PMFuzz: Test Case Generation for Persistent Memory Programs

Sihang Liu*
University of Virginia
Charlottesville, Virginia, USA
sihangliu@virginia.edu

Baishakhi Ray
Columbia University
New York City, New York, USA
rayb@cs.columbia.edu

ABSTRACT

The Persistent Memory (PM) technology combines the persistence
of storage with the performance approaching that of DRAM. Pro-
grams taking advantage of PM must ensure data remains recover-
able after a failure (e.g., power outage), and therefore, are susceptible
to having crash consistency bugs that lead to incorrect recovery
after a failure. Prior works have provided tools, such as Pmem-
check, PMTest, and XFDetector, that detect these bugs by checking
whether the trace of PM accesses violates the program’s crash con-
sistency guarantees. However, detection of crash consistency bugs
highly depends on test cases—a bug can only be detected if the
buggy program path has been executed. Therefore, using a test case
generator is necessary to effectively detect crash consistency bugs.

Fuzzing is a common test case generation approach that requires
minimum knowledge about the program. We identify that PM pro-
grams have special requirements for fuzzing. First, a PM program
maintains a persistent state on PM images. Therefore, the fuzzer
needs to efficiently generate valid images as part of the test case.
Second, these PM images can also be a result of a previous crash,
which requires the fuzzer to generate crash images as well. Finally,
PM programs can have various procedures but only those perform-
ing PM operations can lead to crash consistency issues. Thus, an
efficient fuzzer should target those relevant regions. In this work,
we provide PMFuzz, a test case generator for PM programs that
meets these new requirements. Our evaluation shows that PMFuzz
covers 4.6x more PM-related paths compared to AFL++, a widely-
used fuzzer. Further, test cases generated by PMFuzz discovered
12 new real-world bugs in PM programs which have already been
extensively tested by prior PM testing works.

“Equal contribution. Suyash Mahar contributed to this work during his internship at
the University of Virginia.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ASPLOS °21, April 19-23, 2021, Virtual, USA

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8317-2/21/04...$15.00
https://doi.org/10.1145/3445814.3446691

Suyash Mahar*
University of California, San Diego
San Diego, California, USA
smahar@ucsd.edu

Samira Khan
University of Virginia
Charlottesville, Virginia, USA
samirakhan@virginia.edu

CCS CONCEPTS

« Software and its engineering — Software testing and de-
bugging; - Hardware — Memory and dense storage.

KEYWORDS
Persistent Memory, Crash Consistency, Testing, Debugging, Fuzzing

ACM Reference Format:

Sihang Liu, Suyash Mahar, Baishakhi Ray, and Samira Khan. 2021. PMFuzz:
Test Case Generation for Persistent Memory Programs. In Proceedings of the
26th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’21), April 19-23, 2021, Virtual,
USA. ACM, New York, NY, USA, 16 pages. https://doi.org/10.1145/3445814.
3446691

1 INTRODUCTION

Persistent memory (PM) technologies, such as Intel’s Optane [30],
provide a class of high-performance and byte-addressable mem-
ory. The use of PM allows a program to directly access persistent
data through the load/store interface, without using software in-
termediaries. Thus, it blurs the boundary between memory and
storage. As Intel’s PM modules become widely available on the
market [30] and are getting deployed in data centers [5, 6], a myr-
iad of real-world applications have been developed for PM, such as
databases [29, 39, 51], key-value stores [4, 31, 84, 85], customized
PM applications [3, 12, 13, 16, 28, 67, 78, 89], and PM libraries that
improve programmability [15, 26, 32, 79]. These software systems
generally require that the persistent data can recover to a consistent
state in the event of a failure (e.g., a power outage or system crash)—
a requirement referred to as the crash consistency guarantee.
However, due to the reordering and buffering in the volatile
memory hierarchy, writes to PM need to be carefully managed
to ensure crash consistency. For example, appending a node to a
persistent linked list requires the node to become persisted prior to
the updated tail pointer that points to the new node. To prescribe
the order in which writes become persistent, PM hardware systems
have introduced new instructions, such as CLWB and SFENCE from
x86 [38]. With the hardware support, programming for PM systems
becomes possible but remains challenging—programmers need to
have a good knowledge of both their programs and the hardware
primitives. PM libraries, such as Intel’s PMDK [32], improve the
programmability by providing a higher-level interface. However,
programmers still need to understand the crash consistency guar-
antees from the library and the desired failure-recovery mechanism

ASPLOS ’21, April 19-23, 2021, Virtual, USA

in their programs. Prior works have pointed out that programming
for PM systems is error-prone [10, 49, 57, 58, 71]. A misuse of PM
primitives or library functions, such as missing CLWB and SFENCE
operations or not backing up data, can break the crash consistency
guarantees, which is referred to as a crash consistency bug. Whereas,
overuse of these functions, such as placing a redundant SFENCE or
making unnecessary backups, can degrade the performance, which
is referred to as a performance bug.

To mitigate the difficulties in PM programming, there have been
testing tools that detect crash consistency bugs, as well as per-
formance bugs [10, 49, 57, 58, 66], by tracing PM operations and
determining whether they violate any of the crash consistency guar-
antees. However, a major issue remains unsolved—these testing
tools still require the buggy procedure to be actually executed. For
example, to reproduce a bug in PMDK [37] that was reported by
PMTest [58], the inputs to a B-Tree-based key-value store need
to be carefully designed, in order to execute a program path that
triggers B-Tree’s insertion and rebalancing procedures. Hence, even
with the aid of PM testing tools, bugs cannot be detected without
having inputs to trigger the required execution path. In this work,
we aim to assist PM programming by generating test cases to cover
nontrivial crash consistency and performance bugs.

Due to the already complicated programming for PM systems, a
tool for test case generation ideally should not place an additional
burden on programmers. Fuzzing, a widely-used test case genera-
tion method, perfectly satisfies this demand as it requires minimum
knowledge about the target code base and has been proven to be
effective [8, 18, 20, 24, 91]. At a high-level, a fuzzer iteratively gen-
erates new test cases by mutating existing ones, where high-value
test cases, such as those that explore new branches, are reused in
future iterations. Although fuzzing is an effective method, we iden-
tify that in order to generate test cases for PM programs efficiently,
additional requirements need to be satisfied.

First, PM programs maintain the persistent state on PM devices
(e.g., as a PM image in a DAX file system), different from conven-
tional programs. A PM program takes not only the regular program
input (e.g., a command that inserts a key-value pair) but also a PM
image which contains an existing persistence state. As the proce-
dure of loading an existing PM image and performing operations on
top can also face crash consistency bugs [49, 57], it is necessary for
a fuzzer to provide PM images as inputs. Fuzzers for conventional
programs perform mutation to generate regular inputs (e.g., com-
mands). In comparison, PM images have a much larger exploration
space (e.g., tens of MBs). Therefore, generating PM images through
direct mutation is ineffective and will likely produce invalid im-
ages. For example, a randomly mutated PM image may have illegal
pointers that may cause the program to abort in the beginning with-
out exploring any useful paths. Even though recent works have
designed fuzzers for file system images, they require a well-defined
image layout [44, 88]. As PM programs tend to customize the per-
sistent data management, methods taken by file system fuzzers are
not suitable for PM image generation. Therefore, the first challenge
is to efficiently generate valid PM images.

Second, PM programs also need to recover from PM images that
are resulted from failures during program execution, which we
refer to as crash images. Prior works have shown that the recovery
procedure is also susceptible to crash consistency bugs [49, 57].

Sihang Liu, Suyash Mahar, Baishakhi Ray, and Samira Khan

Therefore, the fuzzer needs to generate not only normal PM images
but also crash images for thorough testing. However, a program
can fail at any point during execution, leading to a potentially
infinite number of crash images. Therefore, the second challenge is
to generate crash images that are most effective for testing.

Finally, PM programs may contain procedures for different pur-
poses, not limited to managing PM, especially in real-world work-
loads. On the other hand, only PM operations are critical to crash
consistency bugs—performing writes to PM without taking care
of their ordering can leave inconsistent data on PM, and reading
from them can cause the later execution to behave incorrectly [57].
However, traditional coverage metrics, such as branch coverage,
used by conventional fuzzers do not target procedures with the
most concerned PM operations. Therefore, the third challenge is to
design a fuzzer that can target PM-related procedures.

The new requirements for test case generation are critical to
systematically testing PM programs. However, existing fuzzers
are incapable of meeting these requirements. In this work, we de-
velop PMFuzz (available at https://pmfuzz.persistentmemory.org),
a fuzzer that aims to generate test cases for detecting crash consis-
tency and performance bugs in PM programs. Next, we describe
the three high-level ideas of our design.

PM Image Generation. Existing fuzzers either do not target
large PM images or require a fixed image layout, as directly mu-
tating an image can likely generate invalid images that cannot ex-
plore useful paths. Therefore, an effective image generation method
should guarantee valid PM images. We observe that a PM image is
essentially an outcome of input commands. Therefore, our key idea
is to leverage the program logic to mutate an existing PM image.
PMFuzz incrementally generates the image by applying the fuzzing
logic on the input commands. And eventually, the PM image will
be thoroughly mutated through the iterative fuzzing procedure.

Crash Image Generation. In addition to taking normal images
as inputs, PM programs can also execute on crash images that are
caused by failures. Although a failure can occur at any point during
execution, the recovery procedure typically depends on a few key
variables that are stored in the image. For example, an undo-log-
based program performs the following steps: back up the old data
in the undo log, set the valid bit of the log, perform in-place update,
and finally unset the valid bit. In case of a failure, the recovery
procedure will take one of these two paths depending on the value
of the valid bit: one path applies the undo log and the other directly
resumes the execution. As such, there is a control-flow dependency
between the execution before and after the failure. Based on this
dependency, only two failure images are needed to cover both paths:
one with the valid bit set to one and another set to zero. Our key idea
is to minimize the number of crash images by only generating the
images that can affect the control-flow in the recovery procedure.

Coverage of PM Path. As crash consistency and performance
bugs are caused by the misuse of PM operations, achieving high cov-
erage of these bugs requires the fuzzer to perform a targeted fuzzing
on program paths with PM operations. To enable this prioritization,
we first define the PM path as a path that consists of program state-
ments with PM operations (e.g., read, write, writeback, etc.). Then,
PMFuzz monitors the statistics of PM paths during fuzzing, and

PMFuzz: Test Case Generation for Persistent Memory Programs

prioritizes test cases that cover new PM paths. By focusing on PM
paths, PMFuzz can efficiently generate more test cases that target
crash consistency and performance bugs.

Based on the key insights above, we implement PMFuzz on top
of an open-source fuzzer, AFL++ [20], and evaluate it in a real PM
system. Our contributions are the following:

o PMFuzz is the first test case generator for detecting crash consis-
tency and performance bugs in PM programs.

We evaluate PMFuzz using eight representative PM programs in a
real PM system. On average, PMFuzz covers 4.6X more PM paths
over the well-known fuzzer, AFL++, within 4 hours of fuzzing.
Even though these PM programs have been extensively tested
by prior works [10, 57, 58, 66], we detect 12 new real-world bugs
with PMFuzz’s systematic test case generation.

2 BACKGROUND AND MOTIVATION

In this section, we first introduce the PM programming interface
that guarantees recoverability and then describe the difficulties.

2.1 Programming for PM Systems

Persistent memory (PM) technologies, such as Intel’s Optane [30],
provide high-speed and byte-addressable access to persistent data.
Programs can better leverage the performance of PM by directly
managing persistent data in PM and bypassing the OS indirections
(e.g., file systems). A common approach is to create a PM image in
a file system with the direct access support (e.g., Ext4-DAX), map
it to the program’s address space, and manipulate the persistent
data [77]. Recent PM applications, such as databases and key-value
stores [4, 29, 31, 39, 51, 84, 85], PM-optimized file systems [19,
42, 48, 86, 87], PM libraries [15, 26, 32, 79], and other customized
applications that are built upon those libraries [3, 12, 13, 16, 28, 67,
89] directly manipulate memory to avoid the OS overhead.
Programs developed for PM typically require data to be recover-
able in case of a failure, which we refer to as the crash consistency
guarantee. However, due to the reordering and buffering in the
memory hierarchy, the order a write becomes persistent may differ
from what the program intends to. To support programming for
PM systems, hardware platforms have introduced new instructions.
For example, in an x86 system, a sequence of “CLWB; SFENCE” in-
structions [38] ensures that a cache line will be persisted prior to
subsequent writes (usually referred to as a persist_barrier());
in an ARM system, similar functionalities can be implemented us-
ing a sequence of “DC CVAP;DSB” instructions [2]. Building upon
these primitives, PM libraries provide software interfaces, such as
transactions [15, 26, 32, 79] and persistent data structures [16, 78],
for better programmability. For example, Intel’s PMDK library [32]
provides a transaction interface, with wrappers such as TX_BEGIN
and TX_END that mark failure-recovery regions, TX_ADD() that per-
forms logging, and D_RO and D_RW (direct read-only/read-write)
that obtain pointers to objects in the memory-mapped PM image.
These programming interfaces make it easier to manage per-
sistent data and develop crash consistency mechanisms, such as
undo/redo logging [14, 25, 28, 32, 46, 86], shadow paging [27, 53, 65],
and checkpointing [21, 43, 72, 82]. However, it is not easy to imple-
ment such mechanisms—programmers need to have good knowl-
edge about both the requirements for recovery and the persistence

ASPLOS °21, April 19-23, 2021, Virtual, USA

1 void btree_remove(node_t* node){ 16 void rotate_left(node_t 1sb,

2 TX_BEGIN{ 17 node_t node,note_t parent,int p){

3 ... // remove a node 18 ... Performan -

4 [FF (Tparent & 15 [XADDTAEETT] = N need (o log tnice
5 D_RO(node)->n<BTREE_MIN) 20 btree_insert(node,0,...);

6 —bree_rebalance(...); 21 TX_ADD_FIELD(parent,fitems[p])]

7 }TX_END %z D_RW(parent)->itemsip-1TF. .

8} 3 ... w. Crash consistency bug:

9 void btree_rebalance(24} Wrong index logged
10 node_t 1sb, node_t node, 25 void btree insert(node t node,...,int p)

if (node->items[p].key){

11 node_t parent, int p) 2
12 node_t* lsb=parent->slots[p-1];
13 [if(1sb && 1sb->n > BTREE MIN 28
14 IWHFHEW;%T)‘,M; 29
}

15} Need to satisfy multiple conditions g? }

memmove (&D_RW(node)->items[p + 1],
&D_RW(node)->items[p],size);

Figure 1: A buggy PM-based B-Tree (Example 1).

guarantees of PM programming support. Next, we will use an ex-
ample to illustrate non-trivial bugs in PM programming.

2.2 Nontrivial Bugs in PM Programming

Example 1: A buggy B-Tree. Figure 1 (Example 1) shows a sim-
plified code snippet of a B-Tree that is implemented with PMDK’s
transaction library. The btree_remove () and btree_insert() pro-
cedures are wrapped inside a pair of TX_BEGIN and TX_END to
ensure a consistent recovery after failure. Within the procedure,
TX_ADD() is used to make a backup of the persistent data before it is
modified. B-Tree is a commonly-used structure for key-value stores,
where each node contains a number of keys. To remove an existing
key from a B-Tree, the program first calls btree_remove (). After
removal, if the number of keys (n) becomes less than BTREE_MIN, it
rebalances the tree by calling btree_rebalance() (line 4-6), which
left-rotates the modified node if the number of keys in its left sibling
(1sb) exceeds BTREE_MIN (line 13-14). During the rotation process,
rotate_left() calls the insertion function btree_insert() (line
18), which then checks the validity of the key (line 23), and performs
the rotation (line 28-29). Finally, after insertion, rotate_left()
updates items in its parent node (line 21-22).

Although this example seems to be correct as the whole pro-
cedure is wrapped in a transaction, there are two bugs. The first
one is a crash consistency bug, where the program updates the
(p-1)-th item (line 22) but logs the p-th item by mistake (line 21).
In case of a failure at line 22, the item being modified can be lost
as it has not been backed up by the log. The second one is a perfor-
mance bug, where rotate_left() and btree_insert() attempt
to log the same node twice (line 19 and 27), leading to unnecessary
performance degradation.

These bugs in Example 1 have one major similarity that is they
cannot be directly observed by programmers. A crash consistency
bug, such as incorrect ordering or backup, does to affect the current
volatile state, thus is not visible until a failure occurs during the
buggy procedure. And, a performance bug, such as using excessive
ordering or unnecessary logging, does not affect the ongoing ex-
ecution. To make these bugs visible to programmers, there have
been tools tailored for PM programming [10, 57, 58, 66]. These tools
keep track of PM operations at runtime, and then detect violations
against the crash consistency guarantees. These tools have the ca-
pability of detecting the bugs in Example 1. Nonetheless, they all
require the buggy program path to be executed in order to detect the
violations. In Example 1, the program needs to satisfy two if condi-
tions to detect the crash consistency bug (line 21-22). Even harder,
triggering the performance bug (line 27) requires satisfying all three

ASPLOS 21, April 19-23, 2021, Virtual, USA

Favored Test Cases q Mutated Test Cases
Mutation

Test Cases @ Execution
Test Case

Selector Statistics

Stat Monitor
(e.g., branch coverage)

Seed ~
(Initial) ‘ -

Figure 2: A general fuzzing procedure.

1 int main(...){ 18 entry_t *GetEntry(int key){
2 ... 4 Load PM i image 19 for(auto& it : table){

3 db pmemobj_open(path); 20 int index=it.lookup(key);
4 recover(db); 21

5
6
7
8

PMReconstruct(db); 22} Lookup from volatile table
string cmd=parser(); 23 return .
if (cmd=="put”) 2} «— Updates to persistent table
tablePut(...); 25[void PutEntry(int key, item_t val){

9 else if(cmd=="get”) 26| int index=hash(key);

10 tableGet(...); 27| //called within a transaction

TX_ADD_FIELD(D_RO(pm)->table[index], en);

if(D_RW(pm)->ptable[index].empty()){
D_RW(pm)->ptable[index]->en=newEntry(val);

Yelse{

D_RW(pm)->ptable[index]->tail->enfnewEntry(val));

SRR PM Code Regions w5

void recover(db_t *db
14| db->verifyCheckSum();
15| db->applyLogs();

17|} _Recover persistent state 34|} Crash consistency bug: Tail was not backed up

Figure 3: A buggy PM-based database (Example 2).

if conditions. Therefore, a test case generator becomes a necessity
to cover such nontrivial program paths. Next, we introduce fuzzing,
a widely-used technique for test case generation.

2.3 Requirements for Fuzzing PM Programs

A test case generator for testing PM programs should avoid in-
troducing additional burdens on programmers, given the already
complicated nature of PM programming. Fuzzing is a well-known
technique that automatically generates test cases while minimizing
programmers’ effort [8, 18, 20, 24, 91]. Figure 2 shows a typical pro-
cedure of fuzzing—a fuzzer takes a set of initial test cases (or seeds),
performs mutation on those test cases, executes the target program,
monitors the execution statistics, and finally uses the statistics (e.g.,
branch coverage) to select high-value test cases. These high-value
test cases will then be used in the next iteration of fuzzing. Using
a fuzzer, the if-conditions in Figure 1 (Example 1) are likely to be
covered. However, we identify that there are additional needs from
PM programs that conventional fuzzers do not meet. Next, we pro-
vide another example of a PM crash consistency bug to motivate
the new requirements.

Example 2: A buggy PM database. Figure 3 (Example 2) is
a simplified example of a database based on the PMDK transac-
tion [32]. It maintains the persistent data in PM and buffers a volatile
table in DRAM for faster lookup, similar to the PM-based Redis [39].
During execution, the main() function first loads the existing per-
sistent data that were stored on PM, which we refer to as a PM
image (line 3), calls recover () to restore the persistence state (e.g.,
recover from a previous failure), and then loads the PM structures to
the volatile table. Upon requests, the database calls corresponding
functions, such as GetEntry() and PutEntry(). GetEntry() (line
18) looks up the key in the volatile table, and PutEntry() (line 25)
updates the key-value pair in the persistent ptable. In this exam-
ple, there is a crash consistency bug in PutEntry(). A new entry is
appended to the tail of the indexed list in ptable when the list is
not empty (line 32), whereas the previous log operation only covers
the first item in the list (line 28). Thus, in case a failure happens at
line 32, the update to tail can be interrupted and remains in an

Sihang Liu, Suyash Mahar, Baishakhi Ray, and Samira Khan

Input Commands 1

Input Commands 2 ,

PM tuuuuuu% Iy

Fmpty PM Image Program PM Image 1 P"O ra PM Image 2
(Normal Image) (Crash Image)

(b)

Figure 4: PM program execution procedures that generate
(a) a normal image, and (b) a crash image.

-+ Key Entry Log

__[uset[TR00T .. T]
: 1140 w
Updated Entry pointer

Update:
usrl=new entry

8Direct Mutation @
- \

- \
Key Entry Log

usrl 1!'20 - - Key Entr; Log
aned o __[vse[3r00 [..]

Crash Img. & 1100
Logged old Entry pointer

Not a valid persistent state
Likely to abort early (a) (c)

Figure 5: (a) An invalid image produced by direct mutation,
(b) a normal image produced by program logic, and (c) a
crash image produced by program logic.

| Fixed locations and sizes

SeLtor I Block Group 0 I Block Group 1 I ______

(@) 5o
per [Group | Block | Inode | Inode
Block | Desc. | Bitmap | Bitmap | Table Data Blocks

B-Tree | B-Tree Undo Undo B-Tree
Node 0 | Node 1 o Log 0 Log 1 | - | Node 9

by e
Lo; Lo Locations and sizes
[stot1]stot2] ... [Key1 [Valuet [.. |n | aloe T Toe” Locations and sizcs
Hash Hash Hash Undo Undﬂ
Table Entry 0 | Entry 1 i ng 0
© : — Next r Log
I I I I | I Key I Value |pginter Hea er Data

Pointers to Entry Even with the same undo logging mechanism,

(b) and (c) have completely different data layout

Figure 6: Persistent data layout in (a) an Ext2 file system [9],
(b) a PM-based B-Tree, and (c) a PM-based database.

inconsistent state. Next, we summarize the additional requirements
that traditional fuzzers need to expose PM bugs.

Requirement 1: PM images as input. A PM program typically
takes PM image(s) as part of the input to maintain their persistent
state, as demonstrated by the procedure in Figure 4a, and the main()
function of Figure 3 (Example 2). Prior works have shown that the
procedure that loads PM images can be buggy [57]. Therefore, a
fuzzer for PM programs needs to generate not only the basic input
commands but also PM images for testing. More importantly, the
generated PM image is required to be valid, so that the program can
execute a useful path, without failing basic image checks or trig-
gering exceptions. However, directly fuzzing PM images through
mutation is challenging—the search space of a PM image (tens of
MBs) is huge, and it is hard to construct a valid PM image. Fig-
ure 5a demonstrates a PM image of a database being randomly
mutated, where the mutation lies in the middle of the key and its
entry pointer. Execution using this invalid image is likely to abort
due to segmentation faults. Recent fuzzers have proposed to mutate
file system images [44, 88] based on the preknowledge of the data
layout of file systems. Figure 6a shows the simplified layout of an
Ext2 file system [9], where the sizes and locations are known based
on the Ext2 format. In comparison, PM programs tend to customize
the way they manage persistent data. Figure 6b demonstrates the

PMFuzz: Test Case Generation for Persistent Memory Programs

layout of Example 1, where the structures of tree nodes and logs
are seemly rigid but do not follow a specific format—the nodes
and undo-log entries are all allocated in the image at runtime. Fig-
ure 6¢ shows the layout of Example 2. Despite the use of a similar
undo-logging mechanism, the data layout still differs from that of
Example 1, due to their fundamental algorithmic differences.

Requirement 2: Crash images as input. PM programs are
expected to be recoverable from unexpected failures. Thus, they
may also load PM images caused by failures. For clarity, we refer
to a PM image that is an outcome of an uninterrupted execution as
a normal image, and an image that results after a failure as a crash
image. Figure 4b shows a procedure, where a PM program takes
an existing PM image and executes a series of input commands.
During execution, a failure occurs and results in a crash image.
After the program restarts after the failure, it needs to execute the
recovery procedure. For example, Figure 3 (Example 2) validates the
image checksum (line 14) and rolls back the prior updates using the
logged data (line 15). In order to detect bugs during the recovery
procedure, a crash image is also a necessity for the input test case.
However, failures may happen at any point during execution, and
therefore, can lead to an infinite number of crash images.

Requirement 3: Targeting PM operations. The crash consis-
tency bugs and performance bugs are caused by PM operations,
such as PM writes that modifies the state, and PM reads that loads
an existing state [57]. Therefore, test case generation should be fo-
cused on program paths that perform PM operations. In real-world
PM programs, such as database applications, there are both volatile
and persistent code regions. In Figure 3 (Example 2), only a fraction
of the code is performing PM operations, as marked by the green
boxes. As such, a fuzzer should ideally focus on the interesting
paths with PM operations. However, traditional coverage metrics,
such as branch coverage, which are widely adopted by traditional
fuzzers do not target these PM-related paths.

3 HIGH-LEVEL DESIGN OF PMFUZZ

So far, we have described the new requirements for fuzzing PM
programs. In this work, we propose PMFuzz, a fuzzer that aims to
efficiently generate test cases for debugging PM programs. Next,
we discuss the challenges and our high-level design.

3.1 Normal PM Image Generation

Challenge. PM programs require that a fuzzer generates valid
PM images to explore useful program paths. Conventional fuzzers
are only capable of fuzzing small inputs thus do not meet this
requirement. Even though file system fuzzers target large file system
images, they require a well-formulated rule and image layout [44,
88]. In comparison, a PM image is not only large (e.g., tens of MBs)
but also highly customized. Thus, fuzzing PM images is beyond the
capability of existing fuzzers. Therefore, the first challenge is how
can PMFuzz efficiently generate PM images?

Observation. As the data layout of a PM program can be largely
customized, directly generating a valid PM image with permutation
is hard. However, the outcome of the program logic itself always
results in a valid persistent state. As Figure 4 demonstrates, the

ASPLOS °21, April 19-23, 2021, Virtual, USA

1 void updateHashTable(int key, int new_val){ 13 void Recover(){

2 //Details removed for demonstration ———24— if(backup.valid){ <— Case 1
3 backup.key=key; 15 HashTable.find(key)->val

4 backup.val=HashTable.find(key)->val; 16 =backup.val;
5 persist_barrier(); 17

6 18 HashTable.verifyCksum();

7 3

8 HashTable.find(key)->val=new_val;

persist_barrier(); 19— }else{ Case 2
20 HashTable.verifyCksum();

9 persist barrier(); 21

10 |backup.valid=0; |« 22}

11 persist_barrier(); 23 }

12} Control-flow depends on key variables

Figure 7: Example of control-flow dependency between fail-
ures and the recovery procedure.

PM program incrementally mutates the PM image with input com-
mands. Therefore, instead of directly fuzzing the PM image, a more
effective alternative is to indirectly fuzz the input commands, which
in turn will mutate the image from one valid state to another.

Solution. Based on this observation, our key idea is to fuzz
the input commands and reuse the program logic to generate a
PM image that is guaranteed to be a valid persistent state. At the
high-level, the procedure of fuzzing PM images follows these steps:
(1) Mutate input commands, (2) perform execution on top of an
existing PM image, (3) collect the output PM image, and (4) reuse the
generated PM images and repeat these steps. As PMFuzz continues
to recursively operate on existing PM images, a thorough mutation
on the PM image will eventually be done by the program logic
itself. Figure 5b demonstrates that executing an update command
creates an output PM image that has a valid mutation on the value
of “Entry pointer”. Thus we conclude that leveraging program logic
can efficiently generate valid PM images.

3.2 Crash Image Generation

Challenge. As PM programs are expected to recover from fail-
ures, they may also take crash images as the input. However, there
can be an infinite number of crash images because failure can hap-
pen at any point in the program. Thus, the second challenge is how
PMFuzz can generate crash images that are most effective?

Observation. Figure 7 shows an example of updating a hash
table using low-level PM primitives. The program first backs up the
existing key and value (line 3-4), sets the backup to be valid (line
6), performs the in-place update in the destination entry (line 8),
and finally invalidates the backup (line 10). In case this procedure is
interrupted by a failure, the program has a recovery () function. If
the backup is valid (line 14), it rolls back the updates (line 15-16) and
then verifies the checksum of the hash table (line 18). Otherwise,
it verifies the checksum directly (line 20). Given a crash image
that is generated during the procedure of updateHashTable(), the
two paths during recovery() (as indicated by Case 1 and 2) only
depend on the value of backup.valid. Therefore, even though
a failure can happen at any point during the execution, not all
resulting crash images are important for the coverage.

Solution. Inspired by the prior works that model the relation-
ship between PM program recovery and failures [11, 57, 59, 60], we
model the relationship between the program path during recovery
and the prior procedure during the normal execution as a control-
flow dependency. The significance of a crash image boils down to
whether it can lead to a persistent state that affects the control-flow
in the procedure after failure. Updates that can lead to a different

ASPLOS 21, April 19-23, 2021, Virtual, USA

control-flow are typically applied to key variables that determine
the consistency state. For example, the update to backup.validin
Figure 7 alters the consistency state. Other examples include commit
bits in undo/redo logs, and timestamps in checkpointing mecha-
nisms. Usually, updates to such a commit variable are wrapped
with ordering points (e.g., using a persist_barrier()), such that
the commit variable always persists after the prior PM updates but
before the successive ones.

Following this observation, our approach that reduces the num-
ber of crash images is two-fold. First, PMFuzz focuses on placing
failures at ordering points to reduce the number of failure images.
Second, PMFuzz also places additional failure points probabilis-
tically, at a configurable rate. This way, even if the program is
completely buggy, i.e., with a large number of misplaced ordering
points, PMFuzz will still generate failure images for debugging. In
both cases, crash images are generated by interrupting the execu-
tion of input commands. Therefore, all crash images maintain valid
persistent states of the program. Back to the example in Figure 5,
by placing a failure at the point where an undo log of the entry
has been persisted but the item has not been updated, the output
image will contain the old value in the “Log entry” of the crash
image. During the recovery procedure, the program will use this
“Log entry” to reconstruct the table.

3.3 Coverage for PM Path

Challenge. PM programs can contain various procedures but
only those with PM operations can lead to crash consistency and
performance bugs. The third challenge is how can PMFuzz efficiently
generate test cases that target PM operations?

Observation. As prior testing works for PM programs [10, 49,
57, 58] have shown, crash consistency bugs (and also performance
bugs) occur due to inappropriate PM accesses. Therefore, PMFuzz
should target code regions that perform PM operations, e.g., PM
reads, writes, writeback/flush primitives, and fences. However, PM
reads and writes cannot be easily distinguished from regular volatile
ones as they only differ in the address. Prior testing tools have been
using dynamic instrumentation to keep track of these operations at
the cost of tens- to hundreds-time overhead [10, 49, 57, 66]. As one
of the key design principles of fuzzing is to achieve high execution
efficiency, dynamic instrumentation is not a feasible choice. Despite
the difficulties, we find that it is not necessary to track at the in-
struction granularity; instead, accesses to PM are typically wrapped
with functions. As described in Section 2.1, PM libraries provide
methods, such as D_RW() and D_RO(), to obtain the pointer to a PM
object and to perform write/read accesses; they also provide other
methods, such as pmem_persist(), to write-back persistent data.
Therefore, the tracking granularity can be lifted to the function-
level to reduce the performance overhead.

Solution. Based on the two observations, our key idea is to
identify PM operations by tracking them at the granularity of PM
library functions. Having PM operations being tracked, we can
further design a PM-specific coverage metric to enable a targeted
fuzzing on the PM-related program paths (see Section 4.2 for details
about the mechanism). Next, we formally define the program path
that contains PM operations.

Sihang Liu, Suyash Mahar, Baishakhi Ray, and Samira Khan

Nodel

== Node3
Node2 -~ ~
V| Nodes <. Nodes
Not PM Path ™~ 1LY
Node
PM Path

()
Figure 8: PM path examples (nodes in blue are PM nodes).

Annotation PM Path
oy (2] (3) Feedback [5)

PMFuzz PMFuzz Testing
> conrto g
Executable with Test Case {Input Commands
Instrumented PM Operations PM Image (normal/crash img.)

Figure 9: High-level workflow of PMFuzz.

e Control-flow Graph (CFG). A CFG of a program procedure is
a directed graph represented by a tuple of (N, E); N is the set of
nodes, where each node n represents unique program statement;
E C N X N is the set of edges, where an edge e;; represents
execution flow between nodes n; and n;.

e Program Path (r). A program path in a CFG is a sequence of
nodes 7 = (ng, ny, ...), such that there is an edge along the CFG
between two consecutive nodes of the sequence.

e PM Node (p). A CFG node p € N is a PM node if it performs at
least one PM operation.

e PM Path (npy). A PM path is a PM node sequence 7py =
(po, p1, --.), such that, there is at least one edge along the CFG
between two consecutive PM nodes in the sequence.

Figure 8 shows two example CFGs, where nodes in blue are PM
nodes that have PM operations. Based on the definitions above,
in the CFG of Figure 8a, the path of Node 1-2-6 is not a PM path
due to the absence of PM operations, but the path of Node 1-3-5-6
does as it contains an edge between PM Node 3 and 5. In Figure 8b,
the path of Node 7-8-11 and Node 7-9-11 are regarded as the same
PM path (marked as PM Path I), because they share the same PM
nodes. In comparison, the path of Node 7-9-10-11 is unique because
it contains a new PM Node, Node 10 (marked as PM Path II). By
tracking PM paths, PMFuzz prioritizes test cases that explore new
PM paths. Therefore, PMFuzz can more efficiently generate test
cases for detecting crash consistency and performance bugs.

4 IMPLEMENTATION OF PMFUZZ

In this section, we first present an overview of PMFuzz’s workflow
and then describe the details about the implementation.

4.1 Overview

PMFuzz is developed on top of a well-known fuzzer AFL++ [20]. It
generates test cases to cover crash consistency and performance
bugs in PM programs. Figure 9 shows the high-level workflow.
First, PMFuzz compiler instruments the source code to keep track
of PM operations (step @ and @). Then, PMFuzz takes the compiled
program and performs fuzzing. The fuzzing procedure executes
multiple instances of the PM program for better efficiency. During
the execution of each program instance, PMFuzz monitors the cov-
erage of the PM path and provides feedback to the fuzzing logic
such that it can target PM-related operations (step ©) that are most

PMFuzz: Test Case Generation for Persistent Memory Programs

void btreeSplitNode(...){ -—
for(int i=c; i<BTREE_ORDER; ++i){
if(i!=BTREE_ORDER-1){
D_RW(right)->items[...]=...
RW(node)->items[i].key=0;
RW(node)->items[i].value=NULL;

PM Operation Transitions:
(Mapped to random indices)

18187

D_|
D,

_RW(right)->slots[i - c]=... [Ta] TaT TaJ T2] [2]

_RW(node)->slots[1]=NULL; BTREE_ORDER=4 PM Counter-Map
} //1loop end =2

(a) (b)

1
2
3
)
5 ®
6 ©
7
8@
°®
10
1

Figure 10: (a) Code instrumentation, and (b) the correspond-
ing state of the PM counter-map for tracking PM operations.

critical to crash consistency bugs. After completing the execution of
an instance, it saves the generated test case if it has explored a new
PM path (step @). Each test case contains input commands and a PM
image (both normal and crash images). Finally, PMFuzz sends the
test cases to a testing tool (e.g., XFDetector [57] or Pmemcheck [10])
for bug detection (step ©).

4.2 PM Operation Tracking

PMFuzz focuses on generating test cases that cover program paths
that contain PM operations, such as read/write accesses, and write-
back and fence primitives. As Section 3.3 has introduced, PMFuzz
tracks these operations at the granularity of PM library functions.
To enable this tracking, PMFuzz first performs static instrumenta-
tion using PMFuzz’s compiler pass (based on LLVM [50]) and then
tracks them dynamically during runtime. Next, we describe these
two steps in detail.

(1) Static Instrumentation. PMFuzz tracks PM operations at
function-granularity. We take an approach similar to Intel’s Val-
grind tool, Pmemcheck [10] and place PM operation hints inside
the PMDK library. As programmers are typically agnostic about
the low-level library implementation, this approach does not re-
quire any modification to programmers’ application code. More
specifically, PMFuzz tracks 1ibpmem [34] functions that perform
low-level PM operations, as well as 1ibpmemobj [35] functions that
provide the transaction interface. We also develop a compiler pass
to support custom PM libraries. Users only need to annotate the
declaration of each PM-operation function, and the compiler pass
will automatically instrument the application code. Then, PMFuzz
compiles the PM program and inserts a tracking function before
each PM operation (i.e., library function’s call site). Each tracking
function is associated with a unique ID that marks its PM operation.
Figure 10a demonstrates a simplified btreeSplitNode() function
that highlights five PM operations, and marks their IDs with circled-
letters. Next, we describe how PMFuzz keeps track of the path at
runtime using the unique ID of PM operations.

(2) Dynamic Tracking. A PM path consists of a series of transi-
tions between PM operations. Inspired by the way AFL [91] tracks
branches, PMFuzz encodes the transition between two PM oper-
ations based on their unique IDs, and updates a PM counter-map
according to the encoded value of this transition. Algorithm 1
demonstrates the transition encoding and PM counter-map update.
First, the tracking mechanism reads the current PM operation’s
ID (curID), which has been assigned during compile-time (line 3).
Second, it encodes the transition from the previous PM operation
(with prevID) to the current one by XORing the two IDs (line 4).

ASPLOS °21, April 19-23, 2021, Virtual, USA

Algorithm 1: Update to PM counter-map

1 begin updatePMCounterMap(Op, PM CounterMap)

2 | if Op € PMOps then // When Op is a PM operation
3 curlD = Op.ID // Get ID of the current OP
4 loc = curlD & previD // Encode transitions between OPs
5 PMCounterMap|loc] ++
6 prevlD = curID > 1 //Right-shift one bit to track direction
7 | return PMCounterMap

// Increment counter

Algorithm 2: PM path prioritization

1 begin PMPathFeedback(TestCase)

2 | foreach loc € PMCounterMap do

3 if unseen(PMCounterMap|loc]) then

4 | Favored =2 // High priority
5 else if diffCounter(PMCounterMap|loc]) then

6 | Favored =1 // Medium priority

7 else
8 | Favored =0 // Low priority
9 7TestCase.Fa'uored = Mazx (Favored, TestCase.Favored)

10 | return TestCase

This way, a transition is encoded as an ID that serves as the index
(loc) to a PM counter-map. The counter indicates the number of
visits of this transition, as every visit of this transition increments
this counter value by 1 (line 5). For lower storage overhead, each
counter value is encoded with an 8-bit integer. Third, to preserve
the direction of this transition, the tracking mechanism right-shifts
the curID by 1 bit before moving toward the next PM operation
(line 6). Figure 10b shows the state of a PM counter-map after
btreeSplitNode() completes the for-loop (line 2-10), using input
arguments listed in the text box. Next, we describe how PMFuzz’s
fuzzing logic monitors the statistics of the PM path.

4.3 Fuzzing Feedback Logic

The core fuzzing algorithm of PMFuzz provides feedback for future
test case generation in order to optimize PM path coverage based
on the statistics. As PMFuzz is built on top of AFL++ [20], we take
a similar approach as AFL++, where we prioritize branch coverage,
but also integrate an additional targeted fuzzing algorithm for PM
operations. Algorithm 2 presents the prioritization algorithm of
PMFuzz, which examines each location in the PM counter-map and
sets the Favored value of the corresponding test case. Test cases
with unseen PM counter-map locations are set as high-priority,
those with significantly different counter values are set as medium-
priority, and the remaining ones that are identical or with minor
counter value differences are treated as low-priority. After each
iteration of fuzzing, PMFuzz discards low-priority cases unless
AFL++’s branch coverage logic favors them. In the next iteration of
fuzzing, test cases with higher priority are more likely to be mutated
to generate new test cases. This algorithm is effective but requires
zero-randomness during execution, i.e., the same test case always
produces the same path and PM image. Otherwise, the feedback
on PM path coverage is unstable and the fuzzing outcomes are not
reproducible. Next, we describe the derandomization approach.

ASPLOS 21, April 19-23, 2021, Virtual, USA

Input Command + PM Image @
Input
— Comlx)nand Failures
Fuzzing
(1) PM Path With Failure
Input C ds |
> A P d (PE:‘:?“'“iD;(‘,) Crash Image
rogram + Pa acking
PM Image @ No Failure
PM Image (4] Normal Image

Reduction [~
Figure 11: Fuzzing procedure of PMFuzz.

4.4 Execution Derandomization

As stated above, we notice that PM programs generally have non-
deterministic execution due to three major sources of randomness.
PMFuzz mitigates the randomness in the following approaches.

(1) UUID of PM Images. Each PM image created by the PMDK
library [32] is associated with a universally unique identifier (UUID).
The UUID is randomly generated during the image creation time.
Therefore, it is hard to determine whether two PM images are
generated from the same input or not, as the UUID in each PM image
is always unique. We eliminate this randomness by overloading
the UUID assignment function in PMDK (also extensible to other
libraries) with our version that sets the UUID to a constant value.

(2) Address Randomization. The address randomization mech-
anism for both volatile and persistent addresses is another source of
randomness. First, volatile addresses are randomized by the address
space layout randomization (ASLR) technique. Because PM images
may keep these random volatile pointers for convenience, we dis-
able ASLR in the Linux kernel [7]. This method makes sure that
the volatile pointers would not introduce randomness to PM im-
ages. Second, persistent addresses are randomized when the PMDK
library maps a PM image to the virtual address space. We deran-
domize the persistent addresses by setting PMDK’s environment
variable PMEM_MMAP_HINT that forces the PM image to be mapped
to the same virtual address every time it executes [34].

(3) External Randomness. Not only PM programs but their
dependent external libraries also use time-dependent or other non-
deterministic random number generators. Due to time-dependent
randomness, the same input test case can lead to different execution
paths. We remove this source of randomness by loading the Preeny
library [76] before fuzzing. Preeny overwrites the calls to random
number generators using its derand module, making sure that the
random numbers remain the same in each run.

4.5 Detailed Fuzzing Procedure

Figure 11 demonstrates the fuzzing procedure. First, PMFuzz spawns
several instances of the annotated PM program with seed test cases
(step @). For each instance, it tracks the PM path at runtime. Upon
observing a new PM path, it saves this test case for further PM
image generation, and provides positive feedback to the input com-
mand fuzzing logic as described in Section 4.3 (step @). In the PM
image generation procedure, PMFuzz generates two types of PM
images: normal images and crash images (step ©). A crash image is
generated by placing failures at each ordering point and additional
failures at random locations (Section 3.2); a normal image is the
final outcome without any failure during the procedure. Then, the

Sihang Liu, Suyash Mahar, Baishakhi Ray, and Samira Khan

‘R:(;(:;;)l (Empty Image)
Input 1 K Input2 <— Input Command + Failure?

4— PM Image

Figure 12: Tree of PM images and input commands.

generated images go through a reduction procedure that eliminates
any images that are identical to the previously generated ones
(step @). The derandomization methods introduced in Section 4.4
ensure that the same input test case always produces the same im-
age. PMFuzz performs image reduction by looking up the image’s
hash value (SHA-256) in a dictionary that keeps the hash values
of all prior images. Finally, both the newly generated commands
and the resulting PM images will be reused as inputs in the next
iteration of fuzzing (step ©).

4.6 Test Case Management

During fuzzing, test cases (input commands + a PM image) are
generated recursively, by mutating prior test cases. PMFuzz ef-
ficiently manages the test cases by leveraging the dependencies
among test cases. Figure 12 demonstrates the dependencies, where
each node is a PM image (the root is an empty image), and each
edge represents the input command + failure location that are used
to mutate the image. The image management method serves three
main purposes. First, it makes the fuzzing procedure reproducible,
as each test case and its resulting PM image can be tracked by the
dependency. To reproduce a particular test case, the user can simply
execute the input commands on top of its parent image. Second, test
case tracking allows PMFuzz to incrementally generate test cases,
by loading an existing PM image and executing a set of mutated
input commands (the execution time is limited to 150 ms in this
design), as Section 4.5 has shown. Finally, the testing tool attached
to PMFuzz (e.g., XFDetector [57] and Pmemcheck [10]) can also
avoid executing redundant test cases. The testing tool only needs
to execute a minimum set of test cases that cover new PM paths,
without needing to start from prior test cases that contain the root
image. For example, the test tool starts from test cases that contain
the empty root image. Thus, to test the execution that produces
image D, the testing tool only needs to execute Input 4 on top
of image B, as the execution that takes its predecessor (Input 1 +
Root) has been covered by the previous testing iterations.

4.7 Optimization Strategies

In this section, we introduce three major optimizations in PMFuzz
that improve the fuzzing efficiency.

(1) System Call Reduction. The fuzzing procedure takes mul-
tiple system calls when opening and closing PM images. The sys-
tem call overhead can be further amplified when PMFuzz executes
multiple fuzzing instances simultaneously. AFL++ comes with an
optimization that creates multiple fuzzing instances using its fork
server’s copy-on-write mechanism (via fork()). It would signif-
icantly reduce the system call overhead of loading PM images if
we can also copy-on-write persistent data on PM images. However,

PMFuzz: Test Case Generation for Persistent Memory Programs

Table 1: System configuration.

CPU Intel Xeon, 2.1GHz, 20 cores
4x16GB DDR4, 2666MT/s
Memory -
2x128GB Intel DCPMM, Interleaved, App Direct Mode
SSD 2TB, NVMe, PCI-E 3.0 x4
(o Ubuntu 18.04, Linux kernel v5.4
Env. AFL++-2.63, LLVM-9, Clang-9, PMDK-1.8, Pin-3.13

this method does not apply to PM images because they are memory-
mapped (i.e., a file mapped to the program’s virtual address space).
To take advantage of the fork server in AFL++, when the PM pro-
gram is opening a PM image, we first overload the mmap () function
with our version that copies data from PM to a location on the
heap of the program. Second, we use AFL++’s fork server to create
multiple fuzzing instances, while carrying the persistent data that
have been loaded from the PM image to the heap. Finally, before the
PM program closes the image, we overload the munmap() function
and save the updates back to the PM image as long as the execution
has discovered new PM paths (based on the method in Section 4.3).
We validate this design to ensure that this optimization does not
change the behavior by comparing the PM trace collected before
and after applying this optimization (using Intel’s Pin tool [61]).

(2) Test Case Storage. Fuzzing is a repeated process that gener-
ates a large number of test cases. Therefore, a PM device alone may
not be sufficient to store all test cases. In our experiment, PMFuzz
generated approximately 1.5 TB of data during a 4-hour period
of fuzzing, primarily due to the PM images. Although PM images
occupy a significant amount of space, we observe that the fuzzing
procedure is periodical-PMFuzz takes a PM image as the input,
spawns multiple fuzzer instances, saves the generated images, and
starts over again by taking the newly-generated PM images as
inputs. In each iteration of fuzzing, only a small fraction of PM
images will be taken as inputs. And, the generated PM images will
not be used until the next iteration begins. Based on this observa-
tion, PMFuzz moves the generated test cases from the PM device to
a hard drive (e.g., SSD) and compresses the generated PM images
(using the LZ77 [93] algorithm). PMFuzz decompresses and moves
an image back to PM, only when it is selected as the input. This
optimization effectively reduces the storage requirement.

5 EVALUATION
5.1 Methodology

System Configuration. We evaluate PMFuzz in a system with
Intel’s Cascade Lake processors and DC Persistent Memory Modules
(DCPMMs), as listed in Table 1. The PM devices (i.e., DCPMMs)
are configured in the App Direct Mode and mounted with the DAX
option to bypass OS indirections.

PM Programs. To evaluate PMFuzz, we choose PM programs
(listed in Table 3) built on top of Intel’s PMDK (v1.8) [32] library,
including simple key-value store structures [33] and real-world
databases [39, 51], similar to those tested by prior works [10, 57,
58, 66]. We use PMDK’s mapcli [36] to drive the key-value stores,
and use Preeny [76] to convert the socket-based communication
interface of the databases to a command-line-based version.

ASPLOS 21, April 19-23, 2021, Virtual, USA

Table 2: Comparison points

Input Fuzz| Img Fuzz |PM Path Opt|Sys Opt
PMFuzz (All Feat.) Yes Yes (Indirect) Yes Yes
PMFuzz w/o SysOpt Yes Yes (Indirect) Yes No
AFL++ Yes No No No
AFL++ w/ SysOpt Yes No No Yes
AFL++ w/ ImgFuzz No Yes (Direct) No No

Comparison Points. PMFuzz is developed on top of AFL++
(v2.63 [1]) with the integration of state-of-the-art fuzzing tech-
niques, including LAF-Intel [40] and AFL-Sensitive [80]. Therefore,
we take AFL++ as the main baseline fuzzer. To better demonstrate
the impact of each PMFuzz feature, we develop other alternative
designs that are based on AFL++ and PMFuzz (listed in Table 2).
The details about the features are described below.

e Input Fuzz (Input Fuzzing) is a feature that mutates the input
commands.

o Img Fuzz (PM Image Fuzzing) is a feature that mutates the PM
image. The PM image is indirectly mutated using the program
itself in the comparison point of PMFuzz but is directly mutated
in AFL++ w/ ImgFuzz. As the baseline AFL++ does not support
the mutation of both the image and the command input at the
same time, we only enable image fuzzing in AFL++ w/ ImgFuzz.

e PM Path Opt (PM Path Optimization) is a feature that enables
the targeted fuzzing on PM paths (introduced in Section 4.3).

o Sys Opt (System-level Optimization) is a feature that reduces
the system call and storage overhead (introduced in Section 4.7).

Note that, in all comparison points, we enable the derandom-
ization techniques (described in Section 4.4) and use a list of basic
commands and a PM image as the seed test case for fuzzing.

Detection Tool. PMFuzz is a test case generator that provides
high-value test cases to the backend testing tools for PM programs.
We leverage the most recent PM testing work XFDetector [57] as the
testing tool attached to PMFuzz, which executes with PM programs
and detects crash consistency and performance bugs. In addition,
we use Intel’s Pmemcheck [10] to detect synthetic bugs within the
library (e.g., transaction, recovery, image creation, etc.).

Synthetic Bug Injection. To evaluate the effectiveness of test
cases generated by PMFuzz, we place synthetic bugs in PM pro-
grams and the PDMK library, similar to the method taken by prior
works [57, 58]. More specifically, we take the following approaches.

e Remove/misplace writebacks (flushes) and fences to break the
persistence requirement.

o Reorder PM writes that are originally ordered with write-backs
and fences, to break the ordering requirement.

e Remove/misplace backup function calls to corrupt data in
transaction-based programs.

o Place semantically incorrect code to cause incorrect recovery in
programs based on low-level primitives, such as setting a wrong
value to the commit variables.

5.2 PM Path Coverage

Figure 13 compares the number of unique PM paths covered by
PMFuzz and the comparison points during 4-hour fuzzing. We
summarize the results as the following points. (1) PMFuzz achieves

ASPLOS 21, April 19-23, 2021, Virtual, USA

Sihang Liu, Suyash Mahar, Baishakhi Ray, and Samira Khan

-0-PMFuzz -<PMFuzz w/o SysOpt 2-AFL++ -0-AFL++ w/ SysOpt ~<-AFL++ w/ ImgFuzz
B-Tree RB-Tree Hashmap-TX Hashmap-Atomic
3000 2000 2000 2000
1500 1500
2000 1500
1000 1000 1000
1000 500 500 500
0 0 0 0

2000
1500
1000

Number of Covered PM Path

500

Q'.“% Q':bq \'.““ y?-"% 7;.%“ 7;:5% '5'.“% '5'.5“ N.““

@@“ m%\s“ A 20 W a0

120

0 Lp< A
ot o2 4 \“’“ I N R A

Duration of Fuzzing (H:MM)

Figure 13: PM path coverage

Table 3: Tested PM programs, and synthetic bug detection.

Program Name #Synthetic | #Covered by | #Covered by
Bugs AFL++ SysOpt PMFuzz

g B-Tree 17 13 17
* |IRB-Tree 14 10 14
& [R-Tree 16 12 16
% Skip-List 12 8 12
—g'- Hashmap-TX 21 16 21
Z |Hashmap-Atomic 14 10 14
o |[Memcached 17 14 17
R [Redis 14 9 14

a significant increase in PM path coverage over AFL++ (Geo-mean
4.6x) because it efficiently mutates PM images, performs a targeted
fuzzing on PM path, and consumes a low system overhead. (2)
The PM path coverage is significantly lower without our system
optimizations (PMFuzz w/o SysOpt), demonstrating that the system-
level optimizations are essential to fuzzing PM programs. (3) AFL++
with system optimizations (AFL++ w/ SysOpt) outperforms AFL++
(Geo-mean 1.4x), but still cannot provide comparable coverage to
PMFuzz. (4) AFL++ with PM image fuzzing (AFL++ w/ ImgFuzz)
has poor coverage progress due to the large search space within
PM images. Finally, the two databases, Memcached and Redis have
fewer PM paths as compared to other key-value store structures.
The primary reason is that only a relatively small fraction of code
manages PM. Additionally, it takes much longer to execute them
due to their higher complexity.

5.3 Synthetic Bug Detection

Table 3 lists the number of synthetic bugs tested and detected
by PMFuzz. We compare PMFuzz with AFL++ w/ SysOpt in this
experiment, as this configuration performs the best among the
non-PMFuzz comparison points. We observe that PMFuzz gener-
ates test cases that detect all synthetic bugs, 1.4x over AFL++ w/
SysOpt, due to PMFuzz’s effective PM image generation (both nor-
mal and crash images) and the focus on PM paths. Worth pointing
out that the software development for PM is currently in an early
stage. Therefore, the existing workloads are relatively simple. We

1 int hashmap_create(...){
2 TX_BEGIN(pop) { pmemob3j_open(...);
&TX ADD_DIRECT (hashmap); . // TX auto-recover

1 int main(...){
2
3
hashmap=TX_NEW(...); 4 while(...) {
5
6
7
8

// execute commands
Designed for transactions
that recover automatically
void hashmap_atomic_init(...){

create hashmap(pop, *hashmap, seed) ;

9 PMEMoid create_hashmap(...) { 9 ...

.. 10 if(D_RO(hashmap)->count_dirty){

11 D_| R (hashmap) ->seed=seed; 11 . // reset counter
D_RW(hashmap) ->fun= rand(), 12} \

13 Rw hashmap) - >buckets=TX_ALLOC(...);

5%

hashmap_creati
but is not called
The program is supposed to che e completion
of creation and redo in case of failure

(@ (b)

Hashmap-Atomic is built with
low-level primitives.
Need to call recovery function.

Figure 14: New crash consistency bugs found by PMFuzz: (a)
Bug 1 and (b) Bug 6.

expect that PMFuzz will show a more prominent advantage over
conventional fuzzers while testing future real-world PM programs.

5.4 New Real-world Bugs Found by PMFuzz

Despite the fact that prior works [10, 57, 58] have intensively tested
PM programs listed in Table 3, test cases generated by PMFuzz help
detect new real-world bugs.

New Crash Consistency Bugs

Bug 1-5: Figure 14a is a simplified code snippet from Hashmap-TX
(hashmap_tx.c:402), where create_hashmap uses a transaction
(line 2-7) to allocate space and initialize the hash table. PMFuzz
created two crash images before and within the allocation. When
taking the crash images for the next fuzzing iteration, both of them
report a segmentation fault when the program attempts to deref-
erence the pointer to hashmap. We found that hashmap_create is
called when starting with an empty PM image. In case the procedure
fails, the whole creation procedure is undone by the transaction,
leaving hashmap a NULL pointer. However, because the program
does not call hashmap_create again afterward, the following exe-
cution assumes a fully initialized hash table. Other 4 transactional
workloads, including B-Tree, RB-Tree, R-Tree, and Skip-List also
have similar bugs during initialization. Although the prior failure-
aware testing tool XFDetector [57] can detect this type of bugs with

PMFuzz: Test Case Generation for Persistent Memory Programs

int pslab_create(...){
pslab_pool = pmem_map_file(...);
// Initialize PM

1 int hm_tx_create(...){
2 TX_BEGIN(pop){
3 TX_ADD_DIRECT(map);
4 // map allocated with TX_ALLOC
pmem_memset_nodrain(pslab_pool,0...); 5 *map=TX_ZNEW(...);
. 6 create_hashmap(pop, *map, seed) ;
PSLAB_WALK(fp) { A,Unnecessary flushes 7
pmem_memset_nodrain(fp,0,...); 8
9
]
1

}

}

int create_hashmap(...) {
10 pmem_persist(pslab_pool,length); .
11 // Commit updates // TX_ADD again

12 pslab_pool->valid; Flush the whole pool 2 TX_ADD(hashmap);

13 pmem_member_persist(pslab_pool,valid); 13 D_RW(hashmap)->seed=seed;

14 } 14
15 }
() (b)
1 //rbtree_map just allocated with TX_ALLOC 1 int btree_map_insert(...){
2 int rbtree_map_insert(...){ 2 ...
3 TX_BEGIN(pop){ 3 TX_BEGIN(pop) {
4 node n = TX_NEW(...); 4 if (btree_map_is_empty(...)){
5 “es 5 ves
6 ~rbtree_map_insert_bst(map,n); 6 Yelse{
7 e 7 dest=btree_map_find_dest_node(...);
8 | while(D_RO(NODE_P(n))->color==RED){ 8 e
9 n = rbtree_map_recolor(...); 9 btree_map_insert_\item(dest,...);
10 |} 10
11 | TX_SET(RB_FIRST(map),color,BLACK); 11} TX_END
12 [}TX_ENI rbtree_map was just created with 12 ...
13 TX_ALLOC, no need to log again 13}
14 void rbtee_map_insert_bst(...){ 14 void
15 node *dst = &RB_FIRST(map); 15 btree_map_insert_item(dest)\...){

S nis created with TX_NEW, 16 TX_ADD(node);
17 TX_SET(n, ..J); 4 no need to log again 17 ...
} 18 } \ node added when executing
btree_map_find_dest_node().
No need to add again.

19 tree_map_node 'rbtree_map_recolor(...){
20 if (D_RO(uncle)->color == RED) {
22 }éise{
23 "if (NODE_IS(n, !c)) {
24 n = NODE_P(n);
25 rbtree_map_rotate(map, n, c);
)]
27 TX_SET(NODE_P(n), color, BLACK);
28 '} Parent of n added during
29 ... \ rotation. No need for TX_SET.

(¢) (d)

Figure 15: New performance bugs found by PMFuzz: (a) Bug
7, (b) Bug 8, (c) Bug 9-11, and (d) Bug 12.

a simple test case of an empty PM image, due to the programmer’s
effort in understanding and annotating the source code, XFDetector
did not take the buggy code region into consideration.

Bug 6: Figure 14c shows two functions: main() is a driver pro-
gram for PMDK’s key-value store, Mapcli (mapcli: 205). The other
function, hashmap_atomic_init(), is a procedure in Hashmap-
Atomic (hashmap_atomic.c:452). This code snippet has a crash
consistency bug as the main() function assumes all key-value store
structures can automatically recover using transactions, but over-
looks the low-level-primitive-based Hashmap-Atomic. Detecting
this bug requires a test case that has counter_dirty=true (line 10),
which is not easy to reach without a PM-specific test case generator.

New Performance Bugs

Bug 7: Figure 15ais a code snippet from Memcached (pslab.c:317)
that creates a new pslab_pool. It starts with setting up a few meta-
data entries, and then flushes the whole pool. Finally, it sets a
valid bit (surrounded with ordering points) to commit the creation
(line 12). There are two redundant flushes (line 5 and 8) to the meta-
data as line 10 flushes the whole pslab_pool.

Bug 8: Figure 15b is a code snippet from Hashmap-TX that performs
insertion (hashmap_tx.c:99). Line 12 calls a redundant TX_ADD ()
to back up a node that was previous allocated by TX_ZNEW() (line 5)
which has logged this object.

Bug 9-11: Figure 15c is a code snippet from RB-Tree showing
the procedure of an insertion function that contains three perfor-
mance bugs (rbtree_map.c:215). Bug 9 is at line 17 that uses
TX_SET() to update the transaction-allocated node n, which intro-
duces a redundant log operation. Bug 10 is at line 11 that logs

ASPLOS °21, April 19-23, 2021, Virtual, USA

void rbtree_map_rotate(...){
tree_map_node child=D_RO(node)->slots[!c];

1

2

3 ...

4 TX_ADD(node); «— Backup node and child
5 TX_ADD(child);
6
7
8
9

IS;D;w(child)-)slots[c]:node;
D_RW(node)->parent=child;
}

«— Node and child are swapped in this function

Figure 16: An example from RB-Tree that demonstrates the
trade-off between programmability and performance.

RB_FIRST(map), which is the first entry in the tree, before perform-
ing the update. However, if the tree was just transaction-allocated
(comment at line 1), it is unnecessary to log it again. Bug 11 is
at line 27 that uses TX_SET() to update the parent of node n,
which has been backed up if rbtree_map_recolor() executes
rbtree_map_rotate() first. These performance bugs can be de-
tected by prior testing tools but require a specific test case to trigger.
In particular, Bug 9 can be detected only when testing a newly al-
located tree, and Bug 11 requires the if-condition at line 20 to be
false but line 23 to be true.

Bug 12: B-Tree has a performance bug as shown in Figure 15d
(btree_map.c:276). btree_map_insert() first finds the destina-
tion using btree_map_find_dest_node() and then inserts the
node using btree_map_insert_item(). TX_ADD() at line 16 is un-
necessary because node has been added when finding the destina-
tion (performs modification if tree-split is needed).

5.4.1 Efficiency of Test Case Generation. PMFuzz is also efficient
in generating test cases that detect those bugs. To cover Bug 1-5,
7, and 8, PMFuzz only took 2 seconds of wall-clock time—as soon
as the first batch of test cases was generated, since those bugs are
located in the initialization step. For the rest of the bugs, Bug 9 and
10 are detected by the same case that took 91 seconds to generate;
Bug 6, 11, and 12 took 37, 77, and 88 seconds, respectively. The
fuzzing time was longer as covering those bugs requires relatively
more complex program paths.

6 DISCUSSION

In this section, we discuss the trade-offs between programmability
and performance, and then the potentials for extending PMFuzz to
accommodate other types of PM software systems.

Performance Bug Trade-offs. In the PMDK library, a redun-
dant TX_ADD() does not create additional logs. All logged locations
are kept track of using a range tree. Before creating a new log entry,
the library looks up the location in the range tree to make sure
it has not been logged before. With this mechanism, it is safe to
call TX_ADD() without checking conditions, such as whether the
object has been backed up or allocated with a transactional inter-
face. Nonetheless, the unnecessary range tree lookup can still lead
to performance penalties (e.g., Bug 9-12). Therefore, we expect
highly-optimized PM programs to avoid these redundant calls to
transactional functions.

On the other hand, it is sometimes hard to completely remove
performance bugs. Figure 16 shows an example from RB-Tree
(rbtree_map.c:189), where rbtree_map_rotate() swaps node
with its child (line 7 and 8). If this function is called multiple times,
i.e., keep rotating until the tree is balanced, the two TX_ADD() calls
(line 3 and 4) can apply to objects that have already been logged.

ASPLOS ’21, April 19-23, 2021, Virtual, USA

However, it is hard to tell whether or not a node has been logged as
the rotation depends on the value of each node. Instead, it is easier
to implement the rotation procedure by logging both nodes in the
beginning to avoid any crash consistency issues. Therefore, we do
not treat this type of issue as a performance bug.

Integration with PM Kernel Modules. There have been works
that develop PM-optimized file systems for other programs to man-
age persistent data [17, 19, 42, 83, 86, 87]. These file systems are
implemented as kernel modules but different from conventional
file systems, they customize the persistent data, much like the user-
space PM programs. Thus, it is hard to directly mutate their PM
images. PMFuzz runs in the user-space as it is built upon AFL++ [20].
Nonetheless, it is possible to convert kernel-mode file systems into
user-space programs, using libraries such as Linux Kernel Library
(LKL) [69], or execute them on a virtual machine [18, 49]. This way,
PMFuzz can be integrated into such frameworks to generate test
cases for kernel-mode, PM-optimized file systems. We leave this
direction as a future work.

Multithreading. PM programs may run in multithreaded mode
for better throughput. PMFuzz is built on top of AFL++ which is
thread-safe. However, multithreading introduces randomness due to
various conditions of thread interleavings. As randomness prevents
the fuzzer from converging to good coverage, it is not recommended
to run PMFuzz with multithreading-enabled programs. On the other
hand, recent works have pointed out potential persistency issues
with multithreaded execution [45, 81]. PMFuzz’s targeted fuzzing on
PM operations can generate high-value test cases for such scenarios,
with an extended focus on PM-related multithread synchronization
primitives. We leave test case generation for multithreaded PM
programs as a future work.

7 RELATED WORKS

In this section, we discuss the related works, including PM pro-
gramming and testing, and conventional fuzzing techniques.

PM Hardware Systems. There have been a variety of hardware
solutions that improve the efficiency of PM systems. For example,
DPO [47], HOPS [62], and Themis [73] propose persistency models
that reduce the overhead of persistence by relaxing the ordering
requirements; Kiln [92], ThyNVM [72], ATOM [41], DudeTM [53],
and PiCL [64] provide hardware-based mechanisms to ensure crash
consistency; SCA [55], Osiris [90], Anubis [94], and Janus [56]
propose secured and crash-consistent PM. Due to the new hardware
primitives, these solutions may require additional programming
effort to convert existing programs. PMFuzz can generate test cases
to ensure correctness when adapting to a new PM platform.

PM Software Systems. PM allows for efficient access to persis-
tent data without OS indirections. To leverage such an opportunity,
there have been databases and key-value stores optimized for PM,
such as PM-optimized Redis [39] and Memcached [51], Echo [4],
NVMCached [84], and HiKV [85]. For better programmability, there
have also been PM libraries, such as PMDK [32], Mnemosyne [79],
NV-Heaps [15], and MOD [26]; and frameworks that convert legacy
code to a persistent version, such as Atlas [11], NVthreads [27],
iDO [54], and SFR [23]. Using the existing software interface, many

Sihang Liu, Suyash Mahar, Baishakhi Ray, and Samira Khan

applications customize their PM management [3, 12, 13, 16, 28, 67,
78, 89]. Most of these software systems require persistent data to
be recoverable in case of a failure. PMFuzz can efficiently generate
test cases that assist testing tools to detect crash consistency bugs.

Testing for PM Software. There have been specialized testing
tools to help programmers detect crash consistency and perfor-
mance bugs in PM programs. For example, Intel has developed
Pmemcheck [10] and Persistence Inspector [66] on top of dynamic
instrumentation tools to trace PM operations and perform testing.
To improve testing efficiency and flexibility, PMTest [58] reduces
the overhead of dynamic instrumentation and supports a wider
range of PM software systems. XFDetector [57] further extends
the testing scope by reasoning about the program execution before
and after the failure. These tools make the bugs observable but
still require the buggy path to be executed. Therefore, in this work,
we develop PMFuzz to generate test cases that cover non-trivial
program paths. We have shown that using test cases generated
by PMFuzz, the existing tools (e.g., XFDetector [57] and Pmem-
check [10]) can detect more bugs. Another recent work, AGAMOTTO
[63] performs symbolic execution instead of runtime testing. In
comparison, symbolic execution does not require test cases but
has limitations, such as handling external libraries, dynamically-
allocated memory, pointers, and loops.

Conventional Fuzzing Tools. Fuzzing is a well-known test
case generation approach that requires minimal programmer’s ef-
fort. Fuzzers typically prioritize conventional coverage metrics,
such as branch and statement coverage. For example, a widely-
used fuzzer, AFL, uses a genetic algorithm guided by branch cover-
age [91]. Recent fuzzers have adopted more advanced techniques,
such as program transformation [40, 52, 68], Markov model [8], and
machine learning [22, 70, 74, 75]. Although they are not tailored for
PM programs, PMFuzz can incorporate these algorithms for better
efficiency. Different from normal programs, file systems maintain
persistent data on hard drives. In order to efficiently generate test
cases, especially the file system image, there have been file system
fuzzers that directly mutate file system images based on their data
layout [44, 88]. Despite the similarities between file systems and PM
programs, PM programs feature a more customized and divergent
data layout, making it hard to directly generate valid PM images.
Therefore, PMFuzz takes a new method that reuses the program
logic to effectively generate valid, high-value PM images.

8 CONCLUSIONS

The use of persistent memory (PM) provides a substantial per-
formance improvement but introduces additional programming
complexity for the crash consistency guarantees. Prior works have
provided tools to detect crash consistency and performance bugs
in PM programs. However, detection of these bugs depends on test
cases that execute the buggy program paths. This work provides
PMFuzz, a fuzzer that efficiently generates test cases to detect non-
trivial bugs in PM programs, with minimum programmer effort.
Compared to the widely used fuzzer, AFL++, PMFuzz covers 4.6X
more PM-related paths. Further, PMFuzz has discovered 12 new
real-world bugs in PM programs that have already been intensively
tested by prior works.

PMFuzz: Test Case Generation for Persistent Memory Programs

ACKNOWLEDGMENTS

We thank the anonymous reviewers, Dr. Daniel Lustig, and Prof.
Aasheesh Kolli for their valuable feedback. This project benefited
from the stimulating discussions with Korakit Seemakhupt, Akhil
Indurti, and other ShiftLab members. This work is supported by
the Google fellowship program, NSF awards CCF-1845893, CCF-
1822965, and CNS-2046066, and the SRC/DARPA Center for Re-
search on Intelligent Storage and Processing-in-memory (CRISP).

A ARTIFACT APPENDIX
A.1 Abstract

PMFuzz is a test case generator for PM programs, aiming to gener-
ate high-value test cases for PM testing tools. The generated test
cases include both program inputs and initial PM images (normal
images and crash images). The key idea of PMFuzz is to perform
a targeted fuzzing on PM-related code regions and generate valid
PM images by reusing the program logic. After generating the test
cases, PMFuzz feeds them to the PM program and uses existing
testing tools (XFDetector [57] and PMemcheck [10]) to detect crash
consistency and performance bugs.

A.2 Artifact Check-list (Meta-information)

e Program: PMFuzz

e Hardware: Intel Cascade Lake and DC Persistent Memory (or
emulated PM)

e Metrics: PM-path exploration and bug detection capability

e Output: Test cases for PM programs

e Experiments: (1) Compare the PM-path coverage of PMFuzz
and AFL++ baseline. (2) Reproduce new bugs covered by PMFuzz.

e How much disk space required (approximately): 1 TB

e How much time is needed to complete experiments: The
whole fuzzing procedure (including all the comparison points)
will take approximately 150 hours.

e Publicly available: Yes

e DOI: 10.5281/zenodo.4322285

A.3 Description

How to access. We maintain a GitHub repository at https://pmfuzz.
persistentmemory.org.

Hardware Dependencies.

CPU: Intel Xeon Cascade Lake

DRAM: 32 GB at least

Persistent Memory: Intel DCPMM (or emulated PM)

Hard Drive: 1 TB at least (to store all the compressed test cases)

Software Dependencies.

Ubuntu 18.04 or higher

NDCTL v64 or higher

libunwind-dev and libini-config-dev

Python 3.6, GNUMake >= 3.82, Bash >= 4.0, Linux Kernel ver-
sion 5.4, autoconf, bash-completions, Valgrind, PMemcheck, and
Anaconda

Data Sets. We tested the following workloads:

e PMDK libpmemobj examples: Btree, RTree, RBTree, Skip List,
Hashmap-Atomic, and Hashmap-TX [32]

ASPLOS 21, April 19-23, 2021, Virtual, USA

e Redis (based on PMDK libpmemobj) [39]
e Memcached (based on PMDK libpmem) [51]

A.4 Installation
This artifact has the following structure:

e include/: Runtime for pmfuzz (1ibpmfuzz. so and tracing func-
tions for XFDetector).

inputs/: Inputs used as seeds for the PMFuzz.

scripts/: Installation and artifact-evaluation scripts.
src/pmfuzz: Source for our test case generator.
vendor/{pmdk,memcached, redis}: Workloads.

vendor/{pmdk ,memcached, redis}-buggy: Workloads with an-
notations for bug reproduction.

e vendor/xfdetector: Source for XFDetector testing tool.

e preeny: git submodule for Preeny tools [76].

Setup Environment. PMFuzz requires the environment variable
for PIN_ROOT and PMEM_MMAP_HINT are set before execution. To set
these variables, please execute the following commands:

export PIN_ROOT=<PMFuzz Root>/vendor/pin-3.13
export PMEM_MMAP_HINT=0x10000000000

A PM device (in App Direct mode) also needs to be mounted at
/mnt/pmem@ with the DAX option enabled. To do so, please execute
the following command:

‘sudo mount -o dax /dev/pmem@ /mnt/pmemd ‘

It also requires disabling ASLR and core dump notifications. To
disable them, please execute the following commands (need to
execute again after power cycle):

echo core | sudo tee /proc/sys/kernel/core_pattern
echo @ | sudo tee /proc/sys/kernel/randomize_va_space

Setup Software Dependencies. To run PMFuzz, please make sure
that all the dependencies are installed (Section A.3). If some depen-
dencies are not met, our script can install them:

cd <PMFuzz Root>
./scripts/install-dependencies.sh

NOTE: This command will remove the existing 1ibndctl and up-
date it to the required version.

Setup Python Environment. In addition to the basic dependencies,
PMFuzz requires a Python 3.6 environment, together with several
Python packages. To install them, please execute the following
commands:

pip3 install -r src/pmfuzz/requirements.txt ‘

Install PMFuzz and PM Workloads. To download the correct
version of LLVM, compile PMFuzz’s runtime, AFL++, and all the
workloads, please execute the following commands (follow the
order in the listing):

make # Compiles our tool and PDMK
make redis memcached # Compiles other workloads

A.5 Experiment Workflow

The core functionality of PMFuzz is the fuzzing logic that generates
test cases for PM programs. To Run the workloads using PMFuzz,
please use the run-workloads. sh script which invokes PMFuzz
with the correct arguments to run a workload. The script takes
input in the following format:

ASPLOS ’21, April 19-23, 2021, Virtual, USA

scripts/run-workloads.sh \
<workload name> <config name> <output dir>

These commands will run PMFuzz with the configuration used for
the evaluation section. The script by default uses 38 CPU cores. To
adjust that, please modify line 69-72 of the script. Note that the
design point that generates PM images through fuzzing is supported
with a separate script:

‘scripts/run—imgfuzz.sh <workload> <output dir> ‘

For example, to run PMDK’s btree workload in the baseline config-
uration, run the following command:

‘scripts/run-workloads.sh btree baseline /tmp/ ‘

Running this command will create the directory
/tmp/btree,baseline with all generated test cases and images.

A.6 Evaluation and Expected Result

The main evaluation includes the performance evaluation (Sec-
tion A.6) that compares the PM path coverage (defined in Sec-
tion 3.3), and reproduction of the new real-world bugs found using
our generated test cases (Section A.6).

Performance Evaluation. Considering the execution time, it is
recommended to run PMFuzz using more than one machine, each
of which runs a fraction of workloads and design points. Before
running any command, please make sure that the python environ-
ment is correctly set up, all the dependencies are installed, and the
current working directory (CWD) is the root of the PMFuzz artifact
repository. All PMFuzz scripts also read the environment variable
JOBS to run make in parallel (with the default value of -j8). To set
this variable, export it in the shell session:

export JOBS=-j$(nproc) ‘

To make sure that the script can communicate with the hosts, please
edit the variables user, hosts, dests, and ssh_cmds according to
your environment in both scripts/run-artifact-perf.py and
scripts/show-artifact-perf-results.py.

To run performance evaluation and automatically schedule fuzzing
jobs across all the servers, please run the following commands on
one of the machines:

./scripts/run-artifact-perf.py

The script will now ssh to other servers and start fuzzing processes.
When all the fuzzers have completed, the script will exit with a
message of “All Done”. To plot the results (reproduce Figure 13),
please execute the following commands:

scripts/show-artifact-perf-results.py
python -m http.server 1010

After completing these steps, the result will be plotted as
evaluation-perf-result.png

Reproducing New Real-world Bugs. To detect real bugs that we
reported, please run the following script:

‘ ./scripts/test-real-bugs.sh [1..12] ‘

where [1..12] corresponds to the bug IDs in Section 5.4. For exam-
ple, to detect Bug 1 in Hashmap-TX, please execute the following
command:

‘ ./scripts/test-real-bugs.sh 1 ‘

Sihang Liu, Suyash Mahar, Baishakhi Ray, and Samira Khan

A.7 Experiment Customization

Execute PMFuzz without Script. To run PMFuzz directly, without
using any driver scripts, please run the following command:

./src/pmfuzz/pmfuzz-fuzz.py \
<Input dir> <Qutput dir> <Config file>

e <Input dir>: PMFuzz uses test cases from this directory as the
fuzzer’s seed input.

e <Qutput dir>: All the generated outputs will be placed in this
directory.

e <Config file>: A configuration file that specifies the fuzzing
target and different PMFuzz parameters.

PMFuzz Configuration. PMFuzz uses a YML-based configuration
to set different parameters for fuzzing (including the fuzzing target).
To write a custom configuration, please follow one of the existing
examples in the src/pmfuzz/configs/examples/ directory.

REFERENCES

[1] AFLplusplus. American fuzzy lop plus plus (afl++). https://github.com/
AFLplusplus/AFLplusplus/tree/2.63c.

[2] ARM. ARM architecture reference manual ARMv8, for ARMv8-A architecture
profile. https://static.docs.arm.com/ddi0487/da/DDI0487D_a_armv8_arm.pdf,
2018.

[3] Joy Arulraj, Justin Levandoski, Umar Farooq Minhas, and Per-Ake Larson. Bztree:

A high-performance latch-free range index for non-volatile memory. Proc. VLDB

Endow., 2018.

Katelin A. Bailey, Peter Hornyack, Luis Ceze, Steven D. Gribble, and Henry M.

Levy. Exploring storage class memory with key value stores. In Proceedings

of the 1st Workshop on Interactions of NVM/FLASH with Operating Systems and

Workloads (INFLOW), 2013.

[5] Jeff Barr. Now available — Amazon EC2 high memory instances with 6, 9, and 12
TB of memory, perfect for SAP HANA. https://aws.amazon.com/blogs/aws/now-
available-amazon-ec2-high-memory-instances-with-6-9-and- 12-tb-of-
memory-perfect-for-sap-hana/, 2018.

[6] Nan Boden. Available first on Google cloud: Intel Optane DC persistent mem-
ory. https://cloud.google.com/blog/topics/partners/available-first-on-google-
cloud-intel-optane-dc-persistent-memory, 2018.

[7] Michael Boelen. Linux and ASLR: kernel/randomize_va_space. https://linux-
audit.com/linux-aslr-and-kernelrandomize_va_space-setting/, 2016.

[8] Marcel Bohme, Van-Thuan Pham, and Abhik Roychoudhury. Coverage-based
greybox fuzzing as markov chain. In Proceedings of the 2016 ACM SIGSAC Con-
ference on Computer and Communications Security (CCS), 2016.

[9] Daniel Bovet and Marco Cesati. Understanding The Linux Kernel. Oreilly &
Associates Inc, 2005.

[10] Eduardo Carellan. Discover persistent memory programming errors with pmem-
check. https://software.intel.com/content/www/us/en/develop/articles/discover-
persistent-memory-programming-errors-with-pmemcheck.html, 2018.

[11] Dhruva R. Chakrabarti, Hans-J. Boehm, and Kumud Bhandari. Atlas: Lever-

aging locks for non-volatile memory consistency. In Proceedings of the ACM

International Conference on Object Oriented Programming Systems Languages &

Applications (OOPSLA), 2014.

Shimin Chen and Qin Jin. Persistent B+-Trees in non-volatile main memory. In

The Proceedings of the VLDB Endowment, 2015.

[13] P.Chi, W. Lee, and Y. Xie. Adapting B+-Tree for emerging nonvolatile memory-
based main memory. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (TCAD), 2016.

[14] Joel Coburn, Trevor Bunker, Meir Schwarz, Rajesh Gupta, and Steven Swanson.
From ARIES to MARS: Transaction support for next-generation, solid-state drives.
In Proceedings of the ACM Symposium on Operating Systems Principles (SOSP),
2013.

[15] Joel Coburn, Adrian M. Caulfield, Ameen Akel, Laura M. Grupp, Rajesh K. Gupta,

Ranjit Jhala, and Steven Swanson. NV-Heaps: Making persistent objects fast

and safe with next-generation, non-volatile memories. In Proceedings of the 16th

International Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS), 2011.

Nachshon Cohen, David T. Aksun, and James R. Larus. Object-oriented recovery

for non-volatile memory. Proc. ACM Program. Lang., 2(OOPSLA), 2018.

[17] Jeremy Condit, Edmund B. Nightingale, Christopher Frost, Engin Ipek, Benjamin
Lee, Doug Burger, and Derrick Coetzee. Better I/O through byte-addressable,
persistent memory. In Proceedings of the ACM Symposium on Operating Systems
Principles (SOSP), 2009.

[4

[12

[16

PMFuzz: Test Case Generation for Persistent Memory Programs

==
)

[20

[21

[22

~
&

[24

[25]

[26

&
=

I
&

&
22

'
=

@
2

'S
&

~
=

=
&

S
&

[44

[45

David Drysdale. Coverage-guided kernel fuzzing with syzkaller.

Subramanya R Dulloor, Sanjay Kumar, Anil Keshavamurthy, Philip Lantz, Dheeraj
Reddy, Rajesh Sankaran, and Jeff Jackson. System software for persistent memory.
In European Conference on Computer Systems (EuroSys), 2014.

Andrea Fioraldi, Dominik Maier, Heiko Eif3feldt, and Marc Heuse. AFL++: Com-
bining incremental steps of fuzzing research. In 14th USENIX Workshop on
Offensive Technologies (WOOT), 2020.

Ellis Giles, Kshitij Doshi, and Peter Varman. Continuous checkpointing of HTM
transactions in NVM. In Proceedings of the 2017 ACM SIGPLAN International
Symposium on Memory Management (ISMM), 2017.

Patrice Godefroid, Hila Peleg, and Rishabh Singh. Learn&fuzz: Machine learning
for input fuzzing. In Proceedings of the 32nd IEEE/ACM International Conference
on Automated Software Engineering (ASE), 2017.

Vaibhav Gogte, Stephan Diestelhorst, William Wang, Satish Narayanasamy, Pe-
ter M. Chen, and Thomas F. Wenisch. Persistency for synchronization-free
regions. In Proceedings of the 39th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), 2018.

Google. 0OSS-Fuzz: Continuous fuzzing for open source software. https://github.
com/google/oss-fuzz.

Jinyu Gu, Qianqgian Yu, Xiayang Wang, Zhaoguo Wang, Binyu Zang, Haibing
Guan, and Haibo Chen. Pisces: A scalable and efficient persistent transactional
memory. In USENIX Annual Technical Conference (ATC), 2019.

Swapnil Haria, Mark D. Hill, and Michael M. Swift. MOD: Minimally ordered
durable datastructures for persistent memory. Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2020.

Terry Ching-Hsiang Hsu, Helge Brigner, Indrajit Roy, Kimberly Keeton, and
Patrick Eugster. NVthreads: Practical persistence for multi-threaded applications.
In Proceedings of the Twelfth European Conference on Computer Systems (EuroSys),
2017.

Qingda Hu, Jinglei Ren, Anirudh Badam, Jiwu Shu, and Thomas Moscibroda. Log-
structured non-volatile main memory. In USENIX Annual Technical Conference
(ATC), 2017.

Intel. https://software.intel.com/content/www/us/en/develop/articles/code-
sample-enable-your-application-for-persistent-memory-with-mysgql-storage-
engine.html.

Intel. Intel Optane DC persistent memory. https://www.intel.com/content/www/
us/en/architecture-and-technology/optane-dc-persistent-memory.html.

Intel. Key/value datastore for persistent memory. https://github.com/pmem/
pmemkv.

Intel. Persistent memory programming. https://pmem.io/.

intel. Pmdk examples. https://github.com/pmem/pmdk/tree/stable-1.8/src/
examples/libpmemobj.

Intel. PMDK man page: libpmem. https://pmem.io/pmdk/manpages/linux/master/
libpmem/libpmem.7. html.

Intel. PMDK man page: libpmem. https://pmem.io/pmdk/manpages/linux/master/
libpmemobj/libpmemobj.7.html.

Intel. Pmdk mapcli. https://github.com/pmem/pmdk/blob/master/src/examples/
libpmemobj/map/mapcli.c.

Intel. Btree: remove not needed snapshot (PMDK). https://github.com/
pmem/pmdk/commit/b9232407a794040102e769ed98b967d797¢c173fd/#diff-
clecccb1fea662a18db843553f5a09b00494692dc699f11¢784b65d9a22535£8, 2018.
Intel. Intel 64 and IA-32 architectures software developer’s man-
ual. https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-
vol-1-2abcd-3abed.pdf, 2019.

Intel. Redis. https://github.com/pmem/redis/tree/3.2-nvml, 2019.

Laf Intel. Circumventing fuzzing roadblocks with compiler transfor-
mations. https://lafintel. wordpress.com/2016/08/15/circumventing-fuzzing-
roadblocks-with-compiler- transformations/, 2016.

Arpit Joshi, Vijay Nagarajan, Stratis Viglas, and Marcelo Cintra. ATOM: Atomic
durability in non-volatile memory through hardware logging. In Proceedings of
The 23rd IEEE Symposium on High Performance Computer Architecture (HPCA),
2017.

Rohan Kadekodi, Se Kwon Lee, Sanidhya Kashyap, Taesoo Kim, Aasheesh Kolli,
and Vijay Chidambaram. SplitFS: Reducing software overhead in file systems
for persistent memory. In Proceedings of the 27th ACM Symposium on Operating
Systems Principles (SOSP), 2019.

S. Kannan, A. Gavrilovska, K. Schwan, and D. Milojicic. Optimizing checkpoints
using NVM as virtual memory. In IEEE 27th International Symposium on Parallel
and Distributed Processing (IPDPS), 2013.

Seulbae Kim, Meng Xu, Sanidhya Kashyap, Jungyeon Yoon, Wen Xu, and Taesoo
Kim. Finding semantic bugs in file systems with an extensible fuzzing framework.
In Proceedings of the 27th ACM Symposium on Operating Systems Principles (SOSP),
2019.

Aasheesh Kolli, Vaibhav Gogte, Ali Saidi, Stephan Diestelhorst, Peter M. Chen,
Satish Narayanasamy, and Thomas F. Wenisch. Language-level persistency. In
Proceedings of the 44th Annual International Symposium on Computer Architecture

[46]

[47]

(48]

[49]

[50]

[51]
(52]

(53]

[54]

[55]

[56]

(571

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

(671

ASPLOS 21, April 19-23, 2021, Virtual, USA

(ISCA), 2017.
Aasheesh Kolli, Steven Pelley, Ali Saidi, Peter M. Chen, and Thomas F. Wenisch.

High-performance transactions for persistent memories. In Proceedings of the
21st International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), 2016.

Aasheesh Kolli, Jeff Rosen, Stephan Diestelhorst, Ali Saidi, Steven Pelley, Sihang
Liu, Peter M. Chen, and Thomas F. Wenisch. Delegated persist ordering. In
Proceedings of the 49th Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO), 2016.

Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon Peter, Emmett Witchel,
and Thomas Anderson. Strata: A cross media file system. In Proceedings of the
26th Symposium on Operating Systems Principles (SOSP), 2017.

Philip Lantz, Dulloor Subramanya Rao, Sanjay Kumar, Rajesh Sankaran, and Jeff
Jackson. Yat: A validation framework for persistent memory software. In USENIX
Annual Technical Conference (ATC), 2014.

Chris Lattner and Vikram Adve. LLVM: A compilation framework for lifelong
program analysis & transformation. In Proceedings of the International Symposium
on Code Generation and Optimization (CGO), 2004.

Lenovo. Memcached-pmem. https://github.com/lenovo/memcached-pmem, 2018.
Yuekang Li, Bihuan Chen, Mahinthan Chandramohan, Shang-Wei Lin, Yang Liu,
and Alwen Tiu. Steelix: Program-state based binary fuzzing. In Proceedings of
the 11th Joint Meeting on Foundations of Software Engineering (FSE). Acm, 2017.
Mengxing Liu, Mingxing Zhang, Kang Chen, Xuehai Qian, Yongwei Wu, and Jin-
glei Ren. DudeTM: Building durable transactions with decoupling for persistent
memory. In Proceedings of the Twenty-Second International Conference on Archi-
tectural Support for Programming Languages and Operating Systems (ASPLOS),
2017.

Qingrui Liu, Joseph Lzraelevitz, Se Kwon Lee, Michael L. Scott, Sam H. Noh,
and Changhee Jung. iDO: Compiler-directed failure atomicity for nonvolatile
memory. In Proceedings of the 51st Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), 2018.

S. Liu, A. Kolli, J. Ren, and S. Khan. Crash consistency in encrypted non-volatile
main memory systems. In 2018 IEEE International Symposium on High Performance
Computer Architecture (HPCA), 2018.

Sihang Liu, Korakit Seemakhupt, Gennady Pekhimenko, Aasheesh Kolli, and
Samira Khan. Janus: Optimizing memory and storage support for non-volatile
memory systems. In Proceedings of the 46th International Symposium on Computer
Architecture (ISCA), 2019.

Sihang Liu, Korakit Seemakhupt, Yizhou Wei, Thomas Wenisch, Aasheesh Kolli,
and Samira Khan. Cross-failure bug detection in persistent memory programs. In
Proceedings of the Twenty-Fifth International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), 2020.

Sihang Liu, Yizhou Wei, Jishen Zhao, Aasheesh Kolli, and Samira Khan. PMTest:
A fast and flexible testing framework for persistent memory programs. In Pro-
ceedings of the Twenty-Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), 2019.

Brandon Lucia, Vignesh Balaji, Alexei Colin, Kiwan Maeng, and Emily Ruppel. In-
termittent Computing: Challenges and Opportunities. In 2nd Summit on Advances
in Programming Languages (SNAPL), 2017.

Brandon Lucia and Benjamin Ransford. A simpler, safer programming and exe-
cution model for intermittent systems. In Proceedings of the 36th ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI), 2015.
Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: Building
customized program analysis tools with dynamic instrumentation. In Proceedings
of the 2005 ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), 2005.

Sanketh Nalli, Swapnil Haria, Mark D. Hill, Michael M. Swift, Haris Volos, and
Kimberly Keeton. An analysis of persistent memory use with WHISPER. In
Proceedings of the Twenty-Second International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), 2017.

Tan Neal, B. Reeves, Ben Stoler, Andrew Quinn, Youngjin Kwon, S. Peter, and Baris
Kasikci. AGAMOTTO: How persistent is your persistent memory application?
In Proceedings of the 14th USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2020.

Tri Nguyen and David Wentzlaff. PiCL: A software-transparent, persistent
cache log for nonvolatile main memory. In 51st Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), 2018.

Yuanjiang Ni, Jishen Zhao, Daniel Bittman, and Ethan Miller. Reducing NVM
writes with optimized shadow paging. In 10th USENIX Workshop on Hot Topics in
Storage and File Systems (HotStorage), 2018.

Kevin Oleary. How to detect persistent memory programming errors using
Intel Inspector - Persistence Inspector. https://software.intel.com/content/www/
us/en/develop/articles/detect-persistent-memory-programming-errors-with-
intel-inspector-persistence-inspector.html, 2018.

Diego Ongaro, Stephen M. Rumble, Ryan Stutsman, John Ousterhout, and Mendel
Rosenblum. Fast crash recovery in RAMCloud. In Proceedings of the ACM
Symposium on Operating Systems Principles (SOSP), 2011.

ASPLOS ’21, April 19-23, 2021, Virtual, USA

[68

Hui Peng, Yan Shoshitaishvili, and Mathias Payer. T-Fuzz: fuzzing by program

transformation. In Proceedings of the IEEE Symposium on Security & Privacy, 2018.

[69] O. Purdila, L. A. Grijincu, and N. Tapus. LKL: The linux kernel library. In 9th

RoEduNet IEEE International Conference, 2010.

Mohit Rajpal, William Blum, and Rishabh Singh. Not all bytes are equal: Neural

byte sieve for fuzzing. arXiv preprint arXiv:1711.04596, pages 1-10, 2017.

[71] Jinglei Ren, Qingda Hu, Samira Khan, and Thomas Moscibroda. Programming
for non-volatile main memory is hard. In Proceedings of the 8th Asia-Pacific
Workshop on Systems (APSys), 2017.

[72] Jinglei Ren, Jishen Zhao, Samira Khan, Jongmoo Choi, Yongwei Wu, and Onur
Mutlu. ThyNVM: Enabling software-transparent crash consistency in persistent
memory systems. In Proceedings of the 48th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), 2015.

[73] S. M. Shahri, S. Armin Vakil Ghahani, and A. Kolli. (Almost) Fence-less persist

ordering. In 53rd Annual IEEE/ACM International Symposium on Microarchitecture

(MICRO), 2020.

[70

[74] Dongdong She, Rahul Krishna, Lu Yan, Suman Jana, and Baishakhi Ray. MTFuzz:
fuzzing with a multi-task neural network. In Proceedings of the 28th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE), 2020.

[75] Dongdong She, Kexin Pei, Dave Epstein, Junfeng Yang, Baishakhi Ray, and Suman

Jana. Neuzz: Efficient fuzzing with neural program learning. In Proceedings of
the IEEE Symposium on Security & Privacy (SP), 2019.

[76] Yan Shoshitaishvili. Preeny. https://github.com/zardus/preeny/.

[77] Usharani Upadhyayula. Quick start guide: Provision intel optane dc persistent
memory. https://software.intel.com/content/www/us/en/develop/articles/quick-
start-guide- configure-intel- optane-dc-persistent-memory- on-linux.html, 2019.

[78] Shivaram Venkataraman, Niraj Tolia, Parthasarathy Ranganathan, and Roy H.

Campbell. Consistent and durable data structures for non-volatile byte-

addressable memory. In Proceedings of the 9th USENIX Conference on File and

Stroage Technologies (FAST), 2011.

Haris Volos, Andres Jaan Tack, and Michael M. Swift. Mnemosyne: Lightweight

persistent memeory. In Proceedings of the 16th International Conference on Archi-

tectural Support for Programming Languages and Operating Systems (ASPLOS),

2011.

[80] Jinghan Wang, Yue Duan, Wei Song, Heng Yin, and Chengyu Song. Be sensitive

and collaborative: Analyzing impact of coverage metrics in greybox fuzzing. In

22nd International Symposium on Research in Attacks, Intrusions and Defenses

(RAID), 2019.

William Wang and Stephan Diestelhorst. Persistent atomics for implementing

durable lock-free data structures for non-volatile memory (brief announcement).

[79

oo
x

(82]

(83]

(84]

(85]

[86]

(87]

(88]

(89]

[90]

[91]
[92]

(93]

[94]

Sihang Liu, Suyash Mahar, Baishakhi Ray, and Samira Khan

In Proceedings of the 31st ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA), 2019.

Song Wu, Fang Zhou, Xiang Gao, Hai Jin, and Jinglei Ren. Dual-page check-
pointing: An architectural approach to efficient data persistence for in-memory
applications. ACM Trans. Archit. Code Optim., 15(4), January 2019.

Xiaojian Wu and A. L. Narasimha Reddy. SCMFS: A file system for storage class
memory. In Proceedings of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis (SC), 2011.

Xingbo Wu, Fan Ni, Li Zhang, Yandong Wang, Yufei Ren, Michel Hack, Zili Shao,
and Song Jiang. NVMcached: An NVM-based key-value cache. In Proceedings of
the 7th ACM SIGOPS Asia-Pacific Workshop on Systems (ApSys), 2016.

Fei Xia, Dejun Jiang, Jin Xiong, and Ninghui Sun. HiKV: A hybrid index key-value
store for DRAM-NVM memory systems. In USENIX Annual Technical Conference
(ATC), 2017.

Jian Xu and Steven Swanson. NOVA: A log-structured file system for hybrid
volatile/non-volatile main memories. In Proceedings of the 14th USENIX Conference
on File and Storage Technologies (FAST), 2016.

Jian Xu, Lu Zhang, Amirsaman Memaripour, Akshatha Gangadharaiah, Amit
Borase, Tamires Brito Da Silva, Steven Swanson, and Andy Rudoff. Nova-fortis:
A fault-tolerant non-volatile main memory file system. In Proceedings of the 26th
Symposium on Operating Systems Principles (SOSP), 2017.

Wen Xu, Hyungon Moon, Sanidhya Kashyap, Po-Ning Tseng, and Taesoo Kim.
Fuzzing file systems via two-dimensional input space exploration. 2019 IEEE
Symposium on Security and Privacy (SP), 2019.

Jun Yang, Qingsong Wei, Cheng Chen, Chundong Wang, Khai Leong Yong,
and Bingsheng He. NV-Tree: Reducing consistency cost for NVM-based single
level systems. In Proceedings of the 13th USENIX Conference on File and Storage
Technologies (FAST), 2015.

M. Ye, C. Hughes, and A. Awad. Osiris: A low-cost mechanism to enable restora-
tion of secure non-volatile memories. In 51st Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), 2018.

Michal Zalewski. American fuzzy lop. https://lcamtuf.coredump.cx/afl/.

Jishen Zhao, Sheng Li, Doe Hyun Yoon, Yuan Xie, and Norman P. Jouppi. Kiln:
Closing the performance gap between systems with and without persistence
support. In Proceedings of the 46th Annual IEEE/ACM International Symposium

on Microarchitecture (MICRO), 2013.
J. Ziv and A. Lempel. A universal algorithm for sequential data compression.

IEEE Transactions on Information Theory, 1977.

K. A. Zubair and A. Awad. Anubis: Ultra-low overhead and recovery time for
secure non-volatile memories. In ACM/IEEE 46th Annual International Symposium
on Computer Architecture (ISCA), 2019.

