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Abstract

We prove a Fundamental Theorem of Finite Semidistributive Lattices (FTFSDL),
modelled on Birkhoff’s Fundamental Theorem of Finite Distributive Lattices. Our
FTFSDL is of the form “A poset L is a finite semidistributive lattice if and only if
there exists a set [1I with some additional structure, such that L is isomorphic to the
admissible subsets of 111 ordered by inclusion; in this case, I1I and its additional struc-
ture are uniquely determined by L.” The additional structure on III is a combinatorial
abstraction of the notion of torsion pairs from representation theory and has geometric
meaning in the case of posets of regions of hyperplane arrangements. We show how
the FTFSDL clarifies many constructions in lattice theory, such as canonical join rep-
resentations and passing to quotients, and how the semidistributive property interacts
with other major classes of lattices. Many of our results also apply to infinite lattices.
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1 Introduction

A lattice is a partially ordered set such that every pair x, y of elements has a meet
(greatest lower bound) x A y and join (least upper bound) x V y. A lattice is distributive
if the meet operation distributes over the join operation and the join distributes over
the meet. (These two distributivity conditions are equivalent.)

The simplest class of examples of distributive lattices are the lattices of downsets
in a fixed poset P. A downset (or order ideal) in P is a subset D of P such that if
x € Dand y < x theny € D. Let P be a poset and let Downsets(P) be the set of
downsets in P, partially ordered by containment. It is readily verified that the union
of two downsets is a downset and that the intersection of two downsets is a downset.
As a consequence, Downsets(P) is a distributive lattice. Birkhoff [8] showed that
every finite distributive lattice is of this form Downsets(P). This result is often called
Birkhoff’s Representation Theorem, but since that name also refers to other theorems
in universal algebra, we follow [30] in calling it the Fundamental Theorem of Finite
Distributive Lattices (FTFDL).

An element j of a lattice L is join-irreducible if, for all finite subsets X of L, if
Jj =\ X then j € X. Equivalently, j € L is join-irreducible if j is not minimal in L
and cannot be written as x v y for x, y < j. In a finite lattice L, this is equivalent to
saying that j covers exactly one element of L; we will denote that unique element by
J«- We write Ji L for the set of join-irreducible elements of L, with the partial order
induced from L. Similarly, an element m is meet-irreducible if, for all finite subsets
Xof L,ifm = /\ X thenm € X.Equivalently, m is not maximal and we cannot write
m =x Ay form < x, y or, equivalently in the finite case, if m is covered by exactly
one element m™ of L. We write Mi L for the set of meet-irreducible elements of L,
again with the induced partial order.

Theorem 1.1 (FTFDL) A finite poset L is a distributive lattice if and only if it is
isomorphic to Downsets(P) for some finite poset P. In this case, P is isomorphic to
JWL. The map x — {j € JiL : j < x} is an isomorphism from L to Downsets(Ji L),
with inverse X — \/ X.

The main result of this paper is a theorem, analogous to Theorem 1.1, that charac-
terizes a larger class of lattices: finite semidistributive lattices (defined below). Two
important examples of semidistributive lattices are the weak order on a finite Coxeter
group and the lattice of torsion classes of a finite-dimensional algebra (see Sect. 8.2).
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These two examples have recently been connected by a series of papers [13,19,23]
relating the torsion classes of Dynkin type preprojective algebras to weak orders of the
corresponding Coxeter groups. Moreover, the Cambrian lattice, which describes the
structure of the corresponding cluster algebra, is a semidistributive lattice described
as a quotient of weak order, and can also be described as a lattice of torsion classes.

The language and terminology of this paper deliberately echoes these motivating
examples: Finite semidistributive lattices are realized in terms of binary relations on
a set LI (the Cyrillic letter “sha”), suggestive of the shards [25-27] that govern much
of the lattice theory of the weak order on a finite Coxeter group. The relations —,
<, and — echo the structure of an abelian category. We discuss these motivating
examples in more detail in Sect. 8.

A lattice L is join semidistributive if whenever x, y,z € L satisfyx Vy =x V g,
they also satisfy x vV (y A z) = x Vv y. This is equivalent to the following condition:
If X is a nonempty finite subset of L such that x vV y = z for all x € X, then
( Nrex x) Vv y = z. The lattice is meet semidistributive if the dual condition (x A y =
xANz) = (x A(yVz)=xAYy)holds. Equivalently, if X is a nonempty finite
subset of L such that x Ay = z for all x € X, then (\/,cx x) Ay = z. The lattice
is semidistributive if it is both join semidistributive and meet semidistributive. The
notion of semidistributivity goes back to Jénsson [20], who in particular showed that
free lattices are semidistributive.

In a finite semidistributive lattice, for each join-irreducible element j, the set {y :
Jj Ay = jx} has a maximum element, which we call « (j). For each meet-irreducible
element m, the set {x : m V x = m*} has a minumum element «“(m). The existence
of these elements characterizes semidistributivity of finite lattices. The maps « and
«“ are inverse bijections between Ji L and Mi L (see Theorem 2.28 and preceding
references).

Given a (binary) relation — on a set IIT and a subset X C III, we define

Xt={yelll:x A yVxe X} and 1X={yelll:yA xVx e X}.

A maximal orthogonal pair is a pair (X, Y) of subsets of IIT with ¥ = X' and
X = 1Y.If (X,Y) and (X', Y’) are maximal orthogonal pairs, then X C X’ if and
only if Y D Y’. The lattice of maximal orthogonal pairs for — is the set Pairs(—)
of maximal orthogonal pairs, partially ordered by containment in the first component,
or equivalently reverse containment in the second component. As we will discuss
further in Sect. 7.3, it is a classical fact that all lattices can be described as lattices
of maximal orthogonal pairs from some relation, and in many ways. We will now
describe conditions on (III, —) which imply that Pairs(—) is semidistributive, and
such that each finite semidistributive lattice has a unique such representation.

Let 11T be a set and let — be a reflexive relation on III. We use — to define two
other relations, —» and < on III. Define x — y iff forall y — z, we also have x — z.
Dually, define x < y if and only if for all z — x, we also have z — y. Each of — and
<> is obviously a preorder (reflexive and transitive, but perhaps not antisymmetric).
We call (—», <) the factorization of — and write (—, <) = Fact(—).
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Similarly, we define an operation Mult called multiplication that takes an ordered
pair of preorders on I11 to a reflexive relation on I1I. Namely, define Mult(—, <) tobe
the relation — where x — z if and only if there exists y € III such thatx — y < z.

We suggest pronouncing —, —» and < as “to”, “onto” and “into”. The relations
X — Y, X — Y and X < Y should roughly be thought of as analogous to “there is
a nonzero map from X to Y, “there is a surjection from X onto Y and “there is an
injection from X into Y in some category to be defined later. For precise statements
along these lines, see Sect. 8.2; we warn the reader that the precise interpretation of
— and < is more subtle that the rough statement here. The definitions of Fact and
Mult are easy to motivate in the context of this analogy.

We define a factorization system to be a tuple (III, —, —, <) such that —, <,
and — are relations on a set I11 having Fact(—) = (—, <) and Mult(—, —) = —.
Since, in a factorization system, — and (—, <) determine each other, any condition
on a factorization system can be thought of either as a condition on — or a condition
on (—, < ). A factorization system (III, —, —, <) is called finite if the set Il is
finite.

We say that a factorization system obeys the order condition if we do not have
X -y —» xorx < y <> x with x # y; in other words, the order condition
states that the preorders < and —» are partial orders. We will say that a factorization
system obeys the brick condition if we do not have x — y < x with x # y. The
name “brick condition” comes from the notion of a “brick” in representation theory,
which is a module X such that any nonzero map X — X is an isomorphism. If we
had X — Y — X for some Y 2 0, X, then the composite map would be neither 0
nor an isomorphism; our brick condition rules out the combinatorial analogue of this.
See Sect. 8.2 for more precise statements. We will say that a factorization system is
two-acyclic if it obeys the order condition and the brick condition.

The first main result of the paper is the Fundamental Theorem of Finite Semidis-
tributive Lattices. If L is a finite semidistributive lattce, we define three relations on
JiL,namely i —; jifandonlyifi £ «(j)inL,i — jifandonlyifi > jin L,
andi < jifand only if k(i) > «(j)in L.

Theorem 1.2 (FTFSDL) A finite poset L is a semidistributive lattice if and only if it is
isomorphic to Pairs(—) for a finite two-acyclic factorization system (ILI, —, —, <.
In this case, (111, -, —, ) and (JiL, —, —, <) are isomorphic. The map

x> ({jelL:j<x}, k"{meMiL:m=>x})

is an isomorphism from L to Pairs(— 1), with inverse (X, Y) > \/ X = A\« (Y)).

Example 1.3 We exhibit a two-acyclic factorization system (III, —, —, <), with
I = {a, b,c,d, e, f, g}. The non-reflexive relations of — and the Hasse diagrams
of — and < are shown in Fig. 1, and L = Pairs(—) is shown in Fig. 2. The identi-
fication of III with Ji L is marked on the Hasse diagram of L. For each j € Ji L, the
element « (j) is also marked.

In the course of proving Theorem 1.2, we will prove some more general theorems
that apply to some infinite lattices. We therefore discuss some definitional distinctions
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which are trivial for finite lattices. A complete lattice is a poset L such that every
subset X of L has a meet (greatest lower bound) /\ X and join (least upper bound)
\/ X. The definition of a lattice given above is weaker: It is equivalent to requiring
that /\ X and \/ X exist for all finite subsets X. In particular, all finite lattices are
complete.

An element j of a complete lattice L is completely join-irreducible if j = \/ X
implies j € X for subsets X € L. Equivalently, j is completely join-irreducible
if and only if there exists an element j, such that x < j if and only if x < j,.
(In an infinite lattice, this is a stronger condition than simply requiring that j covers
exactly one element.) The element j, is \/{x € L : x < j}. (Recall that j is join-
irreducibleif j = \/ X implies j € X for finite subsets X C L. Thus every completely
join-irreducible element is join-irreducible, but not vice versa.) A completely meet-
irreducible element m is defined dually, and we write m™ for the element A{x € L :
x > m} with the property that x > m if and only if x > m*. We write Ji° L and Mi¢ L
for the sets of completely join-irreducible elements and completely meet-irreducible
elements.
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A complete lattice L is spatial if each element of L can be written as a (possibly
infinite) join of completely join-irreducible elements. Equivalently, for all x € L, we
have x =\/ j<x, jesic 1 J- If the dual condition holds, we say that L is dually spatial.
If a lattice is both spatial and dually spatial, we say it is bi-spatial.

We will call a lattice L a «-lattice if it is complete, if it is bi-spatial, and if there
are inverse bijections k : Ji° L — Mi¢ L and «¢ : Mi¢ L — Ji¢ L such that « (j) is
the maximum element of {y : j Ay = j,} and «¢(m) is the minimum element of
{x : mVvx = m*}. Itis a known result that a finite lattice is semidistributive if and only
ifitis a k-lattice; we will reprove this as Corollary 2.29. We say thata k -lattice L is well
separated if whenever z; £ z5, there is some j € Ji° L with z; > j and k(j) > z».
(Note that the converse is clear: If there is some j with z; > j and x(j) > z» then
21 jé 22, as otherwise we would have x(j) > z2 > z; > j, which is absurd.) See
Lemma 3.15 for an equivalent description of the well separated property.

In any «-lattice, we define relations — 1, —, and < on Ji° L just as we did in
the finite case: i — j ifand only if i & «(j),i — j ifand only ifi > j in L, and
i < jifand onlyif k(i) > «(j) in L.

We will prove the following theorem, which is a generalization of the Fundamental
Theorem of Finite Semidistributive Lattices to well separated «-lattices.

Theorem 1.4 A (not necessarily finite) poset L is a well separated k -lattice if and only
if it is isomorphic to Pairs(—) for a two-acyclic factorization system (LI, —, —, < ).
If so, (I, —, —, <) is isomorphic to (Ji L, -, —, <> 1), and the map

x> ({jeliL:j<ux}, ch({meMicL:mzx}))

is an isomorphism from L to Pairs(— ), with inverse (X, Y) — \/ X = A« (Y)).

Section 2 contains the proof of Theorem 1.4, and Sect. 2.5 shows how the Funda-
mental Theorem of Finite Semidistributive Lattices (Theorem 1.2) follows as a special
case. In Sect. 3, we place Theorem 1.4 in a broader context by discussing various con-
ditions on a complete lattice that are equivalent, in the finite case, to semidistributivity.
In particular, we provide counterexamples to conceivable versions of FTFSDL that
concern completely semidistributive infinite lattices.

Suppose L is a finite semidistributive lattice, realized as the maximal orthogonal
pairs for a two-acyclic factorization system (ILI, —, —, < ). It is apparent that any
interval [x, y] in L is also a finite semidistributive lattice. In Sect. 4, given an interval
[x, y]in Pairs(—), we explicitly construct a two-acyclic factorization system (defined
on a subset of IIT) whose lattice of maximal orthogonal pairs is isomorphic to [x, y].
Our construction works for any lattice of the form Pairs(— ), for a two-acyclic factor-
ization system (I, —, —, <) (which need not be finite).

In Sect. 5, we describe cover relations in the lattice of maximal orthogonal pairs,
giving a particularly satisfying answer in the finite case. A major tool for the study of
finite semidistributive lattices is the notion of canonical join representation of elements.
Using the results on covers, we describe canonical join representations in the finite
case in terms of the relation —.

It is known that every quotient of a finite semidistributive lattice is semidistributive.
(See for example [13, Lemma 2.14(b)] for a proof and for discussion of the infinite
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case.) In Sect. 6, we describe all quotients of a finite semidistributive lattice in terms
of the FTFSDL. We define a relation ~~ on III and prove:

Theorem 1.5 Suppose (111, —, —, <) is afinite two-acyclic factorization system and
Y C I is a ~>-upset. Then the restriction of (I, —, —, <) to Y is a two-acyclic
factorization system and the map (X,Y) — (X N Y,Y N Y) is a surjective lat-
tice homomorphism between the corresponding lattices of maximal orthogonal pairs.
Every lattice quotient of Pairs(—) arises in this way for a unique ~~-upset Y.

Theorem 1.5 allows us to give a precise description of the lattice Con(Pairs(—))
of congruences of any finite semidistributive lattice. As discussed in Sect. 6, the con-
gruence lattice of a finite lattice L can be understood in terms of a preorder on Ji L
called the forcing preorder. For x € III, define T'(x) = {x" : x — x'}.

Corollary 1.6 Suppose (111, —, —, <) is a finite two-acyclic factorization system.
The map x +— (T (x), T (x)1) is an isomorphism from the transitive closure of ~ on
I zo the forcing preorder on Ji(Pairs(—)). This map induces an isomorphism from
the poset of ~>-downsets under containment to the congruence lattice Con(Pairs(—)).

We prove Theorem 1.5 and Corollary 1.6 by generalizing them to the infinite case,
with appropriate conditions on the two-acyclic factorization systems and congruences
(Theorem 6.3 and Corollary 6.15).

Section 7 relates the FTFSDL to work on other classes of finite lattices, namely
distributive lattices, congruence uniform lattices, general finite lattices, and extremal
lattices. Section 8 concludes the paper by discussing the motivating examples, namely
posets of regions of tight hyperplane arrangements and lattices of torsion classes of
finite-dimensional algebras.

2 The fundamental theorem

In this section, we prove the FTFSDL by proving its generalization Theorem 1.4. We
will separate out the following two auxiliary theorems: Theorem 2.1 is a useful fact
about «-lattices that are not necessarily well separated; Theorem 2.2 is a portion of
Theorem 1.4.

Theorem 2.1 If L is a «-lattice, then the map
x— ({jeli‘L :j <x}, Kd({m eEMIL :m zx}))

is an isomorphism from L to Pairs(— 1), with inverse (X,Y) — \/ X = N\ ().
The system (Ji° L, — 1, —p, ) has all of the properties of a two-acyclic factor-
ization system except that possibly Mult(—p, 1) C —.

Theorem 2.2 If (111, —, —, <) is a (not necessarily finite) two-acyclic factoriza-
tion system, then Pairs(—) is a well separated «-lattice. Furthermore, writing L for
Pairs(—), the system (1, —, —, <) is isomorphic to (Ji L, — [, >, —L).
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After some preliminary material in Sects. 2.1 and 2.2, we will prove Theorem 2.1
in Sect. 2.3. We prove Theorem 2.2 in Sect. 2.4 and then complete the proof of
Theorem 1.4. Finally, in Sect. 2.5, we prove the Fundamental Theorem of Finite
Semidistributive Lattices (Theorem 1.2) by showing that it is the finite case of Theo-
rem 1.4.

2.1 Conventions about partially ordered sets

In a two-acyclic factorization system, the relations —» and < are partial orders. When
we use the language of partial orders to describe them, we consider x to be greater
than or equal to y if x — y or x < y respectively. For example, if we say “x is an
—»-minimal element of S”, we mean that, for any x” € S other than x, we do not have
x —» x’. Throughout the paper, if we say that a set P is a partially ordered set under
the relation R and if R is some sort of arrow pointing from x to y, then we intend
x R y to correspond to x > y.

For a directed graph with vertex set V, we define a downset of V to be a set
D C V such that x € D and x — y implies y € D; we define U to be an upset
if y e U and x — y implies x € U. We allow ourselves to use this language even
when the relation — is not transitive and not antisymmetric. The downsets of — are
the same as the downsets of the transitive closure of —, and are in natural bijective
correspondence with the downsets of the graph formed by collapsing each strongly
connected component of — to a point.

In a partially ordered set P, we say that an element x covers another element y,
written x > y, if x > y and there does not exist any z with x > z > y. The Hasse
diagram of P is the graph with vertex set P and an edge from x to y if x > y.

2.2 Fundamentals of factorization systems

We now prove some basic facts about the operations Fact and Mult that were defined
in the introduction.

Proposition 2.3 Suppose — is a reflexive relation, and — and — are reflexive and
transitive relations, on a set 111.

1. Giventwo pairs of reflexive and transitive relations (—1, < 1) C (—»2, <>2), then
Mult(—1, =1) € Mult(—9, <>»).

(— U <) C Mult(—, —).

Mult(Fact(—)) C —.

FactMult(—, <)) D (—, <>).

Mult(Fact(Mult(—, < ))) = Mult(—», <>).

The containment symbol between ordered pairs stands for containment in each com-
ponent.

Nk

Proof Property 1 is obvious.

For Property 2, write — for Mult(—, < ). Suppose x — y. By definition of
multiplication, since < is reflexive (and thus y < y), we have x — y. Similarly, if
X <> y, then since x — x, we have x — y.
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For Property 3, write (—', <) for Fact(—) and write —' for Mult(Fact(—)). If
x —' y, then there exists z € III such that x —' z <’ y. By the definition of —’
and the fact that — is reflexive, we have z — y. Then, by the definition of —/, we
also have x — y.

To prove Property 4, we write —' for Mult(—», <), and write (—', <) for
Fact(Mult(—», <>)). We must show that, if x — y, then x —' y. Unpacking the
definition of —', we must show that, if y —' z, then x —’ z. Since y —' z, there
exists w with y — w <> z. Then by transitivity of —», we have x — w < z, so
x —’ z. We have shown that x —' y. The proof for < and <’ is similar.

For Property 5, we have Mult(Fact(Mult(—, < ))) € Mult(—, <) by Property 3.
Combining Properties 1 and 4, we have the opposite containment as well. O

Proposition 2.3.2 implies the following fact, which is useful in computing examples.

Proposition 2.4 [f (I, —, —, <) is a factorization system, then (— U <) C —.

Another useful fact to keep in mind, in computing examples, is the following propo-
sition.

Proposition 2.5 Let — be a relation on 111 and let Fact(—) = (—, <). Let (T, F)
be a maximal orthogonal pair for —. Then T is a downset for — and F is an upset
for <. In other words, if x — x' and x € T thenx' € T and, if y) <~ yandy € F
then y' € F.

Proof We prove the claim about T'; the claim about F is analogous. Let x — x’ and
suppose that x € T. We must show that, if x 4 y then x” /4 y. The contrapositive,
that if x’ — y then x — y, is the definition of —». O

Remark 2.6 The letters T and F suggest “Torsion” and “torsion-Free”, terminology
from the theory of torsion pairs. See Sect. 8.2.

This would be an excellent moment for the reader to take another look at Exam-
ple 1.3. In one direction, one can verify directly that (ILI, —, —, <) is a two-acyclic
factorization system. In light of Proposition 2.5, the task in computing Pairs(—) is to
determine which —-downsets X have the property that (X, X) is a maximal orthog-
onal pair. Equivalently, as will be explained in Sect. 2.4, the task is to find all sets X
such that -(X1) = X. In the other direction, one can verify directly that the lattice
L shown in Fig. 2 is semidistributive and then construct (Ji L, —, —r,<>) as in
Theorem 1.2.

Proposition 2.7 Let (I, —, —», <) be a two-acyclic factorization system. If x —
y<—>xorx —»y— x, thenx =y.

Proof We prove the first statement; the second is similar. Let x — y <> x. Since
— = Mult(—, <), there is some w with x — w <> y < x. By transitivity
of —, we have x - w <> x so, by the brick property x = w. Now we have
X = w <> y <> X s0, by the order property, x = y as well. O



59 Page100f53 N. Reading et al.

Our definitions have a symmetry under reversing arrows, which we spell out in the
easy proposition below.

Proposition 2.8 Let (111, —, —, <) be a factorization system. Define —°P by y —°P
x if x = y and similarly define x <P y if y < x and x —°P y if y — x. Then
(LI, —°P, <°P_—°P) js a factorization system; to be explicit, —°P has taken on
the role — and vice versa. The system (111, —°P, <P —P) s two-acyclic if and
only if (I, -, —, <) is. The map (X,Y) — (Y, X) is an anti-isomorphism from
Pairs(— °P) ro Pairs(—).

In a factorization system, the pair (—, <) determines —. It is often practical to
construct examples of factorization systems by giving (—, <) and defining — =
Mult(—, < ). It is therefore useful to state the hypotheses of being two-acyclic and
factorization in terms solely of the partial orders — and <. After introducing some
notation, we do this:

Given partial orders — and < on III and a subset X C III, we write down 1 X for
the set {y € I1I1 : 9x € X, x — y} of elements of III that are below elements of X in
the sense of —. Similarly, we write up X, down ! X and up X

Proposition 2.9 Given two partial orders — and — on a set 11, the tuple
(LI, Mult(—, <), —, <) is a two-acyclic factorization system if and only if the
following conditions hold.
(i) There do not exist distinct x and y in II1 with x — y and y — x.
(i) x — y ifand only ifdown£ down {y} < downi down {x} forall x, y € 1L
(iii) x < y if and only ifupiup£{x} Cup, upﬁ{y}for all x,y € 111.

If the conditions hold, then for any X C 111, the sets X and +X are described by
X+ = 111\ (down(down, X)) and +X = III\(up(up( X)).

Proof We write — for Mult(—, < ). Then downﬁ(downjL X)={y:Ix e X, x —> y}
and up (up 0 X) = {y :3dx € X,y — x}. Conditions (ii) and (iii) amount to the
assertion that Fact(Mult(—, <)) = (—», <>). Thus (III, Mult(—, <), —», <>) is a
factorization system if and only if (ii) and (iii) hold. The order condition holds in any
case, because — and < are partial orders. Condition (i) is a restatement of the brick
condition. The final statement is clear. O

2.3 From k-lattices to factorization systems

In this section, we prove Theorem 2.1 and begin the proof of Theorem 1.4.

Proposition 2.10 Suppose L is a «-lattice. Then Fact(—p) = (—p,—>) and
Mult(—7, 1) € —r.

Proof There are two facts to verify. First, we want to show that i — j if and only
if whenever j — £, we also have i — €. That is, we want i > j if and only if
(J £Kk) = (i £ k@) forall £ € Ji L. Taking the contrapositive, we want
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i > jifandonlyif{¢ € JIL :i <k()} S {£ € JiL : j < k(?)}. The forward
implication is obvious, and, since the image of k is Mi¢ L, the reverse follows because
in a k-lattice, every element is the meet of the set of completely meet irreducible
elements above it.

Second, we want to show that i < j if and only if whenever £ — i, we
also have ¢ — j. The argument is dual. We see that Fact(—1) = (=L, ).
Proposition 2.3.3 thus implies that Mult(—7, <) C —. O

We now check that (Ji° L, —, —, <> ) is two-acyclic. We first check the order
condition, and then the brick condition.

Proposition 2.11 Suppose L is a k-lattice. I[f x -1 y -1 X orx <> y <> X, then
X =y.

Proof The definition of x —»; y —»; x isthat x < y < x, so this follows because
< is a partial order. Similarly, x < y <> x means «(x) < «(y) < k(x) so
k(x) = k(y), and the map « is invertible so x = y. ]

Proposition 2.12 Suppose L is a k-lattice and x,y € JI° L. If x - y <> x, then
X =y.

Proof The hypotheses of the proposition are that x > yand « (y) > «(x). As before, let
X, bethe unique element coveredby x. If x > ythenx, > ysok(y) > k(x) > x, >y,
contradicting that x (y) # y. We deduce that x is not strictly greater than y, so x = y.

O

It remains to construct an isomorphism from L to Pairs(— ). We define J, =
{jeli‘L:j<x}and My ={m e Mi°L : m > x}.

Proposition 2.13 Suppose L is a k-lattice. The map x — (Jy, x4 (My,)) is an isomor-
phism from L to Pairs(— ).

Proof Sinceeachx € Lhasx = \/ J;,the map x — (Jy, k4 (My))is an isomorphism
from L to its image, where the image is partially ordered by containment in the first
entry and equivalently reverse containment in the second entry. Thus it remains only
to show that the image is the set of maximal orthogonal pairs for — .

Forx € Ltheset Jlis{j € JIL :i <«(j),Vi € Jy} ={j € JiL : x <
k() = «4{m € Mi°L : x < m}) = «%(M,). Also, *(«?(M,)) = {i € Ji°L :
i <m,¥Ym € M,}, which equals {i € JiL :i < x} = J,. We see that (J, k4 (My))
is a maximal orthogonal pair.

On the other hand, suppose X and Y are subsets of Ji° L such that (X, Y) is a
maximal orthogonal pair for —; and write x = \/ X. Then Y equals X, which
equals {j € Ji°L : i < «k(j),Vi e X} ={j € JiL : x < «(j)} = k4 (My).
Computing *(x¢(M,)) as in the previous paragraph, we see that X = J,. O

This completes the proof of Theorem 2.1. Theorem 2.1 deals with «-lattices which
may not be well separated, and constructs factorization systems which may not obey
Mult(—, <> 1) = — . The following proposition shows that the hypothesis of well
separation fixes this defect.
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Proposition 2.14 If L is a well separated «-lattice, then (Ji L, —, —»,<>L1) is a
two-acyclic factorization system and L is isomorphic to Pairs(— ).

Proof Since L is a «-lattice, by Theorem 2.1 it remains only to check that —; C
Mult(—, < ). Leti and j be completely join-irreducible elements withi — j or,
in other words, i £ «(j). Since L is well separated, there is a join irreducible element
£ such thati > ¢ and k(£) > k(j). In other words, i —» £ — j. O

We have now proved all the parts of Theorem 1.4 which state that a well separated
k-lattice has a particular form. In Sect. 2.4, we turn to proving the reverse direction.

2.4 From factorization systems to k-lattices

In this section, we prove Theorem 2.2 and complete the proof of Theorem 1.4. We
begin by quickly showing that Pairs(—) is a complete lattice for any binary relation
—.

Given a binary relation — on a set I, and a subset X C III, we define X to be
L(X1). We call aset X closed if X = X. We quote the following standard results from
Birkhoft [9]. Note that Birkhoff works more generally with two sets and a relation
between them (a situation which will occur for us in Sect. 7.3 ) and that his relation p
corresponds to our relation /4.

Proposition 2.15 ([9], Theorem V.19) For any binary relation —, the map X > X
is a closure operator on 1. In other words,

e XCX
° 7:7forallX_§ H_l and
e X CYimpliesX CY forall X,Y C IIL

Proposition 2.16 ([9], Theorems V.1 and V.2) Let X — X be any closure operator
on a set l11. Then the containment order on closed subsets of 111 is a complete lattice.
The meet operation is N.

We also make some easy observations.

Proposition 2.17 If — is a binary relation on a set 111, then (X,Y) — X is an
isomorphism from Pairs(—) to the complete lattice of closed sets under containment
order. The inverse is X — (X, X1).

Proposition 2.18 If — is a binary relation on 111, and S C 111, then L8 is closed.

Proof We must show that 1S = S. Expanding the definition of closure, this says that

Ls=4(* S)l). This is standard, see for example [9], the Corollary before Theorem
V.19. O

We will often identify Pairs(—) with the poset of closed sets and specify elements
(X, Y) of Pairs(—) by giving only the closed set X.
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We now show that Pairs(—) is a k-lattice when (ILI, —, —, <) is a two-acyclic
factorization system. To this end, we study completely join-irreducible elements and
completely meet-irreducible elements in Pairs(—). For x € III, define

Tx)={x":x »x"} and F(x)={x":x" — x}.

Proposition 2.19 Let (I11, —, —, <) be a two-acyclic factorization system. For any
x € I, we have T(x) = L({X}L) and F(x) = (l{x})l. Moreover, x is uniquely
determined by T (x) and is uniquely determined by F (x).

Proof Checking that T (x) is the closure {x} := +({x}1) is a matter of unfolding
definitions: We have x’ € {x} if and only if, for all y € III, if x 4 y then x’ 4 y.
Taking the contrapositive, we have x” € {x} if and only if x’ — y implies x — y,
which is the definition of x — x'. If T(x1) = T(x3), then x; — x2 and x» — x1,
so the order condition implies that x; = x,. We have checked both assertions about
T (x); the assertions about F'(x) are proved similarly. ]

We can now describe the completely join-irreducible elements and completely
meet-irreducible elements of Pairs(—). We define Ty (x) = T(x)\{x} and F*(x) =
F)\{x}.

Proposition 2.20 Let (111, —, —, <) be a two-acyclic factorization system.

1. Ji¢(Pairs(—)) = {(T'(x), T(x)Y) : x € III}. The unique element covered by
(T(x), T@)"Y) is (Tu(x), Tu(x) ).

2. Mi¢(Pairs(—)) = {(*F(x), F(x)) : x € II}. The unique element covering
("F(x), F(x)) is (FF*(x), F*(x)).

Proof We check the claim about completely join-irreducible elements; the claim about
completely meet-irreducible elements is dual.

The set T (x) is closed by Proposition 2.19. If T’ is a closed set with 77 C T (x)
and T’ ¢ Ty(x), then x € T, and thus T'(x) C T’ by Proposition 2.5. That is, every
closed set strictly contained in 7'(x) is contained in 7y (x), so we can complete the
proof by showing that T, (x) is closed. Since closure preserves containment and 7 (x)
is closed, the closure of T, (x) is either T, (x) or T (x). To see that T, (x) # T (x), note
that x € T, (x)* by Proposition 2.7. So x ¢ +(T,(x)*) = Ty (x) and we deduce that
T, (x) is closed.

Conversely, suppose that T is a completely join-irreducible closed set. By Propo-
sition 2.5, T is a downset of —, so T = Uxer T (x). Each T (x) is closed, so
T = \/,er T(x). By the definition of complete join-irreducibility, 7 = T (x) for
some x € T, as desired. O

Thus in a two-acyclic factorization system, (7 (x), T (x)1) < (FF(x), F(x))isa
bijection between Ji¢(Pairs(—)) and Mi‘(Pairs(—)). We will show that these bijec-
tions yield maps « and ¢ manifesting that Pairs(—) is a «-lattice.

Proposition 2.21 Letx € II1. Then - F (x) is the maximum element in the set of closed
sets T obeying T(x) N T = Ty(x).
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Proof We first check that 7'(x) N (1 F(x)) = T.(x). Since x € F(x), we have x ¢
lF(x), so we only need to show that T, (x) C L F(x). That is, given y € I with
x — yand x # yand z € Il with z < x, we need to show that y 4 z. Butify — z,
then there exists w € III such that y — w < z. By the transitivity and antisymmetry
of —», wehave x — w and x # w. By the transitivity of <, we have w < x. But then
x — w <> x, contradicting the brick condition. By this contradiction, we conclude
that 7(x) N (L F(x)) = Ty (x).

It remains to show that any closed set 7 with T(x) N T = Ty (x) has T C LF ().
The hypothesis that 7 (x) N T = T,(x) can be restated as 7T, (x) C T and x ¢ T.

Suppose for the sake of contradiction that there is some # € T and u ¢ + F(x).
Thus u — v < x for some v, so there exists y such that u — y < v. Since T is an
order ideal for —, we have y € T and, by transitivity of <, we have y — x.

Now, x ¢ T and T is closed, so there is some z € T+ such that x — z. Thus,
for some w, we have x —» w < z, and in particular w — z (Proposition 2.3.2). If
w # x then w € Ty(x) € T, but then the facts w — z and z € T+ contradict each
other. Therefore, we must have x = w, so that x — z. We also showed above that
y <> x, so now we conclude that y < z and thus y — z (using Proposition 2.3.2
again). Since y € T, this contradicts z € 7. We conclude that T C - F(x), and the
proof is complete. O

Writing F*(x) for F(x)\{x}, the following proposition is dual to Proposition 2.21.

Proposition 2.22 Let x € 1. Then T (x) is the minimum element in the set of closed
sets T obeying L F(x) v T =+ F*(x).

Propositions 2.21 and 2.22 combine to prove the following piece of Theorem 2.2.
Proposition 2.23 If (III, —, —, <) is a two-acyclic factorization system, then
Pairs(—) is a k-lattice. Specifically,

(T, TN = (FF@), F(0) and «(FF(x), F()) = (T(), T()).

To prove that Pairs(—) is well separated, we first point out a simple lemma.

Lemma2.24 Let (I, -, —, <) be a two-acyclic factorization system and let
(X1, Y1) and (X2, Y») € Pairs(—). If X1 N Yy = @ then (X1, Y1) < (X3, Y2).

Proof We show the contrapositive. Suppose that X| ¢ X». Then there is some p €
X1\ X3. Since p ¢ X», there is some r € Y, with p — r. Factor this arrow as
p—»q<—r.Theng € X1 N Y. O

Proposition 2.25 If (III, —, —, <) be a two-acyclic factorization system, then
Pairs(—) is well separated.

Proof For z; and zp € Pairs(—) with z; f z2, we need to show that there is a
completely join irreducible element j of Pairs(—) with z; > j and «(j) > z».
Let z1 = (X1,Y1) and zo = (X2, Y32). By the contrapositive of Lemma 2.24,
the assumption that z; %_ zp implies that X1 N Yy # @; let ¢ € X; N Y. Put
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j = (T(q), T(¢)"). By Proposition 2.20, j is completely join irreducible; by Propo-
sition 2.21, «(j) = (lF(q), F(q)). Because X and Y, are a —»-downset and an
< -upset respectively, we have X1 2 T(¢) and F(g) C Y2,s02z1 > jand k(j) > 25.

O

To complete the proof of Theorem 2.2, we need to show that, if L = Pairs(—)
for a two-acyclic factorization system (III, —, —, <), then (III, —, —, <) is iso-
morphic to (JiL, —», -, <), for >, —, and < as defined just before
Theorem 1.4.

If L = Pairs(—), then Proposition 2.20 provides bijections III <> Ji° L <> Mi‘ L
given by x < (T'(x), T(x)1) < (*F(x), F(x)). We now establish that these bijec-
tions turn — and < into — and <> .

Proposition 2.26 Suppose x,y € IIL. Then x — y if and only if (T (x), T (x)*) =1
(T, T and x < y if and only if (" F (x), F(x)) =1 (*F(y), F(y)).

Proof We prove the claim about —»; the claim about — is analogous. Unwinding
definitions, we must show that x — y if and only if {x" : x — x'} D {x" : y - x'}.
This holds because — is a partial order. O

We can complete the proof of Theorem 2.2 by showing that the same bijections
turn — into — 1 as well. By the definition of a factorization system, we have — =
Mult(—», < ). By Propositions 2.22 and 2.25, Pairs(—) is a well separated «-lattice
s0, by Proposition 2.14, we have —; = Mult(— 1, <> ). Proposition 2.26 shows that
—» = — and <> = <>, so we also have — = — as required. This completes the
proof of Theorem 2.2.

We have now proved all the parts of Theorem 1.4: Theorem 2.1 combined with
Proposition 2.14, shows that a well separated «-lattice gives rise to a 2-acyclic fac-
torization system. Theorem 2.2 shows that every 2-acyclic factorization system gives
a well separated «-lattice, and shows that these two constructions are related in the
required manner.

2.5 Finite semidistributive lattices

In this section, we recall and prove some basic facts about finite lattices that show
that FTFSDL is a special case of Theorem 1.4. We also use Proposition 2.9 to give a
formulation of the FTFSDL which references only — and <, and not —.

Proposition 2.27 [f L is a finite lattice and x € L, then
x=\/jeliL:j<x}=/\lmeMiL:m=>x}.

Proof We argue the first equality; the other is dual. It is enough to show that x is the
join of a set of join-irreducible elements. If x is not join-irreducible, then it is the join
of a set § of elements strictly lower than x in L. By induction in L, each element of
S is the join of a set of join-irreducible elements, and thus x is also. O
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We use the following well-known characterization of semidistributivity in finite
lattices. See, for example, [1, Theorem 3-1.4] or [14, Theorem 2.56]. (Note that these
sources disagree on which map is called « and which is called ¥¢.) Since the proof is
short, we include it.

Theorem 2.28 Suppose L is a finite lattice.

1. L is meet semidistributive if and only if for every join-irreducible element j € Ji L,
the set {x € L : j A x = j,} has a maximum element k (j).

2. L is join semidistributive if and only if for every meet-irreducible element m €
Mi L, the set {x € L : m VvV x = m*} has a minimum element ? (m).

If L is semidistributive then « is a bijection from Ji L to Mi L with inverse k“.

Proof Suppose L is meet semidistributive. Suppose j is a join-irreducible element.
Meet semidistributivity implies that the join \/{y : j A y = ji} is itself an element of
{y : j Ay = ji}. Thus this set has a maximum element (i.e., an element greater than
all the other elements in the set). We denote it « ().

Conversely, suppose that {x € L : j A x = j,} has a maximum element « (j) for
every j € JiL. Let x, y, and z be elements of L with x A y = x A z. In any case,
xA(yVv)=xAy.lfxA(yVz) >xAy,letjbe minimal among elements that
are < x A (y Vz)and £ x A y. (It is in choosing this minimal element j that we
make use of the hypothesis of finiteness.) If j covers two distinct elements k| and k>,
then j = k; Vv kp, but k1 VvV kp < x A y since minimality of j implies k1 < x A y and
ko < xAy.Thus j isjoin-irreducible. Minimality of j alsoimplies that j, < xAy < y.
Similarly, j, < z. However, y Vz > x A (y V z) > j, contradicting the existence of
k(j). We conclude that x A (Y V) = x A y.

We have established the first numbered assertion; the second is dual.

We next check that the map « takes Ji L to Mi L. If «(j) is not meet-irreducible,
let X be a set of elements with /A X = «(j) butx(j) ¢ X. Then every elementx € X
has x > «(j), and thus x > j. Thus ¥ (j) = /A X > j, contradicting the definition of
k(j). We conclude that «(j) € Mi L.

Finally, we must check that x and ¢ are inverse. Write k (j)* for the unique element
covering x (j). If L is semidistributive and j € Ji L, then by definition of x (j), we have
Jj < «(j)*and j, < «(j).Thus jisaminimalelementof {x € L : k(j) V x = k(j)*},
so that k% (k(j)) = j. The dual argument shows that ¢ maps Mi L to Ji L and that
k(k?(m)) = mforallm e MiL. O

Proposition 2.27 and Theorem 2.28 combine to establish the following statement.
Corollary 2.29 A finite lattice is a k-lattice if and only if it is semidistributive.
Proposition 2.30 If L is a finite k-lattice, then L is well separated.

Proof Suppose z1 £ z2in L. The set {x € L : x < z1, x £ z2} is not empty, because
it contains z;. Thus the set has a minimal element j. The element j is join-irreducible;
if j = \/ X with j ¢ X, then z; is an upper bound for X, yielding the contradiction
J < z2.Als0 ji < 22,80 j AZ2 = ji, and thus x(j) > zo. O
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Corollary 2.29, Proposition 2.30, and the finite case of Theorem 1.4 combine to
prove Theorem 1.2, the Fundamental Theorem of Finite Semidistributive Lattices.

Using Proposition 2.9, we can restate the FTFSDL referring only to —» and <. We
can define Pairs(Mult(—, <)) directly as the set of pairs (X, Y) with Y = X L and
X = 1Y in the sense of Proposition 2.9, partially ordered by containment in the first
component, or equivalently reverse containment in the second component.

Theorem 2.31 (FTFSDL, restated) A finite poset L is a semidistributive lattice if and
only if it is isomorphic to Pairs(—, <) for partial orders — and — on a set 111,
satisfying the conditions of Proposition 2.9. In this case, (111, —, <) is isomorphic
to(JiL, —»p,—p), wherei — jifandonly ifi > jin L andi < j if and only
if k(i) > k(j) in L. The map

x> ({jeNlL:j<x}, k"{meMiL:m=>x})

is an isomorphism from L to Pairs(—p, <), with inverse (X,Y) — \/ X =

A& (@)).

3 The infinite case

In this section, we discuss the infinite case further. We begin by explaining some
choices we have made in the infinite case.

One choice we have made is to only consider lattices that are complete. This is
for two reasons: First, one of our main motivations is the lattice of torsion classes
(Sect. 8.2) for a finite-dimensional algebra, and this lattice is complete. Second, we
have seen in Proposition 2.17 that for any binary relation — on a set II1, the lattice
Pairs(—) is complete.

We have similarly focused our attention on completely join-irreducible and com-
pletely meet-irreducible elements. Crucial here is the fact that j is completely
join-irreducible if and only if there is an element j, such that x < j if and only
if x < j,. If j is join-irreducible but not completely so, there is no such an element.

3.1 Conditions on infinite complete lattices

We now discuss some conditions on complete lattices, each of which, in the finite
case, is either equivalent to semidistributivity or trivially true. The main theorem of
this section describes the relationships between these conditions. In Sect. 3.2 we prove
the main theorem, and in Sect. 3.3, we present numerous counterexamples to show
that the claims of the theorem cannot be strengthened.

We begin with some discreteness conditions, which are easily seen to hold in all
finite lattices. Recall that a complete lattice L is bi-spatial if for all x € L, we have
¥ =V jesicr ] = Nmzx, memic 1, m- We say that L is weakly atomic, if, for all
x <y, there exist u and v with x < u < v < y. We say that meets in L are cover-
determined if whenever x < yandx Az < y Az, thereisacoverx <u<v <y
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with u A z < v A z. We say that joins in L are cover-determined if the dual condition
holds.

A condition which implies all of the previous discreteness conditions is that a lattice
be bi-algebraic. (See Propositions 3.7, 3.8, and 3.9.) An element x of a lattice L is
called compact if, for every subset A of L, if \/ A > x then there is a finite subset
F of A such that \/ F > x. A lattice L is called algebraic if every element x is the
join of the set of compact elements which are < x. A lattice L is called bi-algebraic
if it is algebraic and if the dual lattice is also algebraic. It is clear that any finite lattice
is bi-algebraic. As we will discuss in Sect. 8.2, the lattice of torsion classes for any
algebra is bi-algebraic.

We continue by describing some conditions that, in the finite case, are equivalent
to semidistributivity. Recall that L is join semidistributive if, for any nonempty finite
subset X of L such thatx vy = z forall x € X, we have (A, oy x) V y = z. A lattice
L is completely join semidistributive if it is complete and if, for every nonempty subset
X of L suchthatx vy = zforallx € X, we have (/\xeX x) V' y = z. Complete meet
semidistributivity is defined dually, and L is called completely semidistributive if it is
completely join semidistributive and completely meet semidistributive. Our interest
in complete semidistributivity arises in part from the lattice of torsion classes for a
finite-dimensional algebra, as discussed in Sect. 8.2.

Recall that a k-lattice is a complete lattice L that is bi-spatial, and has special
bijections « and k¢ between Ji¢ L and Mi¢ L. Recall also that Corollary 2.29 says that
a finite lattice is a «-lattice if and only if it is semidistributive. Finally, recall that a
Kk-lattice is well separated if whenever z; f 77, there exists j € Ji° L with z; > j and
k(j) = z22.

The following theorem relates all of these conditions on a complete lattice.

Theorem 3.1 Let L be a complete lattice. The implications shown by solid arrows hold
without additional hypotheses. The dashed implications hold under the additional

L = Pairs(—) Joins and meets
it l€«====5 R . N .
for a two-acyclic in L are cover- <:{ L is bi-algebraic
factorization system determined

: ﬂ

Lis awell sep- ’ L is weakly atomic ‘
arated k-lattice m

| Lisax-latice L is bi-spatial ‘

Remark 3.2 For finite lattices, the three conditions in the left column are all equivalent
to each other, and are equivalent to being semidistributive. All finite lattices obey the
conditions in the middle and right column.

~

Remark 3.3 We remind the reader of Theorem 2.1: If L is a «-lattice, then L =
Pairs(— 1) and Pairs(—) obeys all the conditions of a two-acyclic factorization
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system except that some — arrows may not factor as an — followed by an <. We
have not incorporated the statement L = Pairs(— 1) into the diagram because — , is
only defined when L is a «-lattice.

Remark 3.4 We regard completely semidistributive lattices obeying the three equiv-
alent conditions inside the region marked with a dotted line in the top left of the
diagram as the “good” lattices. All finite semidistributive lattices are in this class, as
are lattices of torsion classes for finite-dimensional algebras, and we hope to construct
lattices completing weak order on infinite Coxeter groups which will likewise obey
these conditions.

Remark 3.5 Unfortunately, in the infinite case, none of the conditions we have men-
tioned imply semidistributivity (complete or otherwise). See Example 3.25 for a truly
frustrating counterexample. We do not have a good replacement hypothesis which
would imply semidistributivity.

3.2 Proof of Theorem 3.1

We now establish the implications of Theorem 3.1. We begin with the arrows which
do not require complete semidistributivity. We already established in Theorem 1.4
that L is a well separated «-lattice if and only if it is isomorphic to Pairs(—) for a
two-acyclic factorization system (III, —, —, <).

Proposition 3.6 Ler (111, —, —, <) be a two-acyclic factorization system. Then joins
and meets in Pairs(—) are cover-determined.

Proof We prove the statement for meets. Let X < Y in Pairs(—) and let Z € Pairs(—)
be suchthat X A Z < Y A Z. We first prove the result in the special case that Z < Y, so
YAZ = Z.Inthis case, all of the objects X, Y, Z and X AZ lieintheinterval [XAZ, Y].
By Theorem 4.3, this interval also corresponds to a two-acyclic factorization system.
We therefore may assume that X A Z = (¢, III) and Y = (I, #). The hypothesis
X ANZ < Y A Z now simplifies to Z # (4, I1T). We identify each pair with its first
element, so our hypotheses now are that X, Z are closed sets with X N Z = ¢ and
Z # (). We want to show that thereisacover X < C; < Co withCiNZ C Cr N Z.
Since Z # @, we can find p € Z. Since X N Z = @, we have p ¢ X and
thus there is » € X+ with p — r. Factor this arrow as p — ¢ <> r. Since Z is
an —-downset and X is an <-upset, we have ¢ € X+ N Z. Recall the notations
F(q) ={s €Il : s — g} and F*(q) = F(¢)\{g}. We have X C +F(q) < -F*(q).
Clearly, g ¢ J-F(q) soq ¢ J-F(q) N Z. Since F(g)\F*(q) = {q}, we have
g € YF*(q), so q € LF*(q) N Z. This shows that L F(¢) N Z # LF*(g) N Z, so
LF*(q) <1 F(q) is the desired cover. This completes the proofin the case that Z < Y.
We now tackle the general case. Let X < Y in Pairs(—) and let Z € Pairs(—)
be suchthat X AZ < Y AZ.Put Z' = Y A Z. Note that Z’ < Y and note that
XANZ =XAYANZ=XANZ <YANZ =Y AZ,sothe hypotheses of the Proposition
apply to (X, Y, Z'). So, by our earlier work, there is a cover X < C; < Cp < Y with
Ci1AZ' < CyAZ'. Suppose for the sake of contradiction that C{ A Z = Cy A Z. Then
CiNZ =CIANZAY =CyANZAY =CyAZ,whichis indeed a contradiction.
O
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Proposition 3.7 If either joins in L are cover-determined or meets in L are cover-
determined, then L is weakly atomic.

Proof We consider the case that meets are cover-determined; the case of joins is dual.
Let x < y and let 1 be the maximum element of L. Since meets are cover-determined
andx A1 <y A, thereexistu and v withx <u <v < y. |

Proposition 3.8 If L is algebraic then meets in L are cover-determined. If L is bi-
algebraic then meets and joins in L are cover-determined.

Proof Suppose that x < y and x Az < y A z. Since L is algebraic, y A z is the join of
the compact elements below it, so there must be a compact element k which is below
y Az and not below x A z. Since z > y Az > k and x A z # k, we must have x # k.

Let Pbetheset{w:x <w <yandw 7,>f k}. The set P is nonempty, because we
checked in the previous paragraph that x # k and, clearly, x < x < y. Let C be a
totally ordered subset of P. We claim that \/ C € P.Itis obvious thatx < \/C <y,
so we just need to check that \/ C ;f k. By the compactness condition, if \/ C > k,
then there is some finite subset F of C with \/ F = k. But \/ F = f where f is the
largest element of F, and f € F C P so, by definition, f z k. This contradiction
completes the verification that \/ C € P.

The argument of the previous paragraph shows that P is a nonempty poset in which
every totally ordered subset has an upper bound. Thus, by Zorn’s lemma, there is an
element # € P such that any w > u is not in P. Put v = u Vv k and observe that
x <u < v <y.Weclaim that u < v. If not, suppose that u < w < v. Then w ¢ P
and, since x < u < w < v <y, we must have w > k. But then w is an upper bound
for u and k which is smaller than u V k = v, a contradiction.

Finally, v Az > k,butu Az # k,sou Az < v Az, as desired. O

The following is [17, Theorem 1-4.25].

Proposition 3.9 If L is algebraic then L is dually spatial. If L is bi-algebraic, then L
is bi-spatial.

The remaining undashed implications say that a well separated « -lattice is a k -lattice
and that a «-lattice is bi-spatial. Both of these implications are true by definition.

We now turn to the implications which require complete semidistributivity. We
begin with the bottom row.

Proposition 3.10 Let L be a completely semidistributive lattice which is bi-spatial.
Then L is a k-lattice.

Proof This is proved exactly as in Theorem 2.28. O

Before proving the other dashed implications, we need the following lemma. This
result is essentially [13, Proposition 2.20].

Lemma 3.11 If L is a completely semidistributive lattice and u < v in L, then the set
{t € L : tVu = v} contains a minimum element £, which is completely join-irreducible
and has €y < u.
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Proof Let T = {t € L : t V u = v}. Since L is completely semidistributive, the
element £ = /\ T has £ vV u = v, so it is the desired minimum element of 7. Suppose
¢ =\/ S for some set § C L. We must show that £ € S. In order to do this, we will
show that \/(S\{¢}) < u; since £ £ u, this shows that \/(S\{¢}) # \/ S.

Ifs € S\{¢},thenu <sVvVu <£€Vu=uvso,sinceu <v,wemusthaves Vu =u
orsVu =v.Ifs Vu = vthens is an element of T that is strictly less than £ = A T.
By this contradiction, we see that s V u = u. We have shown that s < u for every
s € S\{¢} and thus \/(S\{¢}) < u as promised. We have shown that £ is completely
join-irreducible.

We have u < €, Vu < £V u = v, but the second inequality must be strict by the
definition of £. Since u < v, we see that £, V u = u, so that £, < u. |

Remark 3.12 The map in Lemma 3.11 from covers of a complete semidistributive lat-
tice to completely join-irreducible elements is known as the join-irreducible labelling.
It is well-known in the finite case. An analogous result in the representation-theoretic
setting was established in [7] (combining Theorems 1.0.2, 1.0.3, and 1.0.5).

We next establish the downward dashed implication.

Proposition 3.13 If L is a completely semidistributive, weakly atomic lattice and x €
L, then

x=\/ljieliL:j<x}=/\lmeMi‘L:m>x}.

Proof We prove that x = \/{j € Ji° L : j < x}. The other equality is dual.

Let x’ = \/{j € JIL : j < x}. Then x’ < x, so suppose for the sake of
contradiction that x’ < x. Since L is weakly atomic, there exist u and v with x” <
u <v < x.Let £ be the minimum element of {¢ : t vV u = v}, which exists and is
completely join-irreducible by Lemma 3.11.

Since £ V u = v # u, we see that £ £ u and hence £ £ x’. But £ is completely
join-irreducible and £ < v < x, so we have contradicted the definition of x’ as
x'=\/{j € Ji L : j < x}. We therefore reject the supposition that x’ < x. O

Our final task is to prove the dashed implication in the top row. In fact, we will
prove the following proposition.

Proposition 3.14 Suppose L is a completely semidistributive lattice. If either joins are
cover-determined or meets are cover-determined, then L is a well separated « -lattice.

To prove the proposition, we will use an alternative characterization of the well
separated property. In a «-lattice L, suppose i, j € Ji¢ L. If there exists £ € Ji¢ L with
i >fand k(&) > «(j)), theni £ k(j). Ifi < «(j),then <i < «k(j) < k(¥),
contradicting the definition of « (£).) We say that L is weakly separated if the converse
holds: If i, j € JiL have i £ «(j), then there exists £ € Ji L with i > ¢ and
k(€)= k(j)).

Lemma 3.15 A k-lattice L is well separated if and only if it is weakly separated.
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Proof Clearly any well separated «-lattice is weakly separated. We show the converse.
Suppose L is weakly separated and z; £ z in L. We will show that there exists
£ € Ji° L with z; > £ and k (£) > z5. Since L is spatial (as part of the definition of a
Kk-lattice), there exists i € Ji° L withi < zy buti £ z5. Since i £ 7z, and because L
is dually spatial, there exists j € Ji° L such that zo < «(j) and i £ k(j). By weak
separation, there exists £ € Ji° L with i > ¢ and «(£) > «(j). Thus z; > i > £ and
k(€) > Kk (j) > z2 as desired. O

Proof of Proposition 3.14 We consider the case that joins are cover-determined; the
case of meets is dual. The implications we have already established show that L is
a k-lattice. It remains to establish well separation. By Lemma 3.15, it is enough to
establish weak separation.

Suppose i, j € Ji° L have i ﬁ k(j). TheniVvi(j) > k(j)and (i Ak(j))Vi(j) =
k(j). Since joins are cover-determined in L, there exist u, v € L with i A k(j) <
u<v<ianduVk(j)#vVk(j).ByLemma3.ll,theset{s € L :sVu = v} has
a minimum element ¢, which is completely join-irreducible and has ¢, < u. We have
L <v<Ii.

Suppose for the sake of contradiction that « (£) 2 k(j). We claim first that « (j) Vv
£y > L. Indeed, if K (j) V €y # €, then (k(J) VL) AL < £,80 (k(j) VL) AN =Ly
By the definition of k (£), we have k (j) V €, < k(£), contradicting « (¢) # «(j) and
thus proving the claim. By the claim, x(j) vV u > £ as well. Since £ vV u = v, also
k(j)Vv=«k(j)VLVu,whichequals k (j)Vu because k (j) Vu > £. But we already
know u Vv k(j) # v V k(j), and by this contradiction, we see that k (£) > «(j). We
have proven that L is weakly separated, as desired. O

3.3 Counterexamples

We now present a number of counter-examples, to sharpen the distinctions between
the various conditions on complete lattices, and to demonstrate that the results in
Theorem 3.1 cannot be strengthened. We start with three examples to illustrate the
relationship between semidistributivity, complete semidistributivity and being a well
separated k-lattice. We note that none of Examples 3.16, 3.17 and 3.18 are algebraic.
Later, in Example 3.25, we will give an example of a well separated « -lattice which is
bi-algebraic (and hence obeys all the other discreteness conditions by Theorem 3.1)
but is still not semi-distributive.

Example 3.16 (A semidistributive lattice that is not completely semidistributive and is
not a k-lattice)

Consider the lattice with elements 0, 1, X and Y; fori € Z,

and relations that O is the minimum, 1 is the maximum and Y¥; < Y; fori < j. This
lattice is complete and semidistributive. For each Y;, we have X Vv Y; = 1. However,
XV NA;Yi =X VvO0=X.Also, X is completely join irreducible with X, = 0, but
there is no maximal element k (X) in the set {Y : X A Y = 0}.

Example 3.17 (A semidistributive «-lattice that is not completely semidistributive and
not well separated) Consider the lattice whose elements L are called 0, 1, X; and Y;,
for i € Z, with relations that 0 is the minimum, 1 is the maximum, and X; > X; and
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Y; > Y; fori > j. This lattice is complete and semidistributive. However, it is not
completely semidistributive for the same reason as in Example 3.16: any X; can play
the role of X from that example. Every element is both completely join-irreducible
and completely meet-irreducible except 0 and 1. Also,0 = A Land 1 = \/ L. We
have K (X;) = X;_1 and «(Y;) = Y;_1, and k4 is the inverse map, so L is a «-lattice.
Also, X # Yo, yet there is no completely join-irreducible element J with Xo > J
and «(J) > Yy, so L is not well separated.

Example 3.18 (A «-lattice that is not semidistributive and not well separated) Consider
the lattice L with elements O, 1 and X;, Y; and Z; fori € 7Z, and relations that 0 is
the minimum, 1 is the maximum, and X; < X;,Y; < Y;jand Z; < Z; fori < j. As
in Example 3.17, every element is both completely join-irreducible and completely
meet-irreducible except 0 and 1, and we have «(X;) = X;_, «(¥;) = Y;_1 and
k(Z;) = Z;_1. Thus L is a k-lattice. However, Xg A Yo = Xg A Zg = 0 while
XoN YoV Zy) = Xo A1 = Xop, so L is not semidistributive. This lattice is not well
separated for the same reason as Example 3.17.

Example 3.19 (k-lattices not isomorphic to Pairs(—) for a two-acyclic factorization
system) Suppose L is the lattice in Example 3.17 or the lattice in Example 3.18.
Thus L is a «-lattice. By Theorem 1.4, if L is isomorphic to Pairs(—) for a
two-acyclic factorization system (III, —, —», <), then this system is isomorphic
to (JiL, -, —»r,<>1). However, — is not Mult(—, <> ). Indeed, we have
k(X1) = Xo 2 Y1 so X1 — Yj, but the only compositions X; — P < Q are those
of the form X1 — X; < Xy for1 > j > k, so we cannot factor X; — Y1 into an —
arrow and an <> arrow.

We next give an example where meets and joins are cover-determined, but the
lattice is not dually spatial because it has no completely meet irreducible elements. It
is therefore also not a «-lattice (well separated or otherwise). By Theorem 3.1, this
example cannot be completely semidistributive; surprisingly, it is distributive!

Example 3.20 (A lattice where meets and joins are cover-determined, but Mi¢ L is
empty) Let 2 be an infinite set. Let L consist of the finite subsets of €2, as well as the
set 2 itself, with L ordered by containment. It is easy to check that L is a complete
lattice and meets and joins are cover-determined. However, L has no meet irreducible
elements, so it is not dually spatial.

For completely semidistributive lattices, Theorem 3.1 tells us that having joins and
meets cover-determined implies being weakly atomic, which in turn implies being bi-
spatial. We now present two very similar examples, showing that these implications
cannot be reversed. As Theorem 3.1 shows must be the case, these are «-lattices but
are not well separated.

Example 3.21 (A completely semidistributive «-lattice that is bi-spatial but not weakly
atomic) We define a poset L whose ground set is 5 copies of the interval [0, 1] in the
real numbers, with elements denoted by formal symbols x T+, x, x°, x~, and x~~
foreach x € [0, 1]. Forany 0 < x < y < 1, the poset L induces the order depicted on
the 10 elements shown in Fig. 3. The solid lines in the figure represent cover relations
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Fig.3 Portions of the lattices y++
from Examples 3.21 and 3.22 /
y+
ottt y°
e AN
xt Yy~
AN /
x° Yy~
T
/
=

in L; the dashed lines are order relations in L that are not covers. It is easy to check
from Fig. 3 that L is a lattice. To see that it is actually a complete lattice, note that
any set of the form {x™" : x € A} has a join (either (sup A)*™ or (sup A)™, where
sup A is the supremum), and similarly, sets consisting of elements x T, x°, x~ or x
have joins. Thus we can compute the join of any subset of L as the join of at most five
elements, and similarly for meets.

Complete meet semidistributivity is verified in the following table. For any u < v,
the table gives the unique maximal p with v A p = u, where u is given in the row head-
ings and v in the column headings, assuming x < y. Complete join semidistributivity
is dual.

L [ o [ [oF [ ]y "]y [0 [ o' [y ]
T 1T+ ot | T
zt 17+ | 2T Tt | ot
x° 1+ 1 1° v | a° x°

x~ 1 1 1 ettt e | 2T | 2

| I e I e I I I I I I I

It is easy to check that it is bi-spatial; this, in combination with the fact that it is
completely semidistributive, allows us to conclude by Theorem 3.1 that it is a x-lattice.

However, this lattice is not weakly atomic: There are no covers in the interval
[0°, 1°]. It follows from Theorem 3.1 that it is not well separated.

Example 3.22 (A completely semidistributive «-lattice which is weakly atomic but
where joins and meets are not cover-determined) Take Example 3.21 and remove the
elements of the form x°. As before, we can verify that this is a complete, completely
semidistributive lattice, and it is now weakly atomic. Theorem 3.1 therefore shows
that it is a «-lattice.

However, neither meets nor joins are cover-determined. For all x, we have x ~ vt =
x7 7 VvO0T=xT.So,for0 <x <z<1,wehavex~ V0T < z7~ v 0" but, for any
coverx~ <y~ <y~ <z —,wehave y” VOt =y " v 0T, Since meets and joins
are not cover-determined, Theorem 3.1 shows that the lattice is not well separated.
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Fig.4 The factorization system 2 I
and lattice Pairs(—) in / ‘
Example 3.23
Yoo
y / \
X[o0] Z[2]
[
i /
X[2] Z[1]
[ /
X[1] Z[0]
T2 /
Ty X[U]

Well separated «-lattices obey all the discreteness conditions in the middle column
of Theorem 3.1. However, they need not be algebraic, as the next example shows.

Example 3.23 (A well separated, completely semidistributice «-lattice which is not
algebraic) Consider the following factorization system. The elements of III are called
{x1,x2,x3,...,y,2}. Fori > j, we have x; — x; and, for all i, we have y — x;.
Finally, we have z — y and the reflexive relations at y and z. The relations — and
< are the transitive closure of the relations shown on the left hand side of Fig. 4. In
words, every —-arrow is also an —-arrow except that z 4 y and every — -arrow is
also an < -arrow except that y > x; for all i. (Note that, unlike — and <, — is not
transitive, since z /4 x;.) The closed sets are X[jl:={x; : i < j}, Z[j]:=X[j1 VU {z},
X[oo]:={x;},Y = X[oo]U{y} and the whole set I11, so the lattice Pairs(—) is depicted
on the right hand side of Fig. 4.

We see that \/ j<oo Z[j] = HI > Y. However, for any finite set of indices
{j1, ..., jr}, we have \/i_, Z[j;] = Z[max(ji, j2, ..., j-)] 2 Y. So Y is not com-
pact. The join of all the compact elements < Y is X[oc], so Pairs(—) is not algebraic.
It is also straightforward to check that Pairs(—) is completely semidistributive.

Example 3.24 (A completely semidistributive lattice which violates all other condi-
tions in Theorem 3.1) Let L be the interval [0, 1] in the real numbers with the standard
total order. This is a complete and completely semidistributive (even distributive!) lat-
tice, but it has no completely join-irreducible or completely meet-irreducible elements
at all. Thus L is neither spatial nor dually spatial, and thus Theorem 3.1 shows that
this lattice also violates the other conditions there.

We conclude with an example that shows that semidistributivity is independent of
all of the other conditions in Theorem 3.1. This example is particularly frustrating,
as we do not know what additional condition on the two-acyclic factorization system
would rule out this lattice.
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Fig.5 A factorization system for which Pairs(—) is not semidistributive

Example 3.25 (A two-acyclic factorization system (III, —, —, <) such that the «-
lattice Pairs(—) is not semidistributive.) We describe a lattice L by giving a two-
acyclic factorization system so, by Theorem 3.1, it is a well separated «-lattice, joins
and meets are cover determined, it is cover separated and bi-spatial. We will also check
that L is bi-algebraic. However, L is not semi-distributive.

Let I consist of elements y, z, and x; fori € Z. Define — by x; — x; fori > j,
by y = x9; and z — xp;41 fori € Z, as well as y — y and z — z. We define
(—, <) to be Fact(—). Explicitly,

x; — xjifand only if i > j,

x; <> xjifand only ifi > j andi = j mod 2,
y <> xp; and 7 < xp;4 foralli € Z, and
y—y,y—>»y z—zandz —» z.

The relations — and < are shown in the left picture of Fig. 5.

We see that if p — ¢, then either p < ¢ or p — ¢ (or both), so Mult(—, <) 2
—. By Proposition 2.3.3 we conclude that (ILI, —, —, <) is a factorization system.
The union of the relations —, —», and < is acyclic, so in particular (III, -, —, <)
is two-acyclic.

For j € Z U {xoo}, we put X[j] = {x; : i < jLY[jl ={}U{x i = j}
and Z[j] = {z} U {x; : i < j}. The closed sets are X[i], Y[2i] and Z[2i + 1], for
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i € Z U {%o0}, as well as the whole set I1I. The lattice of closed sets is shown as the
right picture of Fig. 5.

The compact elements are all elements except for I11, X[oo], Y[oo] and Z[oo]; it is
easy to check that this makes the lattice algebraic. Likewise, the co-compact elements
are all but X[—o0], Y[—o0o] and Z[—o0] and this lattice is co-algebraic.

Finally, we check that L is not semidistributive. We have X[0] A Y[—oo] = X[0] A
Z[—00] = X[—o00], but X[0] A (Y[—0o0] V Z[—0o0]) = X[0] A IIT = X[O].

4 Factorization systems for intervals

Let L be a finite semidistributive lattice. By the FTFSDL, it can be described as
Pairs(—) for a finite two-acyclic factorization system (III, —, —, < ). An interval in
L is also a finite semidistributive lattice, so it is also describable by a finite two-acyclic
factorization system. In this section, we show that this can be done very explicitly.
More generally, we show that, if L = Pairs(—) for a possibly infinite, two-acyclic
factorization system (III, —, —, <), then every interval of L can be described as
Pairs(—") for some two-acyclic factorization system (III', —/, —/, </).

We begin by describing lower intervals in Pairs(— ). We use notation such as —|x
for the restriction of relations to subsets X C III.

Proposition 4.1 Suppose (111, —, —», <) isatwo-acyclic factorization system and let
(X, Y) € Pairs(—). Then (X, —|x, —|x, <) is a two-acyclic factorization system,
where < is given by Fact(— |x) = (—|x, ='). Themap (U, V) — (U, VNX)isan
isomorphismfromthe interval [((/), an, (X, Y )] in Pairs(—) to the lattice Pairs(— | x).
The closure operators associated to (111, —, —, <) and (X, —|x, —|x, <') agree
on subsets of X.

Proof Write Fact(—|x) = (=, =). We have (=, —') D (—|x, <> |x) because
(II, —, —», <) is a factorization system. We now check that —|y D —’. Suppose
that p and g € X with p 4 g; we will check that p /'g. Then there is some s € 111
with p / s and ¢ — s. Factorg — s as ¢ — r < s; since X is an —»-downset by
Proposition 2.5, we have r € X. If p — r then there is a factorization p — t < r
and thus p — t < s, contradicting the assumption that p 4 s. We conclude that
p A r.Nowr e Xwithp /A randg — r,so p /' q.

To show that (X, —|x, —|x, <) is a factorization system, it remains to show that
Mult(—|x, <>’) = —|x. By Proposition 2.3.3, we have Mult(—|x, <) € —|x.
Suppose that x and z € X and x — z. Then x — y < z for some y € III. Since X
is a downset for —», we have y € X. Using our above observation that <’ 2 <> |y,
we have x — y <>’ z, s0 x is related to z by Mult(—»|x, <>').

We now check the two-acyclicity of (X, —|x, —|x, <>’): The relation —»|x inher-
its acyclicity from —». Suppose p —» g <’ p. Since Mult(—|x, —=') = —|x, we
have ¢ — p, so there exists z € Il such that g — z < p. Thus p - z < p, so
z = p by the brick condition on (III, -, —, < ). Thus ¢ — p — ¢, sothat p = ¢
by the acyclicity of —.

To complete the proof of two-acyclicity suppose p <’ g <’ p. Again, since
q <’ p, there exists z € III such that ¢ — z <> p. Since X is a downset for —»,
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we have z € X. Thus by the observation that <’ O <> |y, we have ¢ — z <’ p,
so g — z =’ g. By the brick condition on (X, —|x, —»|x, <), established above,
we have z = ¢, so ¢ < p. Similarly, since p <’ g, there exists w € X with
p—» w < g,and thus p - w <= g, s0 p -» w <’ p, and thus w = p, so that
p < q. By the acyclicity of <, we see that p = q.

Writing A for orthogonality operations with respect to — | x, we now establish that
AWUP) = (W) forany U € X. Unpacking definitions yields

Hut)=*Hut)nx =+uruy) =t(wtnxuy).

It is clear that U+ D (UL N X) U Y, and thus - (UL) € 2(U).

For the reverse containment, suppose p ¢ L(U L). Since U C X, we have U+ D
X+ =Yandthus H(UY) C Y+ = X.If p ¢ X, then p ¢ 2(U%), so we may as well
assume p € X. Since p ¢ L(U™), there exists r € UL with p — r. Factor p — r
as p — q <> r. Since X is an —-downset and p € X, we have g € X.If g ¢ U™,
then there exists u € U with u — ¢. Since g < r, this implies u — r, contradicting
r € Ut. Thus g € U™L. Since also g € X, we have g € U”. Since p — ¢, we see
that p ¢ 2(U%), as desired.

Since the closure operations coincide on subsets of X, the lattices of closed sets
coincide. Thus (U, UL) — (U, U?) is an isomorphism from [(VJ, ), (X, Y)] to
Pairs(—). The equality U® = UL N X gives the formulation of this result in the
statement of the Theorem. O

We explicitly state the dual result for upper intervals of Pairs(—).

Proposition 4.2 Suppose (111, —, —, <) is atwo-acyclic factorization system and let
(X,Y) € Pairs(—). Then (Y, — |y, —', <> |y) is a two-acyclic factorization system,
where —' is given by Fact(— |y) = (=, < |y). Themap (U, V) = (UNY, V) isan
isomorphism from the interval [(X, Y), (111, @)] in Pairs(—) to the lattice Pairs(— | y).

Concatenating Propositions 4.1 and 4.2, we obtain:

Theorem 4.3 Suppose (L1, —, —, <) is a two-acyclic factorization system and let
[(Xl, Y1), (Xo, Yz)] be an interval in Pairs(—). Let —' be the restriction of — to
X, NYy andlet (—', —') = Fact(—"). Then (X, NY, =/, —', <) is a two-acyclic
factorization system. The map (U, V) +— (U NY1, V N X») is an isomorphism from
[(X1, Y1), (X2, Y2)] to Pairs(—").

Proof By Proposition 4.1, (X2, —|x,, —|x,, <>") is a two-acyclic factorization sys-
tem, where <" is defined by Fact(—|x,) = (—»|x,, <>"). Furthermore, (X, X,NY})
is in Pairs(—|x,). The relation —’ is the restriction of — | x, to X, N Y, so
Proposition 4.2 states that (X, N Yy, =/, =/, <) is a two-acyclic factorization
system. By Proposition 4.1, the interval [(Xl, Y1), (X», Y2)] in Pairs(—) is isomor-
phic to the interval [(X1, X2 N Y1), (X2, ¥)] in Pairs(—|x,). By Proposition 4.2,
the latter is isomorphic to Pairs(—'). The isomorphisms given in the theorems are
U, V)= U, VNXy)—~ (UNY,VNXy). O
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We conclude with a corollary of Theorem 4.3 which will be useful in the next
section.

Lemma 4.4 Suppose (111, —, —, <) is a two-acyclic factorization system and sup-
pose (X1, Y1) < (X2, Y2) in Pairs(—). Then (X2, Y2) covers (X1, Y1) if and only if
Xo N Y is a singleton.

Proof By definition, (X3, Y) covers (X1, Y1) if and only if [(Xl, Y1), (X», Yz)] has
precisely two elements. Equivalently (by Theorem 1.4), the lattice Pairs(—’) of The-
orem 4.3 has | Ji¢ (Pairs(—"))| = 1. In other words, |X> N Y| = 1. O

Remark 4.5 See [13, Theorem 3.3(b)] for a similar result about covers in the lattice of
torsion classes.

5 Covers and canonical join representations

In this section, we describe cover relations in the lattice of maximal orthogonal
pairs of a two-acyclic factorization system. We then use the description of covers
to describe canonical join representations in the finite case. Throughout the section,
(I, —, —, <) will be a two-acyclic factorization system. All references to orthog-
onality operations _L refer to this system, and references to closures and closed sets
refer to the closure operator X — X = ~(X1).

5.1 Covers

Given ¢ € X, define Del(X,c) = X\{x € X : x — c}. This notation suggests
“deleting ¢ from X, as Del(X, c) is the largest —»-downset contained in X but not
containing c. Given a closed set X, define Cov(X) to be the set of elements ¢ € X
such that Del(X, ¢) is closed and Del(X, c) U {c} = X. We will prove the following
theorem.

Theorem 5.1 Let (111, —, —», <) be a two-acyclic factorization system and let X be
a closed set. Then Del(X, ¢) < X in the lattice of closed sets for all c € Cov(X), and
every element covered by X is Del(X, c) for a unique ¢ € Cov(X).

Proposition 2.17 lets us restate Theorem 5.1 in terms of maximal orthogonal pairs:
Given (X, Y) € Pairs(—), the elements covered by (X, Y) are precisely the pairs
(Del(X, ¢), Del(X, c)*) for ¢ € Cov(X), with exactly one ¢ for each cover.

We will also prove some alternative descriptions of Cov(X). The first is general and
explicit, but unilluminating. The second is general but comes at the cost of computing
Fact(—|x). The third applies only to special cases, including the finite case, but
provides some insight into the general case.

Proposition 5.2 Cov(X) consists of those elements ¢ of X which have the following
properties:

e cis —-maximal in X,
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e for all y € 111, if there exists x € X such that x <> y, then there exists x' €
Del(X, ¢) U {c} such that x' < y.

Theorem 5.3 Let (111, —, —, <) be a two-acyclic factorization system and let X be
a closed set. Write Fact(— |x) = (—»|x, <>') as in Proposition 4.1. Then Cov(X) is
the set of —'-maximal elements of X.

Theorem 5.4 Let (111, —, —», <) be a two-acyclic factorization system and let X be
a closed set. Let C(X) be the set of — -maximal elements of X. Then every element
of Cov(X) is an —-maximal element of C(X). If L1 is finite, or more generally if X
is finite, then Cov(X) is precisely the set of —-maximal elements of C(X).

We now proceed to prove Theorem 5.1. Our proof uses the following lemma.

Lemma5.5 If (X, Y) € Pairs(—) and c is < -maximal in X, then
Del(X,c) =X\{x e X :x —> ¢} = J‘(Y U{c}H

Consequently Del(X, c) is closed.

Proof The first equality says that x — ¢ if and only if x — c. If x — ¢, then
X —»c<—c,s0x — c.If x - cthenx - z < c for some z € III. Proposition 2.5
says that X is a downset for —, so z € X. Since c is <—>-maximal in X, we have z = c,
sox — c as desired. For the second equality, note that L(Yu{c)) = (J-Y) N (J-{c}) =
XN (L{c}) = X\{x — c}. The set Del(X, c) is closed because any set of the form
LS is closed (Proposition 2.18). m]

Proof of Theorem 5.1 For ¢ € Cov(X), we have that Del(X, ¢) is a closed set, and any
strictly larger closed set contains ¢, so contains the closure of Del(X, c¢) U {c}, which
is X. This shows Del(X, ¢) < X.

Suppose now that (X', ¥’) < (X, X1) in the lattice of maximal orthogonal pairs.
From Lemma 4.4, we have X N'Y’ = {c} for some ¢ € X. We will establish that
¢ € Cov(X) and X' = Del(X, ¢).

If there exists ¢’ € X\{c} with ¢’ < ¢, then since Y’ is an <>-upset, we have
¢’ € Y'. Thus because X N Y’ is the singleton {c}, we see that ¢ is <—>-maximal in X.
Thus by Lemma 5.5, Del(X, ¢) is closed.

Since X’ is a downset for — and ¢ ¢ X', we must have X’ C Del(X, ¢). It
therefore follows from the fact that X’ < X that X’ = Del(X, ¢). Since we now know
that Del(X, ¢) < X, the closure of Del(X, ¢) U {c} must be X. We have proved that
¢ € Cov(X).

The uniqueness of ¢ such that X’ = Del(X, c¢) follows because c is the unique
—-minimal element of {x € X : x — ¢} by the acyclicity of —». O

We now prove Proposition 5.2 and Theorems 5.3 and 5.4.

Proof of Proposition 5.2 Suppose c satisfies the conditions of the proposition. Since ¢
is <—>-maximal in X, by Lemma 5.5, Del(X, c) is closed.
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Let y € III. Then y ¢ X if and only if there exists some x € X with x — y.
By factoring x — y as x — z <> y, and noting that X is a downset for —, we see
that the existence of x € X with x — y is equivalent to the existence of x € X with
x <> y. By the hypothesis, this is equivalent to the existence of x’ € Del(X, ¢) U {c}
with x < y, which is equivalent to y ¢ (Del(X, c) U {c})*. This shows X and
Del(X, ¢) U {c} have the same right perpendiculars, so their closures agree. We have
now shown that ¢ € Cov(X).

Conversely, suppose that ¢ € Cov(X). The argument in the previous paragraph
also proves that ¢ satisfies the second condition of the proposition. The fact that ¢ in
<-maximal in X was established in the proof of Theorem 5.1. O

Theorem 5.3 follows from the following proposition, in light of Proposition 4.1.

Proposition 5.6 Ler (III, —, —, <) be a two-acyclic factorization system. Then
Cov(IM) is the set of — -maximal elements of 111.

Proof We showed in the proof of Theorem 5.1 that each element of Cov(X) is <>-
maximal in X. Conversely, if ¢ is <> -maximal in III, then since 1t = ¢, Lemma 5.5
says that IIT\{x € III : x — ¢} is L{c}. Since ¢ is <—>-maximal, {¢} = F(c), so
Proposition 2.20 says in particular that (IIT\{x € III : x — ¢}, {c}) is a maximal
orthogonal pair. Since {c} is a singleton, this pair is covered by (111, @). O

Proof of Theorem 5.4 The proof of Theorem 5.1 established that each element ¢ of
Cov(X) is in C(x). If ¢/ # cis also in C(X) and ¢/ — ¢, then X 2 Del(X, ¢) 2
Del(X, c¢), because — is a partial order. By Lemma 5.5, these are all closed sets,
contradicting the fact that Del(X, ¢) < X. Thus ¢ is —»-maximal in C (X).

Now suppose X is finite. We will show that every —-maximal element ¢ of C(X)
is in Cov(X). If X does not cover Del(X, ¢), then X must cover some X' with
X' 2 Del(X, ¢). By Theorem 5.1, the set X’ is Del(X, ¢’) for some ¢’ € Cov(X). In
particular, ¢’ € C(X). But then the containment Del(X, ¢’) 2 Del(X, ¢) implies that
¢’ — ¢ with ¢’ # c, contradicting the fact that ¢ is —»-maximal in C(x). We conclude
that X covers Del(X, ¢), so ¢ € Cov(X) by Theorem 5.1. O

We pause to point out a lemma that will be useful later.

Lemma5.7 Let (III, —, —, <) be a two-acyclic factorization system and let X be a
closed set. If c € Cov(X), then Del(X, c) AT (c) = Ty(c) andDel(X, c) v T (c) = X.

Proof The first assertion follows from the definitions. The second follows from the
definitions and the fact that Del(X, c¢) < X. O

5.2 Canonical join representations

For S and S’ subsets of L, we write S < ' if, for every s € S, there exists s’ € §’
with s < s’. The relation < is a preorder, and becomes a partial order when restricted
to antichains.

We say that S is the canonical join representation of x € L if

(Hx=\S
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(2) § < S for any set S such that x = \/ §" and
(3) S is an antichain.

Remark 5.8 We make several remarks on this definition: Since < is a partial order on
antichains, x has at most one canonical join representation. If L is finite and S obeys
the first two conditions to be the canonical join representation of x, then the set of
maximal elements of S is the canonical join representation of x. Finally, if S is the
canonical join representation of x and S’ C S, then \/ §" < x.

The following well-known fact can be found, for example in [1, Theorem 3-1.4] or
[14, Theorem 2.24].

Theorem 5.9 Suppose L is a finite lattice. Then L is join semidistributive if and only
if every element of L has a canonical join representation.

Thus, if (III, —, —», <) is a finite two-acyclic factorization system, we deduce
that each element of Pairs(— ) has a canonical join representation. We will now give an
explicit description of this representation. Recall the notation 7 (x) for {x’ : x — x'}.

Theorem 5.10 Let (11, —, —, <) be a finite two-acyclic factorization system. If X
is a closed set, then the canonical join representation of X is {T (c) : ¢ € Cov(X)}.

Proof Let S = {T(c) : ¢ € Cov(X)}. We first verify that \/ S = X. For each
¢ € Cov(X), we have T'(c) € X, so \/ S € X. Suppose for the sake of contradiction
that this containment were strict. Then there would be some X', covered by X, with
\/ S € X’ C X. (This is the one use of finiteness in this proof.) By Theorem 5.1,
X' = Del(X, ¢) for some ¢ € Cov(X) and then T (c) ¢ X', a contradiction.

We next show that, if X = \/ §’, then § < §’. We must show that, for all ¢ €
Cov(X), there is some X" € S with T(c) € X'. We have T(c) € X’ if and only
if ¢ € X’ so suppose, for the sake of contradiction that ¢ is not in any X' € §'.
Since ¢ ¢ X', we have X’ N{x € III : x — ¢} = @, and we deduce that the
closed set Del(X, ¢) contains X’ for all X’ € §’. But then \/ S’ € Del(X,c) € X, a
contradiction.

Theorem 5.4 implies in particular that Cov(X) is an antichain in the partial order
—». Therefore also S is an antichain. O

By Proposition 4.1, the conclusion of Theorem 5.10 also holds when the hypothesis
that I1T is finite is replaced with the weaker hypothesis that X is finite.

For ease of exposition, let L be a finite lattice. We say that S € L joins canonically
if S is the canonical join representation of an element (which is necessarily \/ S). When
L is join semidistributive, the collection of all § C L such that S joins canonically
is a simplicial complex [28, Proposition 2.2]. This simplicial complex is called the
canonical join complex. Its vertex set is Ji L.

A simplicial complex is called flag if all of its minimal non-faces are edges, or
equivalently, if it is the clique complex of its 1-skeleton. The following theorem of
Barnard [6, Theorem 1.1] characterizes finite semidistributive lattices among all finite
join semidistributive lattices in terms of their canonical join complexes.
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Theorem 5.11 A finite join semidistributive lattice is semidistributive if and only if its
canonical join complex is flag.

In particular, to understand the canonical join complex of a finite semidistributive
lattice L, it suffices to know which 2-element subsets of Ji L join canonically. We will
address this after proving the following lemma, which gives an alternate description
of the —, relation:

Lemma5.12 Let L be a k-lattice and let i, j € Ji L. Then i — j if and only if
iV jx > J, where j is the unique element of L covered by j.

Proof Since j, < k(j),wehavei < k(j)ifandonlyifiV j. <« (j).Since j £ «(j),
ifi V jo < «(j), theni Vv j, # j.On the other hand, if i Vv j, £ k(j), then since
Jx <1V jx, by definition of x, we have i Vv j, > j. O

We now explain how to detect which 2-element subsets of Ji L join canonically in
a finite semidistributive lattice L, and thus describe the canonical join complex of L.

Theorem 5.13 Let L be a finite semidistributive lattice, identified with Pairs(— 1) for
— 1, as in Theorem 1.2. The faces of the canonical join complex of L are the subsets
S of Ji L such that x /> y for all distinct x,y € S.

Proof In light of Theorem 5.11, we need only prove that for i, j € JiL, the set
{i, j} joins canonically if and only neither i — jnor j — i.If i — j then
iV jx =1V jbyLemma 5.12. Since {i, j.} < {i, j}, the set {i, j} does not join
canonically. Conversely, suppose {i, j} does not join canonically and write x =i V j.
If x = \/ S is the canonical join representation of x, then § < {i, j}. Sincex = \/ S
is irredundant, S 2 {i, j}, so without loss of generality, j ¢ S. By the definition of
<, and since j ¢ S, every s € S haseithers <iors < j,. Thus § < {i, j.}, so that
x=VS<iVvj.<ivj=x.WeseethatiV j, =iV j,sothati — j. O

Remark 5.14 A priori, it is not unreasonable to hope to find a Fundamental Theorem
of Finite Join-Semidistributive Lattices along the same lines as FTFSDL. However, in
view of Theorem 5.11, we expect that such a hypothetical FTFJDL would not simply
involve binary relations between the elements of III, but rather relations between
k-tuples of elements for k > 2.

6 Quotient lattices

In this section, we prove Theorem 1.5 and Corollary 1.6, which describe all lattice
congruences and quotients of a finite semidistributive lattice. We prove these results
as special cases of results on lattices of maximal orthogonal pairs for not-necessarily-
finite two-acyclic factorization systems.

To begin the section, we give background and terminology necessary to understand
the results and their generalizations. Further background and proofs, from a point of
view compatible with the present treatment, can be found in [29, Section 9-5] and [13,
Section 2].
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A lattice homomorphism is amap n : Ly — L with n(x A y) = n(x) A n(y)
and n(x vV y) = n(x) v n(y) for all x,y € L. Equivalently, n(\/ X) = \/(nX)
for all finite, non-empty subsets X C L. A complete lattice homomorphism has
n(\/ X) = \/(nX) for infinite subsets X as well.

A congruence on a lattice L is an equivalence relation ® on L that respects the
meet and join operations in the following sense: If x; = y; and x; = y; mod O,
then x; A xp = y; Ay and x1 V x3 = y; V y» mod ©. Equivalently, if I is a finite,
non-empty indexing set and (x; : i € I) and (y; : i € I) are elements of L such
that x; = y; mod © forall i € I, then /\;.;x; = /\;c;yi and \/;,c; xi = V,ep i
mod ©. If the same condition holds for all infinite indexing sets, then ® is a complete
congruence. The quotient L /O is the set of congruence classes, with the obvious
lattice structure. The map sending an element to its congruence class is a surjective
lattice homomorphism from L to L/ ®. On the other hand, given a (complete) surjective
lattice homomorphism 7 : L1 — Lo, the fibers of n are the congruence classes of a
(complete) congruence ® on L1, and n induces an isomorphism from L;/® to L.
Every congruence class of a complete lattice congruence is an interval in L.

The set of all equivalence relations on a set X forms a lattice (the lattice of set
partitions of X), where ®; is smaller than ©; if ® refines ®; (in other words, if
x =y mod ®p implies x = y mod ©»). The set Con(L) of all congruences on L is a
sublattice of the lattice of set partitions of L. While the lattice of set partitions is not
even semidistributive (for | X| > 2), the lattice Con(L) is distributive for any lattice L
[18, Theorem 149].

In particular, when L is finite, we can understand Con(L) by way of the FTFDL.
Given a congruence © on a finite lattice L and an edge a < b in the Hasse diagram of
L, we say that ® contracts a < b if a = b mod ©. There is a unique finest congruence
contracting a < b (the meet in Con(L) of all congruences contracting a < b), and we
write con(a, b) for this congruence. The following proposition is well known; see, for
example, [29, Proposition 9.5.14].

Proposition 6.1 Ler L be a finite lattice and ® a congruence on L. The following are
equivalent:

(i) O is a join-irreducible element in the lattice Con(L).

(ii) O is of the form con(a, b) for some cover a < b of L.
(iii) O® is of the form con(jy, j) for some join-irreducible element j.
(iv) © is of the form con(m, m*) for some meet-irreducible element m.

Since Con(L) is a distributive lattice, the FTFDL states that it is isomorphic to the
lattice of downsets of Ji(Con(L)). Proposition 6.1 states that j > con(jy, j) gives a
surjection from Ji L to Ji(Con(L)). We define the forcing preorder on Ji L by saying
that j forces j’ if and only if con(jy, j) > con(j,, j') or, in other words, if every
congruence contracting j, < j also contracts j; < j’. Forcing is a preorder on Ji L,
meaning it is reflexive and transitive, but perhaps not antisymmetric. Thus Con(L) is
isomorphic to the poset of downsets for the forcing preorder on Ji L.

On afinite lattice, congruences are determined by the set of covers that they contract.
The same is not true for infinite complete lattices. For example, consider the N U {oo}
with the obvious partial order. There are two complete congruences that contract all
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Fig.6 The ~~ relation for A N C
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covers, one with a single congruence class and one with two classes N and {co}. We
will consider the congruences that are determined by the covers they contract.

Given a congruence ® on a lattice L, if x < y and x = y mod ®, then for all u, v
withx <u<v < y,wehaveu = v mod ®. The congruence © is cover-determined if
the converse holds as well: If x < yandu = v mod ® forallu, vwithx <u<v <y,
then x = y mod ©.

We have given the lattice-theoretic background to Theorems 1.5 and its generaliza-
tion. We now need two more definitions related to two-acyclic factorization systems.

Let (III, —, —, <) be a two-acyclic factorization system. Given x, y € III, we
write x ~~ y and say x directly forces y if and only if either

(i) x is —-minimal in F(y) = {x’ € IIT : x’ < y}, or
(il) x is —>-maximalin T(y) = {x’ ¢ 1T : y — x'}.

Example 6.2 This example continues Example 1.3. The relation ~» on III =
{a,b,c,d, e, f, g} is shown in Fig. 6. (Arrows of the form x ~- x are omitted.)
For example, F(e) = {e, f, g} and all three elements of F(e) are —»-minimal in F (e),
so f ~» eand g ~ e. Also, T'(e) = {d, e} and both elements of T (e) are — -maximal
in T'(e),sod ~ e.

Letx — z,s0{y € Il : x — y <> z} is nonempty. We define an —-minimal
element of {y € Il : x — y <> z} to be an image of x — z and define an < -
maximal element to be a co-image of x — z. We will say that a factorization system
[T satisfies the image condition if, for every x and z € III with x — gz, there is at
least one image and at least one co-image of x — z.

Recall that a ~~-upset means a subset Y of III such that, if x ~~ y and y € Y, then
x € Y. We will prove the following generalization of Theorem 1.5.

Theorem 6.3 Suppose (1, -, —, <) is a two-acyclic factorization system that
obeys the image condition and YU C 1l is a ~»>-upset. Then the restriction of
(II, —», -, =) to Y is a two-acyclic factorization system that obeys the image
condition. The map (X,Y) — (X N Y, Y N Y) is a surjective complete lattice
homomorphism between the corresponding lattices of maximal orthogonal pairs. The
complete congruence associated to (X, Y) — (X N Y, Y N Y) is cover-determined.
Every cover-determined congruence on Pairs(—) arises from a ~»-upset in this way.

We note that it is not obvious that (X N Y, ¥ N Y) is a maximal orthogonal pair in
Pairs(— |y); this is checked as Proposition 6.6.

Since every finite factorization system satisfies the image condition and every
congruence on a finite lattice is complete and cover-determined, Theorem 1.5 is an
immediate corollary of Theorem 6.3.
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We now proceed to prove Theorem 6.3. Following that proof, we will prove Corol-
lary 1.6 as an immediate corollary of an infinite version (Corollary 6.15).
Conventions: For the rest of the section, we will assume that (III, —, —, <) is a
two-acyclic factorization system that obeys the image condition. We will also assume
that I C III is a ~-upset. The symbols —’, —', and <’ will stand for the restrictions
of —, — and — to Y.

Throughout the proof, the image condition will almost always be used through the
following lemma:

Lemma 6.4 If y is an image of x — z, then 'y ~~ z. If y is a co-image of x — z then
Y~ X,

Proof We prove the first claim; the second is dual. Suppose that y + z. By hypothesis,
y <> z, 80 y must not be —-minimal in {y’ : y’ <> z}. Thus there exists y’ # y with
y — y' < z. Butthen x —» y’ <> z, contradicting the fact that y is an image. O

We prove Theorem 6.3 as a series of propositions.

Proposition 6.5 (Y, —', —', <) is a two-acyclic factorization system that obeys the
image condition.

Proof Two-acyclicity is obvious, and it is clear that Mult(—’, —') € —' and
Fact(—') 2 (—/, —’). We now prove the latter containments are equalities.

In order to show that Mult(—’, <) D> —/, we suppose x, z € Y have x — z and
show that there exists y € U with x — y < z. The image condition says there is an
image y of x — z. By Lemma 6.4, y ~» z, and since Y is a ~»-upset, we have y € U,
as desired. (We pause to note that y is also an image of x — z in Y.)

To show that Fact(—') C (—/, <), let Fact(—') = (=", —"). We show that
—"" C —'; the proof that <" C <>’ is dual. We first suppose that x; —" x; for
some x| and x € Y and show that x; — x,. In other words, the hypothesis is that
{y e UH:x1 > y} 2 {y € U: x — y}, and the desired conclusion is that
{zell:x; — z} 2 {z € Il : x; — z}. Suppose x, — z and let y be a co-image of
x3 — z. By Lemma 6.4, y ~~» x5, and thus y € Y because Y is a ~>-upset. Since y is
a co-image of xp — z, in particular, x, — y < z. By the hypothesis, x; - y — z,
so that x; — z as desired. (Again, we note that y is also a co-image of x; — zin Y.)

We have shown that (U, —’, ', <) is a two-acyclic factorization system. In the
process, we have shown how to find both an image and a co-image for an arbitrary
—/-arrow, so (U, —', —', <) obeys the image condition. O

Proposition 6.6 If (X, Y) € Pairs(—), then (X N Y, Y N Y) € Pairs(—").

Proof We write X’ for XNY and Y’ for ¥ NY. We use the symbol A for L with respect
to (U, —', ', <=). Since (X, Y) is a maximal orthogonal pair for (ITI, —, —», <),
we have Y/ C (X/)2 and X’ C 2(Y’). We will argue that Y’ D (X’)%; the argument
that X’ D 2(Y") is dual.

To show that Y' D (X’)%, we must show that, if 7 € U and z ¢ Y, then there exists
y € X’ with y — z. Since z ¢ Y, by definition, there is some x € X with x — z.
Let y be an image of x — z, so that y ~» z by Lemma 6.4. But Y is a ~~-upset, so
this implies that y € Y. Also, x — y, so y € X by Proposition 2.5, and thus y € X’.
Since y < z, we have y — z, as desired. O
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Proposition 6.7 The map (X,Y) — (X NY, Y NY) is a surjective complete lattice
homomorphism from Pairs(—) to Pairs(—").

Proof Identifying Pairs(—) with the lattice of closed sets, the meet is intersection.
The assertion that the map respects arbitrary meets is (), (X; N 1) = (ﬂ X ,~) N4,
which is obvious. The proof that the map respects joins is dual (identifying Pairs(—")
with the dual notion of the lattice of closed sets by considering the second entries in
pairs).

We now show that this map is surjective. Let (X', Y’) be a maximal orthogonal
pair for —’. Let X = 1Y’ (using this L operator in the sense of (I, —, —, <)).
Then X is closed (in the sense of —), and unfolding the definitions immediately
shows that X N Y = X’. Let Y = X+. Then (X, Y) is a maximal orthogonal pair, so
(X N4, Y NY) is a maximal orthogonal pair by Proposition 6.6. Since X N Y = X’
and (X', Y’) is a maximal orthogonal pair, we alsohave Y N =Y’. O

The following is [13, Proposition 2.6].

Proposition 6.8 A complete lattice congruence ® on a complete lattice L is cover-
determined if and only if the quotient L/ ® is weakly atomic.

Theorem 3.1 says that Pairs(—') is weakly atomic, and thus Proposition 6.8 implies
the following proposition.

Proposition 6.9 The complete congruence associated to (X,Y) — (X NY, Y NY)
is cover-determined.

To prove the rest of Theorem 6.3, we need two simple, known lemmas. The second
is essentially the easy direction of [11, Lemma 3.2], but appears in that source without
proof.

Lemma 6.10 Let L be a «-lattice, let n : L — L’ be a lattice homomorphism, and
let j be a completely join irreducible element of L. Then n(j) = n(j.) if and only if
n(k () = k().

Proof For brevity, put m = «(j). We have j Vv m = m* and j, Vm = m, so if
n(j) = n(Jjs) then n(m) = n(m*). We have m A j = jy, so if n(m) = n(m*) then
n(j) = n0x)- O

Lemma 6.11 Suppose L is a lattice and © is a lattice congruence on L. Suppose we
have elements a, b, ¢, d of L with a < b and a = b mod O. Suppose that either
a<c<d<bvcorelseand <c<d<b.Thenc=d mod O.

Proof We consider the case a < ¢ < d < b V c; the other case is similar. Then
a=bmod®,soc =aVvVec=>bVvcecmod®. Sincec < d < bV c, we have
c=cAd=bVvVc)Ad=dmod O. O

Additional conditions: We continue to assume that (III, —, —, <) is a two-acyclic
factorization system that obeys the image condition. In addition, for the rest of the
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section, we will assume that ® is a complete lattice congruence on Pairs(— ). Further-
more, we define

Ue = {x € I : (Tu(x), Tu(x)™) # (T(x), T(x)") mod ©}.
Lemma 6.10 and Proposition 2.23 combine to imply that
Y = {x e II : (*F(x), F(x)) # (*F*(x), F*(x)) mod ©}.

We will want both descriptions of YUg.
Proposition 6.12 Ug is a ~>-upset.

Proof We prove the equivalent assertion that II1\Yg is a ~>-downset. Suppose x ¢
Ug, meaning that (Ty(x), Ty (x)) = (T(x), T (x)1), and suppose x ~~ y.

We suppose that x is —-minimal in F(y); the case where x is <—>-maximal in
T (y) is similar. We will apply the first case of Lemma 6.11 with a = (T, (x), Ty (x)1),
b= (Tx),Tx)Y), c = (LF(y), F(y)) and d = (FF*(y), F*(y)). To that end,
we must confirm that (7, (x), To(x)Y) < (FF(y), F(y)) and (LF*(y), F*(y)) <
(T(x), T@)H) v (EF ), F(y).

To show that (T (x), Tx(x)T) < (LF(y), F(y)), we must show that T,(x) C
LF(®y). Suppose for the sake of contradiction that there exists x” € Ty (x) with x” ¢
LF(y). That is, there exist x and y in ITT with x — x’ % x and x’ — y’ < y. Factor
the arrow x” — y’ as x’ —» z <> ¥/, so that x — z < y. Since x # x’, also x # z,
contradicting the —»-minimality of x in F(y).

To show that (- F*(y), F*(y)) < (T'(x), T(x)Y) v (:F(y), F(y)), we must show
that F*(y) 2 T(x)* N F(y). The only element of F(y) not in F*(y) is y, so we
simply must show that y ¢ T'(x)~. But x € F(y), so in particular x — y and thus
y¢ T

Now Lemma 6.11 says that (*F(y), F(y)) = (*F*(y), F*(y)) mod O, so that
y ¢ Ug, using the second description of Ug. We have proved that IIT\Yg is a
~~-downset, as desired. O

In light of Proposition 6.12, Proposition 6.5 says the restriction of (I, —, —, <)
to Yg is a two-acyclic factorization system satisfying the image condition, and Propo-
sition 6.7 says the map (X, Y) — (X N Yg, ¥ N Yp) is a complete surjective lattice
homomorphism from Pairs(—) to the lattice of maximal orthogonal pairs for the
restriction.

Proposition 6.13 If ® is cover-determined, then © is the congruence associated to
(X, YY)~ (XNYe, Y NYe).

The following lemma will be useful in proving Proposition 6.13. The lemma
depends neither on the image condition nor on the completeness of ®. It follows
immediately from Lemma 5.7 and the definition of a congruence.

Lemma 6.14 Suppose (11, —, —, <) is a two-acyclic factorization system and
® is a congruence on Pairs(—). If (X,Y) € Pairs(—) and ¢ € Cov(X), then
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(Del(X, ¢), Del(X, c)1) = (X, Y) if and only if (T (c), T.(c)H) = (T(c), T(c)D)
mod ©.

Proof of Proposition 6.13 Proposition 6.9 says that the complete congruence on Pairs
associated to (X, Y) — (X NUYg, Y NUg) is cover-determined. Since © is also
cover-determined, we only need to show that if (X1, Y1) < (X3, ¥>) in Pairs(—), then
(X1, Y1) = (X2, Y2) mod ® if and only if X1 N Ug = Xo N YUp.

Suppose (X1, Y1) < (X3, Y2) in Pairs(—). Theorem 5.1 says that there exists ¢ such
that X; = Del(X3, ¢). Since X| N Yg is a downset for the restriction of — to Ug,
we have X1 N Yg = X, N Ug if and only if ¢ ¢ Ug. By definition, ¢ ¢ Yg if and
only if (T3 (c), T (c)) = (T (c), T(c)") mod ©. By Lemma 6.14, this is if and only
if (X1,Y1) = (X2, Y?) mod ©. O

We have completed the proof of Theorem 6.3. We now proceed to generalize and
prove Corollary 1.6.

Given a complete lattice L, let Con““(L) be the set of complete cover-determined
congruences on L. Then Con®“(L) is a complete lattice under refinement order. More
specifically, [13, Proposition 2.7] says that it is a complete meet-sublattice of the
lattice of complete congruences on L, which is a complete meet-sublattice of Con(L).
It is thus a complete meet-semilattice, and since it also has a maximal element, it is a
complete lattice by a standard argument.

Given a cover relation a < b in L, we use the notation con®“(a, b) for the finest
complete cover-determined congruence havinga = b. This is the meet, in Con““(L), of
all complete cover-determined congruences with a = b; this meet has a = b because
Con®(L) is a meet-sublattice of the lattice of partitions of L. A cover-determined
complete congruence © is the join, in Con®“(L), of the congruences con®(a, b) for
all covers a < b contracted by ©.

When L is Pairs(—) for a two-acyclic factorization system, Lemma 6.14 implies
that a cover-determined congruence © is the join of the congruences con®“(a, b) for all
covers a < b contracted by ® such that b is (T (x), T(x)1) and a is (Ty(x), Ty (x)1).
We are led to define the cover-determined forcing preorder on Ji¢(Pairs(—)): We
say that (T'(x), T (x)1) forces (T (y), T (y)*) if and only if every cover-determined
congruence contracting the cover (7, (x), Ty (x)1) < (T (x), T (x)1) also contracts the
cover (Tu(y). (1)) < (T(»), T(»H).

We are now prepared to state and prove the generalization of Corollary 1.6.

Corollary 6.15 Suppose (111, —, —, <) is a two-acyclic factorization system that
obeys the image condition. The map x +— (T (x), T(x)1) is an isomorphism from
the transitive closure of ~~ on Il to the cover-determined forcing preorder on
Ji¢(Pairs(—)). This map induces an isomorphism from the poset of ~-downsets under
containment to the lattice Con®® (Pairs(—)).

Proof By Proposition 2.20, the map x +— (T (x), Tx)1) is a bijection from III
to Ji¢(Pairs(—)). Theorem 6.3 implies that for x,y € III, (T (x), T (x)1) forces
(T (), T (y)*) inthe cover-determined forcing preorder if and only if there is a directed
path in the relation ~~ from x to y. Theorem 6.3 also implies that cover-determined
complete congruences are completely specified by the set of elements x € III such that
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(Ty(x), Te(x)1) < (T (x), T (x)1) is contracted, and that the sets arising are precisely
the ~~»-downsets. The refinement order on cover-determined complete congruences is
containment order on these ~~-downsets. O

7 Relation to other types of finite lattices
7.1 Distributive lattices

Alattice Lisdistributiveif x A(yVz) = (xAy)V(xAZ) and xV(yAz) = (xVY)A(xVZ)
for all x, y and z € L. This condition is clearly stronger than semidistributivity, so
every distributive lattice is semidistributive and thus, every finite distributive lattice is
of the form Pairs(—) where (III, —, —, <) is a two-acyclic factorization system.

We now state three results that summarize the relationship between the Fundamental
Theorem of Finite Distributive Lattices (FTFDL—Theorem 1.1) and the Fundamental
Theorem of Finite Semidistributive Lattices (FTFSDL—Theorem 1.2). These state-
ments are easily proved, and we omit the proofs. Theorem 7.2 is stated in a way that
allows convenient comparison with Theorem 2.31.

Proposition 7.1 Suppose P is a set and — is a partial order on P. Then
(P, —,—,—) is a two-acyclic factorization system. The map (X,Y) — X is an
isomorphism from Pairs(—) to Downsets(P), with inverse X — (X, P\X).

Theorem 7.2 (FTFDL, rephrased) A finite poset L is a distributive lattice if and only
if it is isomorphic to Pairs(—) for some partial order — on a finite set P. In this case,
(P, —) is isomorphic to (Ji L, >), where > is the partial order induced from L. The
map x — ({j € iL : j <x}, {j €e JiL : j £ x})) is an isomorphism from L to
Pairs(—), with inverse (X, Y) — \/ X.

Proposition 7.3 Let (ILI, —, —», <) be a finite two-acyclic factorization system. Then
the following are equivalent:

Pairs(—) is distributive.
— is a partial order.

— = >,

— = —».

- =,

I S

Using Proposition 7.3, we see that if L is finite and distributive then x~-y if and
only if x = y. From there, by Corollary 1.6, we recover the well known fact that
Ji(Con(L)) is an antichain.

7.2 Congruence uniform lattices

We recall our discussion of lattice congruences from Sect. 6. As we described, the set
of congruences on a finite lattice L forms a distributive lattice Con(L). Since Con(L)
is distributive, it is isomorphic to the poset of downsets of Ji(Con(L)). Proposition 6.1
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described surjective maps to Ji(Con(L)) from Ji L, from Mi L, and from the set of
covers of L. When L is semidistributive, Lemma 6.14 implies that surjection from
Covers(L) toJi(Con(L)) factors (as a composition of surjections) through Ji L. Dually,
the map factors through Mi L. Also when L is semidistributive, ¥ gives a bijection
between Ji L and Mi L. These maps are shown in the diagram below, and they all
commute:

Covers(L)

N

Ji(Con(L))

A finite lattice L is conguence uniform if the map j +— con(j, j) from Ji L to
Ji(Con(L)) and the map m +— con(m, m*) from Mi L to Ji(Con(L)) are both bijec-
tions. In this case, L is semidistributive (see [11, Lemma 4.2] and [11, Theorem 5.1]),
with « and «¢ being the unique maps that make the diagram above commute. Thus
a finite lattice L is conguence uniform if and only if it is semidistributive and one
(and therefore both) of the maps j + con(jy, j) and m +— con(m, m™*) is a bijection.
Since the forcing preorder on Ji L is the pullback of the partial order on Ji(Con(L)),
we can alternatively say that L is congruence uniform if it is semidistributive and the
forcing preorder on Ji L is a partial order. Thus we have the following corollary of the
FTFSDL and Corollary 1.6.

Corollary 7.4 Suppose (11, —, —, <) is a finite two-acyclic factorization system.
Then Pairs(—) is congruence uniform if and only if ~ is acyclic.

As mentioned above, every finite congruence uniform lattice is also semidistribu-
tive. Thus the concatenation of Corollary 7.4 and Theorem 1.2 can be thought of as a
Fundamental Theorem of Finite Congruence Uniform Lattices.

Example 7.5 This example continues Examples 1.3 and 6.2. The relation ~» shown in
Fig. 6 is not acyclic. Indeed, the lattice pictured in Fig. 2 is a well known example of
a semidistributive lattice that is not congruence uniform.

Another characterization of congruence uniformity, due to Day, uses the notion of
doubling that we now recall. Let b be the two-element lattice with elements 1 < 2. Let
L be a finite lattice and let 7 be an interval in L. Let L[] be the set (L\1) U (I x b) and
let v : L[I] — L be the obvious projection. The doubling of I in L is L[I] equipped
with the partial order that x <y if

(i) 7(x) <m(y) and
(i) ifx = (a,i)andy = (b, j) € I x b, theni < j.

The following is [11, Corollary 5.4].
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Theorem 7.6 A finite lattice L is congruence uniform if and only if there is a sequence
of lattices Lo, L1, ..., Ly = L such that Ly has exactly one element and for all
J=1,...,k thereis aninterval I;_1in Lj_q suchthat L; = L; 1[I;_1].

In light of Corollary 7.4 and Theorem 7.6, it is natural to ask how doubling happens
in a two-acyclic factorization system. This question is answered by the following
theorem, whose proof we omit.

Theorem 7.7 Suppose that (111, —, —, <) is a finite two-acyclic factorization
system and suppose that (X1,Y1) < (X»2,Y) in Pairs(—). Then the doubling
Pairs(—)[(X1, Y1), (X2, Y2)] is a semidistributive lattice isomorphic to Pairs(—")
for a two-acyclic factorization system (IIL U {a}, —', —', <) for some a ¢ 111. The
relations —', —', and —' agree with —, —», and — on 111. In addition, there are
the reflexive relations a —' a, a —' a, and a <’ a and the following relations:

(i) x >" aforall x € II\X, and a —' y for all y € II1\Y.
(i) a =" yforall y € X| and x —' a for all x € III\X, such that x — z for all
z € Xy.
(iii) x =" a forall x € Yo and a —' y for all y € 1I\Y| such that z < y for all
z €Y.

Part of Theorem 7.7 is the following proposition, which is well known. (See, for
example, [12, Theorem B].)

Proposition 7.8 If L is a finite semidistributive lattice and I is an interval in L, then
L[I] is a semidistributive lattice.

7.3 General finite lattices

One may wonder whether there is a Fundamental Theorem of Finite Lattices, giving
a canonical way of realizing an arbitrary lattice as something like Pairs(— ). Such a
result appears a paper by Barbut on analyzing results of opinion surveys [5]; it was
rediscovered by Markowsky [21]. We restate the result in a manner that allows easy
comparison to FTFSDL. Whereas FTFSDL realizes a finite semidistributive lattice as
Pairs(—) for a relation — on a single set 111, the theorem realizes an arbitrary finite
lattice as Pairs(—) for a relation — between two sets JI and P. (JI and P are the
Cyrillic letters “el” and “er”, which we hope are mnemonic for “left” and “right”.)
Given a relation — between sets JI and P, for any subset X of JI, put X 1= {yeP:
x /> yVx € X}and, for any subset Y of P,put Y = {x € JI: x /A yVy e Y}. We
define (X, Y) to be a maximal orthogonal pair if ¥ = X and X = Y and we write
Pairs(—) for the set of maximal orthogonal pairs, ordered by containment on the first
element. We partially order Pairs(—) by containment in the first entries of pairs (or
equivalently reverse containment in the second entries).

We write Fact(—) for the pair (—, <) of preorders — and < on JI and P
respectively defined as follows: x; — x» if x, — y implies x| — y; and y; < y; if
x — yp implies x — y. (If JI = P, then this coincides with the earlier definition of
Fact(—) in connection with FTFSDL.) Given x € JI, a right companion of x is an
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element y € P such that x — y and such that if x — x” — y then x = x’. Similarly,
for y € P, a left companion of y is an element x € JI such that x — y and such that
if x — y’ < ythen y = y’. We say that — is companionable if every x € JI has a
right companion and every y € P has a left companion.

Theorem 7.9 (FTFL [5,21]) A finite poset L is a lattice if and only if it is isomorphic to
Pairs(—) for a companionable relation — between finite sets JI and P. In this case,
(JI, P, —) is isomorphic to JiL,Mi L, =), where j — m if and only if j % m.
Writing Fact(— 1) = (— L, <> 1), we see that — [, is the partial order induced on Ji L
as a subset of L, while — 1, is the partial order induced on Mi L as a subset of L. The
map

x— ({jeliL:j<x},{meMiL:m > x})

is an isomorphism from L to Pairs(— ), with inverse (X, Y) —> \/ X = A\ Y.

Theorem 7.9 shows that a finite lattice can always be written as Pairs(—) by taking
JI=JL P=MiLand j - mifj f m, whether or not that lattice is semidis-
tributive. What is special in the semidistributive case is, first, that Ji L and Mi L can
be identified with a single set III such that each element is its own left and right
companion and, second, that we can recognize those (JI, P, —) which come from
semidistributive lattices by axioms reminiscent of abelian categories. In Sect. 7.4, we
will see a different case in which JI and P can be identified.

The following proof spells out how Theorem 7.9 is a restatement of Markowsky’s
theorem in [21].

Proof of Theorem 7.9 By Proposition 2.27, Ji L and Mi L are join- and meet-generating
subsets of L, so they can play the roles of X and Y in [21, Theorem 5]. By [21,
Theorem 5(a)], the given map from L to Pairs(— 1) is an isomorphism.

Now, let (JI, P, —) be two sets and a relation such that L = Pairs(—). By [21,
Theorem 9], we have (JI, P, >) = (JiL,Mi L, f) if and only if

(1) For all x € JAiL,if A € JiL is such that {y € P : x — y} equals
{y e P:3x’ € A withx’ — y}, thenx € A and

(2) Forall y € JiL,if ' € MiL is such that {x € JI : x — y} equals
{xeJl:3y eI withx — y'},theny € T.

We will show that the first condition is equivalent to saying that every x € JI has
a right companion; analogously, the second condition is is equivalent to saying that
every y € P has a left companion.

So, suppose that x has a right companion y and suppose that A C Ji L is such that
{yeP:x -y} ={yeP:3Ix’ € Awithx’ — y}. By the definition of a right
companion, y is contained in the left hand side, so there is some x’ € A with x’ — y.
If x 4 x', there is some y’ with x’ — y’ and x # y’, in which case y’ is in the right
hand side but not the left, a contradiction. So x —» x” and x” — y; then the definition
of a right companion shows that x = x’, so we have shown that x € A.

Conversely, suppose that x does not have a right companion. If A is the set
{(x':x»x', x#x'},then{y e P:x - y} ={y € P:3x’ € A withx’ — y} but
x ¢ A. O
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The idea that a relation — from JI to P gives rise to a lattice, which can equally
well be viewed as a lattice of closed sets in JI or in P, goes back to Birkhoff [9]. This
is sometimes described as a Galois connection, see [24].

Subsequent to Barbut and Markowsky’s results showing that there is a canonical
way to realize any finite lattice in this fashion, similar ideas were taken up by Wille
under the title of formal concept analysis [15,32]. Related subsequent developments
can be found in [17]; a recent application of these ideas is in [10, Section 5]

7.4 Extremal lattices

Let L be a finite lattice. Let xg < x; < --- < x;, be a chain of elements in L. Then,
for each 1 < i < n, there must be some join-irreducible element j with j < x; and
j f_ Xi—1, so |JiL] > n. Similarly, | Mi L| > n. A lattice is called extremal if it
has a chain of length N where |JiL| = |MiL| = N. An acyclic reflexive relation
is a reflexive relation that, when interpreted as a directed graph, is acyclic except for
1-cycles.

We will want the following notation: given a bijection p from Ji L to Mi L, define
arelation >* on Ji L by i =" jifandonlyifi — w(j). (Recall that, for j € Ji L
and m € MiL, we write j — m if j %_ m.) The following is a restatement of a
characterization of extremal lattices due to Markowsky [22].

Theorem 7.10 (FTFEL) A finite poset L is an extremal lattice if and only if it is
isomorphic to Pairs(—) for an acyclic reflexive relation — on a finite set 111. In this
case, (11, —) is unique up to isomorphism. More precisely, in the case where L is
an extremal lattice, there is a unique bijection | from Ji L to Mi L for which —" is a
reflexive relation, and (11, —) is isomorphic to (Ji L, —*).

Proof We prove the first two assertions of the theorem by combining [22, Theorem 13]
with other results of Markowsky that appear here as Theorem 7.9. In our notation, [22,
Theorem 13] says a finite lattice L is extremal if and only if there is a bijection x from
Ji L to Mi L such that —* is an acyclic reflexive relation.

Theorem 7.9 says that in any case, L is isomorphic to Pairs(— ). If there exists
a bijection u from Ji L to Mi L, then there is an isomorphism from Pairs(—1) to
Pairs(—*) sending (X, Y) to (X, =" (Y)). We conclude that if L is extremal, then
there is a bijection p from Ji L to Mi L such that —* is an acyclic reflexive relation,
and L is isomorphic to Pairs(—#).

Conversely, if there exists an acyclic reflexive relation — on a set III such that
L is isomorphic to Pairs(—), then (III, ITT, —) is a companionable relation; each
x € I is its own left companion and its own right companion. Thus Theorem 7.9
(FTFL) says that (II, IIT, —) is isomorphic to (Ji L, Mi L, — ). This isomorphism
features bijections between III and Ji L and between I1I and Mi L. Composing these
bijections, we obtain a bijection p from Ji L to Mi L such that —# coincides with
—. Again appealing to [22, Theorem 13], we see that L is extremal. Furthermore, we
have established the uniqueness of (ILI, —) up to isomorphism.

The final assertion of the theorem is that the bijection u is the unique bijection that
makes —* reflexive. This more precise statement of uniqueness is not in Markowsky’s
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Fig.7 A two-acyclic {CL, b, c, d}
factorization system and the
closed sets of the corresponding / \
semidistributive lattice, which is b { a, C} {b’ d}
not extremal / \Q ‘ ‘
a d
'7\ / {a} {d}
c \ ’ /

work, but can be seen more generally as follows: Let A and B be two finite sets with
a relation — between them, and let ;« and v be bijections between A and B. Define a
relation —* on A with x —*# y if and only if x — u(y). If ->* is reflexive and —"
is an acyclic reflexive relation, then we claim that u = v.

Suppose to the contrary that & 7 v. Then we can find some r > 2 and some ay, az,
....ar € Awithu(aj) = v(a;+1), withindices periodic modulo r. Since p is reflexive,
we have a; — u(a;), and thus we have a; —" ap =" a3 =" --- —Ya, -V ay,
contradicting that —" was assumed to be an acyclic reflexive relation. O

If L is a finite extremal lattice, then the relation (I1I, — ) of Theorem 7.10 is obtained
from the relation (Ji L, Mi L, — ) of Theorem 7.9 by identifying Ji L with Mi L by
the bijection w. If, instead, L is a semidistributive lattice then (III, —) is obtained
analogously from (Ji L, Mi L, — ) by identifying Ji L and Mi L by the bijection «.
In this latter case, (ILI, —) need not be acyclic.

The condition of being extremal neither implies nor is implied by being semidis-
tributive: We present examples of lattices that satisfy each condition without satisfying
the other, followed by two propositions that describe how the conditions can be sat-
isfied simultaneously. In the examples, if any sort of arrow is drawn between two
vertices, we mean that the — relation holds between them, and we have decorated this
arrow to indicate whether the — or < relation also holds where (—, < ):=Fact(—).
Conveniently, if x — y or x < y, then x — y, so we can always draw diagrams
in this way. All relations are assumed to be reflexive, although this is not indicated
pictorially.

Example 7.11 The quadruple (III, —, —, <) shown on the left of Fig. 7 obeys the
axioms of a two-acyclic factorization system, but — has 3-cycles. Thus the corre-
sponding lattice of closed sets, shown on the right of Fig. 7, is semidistributive but not
extremal.

Example 7.12 The quadruple (III, —, —, <) shown on the left of Fig. 8 is an acyclic
reflexive relation. However, the middle — -arrow cannot be factored into an —»-arrow
and an < -arrow, so the corresponding lattice of closed sets, also pictured, is extremal
without being semidistributive.

Proposition7.13 Let — be an acyclic reflexive relation on a finite set 111 and
let (—, ) = Fact(—). Then Pairs(—) is semidistributive if and only if — =
Mult(—», <), in which case (111, —, —», <) is a two-acyclic factorization system.
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Fig.8 An acyclic reflexive {a,b,c,d}
relation and the closed sets \
forming the corresponding

extremal lattice, which is not {b7 C, d}
semidistributive \

fa.b} {a,d} {e.d}

a“—b—c—»d

Proof Write L for Pairs(—). By Theorem 7.10, we can take III to be Ji L and — to
be derived from the bijection x in Theorem 7.10.

Suppose L is semidistributive so that, by Theorem 1.2, L is isomorphic to
Pairs(— 1) for the finite two-acyclic factorization system (Ji L, -, -, <> ). Since
in particular i £ «(i) for all i € JiL, we see that « is the bijection pu from Theo-
rem 7.10. Thus - = —* = — has the desired properties.

Conversely, suppose that — = Mult(—, < ). By definition, (-, <) = Fact(—),
so (IIT, —, —», <) is a factorization system. Since -+ € — and — C —, the
two-acyclicity of (I, —, —», <) follows from the acyclicity of —. O

Proposition 7.14 Let (LI, —, —, <) be a finite two-acyclic factorization system.
Then Pairs(—) is extremal if and only if — is an acyclic reflexive relation.

Proof By Theorem 7.10, if — is an acyclic reflexive relation, then Pairs(—) is
extremal. Conversely, if Pairs(— ) is extremal, then it is isomorphic to Pairs(—") for an
acyclic reflexive relation —’ on a set ITI'. By Proposition 7.13, (IIT', =/, Mult(—"))
is a two-acyclic factorization system. By Theorem 1.2, (II', —’, Mult(—")) and
(I, —, —, <) are isomorphic, so — is an acyclic reflexive relation. m]

It was shown in [31] that if a lattice is extremal and semidistributive, then it is also
left modular (and therefore trim, since by definition a lattice is trim if it is extremal
and left modular). A central topic in [31] is the representation of lattices which are
trim but not necessarily semidistributive as maximal orthogonal pairs for a suitable
relation.

8 Motivating examples

In this section, we connect the FTFSDL and its generalizations to the two main exam-
ples that motivated it, namely posets of regions of hyperplane arrangements and lattices
of torsion classes of finite-dimensional algebras. Posets of regions, and their quotients,
have motivated much of the interest in the combinatorial study of semidistributivity,
while lattices of torsion classes provided clues leading to the definition of a two-acyclic
factorization system.

Our discussion here does two things: In Sect. 8.1, we apply the FTFSDL and a
known characterization of semidistributivity of the poset of regions to construct two-
acyclic factorization systems for a class of posets of regions that includes the simplicial
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case. In Sect. 8.2, given a finite-dimensional algebra A, we construct a two-acyclic
factorization system whose lattice of maximal orthogonal pairs is isomorphic to the
lattice tors(A) of torsion classes of A. As a consequence, tors(A) is a well separated
k-lattice. When tors(A) is finite, this recovers the finite case of [13, Theorem 1.3],
namely that tors(A) is semidistributive. We point out that [13, Theorem 1.3] states
that tors(A) is completely semidistributive even when it is infinite. We do not have a
combinatorial hypothesis which would let us prove this result, since a well separated
k-lattice need not be semidistributive (see Example 3.25).

8.1 Posets of regions

Background on posets of regions can be found in [29]. Here we give the basic def-
initions. A (real, central) hyperplane arrangement A is a finite collection of linear
hyperplanes in R”. We assume throughout the adjectives real and central, but will not
repeat them. The regions of A are the closures of the connected components of the
complement R"\ (| 4 H). Fixing one region B to be the base region, each region
R is specified by its separating set S(R), the set of hyperplanes in A that separate R
from B. The poset of regions Pos(A, B) of A with respect to B is the set of regions,
partially ordered by containment of their separating sets.

The regions of a finite hyperplane arrangement are full-dimensional polyhedral
cones. A facet F' of R is a lower facet of R if the hyperplane defining it is in the
separating set of R. Otherwise, F is an upper facet. A region R of A is tight with
respect to B if for every pair of lower facets of R, the intersection of the two facets is
a codimension-2 face, and if for every pair of upper facets of R, the intersection of the
two facets is a codimension-2 face. The arrangement A is tight with respect to B if
each of its regions is tight with respect to B. The arrangement is simplicial if each of
its maximal cones has exactly n facets. It is immediate that a simplicial arrangement
is tight with respect to any choice of B.

The following is [29, Theorem 9-3.8] combined with [29, Corollary 9-3.9].

Theorem 8.1 The poset of regions Pos(A, B) is a semidistributive lattice if and only
if A is tight with respect to B. If particular, if A is simplicial, Pos(A, B) is a semidis-
tributive lattice for any choice of B.

A rank-two subarrangement of A is a subset A’ of A with | A’| > 2 such that there
exists a codimension-2 subspace U having A" = {H € A : U C H}. Given a rank-
two subarrangement A’ there is a unique .4’-region B’ containing the .A-region B. The
basic hyperplanes of A’ are the two hyperplanes that define the facets of B’.

Given distinct hyperplanes H and H’, there is a unique rank-two subarrangement
A’ containing H and H'. We say H' cuts H if H' is basic in A" and H is not basic
in A’. For each hyperplane H € A, consider the subset H\(|_J» H' N H), where the
union is taken over all H' € A such that H' cuts H. The closures of the connected
components of this subset are called the shards in H. The set of shards of A is the
union of the sets of shards of all of the hyperplanes of .A. The decomposition of the
hyperplanes of A into shards depends strongly on the choice of B, and to emphasize
that, we sometimes refer to shards of A with respect to B.
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Given a shard ¥ of A contained in a hyperplane H, an upper region of X is a
region R whose intersection with X is (n — 1)-dimensional and which has H € S(R).
A lower region of ¥ is aregion R having an (n — 1)-dimensional intersection with X,
with H ¢ S(R). [29, Proposition 9-7.8] asserts that, when A is tight with respect to B,
the collection of upper regions of ¥ contains a unique minimal region (in the sense of
Pos(A, B)). Furthermore, this region is join-irreducible in Pos(A, B). We write J ()
for this element. Every join-irreducible element is J (X) for a unique shard X. Dually,
there is a unique maximal region M (X) among lower regions of X, this region is
meet-irreducible in Pos(A, B), and every meet-irreducible element arises in this way.

Let ITI(A, B) stand for the set of shards of .4 with respect to B. Define relations
—, —», and < on III(A, B) as follows. For =, ¥’ € III(A, B), set ¥ — X’ if and
only if J(X) £ M(X'), set ¥ — ¥’ if and only if J(X) > J(X'), and set ¥ — ¥’
if and only if M(X) > M(X').

Theorem 8.2 If A is tight with respect to B, then (III(A, B), —, —, <>) is a two-
acyclic factorization system. The map

R— ({¥ e II(A, B): J(2) < R}, ({X € II(A, B) : M(X) = R}))

is an isomorphism from Pos(A, B) to Pairs(—), with inverse

X,V NI =\ ME).

YeX XeY

Proof Theorem 8.1 says that Pos(.A, B) is semidistributive, and thus is a «-lattice by
Theorem 2.28. Given a join-irreducible element J(X) of Pos(.A, B), write J,(X) for
the unique element covered by J(X). The unique element M*(X) covering M (X) is
an upper region of X, so J(X) < M*(X). Thus M (X) is a maximal element of the set
{R € Pos(A, B) : J(£) A R = J.(2)}. We conclude that x (J (X)) = M(Z). Now
Theorem 1.2 (FTFSDL) says that (II1(A, B), —, —, <) is a two-acyclic factoriza-
tion system and gives the desired isomorphism. O

8.2 Representation theory of finite-dimensional algebras

Let k be a field and let A be a finite-dimensional algebra over k. A full subcategory of
the category of finite-dimensional A-modules is called a torsion class if it is closed
under extensions and quotients; meaning that

(1) If X, Y and Z are finite-dimensional A-modules with0 - X - Y - Z — 0
is a short exact sequence, then any torsion class which contains X and Z must
contain Y and

(2) If X and Y are finite-dimensional A-modules and X — Y is a surjection, then
any torsion class which contains X must contain Y.

Torsion-free classes are defined similarly to torsion classes except that condition (2)
is replaced by
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(2") If X and Y are finite-dimensional A-modules and X — Y is an injection, then any
torsion-free class which contains ¥ must contain X.

To each torsion class 7 there is an associated torsion-free class
F=T'={M:Hom(L, M)=0forall L € T}.

Dually, the torsion class corresponding to a torsion-free class F can be obtained by
T =1 F={L:Hom(L, M) =0forall M € F}.

Inclusion of torsion classes corresponds to reverse inclusion of torsion-free classes.
Given such a torsion pair (7, F), for any module M, there is a maximal submodule of
M which lies in 7. This is denoted t7 M, or t M if the intended torsion class is clear.
The quotient M /t7M is the maximal quotient of M which is contained in F. A good
reference for basic facts about torsion classes is [4, Section VI.1].

‘We note that conditions (1) and (2) above describe torsion classes as the closed sets
for a closure operator on mod(A). Thus, the torsion classes form a complete lattice
tors(A). This closure operation is finitary, meaning that the closure of an arbitrary
set is the union of the closures of its finite subsets. (Sometimes such a closure is
called “algebraic”. See [2, Definition 4-1.1].) It is known that the closed sets of a
finitary closure form an algebraic lattice. (See, for example, [2, Lemma 4-1.4] and [2,
Lemma 4-1.16].) Likewise, (1) and (2') also define a finitary closure operator, so the
lattice of torsion-free classes is algebraic. Since the lattice of torsion-free classes is
isomorphic to the dual of tors(A), this shows that tors(A) is bi-algebraic. This result
was first shown in [13, Theorem 3.1(b)] by a different argument.

The lattice tors(A) is completely semidistributive [13, Theorem 3.1(a)].

We now explain how to construct a set 111 and relations —», <, — in terms of the
representation theory of A, so that we recover the lattice of torsion classes of A as
Pairs(— ). This construction was one of the inspirations for this project.

An A-module is called a brick if its endomorphism ring is a division algebra (i.e., if
all its non-zero endomorphisms are invertible). We write Bricks(A) for the collection
of isomorphism classes of bricks.

For [L], [M] € Bricks(A), we define [L] — [M] iff Hom(L, M) # 0. We define
[L] — [M]iff M is filtered by quotients of L and define [L] < [M]iff L is filtered by
submodules of M. Note that a surjective morphism of modules from L to M implies
[L] — [M] but the converse does not hold, and similarly for injective maps and <.

Example 8.3 Let A be the path algebra of the Kronecker quiver with two arrows a
and b. We write a representation V of A as Vi = V5. Let M be the representation
k = k where @ = b = 1 and let N be the representation k> = k where a = [(1)] and
b= [(1)] We clearly cannot have a surjection M — N as N has larger dimension. We
cannot even have a surjection M®" — N, as every map M — N has image lying in
(k[1] = k) C N.Note that this submodule of N is isomorphic to M, and that the
quotient of N by this submodule is the simple module k¥ = 0, which is a quotient of
M. Thus, N is filtered by quotients of M and [M] — [N].
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We will need one useful fact about bricks. This is a special case of [3, Lemma
1.7(1)]. We give the short proof from [3].

Lemma 8.4 If S is a brick, and M is in the torsion class consisting of modules filtered
by quotients of S, then any non-zero morphism from M to S is surjective.

Proof Let f be a nonzero morphism from M to S. There is a filtration 0 < M| <

- < M, = M with each M;/M;_ a quotient of S. Let i be maximal such that
flm; = 0. Then f descends to a map from M;41/M; to S. Composing this with the
quotient map from S to M;;1/M;, we obtain a non-zero endomorphism of S. Since
S is a brick, this endomorphism must be invertible, so the map from M;1/M; to S
must be surjective, and thus the map from M to S must be surjective. O

The dual statement also holds for torsion-free classes.
We also need the following simple lemma which says that a torsion class is deter-
mined by the bricks it contains.

Lemma 8.5 Let T be a torsion class. Then every module in T is filtered by bricks in
7.

We can thus recover 7 from the set of bricks in 7.

Proof Let M be a minimal-dimensional counter-example. Then M is not a brick, so it
has some non-invertible non-zero endomorphism. Let / be the image of this endomor-
phism. It is both a submodule of M and a quotient of M. Since it is a quotient of M,
I € T. Also, M/I € T. By the hypothesis that M was the minimal counterexample,
both I and M /I are filtered by bricks in 7. But then so is M. O

Theorem 8.6 (Bricks(A), —, —, <) is a two-acyclic factorization system. Further-
more, (T, F) — (7 N Bricks(A), F N Bricks(A)) is an isomorphism from tors(A)
to Pairs(—). The inverse map takes (X,Y) to (T, F), where T consists of the mod-
ules filtered by quotients of bricks from X, and F consists of the modules filtered by
submodules of modules from Y.

Proof We first prove that Fact(—) = (—», <>). Write (—’, <) for Fact(—).

Suppose [L] — [M]. Specifically, suppose that M has a filtration 0 = My C
M; C --- C M, = M with surjections from L to M;/M;_y.1f [N]in Bricks(A) has
[M] — [N],lety : M — N be a nonzero map. Let j be minimal such that i does
not restrict to zero on M, so v descends to a nonzero map from M;/M; | to N.
The composition L — M;/M;_; — N is then nonzero, so [L] — [N]. We see that
[L] - [M].

Conversely, suppose that [L] —' [M]. We will show that M is filtered by quotients
of L. Let 7 be the torsion class consisting of modules filtered by quotients of L.
Let M be the torsion part of M with respect to 7. If tM = M, then we are done,
since this means that M € 7, and thus M is filtered by quotients of L. Otherwise,
consider M/t M. It is in the torsion-free class corresponding to 7, so it admits no
morphism from any module in 7, and in particular, it admits no morphism from L. If
M /tM were a brick, we would have found a contradiction, because we would have
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[M] — [M/tM]but[L] /4 [M/tM], contradicting our assumption that [L] — [M].
In general, though, we can take a module N which is minimal-dimensional among
modules which are both quotients and submodules of M /¢ M. This N must be a brick,
because if it has a non-invertible endomorphism, its image would be a smaller quotient
and submodule of M/t M. Now Hom(L, N) = 0, but Hom(M, N) # 0, contrary to
our assumption that [L] —’ [M]. We conclude that [L] —» [M].

The argument that [L] <> [M] if and only if [L] <>’ [M] is dual, and we see that
Fact(—) = (—, —).

We next prove that Mult(—, <) = —. Since Fact(—) = (-, <), Proposi-
tion 2.3.3 says that Mult(—, <) € —. Conversely, if Hom(L, M) # 0, we can
define N to be the image of such a map. This N need not be a brick, but there is a
minimal-dimensional module N’ which is both a submodule and a quotient module
of N. Then [L] —» [N'] — [M]. We have showed that Mult(—, <) = —.

Suppose that we have two non-isomorphic bricks § and 7 with [S] — [T]. We
will show that Hom(7', §) = 0. Assume otherwise. Lemma 8.4 says that any non-
zero map from 7 to S must be surjective. But there is also a non-zero map from S to
T, and composing these we get a noninvertible endomorphism of 7', contrary to the
hypothesis that T is a brick.

It follows that S is not in the torsion class consisting of modules filtered by quotients
of T, so we do not have [T'] — [S]. This establishes the order condition for —. It also
follows that T is not in the torsion-free class of modules filtered by submodules of S,
so we do not have [T] < [S]. This establishes the brick condition. The proof of the
order condition for < is dual to the order condition for —.

Finally, we verify the isomorphism. Let (7", F) be a torsion pair for mod A. Define
X = Bricks(A) N7 and Y = Bricks(A) N F. As recalled above, 7 consists of those
modules which have no non-zero morphisms to any module in . Since by the dual
of Lemma 8.5 any module in F is filtered by submoduless of bricks in F, we can also
describe 7 as consisting of those modules which have no non-zero morphisms to any
module in Y. We therefore have that X = LY. Dually, ¥ = X,

Conversely, suppose (X, Y) € Pairs(— ). Define 7 to consist of modules filtered by
quotients of modules from X, and F to consist of modules filtered by submodules of
modules from Y. Clearly, there are no morphisms from any module in 7 to any module
in F. We now prove by induction on the dimension of M that if M is in 7=, then
M e F.Let B be minimal dimensional among modules which are both submodules
and quotient modules of M. B is necessarily a brick. Since B is a submodule of M, we
must have B € 71,50 B € Y C F. Let K be the kernel of a surjection from M to B.
Now K € 7+, so0 by the induction hypothesis, K € F. So M, which is the extension
of B and K, is also in F. The dual argument shows that 1r=T. 0O

Combining Theorem 8.6 with Theorem 1.4 or with Theorem 1.2, we obtain the
following corollaries.

Corollary 8.7 The poset tors(A) is a well separated «-lattice.
Corollary 8.8 Iftors(A) is finite, then it is a semidistributive lattice.

Corollary 8.8 recovers [16, Theorem 4.5]. This is a special case of [13, Theorem
1.3], which says that tors(A) is completely semidistributive, without the hypothesis that
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tors(A) is finite. However, Corollary 8.7 accomplishes something different from [13,
Theorem 1.3]: Recall that Examples 3.24 and 3.25 show that there are no implications
between being a well separated k-lattice and being a completely semidistributive
lattice.
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