., i = 0.02 s). In DS28, we increased 
i from 0.02 to 0.2 when generating the training data but did not increase 
it when generating testing data in order to make the testing environment 
close to real-time monitoring. After preparing all the datasets, we 
trained and tested the CNN classifiers on each dataset. 

Before training the CNN classifier, an appropriate CNN structure 
should be selected in advance. We considered four CNN structures, 
ResNet50, ResNet101, DenseNet121, and DenseNet50 as alternatives 
because they are available in Keras applications. It was desirable to 
apply the four CNN structures to all 30 datasets. However, this involved 
high computational costs, resulting in long training and testing time. 
Applying the four structures for the 30 datasets meant 120 CNN classi
fiers were to be trained. Therefore, we selected only DS6, DS16, and 
DS21 among the 30 datasets and applied the four CNN structures to the 
selected datasets. Specifically, 70% of the training data for each dataset 
were used to train the CNN classifier and the other 30% as a validation 
set. During the training, the epoch increased, and the accuracy of the 
validation set changed accordingly. The optimal CNN weights were 

Table 5 
Results of the model selection experiments.   

Indicators ResNet50 ResNet101 DenseNet121 DenseNet169 

DS6 Accuracy 0.847 0.896 0.886 0.900 
Learning time 1729.28 2900.20 1849.09 2254.93 
Prediction time 5.42 (0.002) 9.39 (0.004) 7.03 (0.003) 8.44 (0.003) 

DS16 Accuracy 0.803 0.871 0.844 0.898 
Learning time 1523.56 2553.74 1646.17 1992.76 
Prediction time 5.67 (0.002) 8.86 (0.004) 5.71 (0.002) 7.55 (0.003) 

DS21 Accuracy 0.835 0.854 0.889 0.920 
Learning time 1366.24 2288.88 1476.30 1821.41 
Prediction time 5.31 (0.002) 8.60 (0.004) 6.04 (0.003) 6.97 (0.003) 

Average Accuracy 0.828 0.874 0.873 0.906 
Learning time 1539.69 2580.94 1657.19 2023.03 
Prediction time 5.47 8.95 6.26 7.65  

Table 6 
Results of the dataset selection.  

Data 
set 

Interval Bandwidth Accuracy Learning 
Time 

Prediction 
Time 

DS1  0.02  0.5  0.887  3855.04 7.19 (0.002) 
DS2  0.1  0.5  0.889  936.01 7.11 (0.002) 
DS3  0.2  0.5  0.899  569.95 7.20 (0.002) 
DS4  0.5  0.5  0.677  328.25 7.19 (0.002) 
DS5  1  0.5  0.647  249.14 7.17 (0.002) 
DS6  0.02  1  0.917  3651.93 6.95 (0.002) 
DS7  0.1  1  0.934  893.33 6.96 (0.002) 
DS8  0.2  1  0.857  540.86 6.97 (0.002) 
DS9  0.5  1  0.841  322.65 6.93 (0.002) 
DS10  1  1  0.488  246.33 6.89 (0.002) 
DS11  0.02  1.5  0.887  3583.95 6.71 (0.002) 
DS12  0.1  1.5  0.881  835.37 6.74 (0.002) 
DS13  0.2  1.5  0.680  491.06 6.71 (0.002) 
DS14  0.5  1.5  0.715  298.28 6.75 (0.002) 
DS15  1  1.5  0.587  235.01 6.69 (0.002) 
DS16  0.02  2  0.905  3218.37 6.47 (0.002) 
DS17  0.1  2  0.849  823.78 6.52 (0.002) 
DS18  0.2  2  0.839  496.44 6.55 (0.002) 
DS19  0.5  2  0.571  300.19 6.53 (0.002) 
DS20  1  2  0.571  235.16 6.52 (0.002) 
DS21  0.02  3  0.871  3023.32 6.07 (0.002) 
DS22  0.1  3  0.880  754.65 6.06 (0.002) 
DS23  0.2  3  0.885  464.73 6.06 (0.002) 
DS24  0.5  3  0.581  291.14 6.10 (0.002) 
DS25  1  3  0.581  233.64 6.11 (0.002) 
DS26  0.02  4  0.937  2679.58 5.64 (0.002) 
DS27  0.1  4  0.940  706.76 5.70 (0.002) 
DS28  0.2  4  0.958  440.64 5.65 (0.002) 
DS29  0.5  4  0.598  280.25 5.61 (0.002) 
DS30  1  4  0.538  217.13 5.61 (0.002)  
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determined when the accuracy of the validation set was the highest. 
Subsequently, the test dataset was used to evaluate the classification 
performance of the classifier. 

Table 5 shows the accuracy, learning, and prediction times of the 
CNN classifiers obtained by applying the four CNN structures. The 
learning time is the elapsed time for training the CNN classifier, and the 

prediction time is the time for classifying the voltage images of the test 
dataset. Values in parentheses in prediction time in Table 5 indicate the 
average time to predict a single voltage image. All four CNN structures 
exhibited a robust performance with respect to the three datasets. 
ResNet50 was first excluded because it exhibited the lowest accuracy. 
Additionally, ResNet101 was also omitted because it showed the most 

Fig. 8. Accuracy (left) is primarily affected by i rather than w, and it drastically decreases as i increases from 0.2 to 0.5. This means that when i is larger than 0.2, the 
number of images is insufficient to train the CNN classifiers with high accuracy. Therefore, it is desirable to set i to less than 0.2. However, the learning time (left) 
drastically increased when i is less than 0.1. Consequently, it is recommended to set i between 0.1 and 0.2 when considering the tradeoffs between accuracy and 
learning time. In contrast, as w increased, the accuracy increased. However, a large w had the disadvantage of a late start of real-time monitoring. Thus, when 
determining w, both the accuracy and starting time of real-time monitoring should be considered. 

Fig. 9. The eight images in upper side and the other eight 
images in lower side are classified as normal and abnormal, 
respectively. In the normal cases, the red regions were 
located either in the upper or lower parts of the time-series 
waveforms in the images, and they appeared stable without 
exhibiting drops. In contrast, the red regions in the 
abnormal cases were located in the middle of the time- 
series waveforms in the images, and they exhibited large 
drops compared with the normal figures.   
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prolonged learning and prediction time. DenseNet169 has better accu
racy than DenseNet121, whereas DenseNet121 is faster in learning and 
prediction. Finally, DenseNet169 was selected because it significantly 
increases the accuracy while only slightly sacrificing the learning and 
prediction times compared with DenseNet121. 

The next step was training the CNN classifiers for the 27 datasets 
while excluding DS6, DS16, and DS21, because they were already fitted 
to select the appropriate CNN structure. It was observed that Dense
Net169 was suitable for DS6, DS16, and DS21; thus, it was used again to 
train the CNN classifiers for the other 27 datasets. Table 6 lists the ac
curacy, learning, and prediction times of the CNN classifiers for the 30 
datasets. They were fitted by applying DenseNet169. In terms of interval 
i, the number of voltage images and learning time increased as i 
decreased, as expected. This is because a more significant number of 
voltage images were generated as i decreased. In terms of bandwidth w, 
the accuracy increased as w increased because a voltage image with a 
large w has many vm values. As the voltage image includes more vm 
values, it includes a larger part of the time-series plot. This is useful for 
improving classification performance. Moreover, w slightly affects the 
learning time. As w increases, the first image is generated later; thus, 
fewer images are generated. A large w leads to short learning time; yet 
delays the start of real-time monitoring. Additionally, the prediction 
time decreases as w increases for the same reason. However, the average 
elapsed time of the prediction time does not change according to i and w. 

It was observed that the overall behavior of accuracy, learning, and 
prediction times according to i and w was reasonable. Next, we 
attempted to determine the optimal i and w for which the accuracy, 
learning, and prediction time are desirable. The prediction time was not 
considered because the average time is not affected by i and w. Fig. 8 
shows the accuracy (left) and learning time (right) according to i and w. 
In this example, we recommend setting i between 0.1 and 0.2 and w to 4 
where both accuracy and learning time were satisfactory. 

On the other hand, it is interesting to compare the proposed method 
with the existing CNN method that does not include 1D data. Recently, 
[26] suggested another real-time monitoring algorithm using CNN. In 
their work, the CNN model was trained from the 2D data which are same 
data that we used. [26] generated 2D images with interval 
i = 0.033 s/frame and test their CNN model. As a result, their CNN 
model showed 96% of accuracy. In case of the proposed method, we 
generated 30 datasets (denoted as DS1,2,…,30 in Table 4) by setting 
various i and w values. Among them, DS21, which was generated with 
i = 0.02 s/frame, is most similar to the data [26] used. As a result, the 
proposed CNN model showed 93.7% of accuracy as reported in Table 4. 
Both CNN models employed same model structure of DenseNet169 and 
similar intervals and were applied; thus, we believe that the comparing 
two models is fair. Our accuracy is slightly less than [26] and this is 
somewhat expected result because [26]’s model works based on 2D 
video frame data while the proposed method works based on simple 1D 
voltage data. Although the classification accuracy of the proposed 
method is slightly smaller, the proposed method has advantages of using 
simple 1D data. 

3.4. Validation using Grad-CAM 

As described in Sections 3.2 and 3.3, the CNN classifier with a good 
classification performance was obtained. We investigated the reason 
behind the good classification performance of CNN classifiers and vali
dated it using a class activation mapping (CAM) method. When the CNN 
classifier determines each voltage image, it focuses on particular parts 
that express the features of normal and abnormal classes. We employed a 
particular CAM method called grad-CAM, which highlights these parts 
of the images, which are considered more important than the other 
regions. 

Fig. 9 shows examples of grad-CAM for the CNN classifier that was 
trained in Section 3.2. Specifically, grad-CAM was applied to the last 
convolutional layer. It was implemented using visualize_cam, which is a 
Keras visualization function. Visualize_cam expresses the result of grad- 
CAM in color in the voltage image. Red regions are important regions 
where the CNN classifier focuses on classifying the voltage image. In 
contrast, the blue regions represent the regions in which the CNN clas
sifier does not concentrate. Overall, we concluded that the location and 
shape of the red regions of the normal and abnormal figures were 
markedly different, which implied that the CNN classifiers were 
adequately trained. 

4. Concluding remarks 

In this study, a CNN-based real-time monitoring algorithm was 
developed using the voltage data generated during fabricating Mo beads 
by the WAAM process. The algorithm consists of three modules: image 
conversion, CNN prediction, and real-time monitoring. The image con
version module converts the voltage values into voltage images in a 
time-series waveform. The CNN prediction module categorizes each 
voltage image into normal or abnormal to detect whether the WAAM 
process is normal or abnormal. Finally, the real-time monitoring module 
expresses the results of the CNN prediction model on a real-time dash
board. The performance of the proposed algorithm is highly dependent 
on two parameters, i and w. Therefore, a sensitivity analysis was con
ducted for i and w to determine the effects of the two parameters, based 
on which guidelines for setting them were obtained. Finally, the CNN 
classifiers were validated by applying grad-CAM to visualize regions that 
are important for classification. It was concluded that the CNN classifiers 
were adequately trained because they captured the critical regions in the 
voltage images. 

It is interesting to discuss applicability of classical machine learning 
(ML) methods to develop the classifier. In the proposed method, CNN 
was employed as the classifier because it does not require feature 
extraction while the classical ML methods do. In the WAAM process, 
voltage data are collected on a real-time basis and the process is judged 
as normal or abnormal based on the voltage data. Thus, the algorithm 
should be able to classify the time-series data into normal or abnormal. 
When learning the classical ML models from the time-series data, fea
tures should be determined by the users, and then, the models classify 
the time-series data based on the features. Thus, the performance of the 
classical ML models largely depends on the feature extraction. In 
contrast, CNN does not require the feature extraction. The proposed 
method converts the time-series data into 2D images and CNN model 
classifies the 2D images. Because CNN automatically extracts spatial 
features of 2D images, users are not required to determine the features 
[27]. In our WAAM process, we had difficulties in defining features of 
the voltage data, thus, we used the CNN model for time-series classifi
cation. On the other hand, this feature-extraction-free approach has a 
disadvantage over the classical ML methods in that it is a “black-box” 
model. The CNN model cannot explain why it classifies each time-series 
data into normal or abnormal. In contrast, the classical ML models, for 
example, support vector machine (SVM), can explain the reason because 
SVM estimates coefficient for each feature. Thus, we can identify which 
features are critical in classifying the WAAM process based on the esti
mated coefficients. In order to overcome this disadvantage, we addi
tionally conducted grad-CAM in Section 3.4, to highlight regions of the 
images, which serve as critical features in the classification. 

From the data mining perspective, our problem can be considered as 
a time-series classification problem. Instead of CNN, meta learning can 
be employed to train the 1D data (time-series data) classification model. 
Main advantage of the meta learning is good performance with a small 
learning set. In sptie of this advantage, meta learning methods have not 
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been applied to time-series data classification in the WAAM process so 
far. We believe that using meta learning methods can be very good when 
the learning data is small. However, even if the meta learning methods 
are applied, we believe that our approach of mapping 1D to 2D and 
training 2D classification model is still useful because meta learning 
methods show good performance in image classification problems. 

In future research, it will be necessary to generate new types of 
waveforms that are not used for learning. There is a limit to adding a 
new type of waveform each time, and it is also important to understand 
whether a new type has been generated. 
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