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ABSTRACT

We present the computational methodology that allows rigorous and efficient nine-dimensional (9D) quantum calculations of the intermolec-
ular vibrational states of noncovalently bound trimers of diatomic molecules, with the monomers treated as rigid. The full 9D vibrational
Hamiltonian of the trimer is partitioned into a 3D “frame” (or stretching) Hamiltonian and a 6D “bend” Hamiltonian. These two Hamil-
tonians are diagonalized separately, and a certain number of their lowest-energy eigenstates is included in the final 9D product contracted
basis in which the full 9D intermolecular vibrational Hamiltonian is diagonalized. This methodology is applied to the 9D calculations of the
intermolecular vibrational levels of (HF)3, a prototypical hydrogen-bonded trimer, on the rigid-monomer version of an ab initio calculated
potential energy surface (PES). They are the first to include fully the stretch-bend coupling present in the trimer. The frequencies of all bend-
ing fundamentals considered from the present 9D calculations are about 10% lower than those from the earlier quantum 6D calculations that
considered only the bending modes of the HF trimer. This means that the stretch-bend coupling is strong, and it is imperative to include it
in any accurate treatment of the (HF)3 vibrations aiming to assess the accuracy of the PES employed. Moreover, the 9D results are in better
agreement with the limited available spectroscopic data that those from the 6D calculations. In addition, the 9D results show sensitivity to
the value of the HF bond length, equilibrium or vibrationally averaged, used in the calculations. The implication is that full-dimensional
12D quantum calculations will be required to obtain definitive vibrational excitation energies for a given PES. Our study also demonstrates
that the nonadditive three-body interactions are very significant in (HF)3; and have to be included in order to obtain accurate intermolecular
vibrational energy levels of the trimer.

Published under an exclusive license by AIP Publishing.

I. INTRODUCTION So far, these investigations have focused overwhelmingly on the
weakly bound molecular dimers. The quantum calculations of their

Molecular complexes bound by noncovalent, hydrogen- (ro)vibrational states and spectra have generally been performed

bonded and van der Waals, interactions have been the subject
of intense research activity by experimentalists and theorists alike
for decades, and the attention they receive continues unabated.

under the assumption of rigid monomers, motivated by the large
disparity, typically an order of magnitude or more, between the fre-
quencies of the intramolecular vibrations of the monomers and the
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intermolecular vibrations of the complexes.' * A significant step for-
ward was made by the full-dimensional quantum calculations of
(HF);, (DF),, and HEDF,® as well as (HCl)z,"‘f for the monomers
in their ground vibrational states. However, certain widely mea-
sured spectroscopic properties of molecular dimers, such as the
intramolecular vibrational frequencies and their shifts from the
gas-phase monomer values, as well as the changes in tunneling
splittings upon intramolecular vibrational excitations, can be reli-
ably obtained only from fully coupled quantum calculations in
full dimensionality that extend to excited vibrational states of flex-
ible monomers. Until recently, only a few such comprehensive,
computationally highly demanding treatments were reported for
(HF),""" and (HCl),."? Intra- and intermolecular (ro)vibrational
states of (H,O), were the subject of the [6 + 6]D adiabatic
approach'” " and fully coupled quantum twelve-dimensional (12D)
calculations that reached the manifold of the excited water bend
vibrations.'® Methodological advances made by us in the past couple
of years'' have enabled full-dimensional and fully coupled quan-
tum treatments of several noncovalently bound triatom-diatom
complexes—H,0/D,0-CO,"” HDO-CO,"® H,0-HCL" and sev-
eral H/D isotopologues,”” the first to yield converged energies of
all intramolecular vibrational fundamentals, together with low-lying
intermolecular vibrational states, for molecular dimers with more
than four atoms.

Clearly, in the case of the noncovalently bound molec-
ular dimers, the methodologies for full-dimensional and fully
coupled quantum calculation of their intra- and intermolecular
(ro)vibrational eigenstates have reached a high degree of sophis-
tication and power. Through comparison between the rigorously
calculated rovibrational eigenstates and spectra of the dimers with
the corresponding experimental far-infrared (FIR), mid-IR, and
Raman spectroscopic data, it is now possible to reliably assign the
latter and also test the quality of the potential energy surfaces (PESs)
employed and guide their refinement. Moreover, the dimer PESs
determined in this way can be used to construct the two-body
interaction potentials, the dominant component of the many-body
representation of the PESs for aggregates of noncovalently bound
molecules. For example, in the case of (HCl), clusters,”” the two-
body potential was obtained from the 6D ES1-EL PES of the HCI
dimer,'” which accurately predicts many spectroscopic properties of
this dimer. The evident impressive progress in the rigorous quantum
calculations of the rovibrational states of the noncovalently bound
molecular dimers provides a strong motivation for its extension to
weakly bound molecular trimers and, eventually, larger molecular
clusters.

Noncovalently bound molecular trimers hold a special place
in the hierarchy of molecular clusters. These are the smallest clus-
ters in which the nonadditive many-body (three-body in this case)
interactions arise, terms that are essential for accurate description
of the structural and dynamical properties of condensed phases.
Consequently, molecular trimers are the obvious, most natural can-
didates for sensitive testing of the computed three-body interactions
through comparison of high-level bound state calculations with the
spectroscopic datasets. However, this presupposes the existence of
such a rigorous quantum methodology for weakly bound molecular
trimers, which is not the case at the present time.

An obvious obstacle to its development is the high dimen-
sionality of the trimers. Thus, for (H,O)s, the full intra- and
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intermolecular vibrational problem is 21D. Its dimensionality is
reduced to 12D if the monomers are treated as rigid, which is
likely to be manageable eventually, but only after major, time-
consuming methodological and computational efforts. In the mean-
time, the vibrational states of (H>O); and its isotopologues have
been calculated by a variety of approximate treatments. Some of
them involved variational calculations in the reduced-dimension
subspaces of either the torsional, or flipping, motions of the
three free O-H bonds around each of the hydrogen-bonded O-H
bonds,”” " or the intramolecular vibrations of the three water moi-
eties.”! The vibrational levels of (H,O); were calculated in the
vibrational self-consistent field (VSCF)** and harmonic™ approx-
imations. Finally, the tunneling splittings in the ground state of
(H,0);3 were calculated by means of the fixed-node diffusion Monte
Carlo (DMC) method’** and also using the ring-polymer instanton
approach.”

Noncovalently bound molecular trimers comprised of diatomic
moieties, e.g., (HF)3 and (HCl)s, in principle, offer better and more
immediate prospects for rigorous quantum calculations of their
vibrational levels, owing to their lower dimensionality, 12D for flex-
ible monomers and 9D if the monomers are taken to be rigid. Yet,
the only molecular trimer to date for which fully coupled quan-
tum bound-state calculations has been reported is (H»)s for rigid
monomers’® and in full dimensionality,”” in both cases finding only
one bound state for each symmetry. The very weakly bound (H,)s is
a special case, and the methodologies used in these two calculations
have not been applied to any other more strongly bound molecular
trimer.

Motivated by the present unsatisfactory situation, in this paper,
we introduce the computational methodology for rigorous 9D quan-
tum calculations of the intermolecular vibrational states of nonco-
valently bound trimers of diatomic molecules. The only dynamical
approximation made in this treatment is keeping the bond lengths
of the three monomers fixed. This assumption is certainly reason-
able for (HF)s3, given that the intramolecular HF stretch frequencies
(close to 4000 cm ™) are considerably higher than those of the inter-
molecular bends (under 1000 cm™') and intermonomer stretches
(under 200 cm™). The approach is designed with more strongly
bound molecular trimers in mind, such as the hydrogen-bonded
HF and HCI trimers with many intermolecular vibrational states
and where three-body interactions are expected to play an impor-
tant role. We chose (HF)3, a paradigmatic hydrogen-bonded trimer,
for the initial implementation of the new methodology because of
the availability of a full-dimensional PES, as well as some pertinent
spectroscopic data in the literature. In addition, several lower-
dimensional quantum bound-state calculations have been published
previously, which offer at least a partial comparison with the 9D
results reported here.

A comprehensive review of the early spectroscopic and quan-
tum dynamics studies of HF clusters, including the trimer, is avail-
able.”’ These studies are also covered in Ref. 1. From the IR spectra
of (DF)3*! and the FIR spectra of (HF)3,* both in supersonic jets,
it was determined that the two isotopologues have a cyclic struc-
ture that, owing to the vibrational averaging, is that of an oblate
symmetric top. The measured gas-phase frequencies of the degen-
erate intramolecular HF and DF stretch fundamentals of the trimers
are3712"7"" and 2724.6 cm™","! respectively. Experimental informa-
tion about the intermolecular vibrations of the HF and DF trimers
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is limited. For (HF)s, some of it comes from the spectroscopy
in Ne® and Ar'® matrices. In addition, two bands, at 494 and
602 cm™', appear in the FIR spectrum of the gas-phase (HF)s,"
and are attributed to the in-plane and out-of plane bending
fundamentals, respectively.

On the theory side, Quack, Stohner, and Suhm have con-
structed several PESs for (HF); and larger HF aggregates,””"* all
of them represented as a sum of many-body terms. They com-
bined two different analytical 12D three-body terms obtained from
ab initio electronic structure calculations with the two-body terms
extracted from the ab initio calculated and empirically refined PESs
for HF dimer.”””" Quack et al. used these PESs and the DMC
method to calculate the binding energies Dy and other dynamical
properties of HF oligomers, but not their intermolecular vibrational
eigenstates.””** In addition, Io et al°' have performed ab initio
path integral molecular dynamics simulations of (HF)3 in order to
investigate the role of the nuclear quantum effects in stabilizing the
hydrogen-bonding network in the trimer. Anharmonic intra- and
intermolecular vibrational frequencies of (HF)3; have been calculated
utilizing the vibrational self-consistent field (VSCF) method®” and
also by obtaining the harmonic frequencies at the high level of ab ini-
tio electronic structure theory and then computing their anharmonic
corrections at the MP2 level.*”

Variational calculations of the intermolecular vibrational lev-
els of (HF); have so far been limited to the bending (or torsional)
levels only, with the three intermonomer center-of-mass (c.m.) dis-
tances and HF bond lengths held fixed. In the first such study by
Kolebrander et al.,** the three in-plane bends were treated sepa-
rately, as decoupled from the three out-of plane bends, leading to
two separate 3D quantum calculations. Subsequently, Wang and
Carrington went one step further and performed 6D quantum cal-
culations of the bending levels of (HF); and (DF)3,” where the
in-plane and out-of-plane bends were treated as coupled, and all
other degrees of freedom (DOFs), intra- and intermolecular, as
frozen. As a result, both studies left unanswered the key question
of the coupling between the intermolecular bending and stretching
DOFs of the trimer, and its effects on the intermolecular vibrational
states. This coupling is expected to be significant in (HF)3 (and the
results presented here confirm this). In the absence of such infor-
mation, and the uncertainty that it creates, the computed bending
levels cannot be used with confidence to assess the quality of the
PESs employed, nor to assign reliably the bands in the measured
spectra.

The quantum 9D calculations reported in this paper are the first
to include all intermolecular DOFs of (HF); in a rigorous manner.
Consequently, they can, and do, characterize accurately the strength
of the stretch-bend coupling in this prototypical hydrogen-bonded
trimer, and its manifestations in the intermolecular vibrational level
structure. A three-body PES by Quack et al.*® is employed in the
present calculations. It combines the SO-3 two-body potential™
with the three-body term designated HF3BG."" Hereafter, this (HF);
PES is referred to as SO-3 + HF3BG. The same PES was used
by Wang and Carrington in their quantum 6D calculations of the
bending energy eigenstates of (HF)3.”> Consequently, direct com-
parison can be made between their 6D results and the present ones
in 9D. Significant difference between the two sets of results is found,
demonstrating that the stretch-bend coupling is strong in (HF)s.
Therefore, reduced-dimension bound-state calculations that do not
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include the stretch-bend coupling, such as those in 6D of the bend-
ing states alone, cannot provide a reliable assessment of the accuracy
of the PES employed. A comparison is also made with the avail-
able experimental data in the literature, which is unfortunately scant.
It shows that including the stretch-bend coupling in the 9D cal-
culations improves significantly the agreement between theory and
experiment, over that for the 6D calculations.

This paper is organized as follows: Computational methodol-
ogy is described in Sec. II. In Sec. III, we present and discuss the
results. Section IV contains the conclusions.

Il. COMPUTATIONAL METHODOLOGY
A. Coordinates and Hamiltonian

We follow Wang and Carrington™ in using the following coor-
dinates, depicted schematically in Fig. 1, for the cyclic (HF)3 in the
rigid-monomer approximation:

(1) The intermolecular “frame” coordinates: The three
monomer-c.m.-to-monomer-c.m. distances, Ry (k=1-3),
where R; is the distance from monomer 2 to monomer
3, R, that from monomer 1 to monomer 3, and R; that
from monomer 1 to monomer 2. They are equivalent to
the intermolecular stretching coordinates, and in the later
sections of this paper, the vibrations primarily associated
with them will be referred to as the intermolecular stretching
vibrations.

(2) The intermolecular “bend” coordinates: The six local polar
and azimuthal angles (6, ¢,), (k = 1-3) that fix the orienta-
tion of the monomer-k internuclear vector r (which points
from the F nucleus to the H nucleus of monomer k) with
respect to a local Cartesian axis system centered at the c.m.

2

3 X
3 | R, ¢ —_ 4
Y2

FIG. 1. Schematic depiction of the coordinates used for the cyclic HF timer. Shown
explicitly are the six in-plane coordinates: the three monomer-c.m.-to-monomer-
c.m. distances Ry (k = 1-3), and the three azimuthal angles ¢, (k = 1-3). Also
shown are the (in-plane) X and  axes of local Cartesian systems centered at
the c.m. of monomer k (k = 1-3). The (out-of-plane) 2z, (k = 1-3) axes (not
shown) are parallel to the vector Ry x Ry, i.e., perpendicular to the plane defined
by the c.m.s of the three monomers. For each monomer k the polar angle 6y is
the angle between the HF internuclear vector r, and the local 2 axis. Together,
6« and ¢, define the orientation of r, (k = 1-3) relative to the local Cartesian
axis system attached to monomer k. In the equilibrium geometry on the SO-3
+ HF3BG PES, for 7 = re, Ry = R, = R3 = 4.760 07 bohrs, 6 = 90° (k = 1-3),
and ¢, = 54.01979° (k = 1-3). For additional details, see the text.
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of monomer k. In each of the local axis systems, the Z; axis
is parallel to the vector R; x R;, where R; is the vector from
the c.m. of monomer No. 3 to that of monomer No. 2 and
R; is the vector from the c.m. of monomer No. 3 to that
of monomer No. 1. The % axis is parallel to the bisector of
the interior angle (ay) of the triangle formed by the three
monomer c.m.s with vertex at the kth c.m, and j; = Z x %.
Finally, cos 6 = 1 - 2 /|r| and tan ¢y = ry - 1 /xy - K.

With these coordinates [we henceforth denote all of the
Ry collectively as R and all of the (6, ¢,) coordinates collec-
tively as w] and for a Wilson-type®® volume element given by
do = TT_, (dRy sin 6,d6;d¢y), the J = 0 rigid-monomer vibrational
Hamiltonian can be written as™*

I:I:I%M,rat+IA<M+IA<F+V,+IA<FM+V. (1)

Here, Kot is the rotational kinetic energy operator for all three
monomers

3
KM,rot(w) = ZBMli> (2)
k=1

with [ 7 the operator corresponding to the square of the rotational
angular momentum of monomer k and By the HF-monomer rota-

tional constant. Ky = kf\;) + I%f\f) is an operator corresponding to
the contribution to the kinetic energy from the angular momenta of
the monomers projected onto the trimer frame,

3
, 1. (02 0 0
Ky (Rw) = 3 O [MEP T+ MO T, + MO

k=1

+ Mi)lf)(ikxiky + ikyikx)] (3)

and

3 ) A A ! A A iy A A
Kg;)(R,w) = Z [M,Ef’)lkxl,-x + M)E;{ )lkyliy + Mz(zkl)lkzliz

k<i

+ MO0y + MEDT 1 ix], )

where [}, (a = x,y,2) is the operator corresponding to the projec-
tion of the angular momentum of monomer k onto the ath local

trimer-fixed axis, and the M;;(,) and M;;,i ) are coefficients depending

only on the Ry and the monomer masses (M) [see Egs. (25) and
(27) of Ref. 54] K is the kinetic energy of the three-c.m. frame,

, 3 1 & cosap (RF REL\ O
Kr(R) = — -
F(R) Z[ 20 OR  RiR:Rs \ M; * My, ) ORy

k=1
cosay O L cosa o8 L cosas o’
M; OR;0R3 M: OR;0R3 Ms ORiOR, |
®)
V' is a potential-like term in the kinetic energy
V/(R)= =1 = (6)

SRR
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[We note that Eq. (6) differs from Eq. (33) of Ref. 54. The latter has
a misprint that omits the monomer mass factors.] Kry is a frame-
monomer coupling contribution to the kinetic energy,

N 3 1 A
Ken(Rw) 213 (A9 + S0 i o)
k=1
with

30 _ l[sin(xk(i 1o} B Li) N ( sinag sinocm)i]

“ "2l My \ROR, RnOR MR, MuR; ) OR, [
(8)

1 1 1 i i
hgk) - co;ock . )+ 7(51n0¢m _ singy ), )
‘umRm M]Rl 2Rk MmR1 M[Rm

and (k, I, m) a cyclic permutation of (1, 2, 3).

Finally, V(R,w) is the 9D intermolecular potential-energy
function. We take V to be the rigid-monomer version of the SO-3
+ HF3BG surface computed by Quack, Stohner, and Suhm,*” which
includes one-, two-, and three-body terms. Note that both V and
Katror depend on the choice of the fixed rigid-monomer bond dis-
tance, which we label 7. In this work, we present results for two
different values of 7. One of them, r. = 1.763794 8 bohrs, is the
monomer equilibrium bond distance on the SO-3 + HF3BG sur-
face.”® The other is ro = 1.781 3114 bohrs, a very good estimate of
the ground-state expectation value of the monomer internuclear dis-
tance on that surface. As outlined in Sec. 1] C, it was obtained from
the quantum 3D calculation of the intramolecular vibrational states
of (HF); for the intermolecular coordinates frozen at their expecta-
tion values associated with the intermolecular (3D) frame and (6D)
bending ground states, respectively.

B. General approach

Our contracted-basis approach to solving for the eigenstates of
H is similar to that employed by Wang and Carrington in their 9D
study of the vibrational states of methane.”” We diagonalize H in
three steps. In the first two, we diagonalize the reduced “frame” and
“bend” Hamiltonians, Hr and Hp, respectively.

The 3D Hp for a given 7 is defined as

Hr(R;@,7) = Ke(R) + V' (R) + Ve(R; @, F), (10)

where Vr(R;@,7) is a 3D frame potential-energy function derived
from V and symmetrized so as to be invariant under the operations
of the G, molecular symmetry group™ characterizing (HF)3. Here,
@ represents the means by which the w angle variables in V are
fixed so as to extract Vg from the 9D V. (We have tested two dif-
ferent ways of doing this, which we describe in Sec. II C 1.) With
such a choice for V, it is easy to see that Hp is invariant under the
operations of G1,. We denote the Nr lowest-energy eigenvectors and

eigenvalues of Hp, respectively, as |p) and E;F) (p=1,2,...,NF).
The 6D Hp is defined as

Hp(w; R,7) = Katyor (03 7) + K (w3 R) + V(w3 R, 7), (11)

where R represents a fixed value for of all of the intermonomer dis-
tances Ry and V5 is the 6D PES obtained by evaluating V' at the
fixed intermonomer distances R, = R and the fixed intramonomer
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distances r; = 7. By using the explicit expressions® for Kaz,sor(w; )
and Ky (w; R), one can show that

. o 3 oy 3 s
Hp(w;R7) =Y [(BM +Bp)i; - gBpliz]
k=1

3
+ BFZ [_(lkxlnx + lkylny) + %lkzlnz

k<n

+ \/E(ikxiny—ikyim)] +Ve(w;R,7),  (12)

where By = (2u,#°)”", Bp= (MR?)™", p, is the reduced mass
of each monomer, and M = My (k=1-3) is the mass of each
monomer. Note that Hp is invariant under the operations of Gia.
[Note also that the KEO (kinetic energy operator) of our Hp is
slightly different than the properly “constrained” bend KEO for the
trimer—see Eq. (23) of Ref. 53.] We denote the Np lowest-energy
eigenvectors and corresponding eigenvalues of Hp, respectively, as
|x) and E,((B) (k=1,2,...,N3).

In the final step, we diagonalize the full 9D Hamiltonian, which
can now be re-written as

H=Hr+Hp+Kpy + AKy + AV, (13)
where
ARum(w, R R) = Kyr(w,R) = Kar(w; R) (14)
and
AV(R,w;@,R,7) = V(R w;7) — VE(R; @,7) — Vg(w; R, 7). (15)
We do this by using a contracted product basis of the form

lp.1) = |p)le), (16)

with the contraction affected by keeping only those states with E’(,F)

and E,((B) below cut-off values. In such a basis, the matrix elements of
the A + Hg portion of H are diagonal and trivially obtained. Calcu-
lation of the matrix elements of K EM> AK M> and, particularly, AV, is
the principal challenge of the approach.

C. Diagonalization of Hg
1. Extraction of Vg from V

To obtain the 3D frame potential V¢ from the full PES V, we
have used two different procedures. In the first, we have simply
fixed the six angle variables w to values close to those character-
izing the equilibrium trimer geometry. In particular, we have set
each wy = (6, ¢,) to @ = (6,¢) = (90°,60°) and have defined the
corresponding Vr as

V(R1,Ra, R3;@,7) + V(Ra, R1, R3; @, 7)
2

VD (Ry, Ry, R33 7) = . (17)

The average on the rhs of Eq. (17) is necessary to make the function
invariant to the operations of Gi».
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In the second procedure, we have computed for each R point
of interest a Gaussian-weighted-average of V over the six angle
variables,

19 g

Ve (R = S >

inigi3=—ng  jija,j3=—ny

x wﬁ(eiz)w¢(¢jz)we(eia)w¢(¢j3)

x V(R, 0, ¢j,> 05, bjy» 0> 95 7). (18)
Here, the weight functions, wg and wy, are Gaussians chosen to

approximate the angle probability distributions of the Hp ground
state

we(6;, )wy(¢5,)

we(ei) =Ag exp[—(@i—60)2/20§)] (19)

and

wy(¢y) = Ag exp[~(¢j - ¢0)*/203)], (20)

where Ag and Ay are normalization constants, 6y = 90°, ¢, = 57°,
09 = 13°,and gy = 13°. Finally, the 6; and ¢, were taken as

9,':90-#]/%309 (i:—ng,...,ng),
; (21)
¢j=¢0+;¢30¢ (j=—n¢,...,n¢),

with ng = ng = 6.

We have solved for the eigenvectors of Hr by taking Vr to be
both Véw) and Vﬁ“g) and have constructed different 9D bases from
these different solutions. Of course, for a given value of 7, these dif-
ferent 9D bases should produce the same results in a converged 9D
calculation. One might expect, however, that a basis with a better
overlap with the 9D eigenstates might be achievable by using the

frame eigenstates corresponding to Vi = Véavg). We shall see below
that this is, in fact, the case.

2. Basis and matrix elements

In order to diagonalize Hp, we make use of a primitive
basis consisting of 3D products of 1D potential-optimized discrete
variable representation (PODVR)”* functions

|11, 12, 13) = |Rin )| Rom, )| Rams )5

(22)
ny,n2,n3 =1,2,...,Np.
To compute the |n;), we first solve the 1D eigenvalue equation
corresponding to the operator
Hri(Ri;R,@,7) = ia—z+v“”(R ;R;=Rn=R7). (23)
F1(15 8, W, = ZﬂlaR% F 1R8] = Rm = K, 1),

[Note that the 1D potential function in Eq. (23) is obtained from
Véw) by evaluating the latter at fixed values of R, = R; = R.] The
eigenvalue equation is then solved by diagonalizing the Hr,; matrix
expressed in a sinc-DVR basis consisting of 80 functions corre-
sponding to quadrature points ranging from R; = 4.0 to 8.0 bohrs.
We then diagonalize the matrix of R; in the basis consisting of the
Nr lowest-energy eigenstates of Hr, to obtain the |Ry,,). Since all
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the Ry are symmetrically equivalent, the determination of the |Ry,,)
produces the |R;.,,) and |R3,, ), as well.

The matrix elements of the V' + Vg portion of Hp are diago-
nal and readily evaluated by quadrature in the basis of Eq. (22). To
compute the Kr matrix elements in that basis, we make use of

R} +R: -R:
cosay = W (24)
1Rm

to re-write the 9/ORy, terms in Eq. (5) as

oS o (R,2 . Rf,,) 0

" 2RRRm\ M, M, ) OR,

Y I R (R ﬂ)
"4\ MR, " MR\ ORy
e MR}, MuR?J\R OR ) |

and the 8*/(OR;OR,,) terms as

_ cos a o) _ 1 [( i)(i 1o} )
My OROR»m  2Mi L\ 'R, )\ Ry OR,
0 1 0
+ (Ruao ) 5 2s
(e, (7,2
1 0 1 0
)l o
"\ R, OR )\ Ry ORm (26)
From Egs. (5), (25), and (26), one sees that the evaluation
of five types of matrix elements in the 1D |R;,) PODVR
basis is sufficient to obtain all the terms for the 3D Kg
matrix elements: (R;|(0°/OR?)|Rin,),  (Riw|Ri(0/OR:)|Ri,),
(R |RT' (O/OR)[Ri ), (Rip|RE|Ri), and (R |R7*|Ri,). These
matrix elements are readily obtained by transforming to the |R;,)

basis the corresponding matrix elements evaluated numerically in
the sinc-DVR basis that is used to diagonalize Hr (see above).

3. Symmetry considerations

Hp is invariant to the operations of the Gi2°® molecular sym-
metry group. Thus, each |p) obtained from the diagonalization of
HF transforms as one of the irreducible representations (“irrep”) of
that group. In fact, since all the R; transform into themselves upon
inversion, the |p) belong only to either the A}, A3, or E irreps of Gi,
(the even-parity ones). Now, the categorization of a given computed
|p) as either A{ or A} is straightforwardly accomplished by numerical
calculation of all the expectation values {p|R|p), where R is an opera-
tion of G12. These values, of course, are all real and of unit magnitude
for states of A and A} symmetry. For any given doubly degenerate
(i.e., E) pair of orthogonal solutions |p,,) and |p;, ), though, the two-
by-two matrices composed of the elements (p;|R|p;) (i,j=a’,b")
are not, in general, fully specified a priori. However, one is free
to choose orthogonal linear combinations of any such [p.), |p,)
pair, linear combinations that we label |p,) and |p, ), respectively,
such that the latter do transform under Gi, as a specific, prede-
termined E’ representation. It is advantageous for our purposes to
choose such an E’ representation [that is, the matrices with elements
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Di(’jE’)(li) = (pi|R|p;), i,j = a, b] to be the one given in Sec. I of the
supplementary material. To compute the |p,) (i = a,b) pair with the
desired transformation properties from an arbitrary degenerate-pair
solution to the Hr eigenvalue equation, |p,) (i=a’,b"), we use a
two-step process. In the first step, we (i) diagonalize the two-by-two
matrix consisting of the elements (pi|R|p;) (i,j = @, b") for R = (23),
(ii) identify the resulting (23) eigenvector with eigenvalue equal to
-1 as |p,), and (iii) identify the other eigenvector, with (23) eigen-
value equal to +1, as 8]p, ), where § = £1 is to be determined. In the
second, we evaluate the matrix element &(p,|(123)|p,). This matrix

element equals i\/ﬁ for § = +1. Hence, such evaluation yields the
value of § and thus the eigenvector |p, ). All of the doubly degenerate
|p;) that we report in Sec. I1I A and that we employ in the various 9D
bases transform according to the specific E’ representation given in
the supplementary material.

D. Diagonalization of Hg
1. Extraction of Vg from V

The bend potential function, V', depends on one’s choices for
the fixed intermonomer distances (R) and the fixed intramonomer
distances (7). As to the latter, we have solved the bend eigenstate
equation for the two values or 7: r. and ro. The different sets of
bend eigenstates so obtained, when employed in 9D bases, may be
expected to yield 9D results different from one another. We have
also worked with different V obtained by using different values for
R and the same value of 7. The R values used—4.90, 4.97, and 5.0
bohrs—are all in the vicinity of the typical expectation values (R ) of
about 4.99 bohrs, characterizing the lowest-energy frame eigenstates
(see Table I). The different sets of bend eigenstates resulting from
these different R values, when employed in 9D bases, should give
rise to matching sets of 9D eigenstates, assuming that the 9D calcu-
lations are converged. We make use of this expectation to assess the
degree of convergence of the 9D calculations.

2. Basis and symmetry considerations

In solving for the eigenvectors of Hp, we employ a primitive
basis of spherical-harmonic products, such as those used in Ref. 53,

|imy, bma, lims) = |himy )| bma )| lzms), (27)
where
limi) = Y™ (6, 1), (28)

l,‘ =0,1,.. .,lmax, and m; = —li,—li +1,.. .,li fori=1-3.

We use the Chebyshev version™ of filter diagonalization® in
order to diagonalize the matrix of Hj in this basis. In this process,
we exploit the G12 symmetry of Hp to solve separately for the eigen-
values and eigenvectors associated with eight symmetry blocks. Four
of these blocks correspond to the A}, A3, A, and A} irreps of Giz,
respectively. The other four correspond to the two sub-irreps of each
of the 2D irreps E and E . We label these sub-irreps as E., E;,, EY,
and Ey, respectively. They correspond to the specific representations
of the E' and E irreps given in the supplementary material. Func-
tions that transform in the same way as the [p,) states described in
Sec. 11 C belong to sub-irrep E;. Ones that transform in the same way
as the |p, ) belong to sub-irrep E;,. Ones that have negative parity, but
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TABLE . Properties of the lowest-energy 3D eigenstates of H for 7 = ro and Vg =

(Rk) and AR are in bohr.

ARTICLE scitation.org/journalljcp

V(a"g) AE values are in cm™, while

AE’ (R1) (ARy) (R2) (ARy) (Rs) (AR3) Irrep Assignment
1 0.00 4.987 (0.186) 4.987 (0.186) 4.987 (0.186) Al g.s.
2 161.56 4.999 (0.187) 5.035 (0.254) 5.035 (0.254) E, Vas
3 16156 5046 (0272)  5.011(0.212)  5.011(0212) E) Vas
4 18409 5034 (0263)  5.034(0.263)  5.034(0.263) Al Ves
5 317.35 5.059 (0.278) 5.059 (0.278) 5.059 (0.278) Al Vs
6 319.26 5.046 (0.253) 5.066 (0.290) 5.066 (0.290) E, Vs
7 31926  5.073(0.301)  5.053(0.266)  5.053 (0.266) E) Vs
8 338.51 5.060 (0.285) 5.076 (0.313) 5.076 (0.313) E, Vas + Vss
9 338.51 5.082 (0.321) 5.066 (0.295) 5.066 (0.295) E, Vas + Vss
10 363.16 5.083 (0.324) 5.083 (0.324) 5.083 (0.324) Al 2V

*Energy relative to the ground-state energy of —3785.16 cm ™.

otherwise transform like |p(a/b)) with respect to the (123), (321), (12),
(13), and (23) operations belong to sub-irreps E;, /E} .

It is straightforward to show that the matrix of Hp is block-
diagonal in the eight blocks corresponding to A1, A3, AY, AY, E;, Ej,
E/, and E}. Of course, the existence of blocks corresponding to the
1D irreps follows from group theory, as does that of blocks corre-

sponding to the E" and E 1rreps The existence of individual blocks
corresponding to E;, and Ej, and E, and E}’ can be proved by show-
ing that matrix elements of the form (a|Hz|b), where |a) transforms

as E; and |b) transforms as E}, (s =" or s =") equal zero. We do so as
follows:

(alFslb) = (al(23) ™ (23)H5(23) " (23)]b)
- (al(23) " As(23)])
= {al(~1)Ha(+1)[b) = ~{a]

used (23)ﬁ3(23)_1 =HB,

) =0, (29)
where we have (23)]a) = —|a),
and (23)|b) = |b).

To solve for the eigenstates of a given symmetry block via filter
diagonalization, we start with a random state vector, |y,,), expressed
in the primitive basis of Eq. (27) and project out of that vector the
component that transforms according to the symmetry block. For
any of the four 1D irreps, I', one has

sy = NP Olyo), (30)
where N is a normalization constant, and
PO =DM (R)]*R (1)
R

?) is just the character corresponding to operation R for
(DO (R) is just the ch ponding to op R f
irrep I'.] For any of the four sub-irreps, I';,

g™y = NP o) i=ab, (32)
where [e.g., see Eq. (49) of Ref. 53]
PO = Y0P ()] R (33)

R

[Again, see Sec. I of the supplementary material for the diagonal

‘)) or as
the initial state vector in the filter diagonalization procedure. Since
Hp does not couple states belonging to different symmetry blocks,
the eigenvectors ultimately produced by that procedure all have the
same symmetry as the initial state vector. Of course, in order to make
use of Eq. (30) or Eq. (32), one needs to know how the R of Gy, trans-
form the basis states defined in Eq. (27). This has been worked out
by Wang and Carrington (see Table V of Ref. 53).

One advantage to choosing a specific representation for each

matrix elements Dgf’/E”)(}é)]. We then use \tpér)) or |1//(§r‘

of the E' and E’ irreps is that one need not directly compute both
eigenstates of a degenerate pair by diagonalizing Hp. If one computes
one such state, say |«,), the other (|«;)) follows from G;, symmetry

transformation properties. For example, for both E’ and E states,

(123)|x,) = |Ka fm, (34)

[(123) +0.5]xa)
3/4 '

Thus,

lip) =

(35)

Therefore, with k) in hand from the diagonalization of Hp, one
can relatively trivially compute the corresponding |«;). We have
made use of Eq. (35) in computing the bend eigenstates of E; and
E; symmetry. Hence, only six symmetry blocks of Hg, rather than
eight, were diagonalized in order to obtain the eigenstates of all
symmetries.

3. Operation with Hg

The Chebyshev filter-diagonalization™ algorithm for the bend
problem requires repeated operation of Hp [Eq. (12)] on state
vectors expressed in the basis of Eq. (27). Such operation by the
kinetic-energy portion of that operator is straightforwardly accom-
plished by direct matrix-vector multiplication, given that the rel-
evant matrix elements in the primitive basis are easily evaluated
analytically. Operation with the potential-energy term, Vg(w; R, 7),
on state vector |y) is accomplished by first transforming |y) from
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the spherical-harmonic basis to a 6D Gauss quadrature grid com-
posed of Gauss-Legendre quadrature points covering the 0y degrees
of freedom and Fourier quadrature points covering the ¢, degrees
of freedom. The grid representation of |y) is then multiplied at each
grid point by the value of Vp at that point. Finally, the result is trans-
formed back to the |lymy, lm;, l3m3) representation. The process is
similar to that represented by Egs. (45) and (46) of Ref. 53 except
that, for the basis-to-grid step, the transformations to the polar-
angle grid points here are all performed first, followed by a 3D fast
Fourier transform to the azimuthal grid points. The inverse, grid-
to-basis transformations follow in reverse order after multiplication
by VB.

For operation with V', we also experimented with a process
involving transformation to and from a Lebedev grid, such as that
employed in Ref. 61. We found that process to be slower than that
involving the Gauss grid, despite the required Gauss grid being
larger than the required Lebedev grid for a given primitive basis-set
size. (The problem, as pointed out by Wang and Carrington,” stems
from the non-direct-product nature of the Lebedev grid.) That said,
use of a Lebedev grid to compute potential-energy matrix elements is
advantageous in the diagonalization of the full 9D H, as we describe
in Sec. I1 E 4.

E. Diagonalization of the 9D Hamiltonian A
1. Symmetry-adapted basis

In solving the 9D frame/stretch-bend problem, product func-
tions composed of eigenfunctions of the 3D frame (|p)) and 6D
bend (|x)) eigenvalue equations, respectively, are used to construct
the basis. Since it is desirable to block diagonalize the Hamiltonian,
H, into the eight blocks associated with the Gy, irreps and sub-irreps
as described earlier for the bend problem, we construct symmetry-
adapted functions from such products and use the former in the 9D
basis.

This symmetry-adaptation process is trivial when the symmetry
of |p) (i.e., I,) and/or that of |«) (i.e., ['x) corresponds to one of the
proper 1D irreps. In those cases, the symmetry of |p,x) = |p)|x) is
well-defined and given by T'op = T, ® T'x.

However, the situation is more complicated when T, = E;/b
and I = Ey ;, (s =" or s="). This is because E' ® E' = A+ AL+ FE
and E' ® E” = AY + AY + E”. Therefore, one has to construct func-
tions of well-defined symmetry from linear combinations of the
four product states |p,,ka), |0, Kp)s |pysKa)> and |p,, ). This can
be accomplished by making use of the projection operator given in
Eq. (33). Ultimately, one obtains

_ lpa> ka) + |pys Kb)

|ps K)A§ 7 , (36)
lpa k) = W» (37)
oK), = |Pas Kh)\'/"§|Pb> Ka)’ (38)
lp, k)E; = w (39)

N
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where the subscript on the lhs of each of Egs. (36)-(39) corresponds
to [yp for the basis state.

2. Matrix elements—General

There are three types of nontrivial matrix-element calcula-
tions that must be performed to compute the matrix of H in the
9D basis. These correspond to the operators Kgy [Eq. (7)], AKy
[Egs. (14), (3), and (4)], and AV [Eq. (15)]. For each of these
operators, O, we calculate the quantities {p’, x’|O|p, x) for all rele-
vant product basis functions |p’, ") and |p, ). We then use those
results to construct the matrix elements of O in the 9D symmetry-
adapted basis. This is trivial when |p’), "), |p), and |«) all transform
as 1D irreps of Gio. However, when both |p’) and |«’) and/or
|p) and |x) are of E-type symmetry, it is necessary to go one
step further and make use of Egs. (36)-(39) in conjunction with
the (p’,«’|O|p, x) values to obtain the symmetry-adapted matrix
elements.

3. Kinetic-energy matrix elements

Since both Ky and AKy are both operators of the form

O(R,0) = ZoF,i(R)OBJ(w)» (40)

each of the matrix elements of these operators in the |p, x) basis is
readily factored into a sum of products of terms, such as

(p's<'|Or,iO8,lp, ) = (p'|ORi(R)|p)('|Op,i(w)|k).  (41)

Thus, while the full matrix elements are nominally 9D integrals, the
cost of their evaluation is effectively that of the 6D w matrix elements
in Eq. (41). The latter are straightforwardly computed since the
Op,; are monomer angular momentum operators of the form
I (k=1-3) or ik,aij,/; (k,j=1-3 and o, = x,¥,2) and the |x) are
expressed in the spherical-harmonic product basis [Eq. (27)].

Our evaluation of the {p'|Of,|p) matrix elements makes use of

(¢'Okilp) = 32 (p'In") (' |Okiln){nlp), (42)

n',n

where n’ = (nj,n},n3) and n = (m,ns,n3). Computation of the
(n'|Or,i|n) requires, in part, the evaluation of matrix elements in the
3D PODVR basis [Eq. (22)] of quantities, such as sin o, cos(a/2),
and sin(a/2) [e.g., see Egs. (8) and (9) and Eqs. (25) and (27)
of Ref. 53], which are functions of all three frame coordinates
that cannot be factored into terms involving single coordinates.
We assume that such matrix elements are diagonal—that is, that
they are accurately computed by quadrature over the 3D PODVR
grid. In cases where portions of an operator Op,,» can be fac-
tored into terms depending on single coordinates, we evaluate
matrix elements of those terms in the relevant 1D PODVR basis
and employ the results in the evaluation of the full Or; matrix
element.
As an example of the above, consider

. S 1(1 8
O,‘E** — | 43
F’ Mle(RgaRs) (43)
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where $ = sin a; /(2R,R3). This is a term in the A, . operator of Kgy
[see Egs. (7) and (8)]. The matrix elements of this operator can be
expressed as

A 4 S " //1 nr nr l 6 4
(0l = 5 (ol g0 g s i) 49

To evaluate this, we first take

(n[s|n”)

from which it follows that

A S(n
(n|Op,|n") = Ol ZE/Il)

= S(Rl,n, > RZ,nZ: R3,n3 )Sn,n” = S(n)an,n”a (45)

(kg )l ) a9

Evaluations of all the required (n\Op,,—|n') matrix elements were
performed in analogous fashion.

4. AV matrix elements

To obtain the AV matrix elements, we first compute the
quantities

,
AV o = (x's 1, 2, n3|AV (w, Ry, Ry, R3)|ic; 11, 2, 13)

= (K’|AV(CU, Rl,npRZ,nz>R3>"3)|K) (47)

for all ny,nz,n3, and for all relevant ', x. Note that, for simplic-
ity of notation, we have suppressed the parametric dependence of
the AV function on the rhs of Eq. (47) on the R, @, and 7 values.
[Use of Eq. (47) is very similar to the “F-matrix” approach intro-
duced by Carrington et al.”**’] We evaluate the 6D integral on the
rhs of Eq. (47) by quadrature over a (6, ¢, ), k = 1-3 Lebedev grid.
To facilitate this, prior to any evaluation of Eq. (47), we transform
all of the |x) in the 9D basis to the Lebedev grid representation
and store the results. Since any one |x) appears in many different
AV;,‘: i this saves considerable computation time and gives a sig-
nificant advantage to the use of a Lebedev grid over that of the larger
Gauss grid required to evaluate the integrals.”

With all the AV,’,‘l Yats
matrix elements

(p'.K1aV]p, k) =

in hand, we then compute the desired

> (p[n1, n2,n3) (1, na, n3|p) AV (48)

ny,N,13

for all relevant p', x’ and p, K.

In the most expensive step of this two-step process—the mul-
tiple evaluations of Eq. (47) —exploitation of symmetry allows
for a reduction in computational cost by more than an order of
magnitude, and we take advantage of this. Specifically, we make
use of

AVEE = (k'3 n1,m0,ns| R [RAV (w, Ry, Ry, R)R ™ RJx 1, 12, m3)
= (K’;m,nz,n3\R_1[AV(w,Rl,Rz,Rs)]R|K;n1,n2,n3)
R R
= AV i)’ (49)

which follows when R is an operation of the Gi, symmetry group.
Now, if |«) transforms like one of the four 1D irreps of Gi2,

Rlx) = DT (R)x). (50)
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If |x) transforms according to one of the four 2D irreps, it is either
of the type |k,) or |k, ). In these cases, one then has

Rix) = DI R)l)s = b (51)

Examine now Eq. (49) for several cases. Start with R=E* in
which case (i) all of the DT (E*) matrices are dlagonal (ii) all of
these diagonal elements equal +1 for the A], A and E’ irreps, and
all equal -1 for the A}, AY, and E irreps, respectively, and (iii)
E*|n1,np,n3) = |n1,n2,n3). Given all this, it is straightforward to
show from Eq. (49) that

AV s =0, (52)

unless both |«') and |x) are symmetric or both are antisymmetric
with respect to inversion. Thus, there is no need to evaluate any
AV;‘: "wn, When [«) and |«) have opposite parity.

Second, consider the case when |«’) and |«) both transform as
1D irreps. Then, Eq. (49) can be written as

avex = b (R)p™ (R)Avg(:l ) (53)

One sees that knowledge of the transformation properties of |x’) and
|x) with respect to R allows one to determine a matrix element at one
3D grid point, (11, n2, 13), given knowledge of a matrix element at a
different grid point, R(n1, 12, 13).

The third case is that in which |«") is doubly degenerate and |«)
is nondegenerate. Then, one has two relevant |«) states: |x;) and |x},)
and thus two relevant versions of Eq. (49),

VIS = D (R)DI (R)AVY
j=ab

i=ab. (54)

R(”l 25 ﬂs)

Hence, by evaluating AV for j = a and b, one can also easily

R( Mp,13)
obtain Aan s for i=a,b. (Moreover, by using hermiticity, one
also obtains AV,,I,,,Z,,,3 and AV (
consider R = (123) with T = E/ and F,c = A}. Then,

for j=a,b.) As an example,

L)/ L)/ 5 1
Da” (R) = Dy (R) = =3

) By = 3
7Dba (R)—* Z:

(55)
Dy (R) =

and D(r“)(li) =1. Also, Ii(nl,nz,m) = (n3,n1,n2). Accordingly,

one has
Kl K 1 KK 3
Aan,nz,n3 = _EAVn3,n1,n2 AVn3 ny,ny (56)

3 /.
AV"] 13,13 = _\/;szzv’fhﬂz - 7AVn3 ny,nye (57)

Finally, consider when both |«") and |«) are both doubly degen-

and

erate (i.., both are either of E' or of E_ symmetry, since they both

J. Chem. Phys. 157, 194103 (2022); doi: 10.1063/5.0128550
Published under an exclusive license by AIP Publishing

157, 194103-9


https://scitation.org/journal/jcp

The Journal
of Chemical Physics

must transform the same way with respect to inversion). Then, one
has four relevant bending states, |x,;) and |« /v)> and four relevant
equations,
€ _ @ myp@ (p Ko .
Avnl,ﬂz,ﬂs - Z Z Dk,' (R)Dlj (R)Avﬁ(nl,nz,n3)’
k=abl=ab (58)
i=a,bandj=a,b,
x;,xl

where I'is either E' or E . Clearly, knowledge of the four AV

, R(ny,mp,m3)
yields the four AV, as well.

It is straightforward to assess the increase in efficiency when
one makes full use of Eqgs. (52)-(54) and (58) to compute the
AV,’f: f,.n5- There is about a factor-of-two increase obtained by using
parity. Within each parity block, the number of unique #1, 12,13
combinations that must be computed when symmetry is exploited
is given by Ng(Ng + 1) (Ng + 2)/6. This compares with (Ng)* such
combinations that must be computed when symmetry is neglected.
Thus, in total, there is an efficiency increase equal to about a factor
of 12(Ng)?/[(Nr + 1)(Ng + 2)]. A further increase by about a factor
of two is obtained by making use of hermiticity.

One last means by which we have exploited symmetry so as

to increase the efficiency of the AV;,‘:,",,Z,,,3 calculations involves the
integral over w on the rhs of Eq. (47). Recall that we compute that
6D integral by quadrature on a Lebedev grid. Now consider how
{w|x"), {(w|x) and AV (w, Ri,n,, Rauys Rany ) transform with respect to
inversion. It is straightforward to show that

E*(0lx’) = (0]x") = e{wlx’), (59)
where @ = E*w and € = =1 for even/odd-parity |«"). Similarly,
E™(wlx) = (@lx) = e(w]x), (60)

where the value of ¢ is the same as that in Eq. (59) since |«") and |«)
must have the same parity if Eq. (47) is to be nonzero. Since AV is
invariant with respect to E*, one also has

AV(&), Rl,nl > RZ,nz > R3>n3 ) = AV(‘U> Rl,nl > RZ,nz > R3,n3 ) (61)
The upshot of all this is that

('|@)AV (@, Rin, s Ronys Rany ) (@] )
= (K/|w>AV((U»R1,n1)R2,ﬂz>R3>ﬂ3)<w|K)' (62)

That is, the integrand on the rhs of Eq. (47) is unchanged in going
from w to @. This means that in evaluating Eq. (47) one can reduce
the size of the Lebedev grid by about a factor of two by including in
the grid just one from each pair of quadrature points (ws, @,). On
this “half-grid,” then

N,
' K ~ o (L), (hgrid)
Aan,nz,n3 = Z Wy "Wy

n=1

X (K’|w"><w"|K>AV(wmRl,nl:RZ,n2:R3,n3); (63)
where w,(,L) is the Lebedev weight for the quadrature point w,,
w ) =2 if @, # E* w0, and w9 = 1if w, = E*wy, and Nigy is
the size of the half-grid.
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Ill. RESULTS AND DISCUSSION
A. 3D stretching eigenstates of Hr

We have used bases corresponding to several values of Ng (12,
14, and 16) to test the convergence of the lowest-energy solutions
to the Hr eigenvalue equation. For these basis-set sizes, direct diag-
onalization of Hr is quite feasible and was the means employed to
solve for the |p). We find generally that for the 80 lowest-energy |p)
(i.e., Nr = 80), there is no significant difference in going from the
basis with Nr = 12 to that with Nr = 16. For Nf = 150, the Nr = 14
and Ny = 16 sets of solutions are substantially the same.

Table I summarizes results for the ten lowest-energy |p)

for the Vi = Véavg)(R; te). (The particular results shown are for
Nr = 14.) It should be noted that, owing to the vibrational averaging,
the ground-state expectation value of the intermonomer distances,
(Ri)(k =1-3), 4.987 bohrs, is significantly larger than the corre-
sponding equilibrium value of 4.7601 bohrs on the same PES.”” The
latter was used in the quantum 6D calculations of the bending levels
of (HF);.”*

One sees that the states are assignable in terms of the degree
of excitation in the frame symmetric- and asymmetric-stretching
modes (vss and v, respectively). The computed fundamental fre-
quencies of these two modes are 184.09 and 161.56 cm™", respec-
tively. All of these energies, of course, depend on the particular
choice of V. Table II shows how the values change when the choice
of Vr changes. In particular, one sees by comparison of columns
2 and 3 of Table II that the method of extracting V¢ from V has
a significant effect on the frame eigenenergies, even when # does
not change. Comparison of columns 3 and 4 shows that switch-
ing from 7 = r. to 7 = o also changes the eigenenergies significantly,
even though the method of w-averaging used to produce Vr does not
change. In respect to 9D results, the former differences should not
matter in a converged calculation—the bases constructed, respec-

tively, from the eigenstates corresponding to V;&’)(R; re) and to

V8 (R;r,) address the same physical system. However, this is not
true when 7 changes, and one expects differences in frame exci-
tation energies to persist in going from 3D to 9D when # goes
from r to ro.

Several different sets of frame eigenstates were ultimately
included in the bases for various 9D calculations. These sets are

TABLE II. Comparison of the 3D eigenenergies (in cm™") of H for different Vr. Al
energies are relative to the relevant ground-state energy listed for state No. 1. The
different Vf are distinguished by the chosen value of the intramonomer distance,
T =re or ry (in bohr), and by the method of angle averaging: fixed angles (@) or
gaussian-averaged (avg). See text.

VIE“’) (R;7e) vﬁ*‘”g) (R; ) VF(an) (Rsrg)  Assignment
1 —4778.68 —-3785.16 -3651.47 g.s.
2/3 179.46 161.56 165.60 Vas
4 204.00 184.09 187.58 Ves
5 352.59 317.35 325.27 2v45(A)
6/7 355.11 319.26 327.26 2vas(E")
8/9 376.17 338.51 346.00 Vas + Vss
10 402.94 363.16 370.12 2V
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distinguished by (a) the number of frame states included, (b) the
way in which the w were treated in computing Vr (either “@” or
“avg”), (c) the size of the frame primitive basis (either Ng = 12 or
14), and (d) the choice of 7 (either r, or r¢). In regard to (a) one 9D
basis includes the lowest 101 frame eigenstates, representing exci-
tation energies up to about 1065 cm™'. All other bases include the
150 lowest-energy frame states, representing excitation energies up
to about 1215 cm™". Table 1 of the supplementary material summa-
rizes the characteristics of all 150 frame states included in one of the
9D bases. (The frame states in question correspond to V¢ = VFan,
Nr=12,and 7 =r..)

B. 6D bending eigenstates of Hg

Prior to considering the computational results pertaining to the
bend eigenstates, there are several features of such eigenstates and
the bending level structure, in general, that it is useful to remark
upon. First, one expects, in zeroth order, two in-plane bending
modes and two out-of-plane bending modes. In both cases, these
include a singly degenerate symmetric mode—v,g (irrep A7) and v,g,
(irrep A7), for the in- and out-of-plane cases, respectively—and two
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doubly degenerate asymmetric modes—v;,, (irrep E') and vy, (irrep

E”) for the in- and out-of-plane cases, respectively.

Second, given the large barrier to the conversion between
the two equivalent equilibrium geometries of the trimer (requiring
the concerted breaking and re-forming of three HF-HF hydrogen
bonds), as well as the 6D bend results already reported in Ref. 53
for the SO-3 + HF3BG PES, one expects the associated splittings of
the tunneling doublets of the low-energy bending states to be very
small (of order 107 cm™" or less). As a result, each bend eigenstate
of A{(A{") symmetry should have an almost equal-energy tunneling-
doublet counterpart of A5(A%) symmetry. Similarly, each bend
eigenstate of E,(E; ) symmetry should have an almost equal-energy
tunneling-doublet counterpart also of E, (E; ) symmetry. (Of course,
each state of E,(E,) symmetry also has an exactly equal-energy
counterpart of Ej (E;') symmetry.)

Finally, one way to facilitate the assignment of the bend-
ing states is to examine 1D reduced probability densities (RPD)
of those states as a function of the following symmetry coordi-

nates: (1) Qi = \/ﬁ(([n +d2+¢3), (2) Quapa = \/1/_2(‘/’3 - $2),
(3) Quanp =V/1/6(2¢1 — $2 = ¢3), (4) Qo = \/1/3(61 + 6, + 63),

TABLE IlI. Properties® of the lowest-energy 6D eigenstates of Hg for R = 5.0 bohrs and F = re.

AE (em™)  (lg,[)(Algy])  {I6,1)(A1¢,)) (1951 (Algs]) (461,862, 263) Assign.

AL AL

1 0.00 57.0 (11.5) 57.0 (11.5) 57.0 (11.5) (12.4,12.4,12.4) g.s.

2 720.10  59.7(16.4)  59.7(16.4)  59.7(16.4) (14.1,14.1,14.1) Vish

3 757.18  57.0(12.8)  57.0(12.8)  57.0(12.8) (19.5,19.5,19.5) Wb

4 933.81 59.5(17.8)  59.5(17.8)  59.5(17.8) (13.1,13.1,13.1) 2Viab

5 1118.37 58.7 (13.3) 58.7 (13.3) 58.7(13.3)  (18.8,18.8,18.8) 2Vosh

1/2 45558  582(11.9)  58.5(17.3)  585(17.3) (12.7,12.7,12.7) Viah

3/4 76635  56.7(12.3)  57.2(12.6)  57.2(12.6)  (19.3,20.8,20.8) Woab

5/6 884.98 60.0 (19.5) 59.9 (19.3) 59.9(19.3) (13.3,13.2,13.2) 2Viap

7/8 92843  57.7(134)  58.1(13.2)  58.1(132) (20.5,19.1,19.1) Voah + Vosh

9/10 110238  61.6(16.7)  61.5(23.0)  61.5(23.0) (14.2,13.9,13.9) Viah + Vish
A;’,A;’h

1 567.57  57.8(12.2)  57.8(12.2) 57.8(12.2) (15.8,15.8,15.8) Vosh

2 82424  584(163) 58.4(163)  584(16.3) (17.1,17.1,17.1) Voab + Viab

3 854.32 58.4 (16.2) 58.4 (16.2) 58.4(16.2) (16.8,16.8,16.8) Voab + Viab

4 1120.36 57.2(13.5) 57.2 (13.5) 57.2(13.5) (23.7,23.7,23.7) 3Voab

5 1134.12  57.0(13.2) 57.0(13.2)  57.0(132) (23.5,23.5,23.5) 3Voap

1/2 390.35 57.0 (11.9) 57.0 (11.9) 57.0(11.9) (16.8,16.6,16.6) Voab

3/4 829.41 58.5(16.6)  58.5(16.3)  58.5(16.3) (17.0,17.2,17.2) Voab + Viab

5/6 994.85  59.5(18.9)  59.6(16.0)  59.6(16.0) (17.0,16.4,16.4) Viab + Vosh

7/8 1086.05  59.4(16.3)  58.7(16.0)  58.7(16.0) (24.8,18.6,18.6) 3Voup/Voap + Visp

*Energies are relative to the ground-state energy of —3568.82 cm™". Angles are in degrees.
PEach A} (A]’) state has an A} (A}) counterpart of almost the same energy, as the tunneling splitings are much less than

0.01 cm™.

“Each E/, and each E, level is effectively two-fold (accidently) degenerate due to small tunneling splittings. Each such level also

has a counterpart E; or E;’ doublet of the same energy.
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(5) Qoaba = V 1/2(93 - 92)’ and (6) Qoabp = V 1/6(291 -6, - 63)
As the notation suggests, each of these coordinates is associated with
one of the expected bending modes. Hence, functions of the form

RPD,(Q) = [ dof(xiw)(w - Q)(wl)] (64

for a given bending state, |«x), should show evidence of node(s) if |x)
involves excitation of the mode associated with symmetry coordi-
nate Q. It is largely based on the examination of plots of RPD,(Q)
vs Q, in conjunction with other geometrical properties of the
bend eigenstates (expectation values and standard deviations of the
bend angles) that the bend assignments presented below have been
made.

Table TII shows selected results for the lowest-energy eigen-
states of Hp computed for R = 5.0 bohrs and 7 = .. The basis set
used to obtain these results (and all other bend results reported
below) corresponds to Imax = 13 and thus to a total size equal
to (196)° or 7 529 536 functions. The Gauss grid employed for
this basis is composed of 14 Gauss-Legendre quadrature points
and 28 Fourier quadrature points for each of the three monomers,
amounting to a total 6D grid size of 60238288 points. With
this basis set, we estimate convergence to a few tenths of cm™!
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! above the Hp ground

for bend states up to at least 1500 cm™
state.

Listed in Table 1T are the computed energies of the bend eigen-
states as well as the expectation values of the |¢,| (denoted as {|¢,|))
and the standard deviations of the |¢,| (denoted as A¢, |) and the 6,
(denoted as A6). (The expectation values of the 6y are equal to 90°
for all states.) From Table 111, one sees that all four bending modes
can be definitively assigned: These are vy, at 720.10 cm™Y, vy at
455.58 cm ™}, v, at 567.57 cm ™Y, and v,y at 390.35 cm ™! RPD plots
that confirm these assignments are shown in Fig. 2. These assign-
ments are also consistent with the geometrical properties listed in
Table IT1 for these states. As indicated in Table I1], we have also made
assignments (by the same procedure) of various low-energy bend
eigenstates to overtones and combination bands of these four modes.
Two examples, corresponding to 2v,., (A7) and (Voap + Vos ) (Ea)s
are shown in Fig. 3. For both states one expects nodal structure in
1D RPD plots vs two different symmetry coordinates. Figure 3 shows
both plots for each of the states. In both Figs. 2 and 3, we also show
in each plot 1D cuts of the PES along the symmetry coordinate rele-
vant to the plot. The 1D cuts were computed by fixing all the R; and
all the symmetry coordinates, apart from the one corresponding to
the plot, to their equilibrium values.

A1|I

567.57 cm’'

FIG. 2. 1D reduced probability densities
(RPDs, red traces) as a function of
symmetry coordinate (see Sec. Ill B
for the symmetry-coordinate defini-
tions) for four singly-excited bending

Ay
-1
720.10 cm
T | T T T [ T T
60 80 100 120 140 80 100 120

Qisp (deg)

E,
455.58 cm’”

Qosb (deg)

Eali
390.35 cm”’

eigenstates of HF trimer (F=r, and
160 180 200 220 ;

R = 5.0 bohrs). Top left: The v, state.
Top right: The wvog state. Bottom left:
One of the wvip(E;) states. Bottom
right: One of the voap (E;’) states. Also
plotted in each graph is the 1D SO-3
+ HF3BG potential-energy cut (blue
trace) along the relevant symmetry
coordinate. Each PES cut corresponds
to the five symmetry coordinates apart
from the one varied in the plot and all
three R; being held constant at their
equilibrium values. The RPDs and PES
cuts have been scaled to fit on the same
plot.
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2Voab (A1 l) 2Voab (A1 ')
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- 757.18 cm 757.18 cm
. N FIG. 3. 1D reduced probability densities
(RPDs, red traces) as a function of sym-
— N metry coordinate for two doubly-excited
bending eigenstates of HF trimer (F = re
T T T T T T T T T T T T T T and R=5.0 bohrs). There are two
-80 -40 40 60 -40 20 O 20 40 60 plots for each state. Top: RPD of the

0
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Voab + Vosb (Eal)
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Voab + Vosb (Ea')
928.43 cm”

2voar (A]) state plotted vs Quapp (left)
and vs Quapa (right). Bottom: RPD of
one of the voap + vosp States vs Quapa
(left) and vs Qqsp (right). Also plotted in
each graph is the 1D SO-3 + HF3BG
potential-energy cut (blue trace) along
the relevant symmetry coordinate. Each
PES cut corresponds to the five symme-
try coordinates apart from the one varied
in the plot and all three R; being held
constant at their equilibrium values. The
RPDs and PES cuts have been scaled to
fit on the same plot.
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Table TV presents results that illustrate how the eigenstates
of Hp depend on the values of R and 7. One sees from the table
that the bend level structure is significantly dependent on both
of these parameters. One also notes two trends. First, increasing
the intermonomer c.m.-to-c.m. distance R from 4.90 to 4.97 to
5.0 bohrs, all close to the ground-state expectation value of 4.99
bohrs (Table I), has the general effect of decreasing the frequen-
cies of bend excitations. Second, increasing the intramonomer bond
length from r, to ro has the effect of increasing the frequencies of
bend excitations. Both trends can be understood in terms of the
effect of monomer-monomer “crowding” on the bending motions,
as such crowding decreases with monomer-monomer distance and
increases with monomer size.

The results of Table IV can be compared with the results
obtained by Wang and Carrington”*® in their 6D calculations
of the bend states of (HF); on the SO-3 + HF3BG PES. Such
comparison shows that our computed bend excitation frequen-
cies are roughly 10% smaller than theirs. While, as pointed out
earlier, our bend KEO is very slightly different than the prop-
erly constrained KEO of Wang and Carrington, such difference
does not come close to accounting for the differences in bend
eigenenergies. Instead, those differences are largely due to the con-
siderably smaller (equilibrium) intermonomer distance assumed in

T I I I
160 180 200 220

Qosb (deg)

Refs. 53 and 56—4.7601 bohrs—compared to the values that we have
used, 4.90-5.0 bohrs. The marked effect of the choice of R (and 7)
on the bend eigenstates obtained via 6D calculations is striking evi-
dence of the significance of bend-stretch coupling in determining the
nature of the vibrational states of the HF trimer, and the imperative
to take it into account in accurate calculations.

In constructing various bases for solution of the 9D HF-trimer
problem, we have included many more bending states than those
listed in Tables III and IV. As one example, we include in the
supplementary material (Table 2) a listing of the characteristics of
all the bend states employed in one of the 9D bases we have used.
The bend states in question correspond to R = 5.0 bohrs and 7 = r..

C. 9D intermolecular vibrational eigenstates of H

We have diagonalized H by employing eight different 9D bases
listed in Table V. Six of these bases (I to VI) pertain to 7 = r, and the
remaining two (VII and VIII) pertain to 7 = ro. The other relevant
composition parameters for each of these bases are listed in Table V.
The different compositions are distinguished not only by the num-
bers of frame and bend states included, but also by the treatment
of the w in determining V, the value of R in determining V3, and
the size of the primitive frame basis (as fixed by the value of Ng).
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TABLE IV. Comparison of the lowest 6D eigenenergies (in cm~") of Hj for different V. Energies are relative to the rele-
vant ground-state energy listed in the first line. The different Vg are distinguished by different values chosen for the fixed
intermonomer distance [R (bohr)] and for the fixed intramonomer distance (F = re or F = ry), also in bohr. See text.

(R, )= (4.9, re) (4.97, 1) (5.0, 7¢) (4.97, o) (5.0, 19) Assignment
AL A

1 -3605.32 —3585.23 —3568.82 —3473.27 —3452.09 g.s.

2 765.39 733.40 720.10 743.07 729.47 Vish

3 798.69 769.46 757.18 780.01 767.38 Wout

4 995.43 951.73 933.81 963.80 945.41 2Viap

5 1175.40 1135.24 1118.37 1147.87 1130.60 2V
E,.E,

1/2 489.12 465.35 455.58 472.26 462.25 Viab

3/4 808.28 778.76 766.35 789.82 777.04 2Voab

5/6 950.20 904.04 884.98 917.85 898.34 2Viap

7/8 978.62 943.21 928.43 955.18 939.99 Voub + Vosh

9/10 1180.51 1125.17 1102.38 1142.56 1119.16 Viab + Vish
A7, A5

1 596.08 576.00 567.57 582.29 573.65 Vosh

2 878.12 840.04 824.24 852.87 836.64 Voab + Viab

3 907.01 869.76 854.32 881.48 865.61 Voub + Viah

4 1183.67 1139.06 1120.36 1155.61 1136.34 3Voup

5 1196.68 1152.62 1134.11 1169.10 1150.05 3Voab
BB

1/2 411.29 396.56 390.35 402.10 395.72 Voab

3/4 883.44 845.24 829.41 857.76 841.50 Voub + Viah

5/6 1057.32 1013.16 994.85 1026.79 1008.02 Viah + Vosh

7/8 1150.81 1105.14 1086.05 1121.15 110152 3Voup, Vou + Vish

9/10 1179.32 1135.17 1116.70 1150.18 113124 3vyu, Vouy + Vi

In all cases, the size of the primitive bend basis is the same, as fixed Table VI shows results pertaining to the computed eigenvectors

by Imax = 13. For each basis, the matrix of ha i expressed in each of of H for the six bases in Table V for which 7 = r.. [The assign-
the eight symmetry-adapted blocks of that basis is small enough to ments presented in Table V have been made by examining the nature
permit direct diagonalization of each block. of the basis state(s) with the dominant contribution(s) to each 9D

TABLE V. Compositions® of the various 9D basis sets.

Basis r Vr type Nr Ng° R (bohr)" Nz A; states” E; states

I Te @ 12 101 5.0 20 1360 2680
II Te 0] 12 150 5.0 30 3030 5970
111 Te 0] 12 150 4.9 30 3030 5970
v Te Avg 12 150 5.0 30 3030 5970
\% Te Avg 12 150 4.97 30 3030 5970
VI Te Avg 14 150 4.97 30 3030 5970
VII ro Avg 12 150 5.0 30 3030 5970
VIII ro Avg 12 150 4.97 30 3030 5970

“The V type and Ny values pertain to the computation of the frame states included in the 9D basis.
YN is the total number of frame states of all symmetries used to build the 9D basis.

“The R values are those used to produce the bend states included in the 9D basis.

94N is the number of bend states belonging to each Gy, irrep or sub-irrep used to build the 9D basis.
°“A; states” refers to the number of states in the 9D basis having A}, A3, A, or A} symmetry.

f“E,v states” refers to the number of states in the 9D basis having E;, E;, E;', or E;’ symmetry.
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TABLE VI. Basis-set dependence of computed energies® for selected 9D eigenstates of H with 7 = ro. All energies are in

cm

Basis I II III v \Y% VI Assign.
AL A

1 -3334.24  -3334.38  -3333.30 333438  -3334.05 -3334.06 g.s.

2 181.96 181.78 181.52 181.80 181.73 181.72 Vss

3 311.17 311.09 311.38 311.09 311.23 311.23 2Vgs

4 358.66 358.28 357.82 358.36 358.23 358.21 2V

18 734.35 733.58 733.52 733.58 733.58 733.56 Vish
EwE,

1 161.08 161.07 160.83 161.06 161.04 161.07 Vas

2 161.43 161.42 161.71 161.42 161.55 161.54 Vas

3 314.70 314.59 314.12 314.60 314.54 314.57 2Vgs

4 315.67 315.56 315.64 315.56 315.68 315.64 2Vas

9 466.59 466.36 466.92 466.37 466.58 466.57 Viab

10 467.77 467.54 468.30 467.55 467.54 467.47 Viab
A7 LAY

1 528.20 527.95 530.53 527.95 528.86 528.85  Was + Vogp

553.07 552.84 553.58 552.84 553.01 553.01 Vas + Voab

3 586.51 586.21 584.70 586.21 585.68 585.67 Vosb
E/.E}

1 393.99 393.91 393.97 393.91 393.99 394.00 Voab

2 394.36 394.28 395.09 394.28 394.41 394.40 Voab

3 544.63 544.36 544.40 544.35 544.41 54444 a5 + Vogp

4 545.31 545.04 546.10 545.03 545.39 545.36  Vas + Voap

*The listed energies (cm™") are all relative to the relevant ground-state energy except for the first listing in each column. The first

listing in each column is the absolute energy of the ground-state.

eigenstate. More details on this are given below.] From these results,
one can make several observations with respect to the degree of con-
vergence of these low-energy 9D results. First, all of the bases give
rise to absolute energies within about 1 cm™ of each other and rel-
ative energies within several tenths of cm™! of each other. Second, a
comparison of the basis-I set of results with the basis-II set shows
a small, though significant (several tenths of cm™") improvement
in convergence obtained by increasing the numbers of frame and
bend states (101-150 and 160-240 states, respectively). Third, the
best sets of bend states employed in the 9D bases are those corre-
sponding to R = 5.0 bohrs (i.e., bases I, I, and IV). Notably, R = 5.0
bohrs is the closest of the three values that we have employed to
the (Ry) values characterizing the lowest-energy frame states (see
Table I). Fourth, a test of the effect of Nz on 9D convergence, pro-
vided by comparing the results for bases V and VI, indicates very
little effect due to the increase of that value from 12 to 14. This
is an important result in that the 9D calculations for Ng = 12 can
be accomplished roughly 1.59 times faster than those for Nr = 14.
Finally, a comparison between the results for basis II and those for
basis IV reveals very little difference on 9D convergence (at least

for Nr =150) due to using frame states computed with VF((;’) Vs

using ones computed with Véavg). This, despite the markedly dif-
ferent frame excitation energies, is associated with the two different
approaches (see Table IT).

Notwithstanding the final point made in the preceding para-
graph, there is an advantage to employing in the 9D bases frame

states obtained by using the V{™® approach. In short, the use of
such frame states produces more compact 9D bases than when the

Vlgw)-type states are used. This is evident from Table VII, when
one examines the dominant basis-state norm (BSN) values for the
computed 9D eigenstates given there. The BSN for 9D state |I) and
dominant basis state |p, k) is defined as BSN = [{p, x|I}[*. Table VII
shows that the dominant BSNs of the selected low-energy 9D states
are significantly larger for basis IV than for basis II. (Not coin-
cidently, the 9D excitation energies are also much closer to the
dominant basis-state excitation energies for basis IV than for basis
I1.) This certainly gives rise to a conceptual benefit in deciding on
the nature of the 9D states. Moreover, one could presumably take

advantage of the relative compactness of the Véan) frame basis
by working with smaller values of Nr to construct the 9D bases.
Although we have not done that here, it could eventually prove valu-
able in extending the vibrational calculations on HF trimer to full
dimensionality.

It is of interest to consider in more detail the results shown
in Table VI obtained by using 9D bases in which everything is
the same except for the value of R used to compute the bend
eigenstates—for example, the results obtained with bases II and
IIT and those obtained with bases IV and V (all from Table V).
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TABLE VII. Properties of selected low-energy 9D eigenstates of H for 7 = r, R = 5.0 bohrs, and for the two different ways of
obtaining V (i.e., two different sets of frame states). For each pair of numbers, x and y, listed as x/y, x pertains to Véavg)
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and y to Vé’_”). The corresponding 9D bases are IV and II, respectively. All energies are in cm=".
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AE’ AE — AE " BSN* Assignment

AL A;

1 0.0/0.0 e 0.968/0.919 gs.

2 181.80/181.78 —2.29/-23.22 0.913/0.760 Ves

3 311.09/311.09 —6.27/-41.50 0.919/0.824 2Vas

4 358.36/358.28 —4.80/-44.66 0.866/0.602 2V

18 733.58/733.58 13.48/13.48 0.788/0.577 Vi
E;,E,

1 161.06/161.07 —0.50/-18.39 0.955/0.885 Vas

2 161.42/161.42 ~0.24/-18.04 0.954/0.888 Vas

9 466.37/466.36 10.79/10.78 0.766/0.625 Viab

10 467.55/467.54 11.97/11.96 0.760/0.621 Viab
Ai/,Ag

1 527.95/527.95 ~27.96/-41.86 0.801/0.652 Vas + Voab

2 552.84/552.84 0.93/-16.97 0.958/0.783 Vas + Voab

3 586.21/586.21 18.64/18.64 0.852/0.687 Vosb
E.,E

1 393.91/393.91 3.56/3.56 0.977/0.818 Voab

2 394.28/394.28 3.93/3.93 0.978/0.815 Voab

3 544.35/544.36 —7.56/-25.45 0.854/0.676 Vas + Voab

4 545.03/545.04 ~6.88/-24.78 0.865/0.691 Vas + Voab

“Energy (cm™") relative to the ground-state energies —3334.38/-3334.38 cm ™.

1

bAEbasis is the excitation energy (cm™") of the dominant basis state.

“Basis-state norm. See text for definition.

Inspection of Table IV shows that the 6D bend level structures
within each pair are qualitatively similar to one another but sig-
nificantly different (by several percent) in a quantitative sense.
Nevertheless, the 9D bend excitation energies in Table VI produced
by each set in a given pair are well within a fraction of a percent of
one another and also significantly different from the corresponding
6D bend energies. Clearly, there is bend/frame coupling that must be
accounted for in order to obtain accurate bend (and for that matter,
frame) excitation energies corresponding to a given trimer PES. The
results from reduced dimension, constrained bend, or frame eigen-
value equations cannot be assumed to be quantitative reflections of
the true intermolecular excitation energies.

Table VIII presents results for selected low-energy 9D states
obtained for the two different values of 7 considered here. The rel-
evant 9D bases for both 7 = r, and 7 = rg are basis IV and basis VII,
respectively. These are equivalent in respect to the type of frame PES
(vﬁ"”g) ) employed, the value of Ng, and that of R. They also are both
composed of the same number of frame states and the same number
of bend states. Hence, the different results for the two bases can be
confidently attributed to the two different # values. One sees from
this table that changing from 7 = r, to 7 = ro results in the increase
of all 9D excitation energies, those of the intermolecular fundamen-
tals by 1%-3% and those of overtones and combination states by
up to 4%. This implies that the excitation energies from the 9D

rigid-monomer calculations of (HF)3; have the uncertainty of several
percent, depending on what 7 value is used.

Finally, Table IX compares the frequencies of selected inter-
molecular vibrational fundamentals of (HF)3 from the 9D calcula-
tions in this work to those from the 6D bending-level calculations™
and the relevant spectroscopic measurements in the gas phase*’
and in the neon matrix.** The 9D results are reported for two dif-
ferent values of 7, 7 =7 and 7 = r.. The 6D results shown, from
Ref. 53, were calculated using 7 = r.. The same SO-3 + HF3BG PES
was used in both the 9D and the 6D calculations. The results in
this table, theoretical and experimental, allow making several inter-
esting comparisons that lead to a number of important insights.
First, one can compare the results of the 9D and 6D calculations
for 7 = r.. It is evident that they differ substantially for all bend-
ing fundamentals considered, those from our 9D calculation being
about 10% smaller than their 6D counterparts. The only difference
between the 9D and the 6D calculations is that the former rigorously
include the intermolecular stretching vibrations and their coupling
with the bending modes, while the 6D calculations do not. Conse-
quently, the differences between the 9D and 6D results are due solely
to the bend-stretch coupling that is present in the former but absent
in the latter, thereby providing a direct measure of the importance
of this coupling. Judging from the significant difference between the
9D and 6D results, the bend-stretch coupling is strong and cannot
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TABLE VIII. Properties of selected low-energy 9D eigenstates of H for 7 = re, basis
set IV and 7 = ry, basis set VII. For each pair of numbers, x and y, listed as x/y, the
first pertains to 7 = re and the second to 7 = ry. All energies are in cm=".

AE’ Assignment AEpasis” BSN®
AL A
1 0.0/0.0 gs. 0.0/0.0 0.968/0.952
2 181.80/187.16 Ves 184.09/187.58  0.913/0.882
3 311.09/324.22 2Vas 317.36/325.27 0.919/0.916
4 358.36/368.99 2 363.16/370.12  0.866/0.823
18/17  733.58/755.59 Vish 720.10/729.47  0.788/0.708
E,E,
1 161.06/167.73 Vas 161.56/165.60  0.955/0.946
2 161.42/167.96 Vas 161.66/165.60  0.954/0.946
3 314.60/327.55 2as 319.26/327.26  0.866/0.856
4 315.56/328.45 2as 319.26/327.26  0.880/0.873
9 466.37/482.61 Viah 455.58/462.25 0.766/0.767
10 467.55/484.28 Viah 455.58/462.25 0.760/0.769
A, A7
1 527.95/545.16  Vas+ Vo  551.91/561.32  0.801/0.777
552.84/570.66  Vas + Vo ~ 551.91/561.32  0.958/0.954
3 586.21/601.54 Vosh 567.57/573.65 0.852/0.832
ElE)
1 393.91/405.33 Voab 390.35/395.72  0.978/0.976
2 394.28/405.96 Voab 390.35/395.72  0.978/0.976
3 544.35/562.23  vas+ Vo,  551.91/561.32  0.853/0.858
4 545.03/562.66  Vas+ Vo  551.91/561.32  0.865/0.853

*Energy (cm ™) relative to the ground-state energies —3334.38/—3452.09 cm ™.

bExcitation energy (em™!) of the dominant basis state.
Basis-state norm. See text for definition.

TABLE IX. Comparison of the frequencies (in cm~") of selected intermolecular vibra-
tional fundamentals of (HF)3 from the 9D calculations in this work with those from the
6D bending-level calculations and the spectroscopic measurements (Expt.). In the
second column, for each pair of 9D values x and y, listed as x/y, the first pertains
to F = ry and the second to 7 = re. The 6D results shown in the third column were
calculated for 7 = re. The same PES was used in both the 9D and the 6D calculations.

Assign. 9D (this work) 6D* Expt.

Vas 168/161 167 (Ne matrix)”
Voab 405/394 439 -

Viab 483/467 540 495 (gas phase)’
Vosb 602/586 639 602 (gas phase)*
Vish 756/734 828 s

Reference 53.
PReference 46.
“Reference 42.

be neglected and has to be included in any quantitative treatment of
the vibrations of (HF)s. This also implies that the results of the 6D
calculations that treat only the bend modes cannot be used to judge
the accuracy of the PES employed. This is confirmed by the fact
that the 9D results agree better with experimental gas-phase values

ARTICLE scitation.org/journalljcp

available for two bending modes, v;,;, and v,g, than those from
the 6D calculations. Evidently, the inclusion of the stretch-bend
coupling improves the agreement between theory and experiment.

Despite the improvement over the 6D results (which are too
high relative to experiment), the 9D results obtained for 7 = r. are
still visibly below the corresponding experimental values. However,
Table IX also shows that using 7 = ry in 9D calculations yields results
in considerably better agreement with experimental data. Thus, the
fundamental frequencies of the v,4 and v,; modes from the 9D cal-
culations for 7 = rg are in excellent agreement with the experimental
values measured in the gas phase and Ne matrix, respectively. For
the v, mode, the agreement with experiment is only slightly worse,
the calculated fundamental frequency being 12 cm™, or 2.5%, below
measured gas-phase value.

It should not be surprising that the use of 7=r
(ro =1.7813114 bohrs) in 9D calculations, instead of 7=r,
(re =1.7637948 bohrs), significantly improves the agreement
between theory and the available experimental results. As stated
in Sec. II A, . corresponds to the HF monomer equilibrium bond
distance on the SO-3 + HF3BG surface. In contrast, ro is the
ground-state expectation value of the HF monomer bond length
from the reduced-dimension quantum 3D calculations of the
intramolecular vibrational states of (HF);. In these calculations,
the three intramolecular HF stretch coordinates are fully coupled,
while the intermolecular coordinates of the trimer are frozen at
R =5.0 bohrs and @ = (6,¢) = (90°,62°). This R is close to the
ground-state expectation value of the intermonomer distance from
the 3D calculations (Table I). Thus, # = ry includes the effect of
the vibrational averaging over the intramolecular ground-state
wave function of (HF)s;, evidently non-negligible, while 7 =r,
does not.

It is clear from the above that definitive answers as to the accu-
racy of the SO-3 + HF3BG PES, or any other HF trimer PES that will
become available in the future, will have to await the results of fully
coupled quantum calculations encompassing all 12 dimensions.

One remaining important issue that we are uniquely positioned
to address here is the importance of the three-body (HF3BG) term
in the PES of the HF trimer. One way to assess its significance is to
perform 9D quantum calculations of the intermolecular vibrational
states of the trimer on the two-body (SO-3) PES, without the three-
body term, and compare the results to those obtained already in 9D
for the full SO-3 + HF3BG PES that includes both two- and three-
body terms. Even a cursory comparison of this kind reveals large
differences between these two sets of results. It suffices to consider
just a few of the low-lying intermolecular stretching and bending
states, in order to illustrate the major impact of the three-body
term. In the following, for each intermolecular state listed a pair of
energies (in cm ™) is given as x/y, where x and y pertain to the ener-
gies calculated on the three-body and the 2+3-body PESs, respec-
tively (the latter values are from Table VIII): v, = 118.02/161.06,
Ves = 162.26/181.80, Vo = 307.56/393.91, vja, = 353.43/466.37, and
Vosp = 487.46/586.21. These energies are relative to the ground-
state energies calculated for the two-body PES, -2786.4 cm™,
and the 2+3-body PES, -3334.4 cm™}, respectively; both are for
7 = r.. It is evident from this comparison that the vibrational ener-
gies computed on the two-body PES are all significantly lower
than their counterparts obtained for the 2+3-body PES, and con-
sequently in considerably worse agreement with the corresponding
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experimental results in Table IX. From this, one can conclude that
irrespective of the rather high quality of the SO-3 2-body poten-
tial, nonadditive three-body interactions play a large role and must
be accounted for in order to construct an accurate PES of the
hydrogen-bonded HF trimer. Good agreement with the pertinent
spectroscopic results for (HF); can be achieved only when the inter-
molecular vibrational eigenstates are calculated on a trimer PES that
includes the three-body interactions. It is expected that this conclu-
sion applies to other important hydrogen-bonded trimers, such as
(HC1)3 and (H20)3.

IV. CONCLUSIONS

We have presented the computational methodology for effi-
cient and rigorous 9D quantum calculations of the intermolecu-
lar vibrational states of noncovalently bound trimers of diatomic
molecules. Its main target are the more strongly bound molecular
trimers, such as the hydrogen-bonded HF and HCI trimers having
many intermolecular vibrational states. The only dynamical approx-
imation made in this treatment is keeping the bond lengths of
the three monomers fixed. The rigid-monomer approximation is
undoubtedly reasonable for such complexes, since the frequencies of
the intramolecular stretching vibrations of the monomers are much
higher than those of the intermolecular bending and stretching
modes.

Our methodology employs the intermolecular trimer coordi-
nates and the corresponding rigid-monomer 9D vibrational (J = 0)
Hamiltonian of Wang and Carrington.”* The nine intermolecular
coordinates are comprised of the “frame” (or stretching) coor-
dinates corresponding to the three monomer-c.m.-to-monomer-
c.m. distances, and six “bend” coordinates describing the orienta-
tions of the monomers relative to the trimer triangular frame. A
contracted-basis approach is used for calculating the fully coupled
intermolecular eigenstates of the 9D Hamiltonian of the trimer.
It is similar to that employed by Wang and Carrington in their
9D study of the vibrational states of methane.”® It is also in the
spirit of the approach that we have developed for calculating the
rovibrational states of noncovalently bound molecular dimers in
the product contracted basis of eigenstates of reduced-dimension
Hamiltonians.'""” The full 9D trimer Hamiltonian, H, is parti-
tioned into a 3D “frame” Hamiltonian and a 6D “bend” Hamil-
tonian, Hr and Hj, respectively. Each of the two Hamiltonians
is diagonalized separately, and a certain number of their lowest-
energy eigenstates with energies below the chosen cut-off values
is included in the final 9D product contracted basis in which the
full 9D intermolecular vibrational Hamiltonian is diagonalized. Of
course, the cut-off values are varied, to assure that the results are
converged.

This methodology is implemented in the 9D calculations of
the intermolecular vibrational levels of (HF)s3, the first to fully
include the coupling between the intermolecular bending and
stretching vibrations of the trimer. These calculations employ the
rigid-monomer version of the SO-3 + HF3BG surface computed
by Quack, Stohner, and Suhm,”” which includes one-, two-, and
three-body terms. This PES depends on the choice of the fixed
rigid-monomer bond distance, which we refer to as 7. In this work,
results are obtained for two different values of 7. One of them, r.,
is the monomer equilibrium bond distance on the SO-3 + HF3BG
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surface.”” The other, 7o, represents a very good estimate of the
ground-state expectation value of the HF internuclear distance on
that surface. The eigenstates of Hr are computed for the 3D frame
potentials obtained by two procedures that differ in the way they
deal with the bending angles, and for the two values of 7, r. and ro.
The 6D eigenstates of Hip are calculated for several 6D bend poten-
tials differing in the values of the fixed intermonomer distances, as
well as for both 7 values. The objective of the preliminary calcula-
tions is to explore how these choices affect the convergence of the 9D
eigenvalues of H. The Gi, symmetry of (HF); is exploited to block-
diagonalize the matrix of the full Hamiltonian H into the blocks
associated with the Gy, irreps, by constructing symmetry-adapted
product-contracted basis functions and using them in the final 9D
basis.

The results from the 9D calculations in this work are used to
make two types of comparison. The first one is with the results of
the 6D bending-level calculations,” for 7 = r. and using the same
SO-3 + HF3BG PES. For all bending fundamentals considered, their
frequencies from our 9D calculations are about 10% lower than their
6D counterparts. These differences directly reflect the strength of the
stretch-bend coupling, which is accounted for in the 9D calculations
but is absent in the 6D calculations. The results make it clear that
the stretch-bend coupling is strong and must be incorporated in any
quantitative treatment of the (HF)3 vibrations. The corollary is that
6D calculations that treat the bend modes of (HF)3 only are not suf-
ficient to assess the accuracy of the PES employed. This is supported
by the observation that the 9D results agree better with the, admit-
tedly limited, available spectroscopic data than those from the 6D
calculations.

The second type of comparison is that of the 9D results
obtained for # = 7. and 7 = 7y, respectively, with the corresponding
experimental values. One finds that the 9D calculations for 7 = ry
yield results that agree significantly better with experiment than
those computed in 9D for 7 = r.. This is not surprising, given that
7 = ry incorporates the effect of the vibrational averaging over the
intramolecular ground-state wave function of (HF)3; on the HF bond
length, while 7 = r. does not.

Our results show that, in general, replacing 7 = r. with 7 =rg
in the 9D calculations leads to the increase of all excitation ener-
gies, the intermolecular fundamentals by 1%-3% and overtones and
combination states by up to 4%. The implication is that the 9D
rigid-monomer treatment of (HF)3 introduces uncertainty of sev-
eral percent in calculated excitation energies, depending on the 7
value employed. This residual uncertainty can be eliminated only
by performing fully coupled quantum calculations of the vibra-
tional levels of (HF)3 in full dimensionality, including all 12 inter-
and intramolecular degrees of freedom. Such extremely demanding
calculations are under way in our group.

Finally, in order to get insight into the importance of the three-
body interactions in the HF trimer, additional 9D quantum bound-
state calculations are performed on the two-body (SO-3) trimer PES,
in which the three-body term is not included. Intermolecular vibra-
tional energies from these calculations are invariably significantly
below those obtained for the 2+3-body SO-3 + HF3BG PES, and
thus in worse agreement with experimental data. This leads to the
conclusion that three-body interactions make a large contribution
to the (HF); PES, and must be included if accurate intermolec-
ular vibrational eigenstates of the trimer are desired. It is to be
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expected that the same conclusion is valid for other prototypical
hydrogen-bonded trimers, e.g., (HCl)3 and (H,0)s.

The methodology introduced here can be applied to other
similar trimers, e.g., the HCI trimer. It also gives hope that in a not-
too-distant future it may be possible to treat the H,O trimer with the
same level of rigor, at least in the rigid-monomer approximation.

SUPPLEMENTARY MATERIAL

The choice of representation for the doubly degenerate irre-
ducible representation of Gy, is given in Sec. 1 of the supplementary
material. Table 1 of the supplementary material summarizes the
characteristics of all 150 frame states included in one of the 9D bases.
Table 2 of the supplementary material lists the characteristics of all
the bend states employed in one of the 9D bases we have used.
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