2022 IEEE Symposium on Security and Privacy (SP) | 978-1-6654-1316-9/22/$31.00 ©2022 IEEE | DOI: 10.1109/SP46214.2022.9833595

2022 IEEE Symposium on Security and Privacy (SP)

Time-Print: Authenticating USB Flash Drives with
Novel Timing Fingerprints

Patrick Cronin
University of Delaware
ptrick@udel.edu

Xing Gao

xgao@udel.edu

Abstract—Universal Serial Bus (USB) ports are a ubiquitous
feature in computer systems and offer a cheap and efficient
way to provide power and data connectivity between a host
and peripheral devices. Even with the rise of cloud and off-site
computing, USB has played a major role in enabling data transfer
between devices. Its usage is especially prevalent in high-security
environments where systems are ‘air-gapped’ and not connected
to the Internet. However, recent research has demonstrated that
USB is not nearly as secure as once thought, with different
attacks showing that modified firmware on USB mass storage
devices can compromise a host system. While many defenses have
been proposed, they require user interaction, advanced hardware
support (incompatible with legacy devices), or utilize device
identifiers that can be subverted by an attacker. In this paper, we
present Time-Print, a novel timing-based fingerprinting method,
for identifying USB mass storage devices. We create a fingerprint
by timing a series of read operations from different locations on
a drive, as the timing variations are unique enough to identify
individual USB devices. Time-Print is low overhead, completely
software-based, and does not require any extra or specialized
hardware. To validate the efficacy of Time-Print, we examine
more than 40 USB flash drives and conduct experiments in
multiple authentication scenarios. The experimental results show
that Time-Print can (1) identify known/unknown brand/model
USB devices with greater than 99.5% accuracy, (2) identify
seen/unseen devices of the same brand/model with 95% accuracy,
and (3) classify USB devices from the same brand/model with an
average accuracy of 98.7%.

I. INTRODUCTION

The Universal Serial Bus (USB) has been a ubiquitous
and advanced peripheral connection standard for the past two
decades. USB has standardized the expansion of computer
functions by providing a means for connecting phones, cameras,
projectors, and many more devices. Recent advancements
in USB have increased data transfer speeds above 10 Gbps,
making the USB mass storage device (flash drive) a popular
method for moving data between systems. Especially, USB
is commonly used in air-gapped systems where security
policies prohibit data transfer via the Internet, such as military,
government, and financial computing systems [13], [42], [44].

While USB has made the usage and development of
various peripheral devices far simpler, it has recently been
scrutinized for security issues [5], [2], [23], [30]. USB is
an inherently trusting protocol, immediately beginning to set
up and communicate with a peripheral device as soon as it
is connected. This has many advantages, as users are not
required to undertake a difficult setup process, but has recently
been exploited by attackers to compromise host systems.

University of Delaware

Chase Cotton
University of Delaware
ccotton@udel.edu

Haining Wang
Virginia Tech
hnw@vt.edu

The discovery of Stuxnet [2], Flame, and Gauss [36] has
demonstrated that malware can be designed to spread via USB
stick. Unwitting and curious employees might pick up dropped
(infected) flash drives and plug them into their computers,
allowing the malicious code on the drives to infect the hosts
and then propagate across the network, wreaking havoc on the
targeted industrial control systems. More recently, attackers
have investigated the ability to modify the firmware of a USB
device [23], [30] such that an outwardly appearing generic
USB flash drive can act as an attacker-controlled, automated,
mouse and keyboard. The behavior of the USB driver can also
be utilized as a side-channel to fingerprint a host device and
launch tailored drive-by attacks [5], [18]. While many defense
mechanisms have been proposed, these techniques generally
require user input [58], new advanced hardware capabilities [7],
[55], or utilize features (device product ID, vendor ID, or serial
number) that could be forged by an advanced attacker with
modified firmware [1], [30].

In this paper, we propose a new device authentication method
for accurately identifying USB mass storage devices. We reveal
that read operations on a USB mass storage device contain
enough timing variability to produce a unique fingerprint.
To generate a USB mass storage device’s fingerprint, we
issue a series of read operations to the device, precisely
record the device’s response latency, and then convert this
raw timing information to a statistical fingerprint. Based on
this design rationale, we develop Time-Print, a software-based
device authentication system. In Time-Print, we devise a
process for transforming the raw timing data to a statistical
fingerprint for each device. Given device fingerprints, Time-
Print then leverages one-class classification via K-Means
clustering and multi-class classification via neural networks
for device identification. To the best of our knowledge, this is
the first work to expose a timing variation within USB mass
storage devices, which can be observed completely in software
and be utilized to generate a unique fingerprint!.

To validate the efficacy of Time-Print, we first provide
evidence that statistical timing variations exist on a broad
range of USB flash drives. Specifically, we gather fingerprints
from more than 40 USB flash drives. Then we examine
three common security scenarios assuming that attackers have
different knowledge levels about the targeted victim from

'USB Type-C has provisions to identify device models [62] via a specialized
key system; Time-Print does not make use of any specialized hardware and
works on both legacy and new devices.

© 2022, Patrick Cronin. Under license to IEEE. 1002

DOI 10.1109/SP46214.2022.00006

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on May 11,2023 at 17:48:32 UTC from IEEE Xplore. Restrictions apply.

least to most: (1) identifying known/unknown devices with
different models, (2) identifying seen/unseen devices within
the same model, and (3) classifying individual devices within
the same model. We demonstrate compelling accuracy for
each case, greater than 99.5% identification accuracy between
known/unknown devices with different brands and models,
95% identification accuracy between seen and unseen drives of
the same model, and 98.7% accuracy in classifying individual
devices of the same model.

We finally examine the robustness of Time-Print in multiple
hardware configurations. We observe that Time-Print experi-
ences a small accuracy degradation when measured on different
USB ports, hubs, and host systems. We also examine the
stability of Time-Print and present a strategy to make the fin-
gerprints robust to write operations. Additionally, we investigate
the authentication latency of Time-Print, demonstrating that
while precise authentication can be achieved in 6-11 seconds,
an accuracy greater than 94% can be achieved in about one
second.

The major contributions of this work include:

e The first work to demonstrate the existence of a timing
channel within USB mass storage devices, which can be
utilized for device fingerprinting.

o The design and development of a completely software-
based fingerprinting system, Time-Print, for authenticating
USB mass storage devices without requiring additional
hardware or burdensome user interaction.

o A thorough evaluation of more than 40 USB mass storage
devices, showing that the ability to fingerprint with high
accuracy is not dependent upon the device brand, protocol,
or flash controller.

The remainder of this paper is organized as follows. Sec-
tion II describes the threat model, including an attacker’s
capabilities, and provides a primer on the USB protocol,
USB mass storage devices, and USB security threats/defenses.
Section III demonstrates the existence of a fingerprintable
timing channel within USB mass storage devices. Section IV
details the method for generating and gathering a USB mass
storage fingerprint. Section V presents the experimental setup
for evaluation. Section VI evaluates the Time-Print system.
Section VII examines the practicality of Time-Print under
different use configurations. Section VIII surveys related work
in USB security, device fingerprints, and device authentication.
Finally, Section IX concludes the paper.

II. THREAT MODEL AND BACKGROUND

This section presents the threat model and introduces various
components of the new timing-based side-channel, including
the USB protocol stack, USB mass storage devices, and current
USB security.

A. Threat Model and Attacker Capabilities

The objective of this work is to highlight the applicability
of a security primitive that can physically and reliably identify
USB mass storage devices through a new timing-based side-
channel. We consider a series of realistic scenarios, in which

an entity attempts to either prevent its computing assets from
engaging with unauthorized USB flash drives or better track
the usage of flash drives inside an organization. The desired
security level of a computing system inside the organization
varies from the least (e.g., an open environment) to the highest
(e.g., an ‘air-gap’ protection).

Under the lowest security level, we assume that attackers
also have the least knowledge/privilege to launch an attack. For
example, a computer at a reception desk or an open laboratory
may have access to some assets on the organization’s network
and is in a high traffic area, where an attacker may be able
to physically plug a malicious device into the temporarily
unattended machine. However, compared to computing systems
at the higher security level, it is less challenging (and with less
motivation) to protect such computers at the lower security
level. Moreover, the defense methodologies developed for a
high-security system can be applied for the protection of a
low-security system.

Therefore, the main focus of our work is on air-gapped
systems that have the highest security level, such as computer
systems in military, government, or financial organizations,
which are frequently air-gapped and isolated from the Internet.
Industrial control systems or life-critical systems (e.g., medical
equipment) might also be air-gapped [42], [44]. While the
air-gap is effective at thwarting the vast majority of outside
attacks, it is very difficult to transfer data to and from an
air-gapped system. To this end, USB mass storage devices
offer an excellent, low-cost solution, but are not without their
drawbacks. Attacks such as Stuxnet [2] were injected into
target systems via USB, and recent research has demonstrated
the creation of malicious USB devices which can negatively
affect system security [5], [23], [30].

We then assume that attackers attempt to compromise the
target air-gapped computer via USB drives. Attackers have
the ability to design malicious USB devices so that once the
USB handshake is completed, malicious scripts or activities
can be executed on the host. According to the organization’s
security policies, system administrators only issue access to
a few approved USB devices (i.e., insider devices) belonging
to particular brands and models (e.g., SanDisk Cruzer Blade).
Thus, a USB fingerprinting mechanism must be integrated
into the host to accept/classify approved USB devices and
reject other devices. For a specific air-gapped computer system,
system administrators can train fingerprints for all approved
devices. Also, they can pre-collect multiple devices from
popular brands or models to augment the device authentication
system with examples of unapproved drives.

With these settings in mind, we envision three typical
scenarios as shown in Figure 1, in which Time-Print offers
enhanced security benefits for device authentication. Note that
Time-Print is designed to augment current USB security, and
it can greatly assist existing USB security mechanisms such
as GoodUSB [58] and USBFilter [59].

Scenario @: Attackers have no knowledge of the approved
USB devices, and thus a random USB device could be
connected to the target host. Such a random USB device likely

1003

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on May 11,2023 at 17:48:32 UTC from IEEE Xplore. Restrictions apply.

does not belong to one of the approved device models. Time-
Print should thus reject any device whose model is not approved.
In this minimal knowledge scenario, administrators can also
prevent system infection from irresponsible employees that
plug in non-approved devices (dropped devices) or computers
in an open environment (reception computers).

Scenario @: Attackers (e.g., former employees who are
aware of the security measure) know the brand and model of
the approved USB devices and purchase one with the same
brand and model. Time-Print should be able to reject unseen
devices of the same brand/model.

Scenario ®: Auditing user authentication. A system admin-
istrator should have the ability to identify specific devices that
were issued to employees. For approved devices, different
authorization levels might be assigned. In this case, the
system administrator needs to audit which specific devices are
connected to the target system to trace employee activities and
detect data exfiltration attacks. Therefore, Time-Print should
be able to classify all approved devices with high confidence.

Attacker Capabilities. We examine Time-Print against
attackers at multiple levels. A weak attacker may simply
attempt to plug a device into the victim system with little
knowledge (e.g., Scenario 1). A stronger attacker may know
the device model allowed at the victim side and attempt to
connect a device of the same model (e.g., Scenario 2/3). The
strongest attacker may be able to steal a legitimate device and
attempt to replicate the physical fingerprint with an FPGA based
system. While the FPGA based system may attempt to emulate
legitimate firmware, the firmware for current USB flash drives
is a closely guarded and proprietary secret. We do not consider
a case in which an attacker is able to significantly modify the
firmware of a (stolen) legitimate device. In addition, we also
must exclude authorized users who attempt to maliciously
harm their own computing systems. This is a reasonable
assumption as authorized users who have privileges to access
any system resources likely have little need for mounting such
a complicated USB attack.

Defender Preparations. To use Time-Print, defenders (e.g.,
system administrators) should first have a security policy for
limiting the employee usage of USB devices to specific models.
Then, they need to gather fingerprint samples for their legitimate
devices to enroll them into Time-Print beforehand.

B. USB 2.0 Versus 3.0

The USB standard consists of software and driver specifi-
cations that control the communication between two devices
and has undergone several revisions. One major revision of
the protocol, USB 2.0 [17], enables high data speeds (e.g., the
High-Speed specification of 480 Mbit/s), and adds support for
diverse peripheral devices including cameras, network adapters,
Bluetooth, etc. The later introduced USB 3.0 [25] standard
offers an increased 5 Gbit/s data rate and additional support
for new types of devices. Also, USB 3.0 devices are backward
compatible with USB 2.0 ports, but at 2.0’s speed. USB 3.1 [26]
further increases the data transfer rate to 10 Gbit/s with a
modified power specification that increases the maximum power

Insider Devices
(Brand X)

Difficulty

_GAPPED Copyp,
P’\?‘ Ur <% ®

Unauthorized Devices
(Brand X)

o2 4

Unauthorized Devices
(Other Brands)

(6 6]

Fig. 1: Three security scenarios of USB fingerprinting for
device authentication.

delivery to 100W [3]. In this paper, we focus on USB devices
with standards 2.0, 3.0, and 3.1.

C. USB Mass Storage Devices and Flash Storage Controllers

USB mass storage devices are a form of removable storage
media which allow a user to transfer files between a host and
the device. As a recognized device class [21], mass storage
devices follow a well-defined process when connected to a host.
The host queries the device to discover its class code. Upon
determining that it is a mass storage device, the host launches
an instance (on Linux host systems) of the usb-storage
driver. The driver scans the device, determining its file system,
and launches the appropriate file system drivers.

To enable the communication between a device and the host,
each USB mass storage device contains a microprocessor(s)
that handles communications and manages the flash storage of
the device. Flash storage is generally made up of many blocks.
As flash has a limited write endurance and is usually designed
in such a way that individual bits cannot be selectively cleared,
the flash controller typically conducts a series of operations to
modify the stored data in the flash medium. It first locates a new
unused block and copies the data from the old block to the new
block while incorporating any data changes. The flash controller
then marks the old block as dirty, and eventually reclaims
these dirty blocks as part of the garbage collection process.
The controller (as the ‘flash translation layer’) maintains the
mapping information between logical addresses (addresses used
by the host system to access files) and the physical addresses
of the actual pages, and the frequent remapping of blocks is an
invisible process to the host system. Thus, the time required
for the USB mass storage device to access large chunks of
data is potentially unique and suitable to fingerprint the device.

D. USB Security

With its rapid adoption, USB has also become a popular
target for attackers. Previous studies have shown that users
are likely to plug in devices that they find on the ground [29],
[53], [61], especially those modified to look ‘official’ (e.g.,
contain a government logo) [51]. Meanwhile, researchers have
also proposed numerous defenses, ranging from firewall and

1004

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on May 11,2023 at 17:48:32 UTC from IEEE Xplore. Restrictions apply.

permissions systems [4], [58], [59] to device fingerprinting [27].
Many of these systems rely upon the reported device descriptors
(e.g. product/vendor ID, serial number) [1], [8] which can be
modified by a skilled attacker [23], [30]. Magneto [27] attempts
to identify USB devices via electromagnetic fingerprinting
of the microcontroller within the USB mass storage device,
which is hard for attackers to manipulate. However, the
system required expensive, bulky, and highly sensitive spectrum
analyzers and EM probes to identify devices. Instead, in this
work, we uncover a new timing channel within USB mass
storage devices and require no extra equipment to uniquely
identify devices.

III. TIMING SIDE-CHANNEL EXPLORATION

USB mass storage devices are sophisticated systems that
contain at least one microprocessor (i.e., flash storage con-
troller), some form of embedded firmware, and one or more
flash memory devices. The microprocessor(s) is utilized to
maintain the flash translation layer and the flash endurance
(via wear leveling) and to communicate with a host computer.
Whenever the USB mass storage device connects to the host,
a series of transactions provide the host with information
about its size, capabilities, name, partition table, etc. For
those transactions, individual physical devices may demonstrate
small variations (e.g., timing variations) within a tolerance
boundary that does not affect normal operations. One common
method for observing these variations is through unintentional
electromagnetic emissions [14], [15], [16], [18], [27].

While prior works have demonstrated that the USB device
enumeration process can be used to identify individual host
computers / OSes [5], [18], [37], we attempt to explore a timing
channel to accurately identify USB devices. In particular, this
work searches for observable timing differences between the
interactions of a mass storage device and its host. If the flash
controller of one device can respond faster or slower than that
of a different device, it is possible that this variation can be
used to identify a device. Furthermore, if a large chunk of data
is requested from the device, the flash translation layer may
access multiple locations to return all of the data at once. The
time taken for this action (e.g., consult translation table, access
one or multiple flash blocks within the device, coalesce data,
respond to host) may also create observable timing differences.

A. Motivation of Time-Print

Previous works [5], [18], [37] have demonstrated that the
USB handshake and enumeration process can leak information
about the host, including the host’s operating system (different
command sequence) or the host itself (timing differences
between packets). We first attempt to check whether such a
handshake and enumeration process can also generate a stable
fingerprint for USB devices.

Within the Linux operating system, this handshake entails the
loading of a series of drivers, each providing more specialized
functionality to the USB device. Once the device is initially
connected to the host system, the USB core driver accesses the
device and requests its descriptors. The device responds with

its descriptors and identifies its class (e.g., human interface
device, mass storage, etc.) A device object is created, and the
specific class driver is then instantiated. In the case of a USB
mass storage device, the USB storage driver is initiated, and the
USB storage driver probes the device via its communication
interface, the Small Computer System Interface (SCSI). The
host utilizes SCSI commands to probe the filesystem, the
appropriate filesystem driver is then loaded depending on
format (e.g. FAT, exFAT, NTFS, ext4, etc.), and the drive
is finally mounted and enumerated. With the drive handshake
completed, the drive remains idle until the user opens the drive
to access it.

We utilize the usbmon [67] driver within Linux and the
Wireshark [56] program to capture and analyze the raw
packet transmissions during the device enumeration and mount
process. We find that the behaviors of packet transmissions
between similar devices do not vary significantly enough to
create a unique profile. In addition, the file contents of the same
device greatly influence the behaviors of the device enumeration
process, such as addresses, sizes, and the number of packets.
Therefore, the device enumeration process cannot be leveraged
to generate a reliable fingerprint.

B. Creation of a Reliable Fingerprint

To remedy this issue, we seek a new approach for creating a
reliable fingerprint. While the timing of USB setup packets does
not seem to provide fingerprintable information, the interfacing
with the flash controller can. Each time the host system requests
data from a USB device, the flash controller must access the
flash translation layer, determining and accessing the location of
the block (or blocks if the files are fragmented across multiple
physical locations). It then coalesces those areas into USB
packets and sends them to the host. Our intuition is that this
access time varies based upon the locations of the blocks on
a device as well as the size of a read. To examine whether
this assumption is valid, we issue a known series of read
requests of different sizes and locations via SCSI commands
on the device. By recording the timestamp for each read
action, we attempt to construct a statistical fingerprint for the
timing characteristics of each device. We utilize the sg_read
utility [19] to achieve low-level control of the read commands.
Each read sets the Direct 10 (DIO), Disable Page Out (DPO),
and Force Unit Access (FUA) flags of the sg_read utility to
‘1’. This combination of flags forces the system to access the
USB drive with each read and disallows the operating system
from utilizing cached read data. Especially, the DPO flag forces
the USB device to fetch the read from the physical media and
keeps the flash controller from responding with cached reads.
This flag combination is necessary to ensure that each read
physically probes the specified flash blocks (allowing for true
timing values to be gathered), instead of simply reading cached
data.

C. Preliminary Classification

To investigate whether a timing fingerprint might be possible,
we conduct preliminary experiments by gathering timing

1005

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on May 11,2023 at 17:48:32 UTC from IEEE Xplore. Restrictions apply.

SanDisk Blade #0 SanDisk Blade #1

SanDisk Blade #2 SanDisk Blade #3

f=4
E]
302
[
&£ 01 | |
0.0 W oM AW - R
20 40 60 80 100 20 40 60 80 100 20 40 60 80 100 20 40 60 80 100
020 Generic #0 Generic #1 Generic #2 Generic #3
2015 |
c
%010 I |
g Il
I 0.05 1 f
0.00 J A, ¢ Dbl NG sl \ _—
20 40 60 80 100 20 40 60 80 100 20 40 60 80 100 20 40 60 80 100

SanDisk Ultra #0 SanDisk Ultra #1

SanDisk Ultra #2 SanDisk Ultra #3

Frequency
o
o

00 L\

20 40 60 80 100 20 40 60 80 100

Samsung Bar Plus #0 Samsung Bar Plus #1

20 40 60 80 100 20 40 60 80 100

Samsung Bar Plus #2 Samsung Bar Plus #3

Frequency

0.2 I
0.1 \

i

\

A

20 40 60 80 100 20 40 60 80 100
Histogram Bin Histogram Bin

20 40 60 80 100 20 40 60 80 100
Histogram Bin Histogram Bin

Fig. 2: Histograms of read timings for 16 different USB mass storage drives. Each plot contains 20 different samples.

USB Device

Timing
Acquisition

Extra Read

SCslI
lCommands

Preprocessing

@ Fingerprints

Identification

n

Physical Blocks

Time-Print

— e e - — -

|
|
|
|
|
|
|
|
|
|
-

Fig. 3: The design of Time-Print.

readings from 16 different devices: 4 devices for each of
4 different models (i.e., a generic device found on Amazon,
SanDisk Cruzer Blade, SanDisk Ultra, and Samsung Bar Plus).
A histogram of these readings is presented in Figure 2. Each
graph contains the histograms of 20 separate readings. The high
overlap between readings implies that the timing measurement
is stable from reading to reading, and thus may be a good
candidate for fingerprinting. Visual inspection demonstrates
that different brand/model devices exhibit different timing
characteristics, indicating that read timings will enable us to
differentiate devices with different models. Further inspection
of the variations among devices of the same model shows that
some clear differences still exist. For example, SanDisk Blade
1 and SanDisk Blade 3 in the first row demonstrate differently

shaped distributions. Thus, the preliminary results motivate us
to develop a timing-based device authentication mechanism.

IV. TIME-PRINT DESIGN

In this section, we detail the design and implementation
of Time-Print and describe how Time-Print generates device
fingerprints. In general, Time-Print extends the USB driver to
generate a number of extra reads on randomly chosen blocks
on USB devices via the SCSI commands (as shown in Figure 3)
and then measures the timing information of these read opera-
tions. The process of Time-Print consists of four steps, namely,
(1) performing precise timing measurements, (2) exercising the
USB flash drive to generate a timing profile, (3) preprocessing
the timing profile, and (4) conducting classification based on
the timing profile for device acceptance/rejection.

A. Performing Precise Timing Measurements

As shown in Figure 3, Time-Print enables the fingerprinting
technique within the driver using SCSI commands. Such a
design allows the fingerprint data to be acquired before the
device is fully connected to the host system (thus allowing for
rejection if the device is deemed unrecognized). Also, the driver
has visibility into every packet exchanged between the device
and the host with minimal delay, which reduces the overhead
and latency for the authentication process while simultaneously
increasing the precision of the timing measurements.

The USB mass storage driver and the USB SCSI command
sequence maintain a complex series of objects within the Linux
operating system to control the command and data transactions
communicated between the host and peripherals. Every data

1006

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on May 11,2023 at 17:48:32 UTC from IEEE Xplore. Restrictions apply.

Host Peripheral

Timing
Information

U SO

Time
\

Fig. 4: A USB SCSI command sequence.

read consists of three parts, as visually presented in Figure 4:
(1) the host issues a read command to the device, which
specifies the size and location of the data to be read; (2) the
peripheral responds with the requested data; (3) the peripheral
responds with a status packet to indicate that the transfer is
either successful or unsuccessful.

Within the USB driver, two different methods control
these three transactions. The usb_store_msg_common
method transfers the command packet and receives the status
packet, while the usb_stor_bulk_transfer_sglist
function receives the actual data from the device. To perform
precise timing measurements of these transactions, Time-Print
leverages a low overhead and high granularity timing source,
the CPU timestamp counter (TSC), which is a monotonic 64-bit
register present in all recent x86 processors. While initially
designed to count at the clock speed of the CPU, most recent
systems implement a ‘constant TSC’, which ticks at a set
frequency regardless of the actual CPU speed. This feature
enables Time-Print to precisely time the data transmission
phase, regardless of the underlying CPU frequency. We utilize
the built-in kernel function rdtsc () both before and after
each transaction to record the precise amount of time it takes
for the execution of each interaction.

With the collected timing information, Time-Print further
integrates a low-overhead storage and reporting component for
this timing information. This component modifies the USB
driver to maintain a continuous stream of timing information
for the drive. Specifically, we augment the us_data structure
present in the USB storage header to contain arrays to keep
track of command opcode, size, address, and TSC value for
each transaction.

To transfer the timing values and record them (for prototype
purposes), we implement a character device within the USB
storage driver to transfer the timing information to the userspace
for further processing. Since accessing the TSC is designed to
be a low overhead function, the induced overhead is negligible

(more discussion on the overhead is presented in Section VII).

To ensure minimal performance impact, once a device has been

approved, the timing and storage functionality can be disabled.

B. Exercising the USB Flash Drive

As discussed in Section III-A, it is difficult to build a reliable
timing-based fingerprint based on the information leaked from
the USB handshake and enumeration process, due to its variable
nature. Instead, we develop a common test pattern that can be
applied to any USB device. In particular, we generate a script
with a random pattern of reads in different sizes from different
offsets within the drive. The script is executed whenever a new
USB device is detected by the host system. This procedure
ensures a consistent number of reads from different locations
on the drive allowing for the creation of a statistical, timing-
based fingerprint. Meanwhile, reading from multiple locations
with different sizes is necessary as it provides a better chance
of generating a unique fingerprint for the flash drive. According
to Micron [39], the NAND flash blocks built into a USB flash
drive are at least 128KB, while each logical block address that
can be accessed by the host system corresponds to a 512-byte
chunk. As the logical to physical mapping is opaque to the
user, it is challenging to know whether a large read from a
specific location involves any accesses to multiple contiguous
flash blocks, multiple blocks in different locations, or only a
single block. By attempting to generate as many different types
of accesses as possible, Time-Print can better extract the subtle
timing differences caused by those accesses.

C. Preprocessing Timing Values

As shown in Figure 4, there are three packets exchanged
between the host and peripheral: the original command, the
responding data packet, and the transfer status. We need to
capture and record the timing values for each packet from
the host’s perspective. Specifically, a timestamp is recorded
upon the entry and exit of each of the two functions listed
above. Each timestamp also includes the following meta-data:
command opcode, the size of the packet, and the offset the data
is coming from. The preprocessing step of Time-Print filters
any commands that are not read commands from the recording,
and searches for the beginning of the commands from the read
script to discount any packets that are issued as part of the drive
enumeration. As the goal of the fingerprint system is to focus
specifically on the time it takes for the drive to access blocks of
the USB device, not the timing between packets, we calculate
the time latency between when the host finishes sending the
command packet and when the host finishes receiving the data
response packet from the drive.

The next step is to organize this raw timing information,
which contains timing data from a multitude of locations and
sizes. We group them into separate bins where each contains
one size and address offset. Grouping the timing results by
read size and offset ensures that each timing sample within a
group corresponds to a single action or group of actions within
the drive, allowing for meaningful statistical analysis.

D. Classification

With the timing information grouped by size and offset,
we can leverage features and machine learning techniques
to create a fingerprint for each device. Based on the trained

1007

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on May 11,2023 at 17:48:32 UTC from IEEE Xplore. Restrictions apply.

Device Manufacturer Device Name Size Flash Controller Number of Devices USB Protocol
SanDisk Cruzer Blade 8GB SanDisk 10 USB 2.0
Generic General UDisk 4GB ChipsBank CBM2199S 10 USB 3.0
SanDisk Ultra 16GB SanDisk 10 USB 3.0
Samsung BAR Plus 32GB Unknown 4 USB 3.1

PNY USB 3.0 FD 32GB Innostor IS902E Al 1 USB 3.0
Kingston DataTraveler G4 32GB SSS 6131 1 USB 3.0
Kingston DataTraveler SE9 64GB Phison PS2309 1 USB 3.0

PNY Elite-X Fit 64GB Phison PS2309 1 USB 3.1

SMI USB Disk 64GB Silicon Motion SM3269 AB 1 USB 3.0

SMI USB Disk 64GB Silicon Motion SM3267 AE 1 USB 3.0
SanDisk Cruzer Switch 8GB SanDisk 1 USB 2.0
SanDisk Cruzer Glide 16GB SanDisk 2 USB 2.0

TABLE I: USB mass storage devices utilized in the evaluation of Time-Print.

fingerprints, Time-Print can reject or accept devices. For the
different security scenarios mentioned in the threat model,
Time-Print uses different algorithms for better performance.
Section VI further presents the details for different scenarios.

V. EVALUATION SETUP

To demonstrate the effectiveness and potential applications
of Time-Print, we build a testbed to extract fingerprints from
43 USB mass storage devices. In this section, we describe the
equipment utilized, the detailed data collection methodology,
the read sequence utilized, and how we denote the training
and testing datasets.

A. Experimental Devices

We utilize the following devices and system configurations
to gather fingerprints.

Host System, OS, and Driver Modifications. Our host
system is a DELL T3500 Precision tower. The system contains
an Intel Xeon E5507 4 core processor with a clock speed of
2.27GHz and 4GB of RAM. The USB 2.0 controllers are Intel
82801JI devices. We utilize a Renesas uPD720201 USB 3.0
controller (connected via PCI) for USB 3.0 experiments.

The host runs Ubuntu 18.04 LTS and we modify the USB
storage drivers as detailed in Section IV-A2. Namely, we modify
the USB driver to record the timing information for the start
and completion of each USB packet transmission that is a part
of the USB storage stack. Each time a device is connected,
a data structure is created to store the timestamp and packet
metadata information. This data structure is deleted upon device
disconnect. A character device is inserted into the USB driver
code to facilitate the transfer of this timing information to log
files after the completion of drive fingerprinting operations.

USB Devices. We test the performance and applicability
of Time-Print with 12 unique USB models and 43 different
USB devices. Table I lists the device manufacturer, name,
size, controller, number of devices, and protocol for every

2Since Time-Print is entirely software-based, it could reasonably be extended
to macOS and Windows with cooperation from developers.

device used in our experiments. We select these brands to
create a broad dataset that contains a number of the most
popular devices on the market (purchased by users on Amazon
as of September 2020). Each device is analyzed with no
modifications to the firmware of the device. To ensure fairness,
all devices are zeroed and formatted as FAT32 with an
allocation size of 4KB, and are identically named as ‘USB_0’.
We extract the device controller name by using Flash Drive
Information Extractor [52]. Of note, SanDisk does not publicly
identify the versions of their flash controllers and simply reports
the name ‘SanDisk’.

USB Hub and Ports. To facilitate testing of the USB drives,
we utilize an Amazon Basics USB-A 3.1 10-Port Hub that we
connect to the inbuilt USB 2.0 Intel 82801JI hub on the host
for USB 2.0 experiments and to the Renesas uPD720201 USB
3.0 hub for USB 3.0 testing.

B. Data Collection

Given our setup, we implement a script to gather data from
multiple USB devices at once. The Amazon Basics USB hub
utilized in our experiment can selectively enable/disable the
power connected to each specific port. We implement this
functionality through the uhubctl [63] library and simulate
the physical unplugging and replugging of each USB device
between every sample.

To reduce any impact on the precision of the timing within
the driver, which is of the utmost importance for fingerprint,
we utilize the Linux cpuset utility to isolate the USB storage
driver process to its own CPU core. This largely prevents
interference from context switches. Furthermore, since some
CPUs do not guarantee that the TSC is synchronized between
cores, it is necessary to ensure that all measurements are
gathered from the same core.

To better explain the overall testing methodology, we further
present the sample acquisition process with an example of 10
different USB drives. Before testing, each port on the USB
hub is disabled such that no power is provided to a plugged-in
device. We then plug each drive into a port on the USB hub and

1008

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on May 11,2023 at 17:48:32 UTC from IEEE Xplore. Restrictions apply.

Raw Grouped -
Samples Samples Features Classifiers
5 Group 1 E — T \
i [Size: 16KB) ! ; D
] Loc:0 |: ; W ! .
: : |:> : ' Scenario @
_eowpe |7 e |
i| Size: 32xB ; ! m |
! Loc: O ! T)
|:> E Group 3 E

i [Size: 6akB l o R
| Loc: O] | 1
: ; t| Histogram 1 2D |

. E é |:> 5 W § am Scenarios ®©

- | capn | (S i :
E LOC M E [d Networks

Fig. 5: Flow of generating 1D features from the raw fingerprint samples of a drive as used for different model identification
(top) and 2D features as used for individual device classification (bottom).

record the mapping of the hub port to drive ID (to match each
sample to a specific drive). The fingerprint gathering script
enables the first port on the USB hub and waits for the USB
driver process to be launched. Upon launch, the driver process is
isolated to a single core of the CPU to ensure maximum timing
precision. Next, we launch the fingerprinting script that initiates
a series of reads of different sizes and in different locations
on the drive. The returned data is not recorded because only
the timing information of these reads is important. Once the
collection script completes, we mount the character device and
write all of the recorded timing information to a log file. The
system then unmounts the character device and USB device
and disables the USB port to simulate unplugging the device.
We also simulate non-idle system states: the Linux stress
utility is run to fully utilize one CPU core on every other
sample. The above process is repeated for the next port on the
USB hub. All drives are tested in a round-robin fashion.

Once 20 fingerprints have been gathered from each drive,
we physically unplug each drive and plug it into a different
port on the USB hub; this ensures that any difference observed
in the readings is caused by the individual USB drives, not the
USB port.
C. Fingerprint Script

To gather a fingerprint, we utilize a script of 2,900 reads.
Each read is randomly chosen to be of size 16KB, 32KB,
or 64KB, and to access six logical blocks at 0x0, 0x140000,
0x280000, 0x3c0000, 0x500000, 0x640000. The block ad-
dresses are spread out in an attempt to access diverse physical
locations on the drive. To ensure that any uniqueness observed
in the fingerprint is caused by physical variations in the drive
accesses and not script variations, the script is randomly
generated once and then used for each device.

D. Training and Testing Datasets

As mentioned above, in our experiments, fingerprints are
gathered in a round-robin fashion from devices in a set of 20.

After collecting 20 fingerprints for all drives, all devices are
physically unplugged and then plugged into different ports.
We thus refer to a group of 20 fingerprints as a ‘session’ of
data. For all devices listed in Table I, we gather 4 sessions
of fingerprints (i.e., 80 fingerprints). We then conduct 4-fold
cross-validation by selecting 3 sessions for training, and 1
session for testing.

VI. TIME-PRINT RESULTS

To evaluate the effectiveness of Time-Print, we conduct
a series of experiments in the three scenarios listed in
Section II, namely, identifying devices with different brands,
identifying unseen devices of the same brand, and auditing
(i.e., classification on all insider devices).

A. Scenario @®: Brand Identification

We first examine the accuracy for identifying a random
(unknown) USB device of a brand different from approved
devices. For instance, a system administrator would like to
prevent a dropped device attack where a careless employee
plugs in a malicious unauthorized device. While Figure 2 (in
Section 2) shows that this timing-based fingerprint has the
potential to be very effective, here we quantitatively evaluate
all devices listed in Table L.

Approach. To accomplish this task, we expect that Time-
Print trained on a specific device should always accept that
device while rejecting all other devices with different models
and brands. Thus, we design a single-class classification system
using the K-Means algorithm. The one class classification
system creates clusters of samples from the approved device
and draws a decision boundary to reject any readings from
devices of other brands or models.

Particularly, K-Means requires that each data sample is
presented as a 1D feature list. K-Means utilizes this feature
list and a distance metric to calculate a sample to sample
distance by examining the features of each sample, and groups
the samples into clusters. Once the algorithm converges, we

1009

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on May 11,2023 at 17:48:32 UTC from IEEE Xplore. Restrictions apply.

Training Devices
. SanDisk Samsung | SanDisk
Generic
Cruzer Blade | Bar Plus Ultra
Generic 99.9% 0.0 0.0 0.0
” SanDisk
) 0.0 98.8% 0.0 0.0
.g Cruzer Blade ¢
o)
a Samsung
0.0 0.0 99.7% 0.0
@ | Bar Plus ?
Z SanDisk
Q X . . 99.9%
& Ultra 0.0 0.0 0.0 o
Other USB2 0.0 0.0 0.0 0.0
Other USB3 0.0 0.0 0.0 0.0

TABLE II: Percentage of samples accepted when trained for
each device model.

calculate the distance of each training sample to its closest
cluster. The maximum distance value is then used to set a
decision boundary. In our case, for a fingerprint to be accepted
by the clustering algorithm, it must be within the decision
boundary of one of the pre-trained clusters. We first preprocess
each sample into different chunks by separating each reading
based on the size and location offset of the measurement.
With the size and locations grouped, we calculate the mean of
each group, generating a 1D feature list for each sample, as
illustrated in the upper part of Figure 5.

Training and testing. We train our one-class classifier on
four types of devices: (1) the Generic Drives (10 devices),
Samsung Bar Plus (4 devices), SanDisk Ultra (10 devices),
and SanDisk Cruzer Blade devices (10 devices). We then test
the classifier against all other devices listed in Table 1. For
clarity of presenting the results, we group all extra devices
with the USB 3.X protocol into a set called ‘other USB3’, and
all extra devices with the USB 2.0 protocol into a set called
‘other USB2’.

For example, to test the accuracy for the Generic Drives,
we have four sessions (80 fingerprints in total) of data for all
ten devices in this model. For Generic Drive #1, we train the
classifier using three sessions of data and test the classifier
using the remaining one session of data, and the data from
all other devices from different brands/models. We repeat the
experiment for each Generic device and report the average
accuracy.

Accuracy. The results are presented in Table II, showing
very high accuracy: an average true accept rate of 99.5% while
rejecting all drives of different models and brands (i.e., zero
false accept rate). As mentioned in the threat model, Time-Print
is mainly designed for use in a high-security system. Such
a system should always reject unknown models to minimize
security risks. While the true accept rate of 99.5% may still
reject a legitimate device, with a very small chance, for the
first trial, the user can simply re-plugin the USB drive and
re-authenticate with the system. The probability of being
rejected twice in a row is only 0.0025%. In other words, the
probability of a legitimate device being accepted after two
trials is 99.9975%, which is very close to one.

Overall, these results show that Time-Print can accurately
distinguish unknown devices with different brands and models
from legitimate devices.

B. Scenario @: Same Brand Device Identification

The second scenario requires Time-Print to identify unseen
devices of the same brand and model, which is a much more
difficult task as all devices share the same design.

Approach. To this end, we utilize a 2-D convolutional
neural network for the classification task. As our task is not
to locate the best possible network for classification but to
demonstrate that fingerprinting a USB mass storage device is
possible, we adopt a standard classification network design.
For reference, our network architecture is provided in Table VI
in the Appendix.

For preprocessing, similarly to Scenario @, we separate the
raw timing information by size and location. As the script
contains six possible locations and three possible sizes, the
separation procedure produces 18 distinct collections of timing
data for each fingerprint gathered.

To utilize these values within a neural network, we transform
their raw format (a collection of numbers ranging from one to
ten million) to a value range that works for neural networks
(e.g. 0 to 1). Especially, we convert the data from each group
to a histogram, with all data being scaled by the group global
minimum and maximum values, from the entire training set.
Such a method creates a fine-grained representation of the
signal. This also makes sense as large reads take much longer
to complete than short reads, and a full ranged histogram would
contain a large amount of unimportant zero values. To ensure
experimental integrity, the individual minimum and maximum
ranges are recorded and used to process the testing set.

Each histogram can be represented as a 1D vector of
measurement frequency, and the histograms for all groups
can be concatenated together to create a 2D input vector to the
classification network. This process is illustrated in the lower
part of Figure 5. Another advantage of the histogram and neural
network combination is that the network can rapidly be tuned
to work for different drives, since the number of histogram
bins, readings per size and location, or input trace can easily be
adjusted while maintaining a consistent preprocessing pipeline.

Training and testing. To achieve accurate identification,
system administrators can purchase multiple devices from
the same brand and model to serve as ‘malicious’ devices
to train the classifier. We emulate this scenario by examining
the SanDisk Cruzer Blade, SanDisk Ultra, and the Generic
drives. We have 10 devices for each model. Among the 10
devices, for training, one device is selected as the ‘legitimate’
drive, and 8 of the remaining 9 devices are chosen as ‘malicious’
drives; then the last is used as the ‘unseen’? device for testing
purposes. During training, we use 60 samples of each drive
involved. During testing, we utilize the remaining 20 samples of
each ‘legitimate’ drive and 20 samples of each ‘unseen’ drive.

3The ‘unseen’ device is equivalent to an attacker’s ‘malicious’ device, and
we use a different term to differentiate the malicious device in testing from
those used in training.

1010

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on May 11,2023 at 17:48:32 UTC from IEEE Xplore. Restrictions apply.

Generic SanDisk SanDisk
Cruzer Blade Ultra
TAR TRR TAR TRR TAR TRR
Raw 922% | 93.8% | 96.5% | 89.2% | 97.6% | 90.6%
Augment | 97.3% | 91.7% | 98.0% | 93.5% | 98.7% | 91.4%

TABLE III: Average True Accept Rate (TAR) and True Reject
Rate (TRR) for same model device identification.

To ensure fairness and remove any influence of randomness,
we test all 90 possible combinations (10 possible ‘legitimate’
drives x 9 possible ‘unseen’ drives) and cross-validate each
by rotating the samples utilized for training and testing.

Accuracy. Table III presents the results, showing a com-
pelling average true accept rate (TAR) of 95.4% and an average
true reject rate (TRR) of 91.2%.

After investigating the false acceptances, we find that most
false acceptances occur in pairs. We realize that the problem of
classifying an unknown drive is likely to benefit from synthetic
data. Augmenting the training set with random variations (in an
attempt to simulate more unknown devices), or with samples
from more ‘malicious’ devices may better solidify the decision
boundary of the network, leading to higher overall accuracy.
We also augment the samples of the ‘legitimate’ drives, albeit
with much smaller perturbations, to increase the true accept rate.
We randomly select samples from the training set and perturb
them with noise. This augmentation procedure improves the
results, increasing the overall average accuracy to 95%. More
specifically, the average true accept rate increases to 98.0%,
and the average true reject rate increases to 92.2%.

Overall, these results indicate that our approach has enough
information to uniquely fingerprint USB drives and that Time-
Print can even detect unseen devices of the exact same brand
and model.

C. Scenario ®: Auditing / Classification

We finally evaluate the effectiveness of Time-Print on the
auditing scenario, in which a system administrator needs to
determine exactly which device had files copied to/from it (to
track/identify an insider threat). We evaluate the accuracy for
Time-Print to uniquely identify a single device from a pool of
devices that are authorized for use.

We employ a network with a similar architecture to the
one employed in Scenario ® and shown in Table VI of the
Appendix. Since the goal is to identify each individual drive,
we modify the final output layer of the network to contain the
same number of neurons as devices that we attempt to classify.
We utilize the same histogram transformation from Scenario @,
where each sample is separated by size and location and then
converted to a histogram for utilization in the neural network.

Similarly to Scenario @, we train and test (with cross-
validation) a classifier for each model (i.e., only drives in one
model are trained and tested), as we expect that an organization
that adopts a device authentication system like Time-Print will
limit the usage of USB drives to a particular model. Our
classification results are listed in Table IV for the SanDisk

Device Name (# of Devices) | Classification Accuracy
SanDisk Cruzer Blade (10) 98.6%
Generic Drive (10) 99.1%
SanDisk Ultra (10) 98.7%
Samsung Bar Plus (4) 98.4%

TABLE 1IV: Classification accuracy for each drive type in
Scenario ©.

Cruzer Blade, Generic, SanDisk Ultra, and Samsung Bar Plus
devices. We can see that Time-Print achieves accuracy above
98.4% for varied devices, including those from some of the best
selling manufacturers (SanDisk and Samsung). Furthermore,
the data for SanDisk and the Generic devices demonstrates that
the variability between drives is rich enough to create distinct
classification boundaries among different drives. Finally, this
data shows that USB fingerprinting is not limited to a single
manufacturer or USB protocol. In short, Time-Print is able to
fingerprint a USB drive within the same brand and model for
accurate classification.

VII. PRACTICALITY OF TIME-PRINT

With the viability of fingerprinting USB mass storage devices
demonstrated, we further examine the practicality of Time-
Print in multiple aspects, including the latency of fingerprint
acquisition, the impact of host system hardware variations on
fingerprint accuracy, device usage, location accesses, whether
just the flash controller itself can be utilized for fingerprinting,
and how Time-Print might be deployed in the real world.

A. System Latency

The time to acquire the USB fingerprint varies depending
upon the number of reads and the protocol used by the device
(e.g., USB 2.0 or 3.0). We measure the time required to capture
the fingerprint from a SanDisk Cruzer Blade USB 2.0 device
and a SanDisk Ultra USB 3.0 device. The time cost of achieving
the results in Section VI is an average of 11 seconds on the
USB 2.0 drive and 6 seconds on a USB 3.0 drive, respectively.
The time difference is expected as the components of the USB
3.0 drives are faster to support the enhanced speed of the
protocol.

On the other hand, intuitively, fewer extra reads in the driver
should save time, but degrade the identification accuracy. We
further evaluate how the number of observed reads affects the
accuracy of Time-Print by truncating the gathered samples
and examining the accuracy in Scenario @ with the SanDisk
Blade and Ultra devices. The results are presented in Figures 6
and 7. Both figures show that the accuracy decreases by at
least a full percentage point when the number of samples is
halved. The degradation continues gradually on the USB 2.0
device (down to 95% accuracy when 30x fewer samples are
taken) and more steeply on the USB 3.0 device (reducing to
90% accuracy when 30x fewer samples are taken). Overall,
even with 10x fewer samples being used, Time-Print can still
achieve more than 94.5% accuracy while reducing the latency
to only about 1 second, since the time required to acquire a
fingerprint scales linearly with the number of extra reads.

1011

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on May 11,2023 at 17:48:32 UTC from IEEE Xplore. Restrictions apply.

§ SanDisk Ultra Acc
) 0,
100(y 98.7% 5Y
g 6 5% 953% 95.6% o459 94.5%
3 90.8%
< 90%
c
kel
2
S 80%
8
2
S 70%
(@)
60%

1x 2x 4x 6x 8x 10x 30x

Decrease in Sample Count

Fig. 6: Classification accuracy degradation as the number of
samples is reduced (10 SanDisk Ultra USB 3.0 drives).

SanDisk Cruzer Blade Acc

>
@ 100% 1986% o750, 979, 97.2% 96.6% 96.5%
5 95%
3
< 90%
c
Xe]
S 80%
:‘(7—)
[%]
S 70%
(&]

60%

1x 2x 4x 6x 8x

10x 30x

Decrease in Sample Count

Fig. 7: Classification accuracy degradation as the number of
samples is reduced (10 SanDisk Blade USB 2.0 drives).

Such a result indicates that there exists a trade-off between
the time required to generate a fingerprint and the ability to
use the fingerprint for unique device authentication. System
administrators can utilize this knowledge to choose between
the time required to obtain a fingerprint for their system and
the desired security level.

B. Fingerprints with Hardware Variation

When the fingerprint data is acquired, it must pass through
a myriad of system components. For example, the data
transmission, beginning with the USB drive, must go through
the ports and hubs along its path, through the USB controller
on the motherboard, and finally through the bridge between the
motherboard USB controller and the processor. Each of these
system components may contain different levels of routing
logic and create timing variations in the fingerprint. Therefore,
we conduct several experiments to understand the impact of
hardware variations on fingerprint accuracy.

Different Ports and Hubs.

To understand the impact of using different ports and hubs,
we utilize the training data from Section VI, but gather new
testing sets with both Generic and SanDisk Blade devices. We
conduct two tests: (1) the USB hub is plugged into a different

Training System

Testing System

Intel Xeon E5507

Intel Xeon W3550

P
rocessor 4C/4T @ 2.27 GHz | 4C/8T @ 3.06 GHz

Motherboard Dell 09KPNV Dell 0XPDFK

RAM 2x2GB 1x8GB

USB Controller

Intel 82801J1

Intel 82801J1

TABLE V: System configurations for cross host investigation.

host port and (2) another Amazon Basics USB-A 3.1 10-Port
Hub is used to test the accuracy of these configurations with
the classifier and training data of Scenario ®. We observe that
utilizing a different host port or a different hub slightly reduces
the accuracy from 99% to about 95% for the Generic devices
but has no effect on the SanDisk Blade devices.

Different Host. We further investigate the impact of different
host machines: can the same fingerprint be transferred between
different host machines? We expect to see a degradation in
accuracy as many factors (e.g., variations in the clock speed
of the processor, motherboard, etc.) are likely to alter the
fingerprint. To assess the impact, we gather a dataset on a
second host system with a different configuration (system
comparison is listed in Table V) using both the Generic and
SanDisk Blade devices. Again, we utilize Scenario ® as an
example to measure the accuracy degradation.

The main difference between the two host systems lies in
the different CPUs. The TSC tick rate (i.e., the rate at which
the TSC increments) is directly dependent on the base clock
speed of CPU. Thus, we prescale the data gathered on the
testing machine by multiplying the timing values by a factor of
0.7386, which is the ratio of 2.26 GHz on our training machine
to 3.06 GHz on the testing machine.

With this preprocessing step, the SanDisk Blade devices
experience no accuracy degradation, and the Generic drives
experience an 11% accuracy decrease to 88%, which is still a
promising finding. To understand the reason for these different
behaviors, we uncover that the Generic devices appear to
produce noisier distributions with more similar peak locations
than the SanDisk Blade devices, as shown in Figure 2. We
infer that such increased noise coupled with different electrical
paths (e.g., different hubs, ports, machines) makes the Generic
devices harder to classify in a cross host scenario. However,
it should be noted that in an enterprise environment, people
usually purchase a number of identical host machines with
the same model of processor, motherboard, USB controllers,
etc. As a result, we might experience even better fingerprint
transfer between hosts. Meanwhile, this host transfer is not
required in our threat model, as system administrators can train
an authentication system for each protected computer.

C. Fingerprint Robustness with Device Usage

Flash devices utilize a logical to physical mapping within
the flash translation layer to ensure that the flash blocks are
evenly used within a device (a process called wear-leveling).
When the usb-storage driver attempts to write data to an
address, it specifies a logical address which the flash translation

1012

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on May 11,2023 at 17:48:32 UTC from IEEE Xplore. Restrictions apply.

layer converts to a physical address. Because flash blocks are
modified at the block level, instead of the bit level, a write
operation requires the data to be written to a new empty block
and the logical to physical address mapping is updated. Since
Time-Print utilizes the physical timing characteristics of specific
physical blocks (accessed via logical addresses), this remapping
might degrade the accuracy of the fingerprint as the device is
written to.

To investigate the impact of this remapping, we conduct
an experiment by writing hundreds of random files to five
SanDisk Cruzer Blade devices and track the accuracy of the
classification system by gathering a sample between each write.
In total, we write 6,520MB of data to each 8GB drive.

The results demonstrate that Time-Print is somewhat resilient
to drive writes, experiencing no accuracy degradation until
about 2.3GB at which point the accuracy rapidly decreases. To
better understand the cause of this sudden accuracy degradation,
we examine the behavior of the actual flash drive. We utilize
the tool hdparm to observe the actual logical block address
(LBA) of each file, and notice that the drive attempts to write
files to the lowest available LBA. The classification neural
network essentially performs a matching task, attempting to
classify the trace as the class that is the closest to the training
samples. After more than half of the LBAs utilized for the
fingerprint are written, the neural network is no longer able
to perform this task reliably, since the majority of the LBAs
are no longer the same. To address this problem, there are two
solutions: LBA reservation and manufacturer support.

LBA reservation. If Time-Print can prevent the drive from
updating the virtual to physical mapping of the blocks utilized
for fingerprinting, it can prevent drive writes from affecting
the fingerprint, as the drive will not reassign pages that are in
use. This can be accomplished by placing small placeholder
files* at their locations for LBA reservation. We implement
this mechanism by copying large files (to occupy large swaths
of LBAs) and small files into the chosen fingerprint locations,
and then deleting the large files. We use the hdparm tool to
check the LBAs used by the small fingerprint files. All of the
small files combined together are only 768KB in total, thus
inducing low overhead. We then write 7.3GB (the capacity of
the drive) data to the drive in 16MB chunks, and observe no
changes in the histograms and no accuracy degradation. This
solution can adequately accommodate the normal drive usage
as long as the small fingerprint files are not deleted (by users).

Manufacturer Support. This is the most resilient solution
but requires collaboration with drive manufacturers. Manufac-
turers already provide extra flash blocks that are hidden from
users to facilitate better wear leveling and drive performance.
They can similarly reserve extra blocks for fingerprinting
on new devices. This solution can ensure that Time-Print
fingerprints are unaffected by write operations and further
ensure that accidental deletion of the contents of the drive will
not interfere with the fingerprint.

4A placeholder file should be a multiple of the remappable block size of
the device, to ensure that only the placeholder file fully occupies a specific
location, preventing unintentional remapping.

D. Spoofing A Fingerprint

An advanced attacker might design a malicious device to
deceive Time-Print by mimicking a legitimate drive (e.g.,
replicate the physical fingerprint with an FPGA based system).
While all of the experiments in this study utilize a static
read sequence of 2,900 reads, in a real deployment, the read-
sequence, including the specific locations and number of reads,
can be either a secret (stored on the protected system) or
randomly generated based upon a device identifier (e.g., use
the serial number as a random seed). Since attackers are unable
to know the exact locations utilized by Time-Print, they can
only fingerprint random locations and hope that Time-Print
would accept the spoofed values.

To assess the security of Time-Print against this type of
advanced attack, we run an experiment where we generate
random choices of locations to test whether Time-Print accepts
a legitimate drive fingerprinted in the wrong locations. To
emulate an attacker who is unaware of the correct sample
locations, we gather a new dataset for the drives that are
sampled in the wrong locations. More specifically, we generate
a script that randomly chooses 6 locations on a drive and
generates reads every time the drive is plugged in. We test
Time-Print similarly to Scenario ® wherein we train Time-Print
to accept samples in the correct locations of the legitimate
drive and to reject samples from other devices. To further
augment the training set, we add random noise to some of
the training samples from the legitimate drive (similarly to
Scenario @). Our testing set consists of the samples from the
legitimate device taken in the correct locations, which should
be accepted, and the samples from the legitimate device taken
in the wrong locations (to emulate a spoofing attack) that
should be rejected. We test this setup with the SanDisk Blade,
Ultra, and Generic devices and observe an average of 96.4%
true accept rate and 99.6% true reject rate. This result indicates
that Time-Print is very robust against such ‘spoofing’ attacks.

E. Other Considerations

We further investigate whether better accuracy could be
obtained by increasing the number of addresses accessed by
Time-Print. Theoretically, accessing more locations on the drive
should provide more information to better identify drives. To
this end, we conduct experiments on accessing 18 locations (as
opposed to 6), while maintaining the same number of total extra
reads. We gather data on the SanDisk Cruzer Blade, Generic,
and SanDisk Ultra drives, and evaluate the performance in
Scenarios ® and ®. We observe that while the individual
accuracy of each drive type fluctuates slightly, the average
performance (across all three models) in each scenario remains
similar.

Another consideration is the modification of the access
order. We run an experiment with five SanDisk Cruzer Blade
devices by randomizing the access order for each sample.
There is no accuracy degradation. We also examine whether
the device format affects Time-Print. We reformat all of the
devices to EXT2 and retrain Time-Print. Similarly, no accuracy
degradation is observed. This is expected as the file system

1013

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on May 11,2023 at 17:48:32 UTC from IEEE Xplore. Restrictions apply.

format is another virtual layer above the physical pages of the
USB device and therefore should not affect the fingerprint.

F. Fingerprint the Flash Controller

We also examine whether the timing information from only
the flash controller could be utilized to identify the drives.
We investigate this by utilizing the timing information of the
‘transfer status’ packet (a packet that comes only from the
USB controller on the mass storage device), instead of the
timing information for returning the data. We test this on both
the SanDisk Cruzer Blade and the SanDisk Ultra devices. We
find that utilizing only this information reduces accuracy from
greater than 98% to 65% and 45% for the two types of devices,
respectively. This shows that while the timing information of
the flash controller can be utilized to identify some devices, it
alone is insufficient to create a robust fingerprint.

G. Real-World Deployment of Time-Print

We have demonstrated that Time-Print can be utilized
in various scenarios for USB drive authentication. Each of
the scenarios can serve as a module in a more complete
security system that might be deployed in the real world.
For example, a system administrator concerned mainly about
protecting systems from stray external devices can employ our
system as demonstrated in Scenario @, while an administrator
with concerns about targeted attacks might choose to utilize
Scenarios @ and @ together, first rejecting unknown models
and then ensuring that the device is legitimate. Scenario ©
can be further employed to track user activities for auditing
purposes. Time-Print can also be integrated into other USB
security systems, which offer firewall like protections [4], [58],
[59] but rely on the drive to correctly report its identification.
The identification capability of Time-Print will provide a
stronger defense against skilled attackers who can alter device
identifiers [23], [30].

H. Future Work

Our study has demonstrated that Time-Print can accurately
authenticate USB drivers from the same brand and model. In the
future work, we plan to further explore the timing channel by (1)
examining devices from more different scenarios, such as the
same brand/model but with different capacities, (2) considering
the wide deployment of Time-Print and user enrollment in
practice, and (3) investigating the potential attacks against
Time-Print.

In particular, strong FPGA attackers who can replay the
timing information of the whole USB driver (e.g., physically
unclonable function (PUF) [48] related profiling/modeling
attacks) might potentially break Time-Print. Such attackers
can record and profile the timing of all locations on the drive,
and then answer arbitrary queries with an FPGA. However,
this requires significant efforts (both time and storage) from
attackers to fully understand the patterns (e.g., building the
histogram for each location). In the future work, we will assess

the robustness of Time-Print against such strong FPGA attacks.

VIII. RELATED WORK

In this section, we survey the research efforts that inspired
our work as well as highlight the key differences between our
work and previous research.

A. Device Fingerprinting

Uniquely identifying individual physical devices has long
been of interest to the security community [10], [11], [35], [46],
[68]. The ability to track and authenticate a physical device
accurately can help increase security and serve as another factor
in multi-factor authentication. As such, many different methods
for device fingerprinting have been presented.

One of the most common methods for fingerprinting is
the utilization of (un)intentional electromagnetic frequency
radiation. Cobb er al. [15], [16] showed that the process
variations in the manufacturing process cause subtle variations
in the unintentional electromagnetic emissions, which can be
utilized to generate a valid fingerprint for similar embedded
devices. Cheng et al. [14] further found that unique fingerprints
can be created for more sophisticated systems like smartphones
and laptops. Other prior works [9], [20], [43], [47] study the
fingerprint generation in radiating electromagnetic signals for
communication (e.g. Zigbee, WiFi, etc.). The most similar work
to Time-Print is Magneto [27], which uses the unintentional
electromagnetic emissions during device enumeration on a
host to fingerprint USB mass storage devices. While their
work demonstrates the ability to classify different brands and
models accurately, the system requires expensive measurement
equipment. By contrast, our work requires no special equipment
and uncovers a novel timing channel that can be used to further
identify devices within the same brand and model.

Device serial numbers, descriptors, and passwords are
also used to thwart the connection of unauthorized USB
devices [1], [28]. These defenses inherently trust that the USB
device is accurately reporting software values. TMSUI [66],
DeviceVeil [55], and WooKey [7] use specialized hardware to
uniquely identify individual USB mass storage devices, and as
a result, most of these systems are not compatible with legacy
devices. Instead, Time-Print is completely software-based and
does not require any extra or specialized hardware. The USB
3.0 Promoter Group has proposed a USB 3.0 Type-C PKI-
based authentication scheme [62] to identify genuine products,
but these mechanisms are not designed to uniquely identify
individual devices. Other prior works utilize a USB protocol
analyzer [37] or smart devices [5] to identify a host system
and its specific operating system by inspecting the order of
enumeration requests and timing between packets [18]. Unlike
those works, the objective of Time-Print is to identify the
peripheral device, instead of the host.

B. Flash Based Fingerprints

Several prior works have investigated whether the properties
of flash devices can be utilized for fingerprinting. For example,
device fingerprints are constructed using programming time
and threshold voltage variations [45], [64]. Others [22], [31],
[34], [41], [50], [54], [65] further investigate the design of

1014

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on May 11,2023 at 17:48:32 UTC from IEEE Xplore. Restrictions apply.

physically unclonable functions in flash chips and explore the
impact of write disturbances, write voltage threshold variation,
erase variations, and read voltage threshold variation. Sakib et
al. [49] designed a watermark into flash devices by program-
erase stressing certain parts of a device.

The above techniques work at a physical level, which requires
control and functionalities that may not be available in a cost-
constrained, mass-market device like a USB flash drive. Time-
Print only utilizes read operations (a common function available
on all USB flash drives) and thus is non-intrusive. In addition,
while these technologies could be incorporated into new devices,
Time-Print is fully compatible with existing devices and only
requires a slight modification to the host driver.

C. USB Attacks and Defenses

USB is an easy to use and trusting protocol, which imme-
diately begins to communicate with and set up devices when
they are plugged in. Tian et al. [60] surveyed the landscape of
USB threats and defenses from USB 1.0 to USB C, showing
that most existing defenses that require extra hardware do not
adequately work with legacy devices. Several attacks [30], [23]
have demonstrated that modifying the firmware of USB devices
can rapidly subvert a system.

Many defenses have been proposed to mitigate the problem.
For example, the TPM (trusted platform module) has been used
to protect sensitive information [6], [12]. GoodUSB [58] at-
tempts to thwart firmware modification attacks [30] by creating
a permission system so that users can specify permissions for
devices. VIPER [38] proposes a method to verify peripheral
firmware and detect proxy attacks via latency based attestation.
Hernandez et al. [24] automatically scanned USB firmware for
malicious behaviors. USBFILTER [59] presents a firewall in
the USB driver stack to drop/allow USB packets based on a set
of rules. Similarly, Cinch [4] creates a virtual machine layer
between USB devices and the host machine to act as a firewall.
Johnson et al. [32] designed a packet parser to protect the
system from malformed USB packets. Tian et al. [57] proposed
a unified framework to protect against malicious peripherals.
Other prior works like USBeSafe [33] and USBlock [40] utilize
machine learning algorithms to analyze the characteristics of
USB packet traffic to prevent keyboard mimicry attacks [30].
Like those works, Time-Print is a software-based approach to
enhancing USB security.

IX. CONCLUSION

This paper presents Time-Print, a novel timing-based fin-
gerprinting mechanism for identifying USB mass storage
devices. Time-Print creates device fingerprints by leveraging
the distinctive timing differences of read operations on different
devices. We develop the prototype of Time-Print as a completely
software-based solution, which requires no extra hardware
and thus is compatible with all current USB mass storage
devices. To assess the potential security benefits of Time-
Print, we present a comprehensive evaluation of over 40 USB

with greater than 99.5% accuracy, (2) identify seen/unseen
devices within the same model with 95% accuracy, and (3)
individually classify devices within the same model with
98.7% accuracy. We further examine the practicality of Time-
Print, showing that Time-Print can retain high accuracy under
different circumstances while incurring low system latency.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their
insightful and constructive comments, which helped us to
improve the quality of this paper. This work was supported in
part by the National Science Foundation (NSF) grants DGE-
1821744 and CNS-2054657 and the Office of Navy Research
(ONR) grant N0O0014-20-1-2153.

REFERENCES

[1] USBGuard. https://github.com/USBGuard/usbguard.

[2] Exploring Stuxnet’s PLC Infection Process.
https://community.broadcom.com/symantecenterprise/communities/
community-home/librarydocuments/viewdocument?Document
Key=ad4b3d10-b808-414c-b4dc3-aeda2ed85560&CommunityKey=
1ecf5f55-9545-44d6-b0f4-4e4a7f5f5e68 &tab=librarydocuments, 2010.

[3] USB Implementers Forum Revision 2.0. Universal Serial Bus Power
Deliver Specification, 2016.

[4] Sebastian Angel, Riad S. Wahby, Max Howald, Joshua B. Leners,
Michael Spilo, Zhen Sun, Andrew J. Blumberg, and Michael Walfish.
Defending against Malicious Peripherals with Cinch. In USENIX Security
Symposium, 2016.

[5] Adam Bates, Ryan Leonard, Hannah Pruse, Daniel Lowd, and Kevin
Butler. Leveraging USB to Establish Host Identity Using Commodity
Devices. In ISOC Network and Distributed System Symposium (NDSS),
2014.

[6] Adam Bates, Dave (Jing) Tian, Kevin R.B. Butler, and Thomas Moyer.
Trustworthy Whole-System Provenance for the Linux Kernel. In USENIX
Security Symposium, 2015.

[7]1 Ryad Benadjila, Arnauld Michelizza, Mathieu Renard, Philippe Thierry,
and Philippe Trebuchet. WooKey: Designing a Trusted and Efficient USB
Device. In ACM Computer Security Applications Conference (ACSAC),
2019.

[8] Harita Bhargava and Sanjeev Sharma. Secured Use of USB over the
Intranet with Anonymous Device Identification. In IEEE Conference on
Communication Systems and Network Technologies (CSNT), 2018.

[9] Trevor Bihl, Kenneth Bauer, and Michael Temple. Feature Selection

for RF Fingerprinting With Multiple Discriminant Analysis and Using

ZigBee Device Emissions. IEEE Transactions on Information Forensics

and Security, 2016.

Hristo Bojinov, Yan Michalevsky, Gabi Nakibly, and Dan

Boneh. Mobile Device Identification via Sensor Fingerprinting.

https://arxiv.org/pdf/2002.05905.pdf, 2014.

Vladimir Brik, Suman Banerjee, Marco Gruteser, and Sangho Oh.

Wireless Device Identification with Radiometric Signatures. In ACM

International Conference on Mobile Computing and Networking (Mobi-

Com), 2008.

Kevin R. B. Butler, Stephen E. McLaughlin, and Patrick D. McDaniel.

Kells: A Protection Framework for Portable Data. In ACM Annual

Computer Security Applications Conference (ACSAC), 2010.

Eric Byres. The Air Gap: SCADA’s Enduring Security Myth. Communi-

cations of the ACM, 2013.

Yushi Cheng, Xiaoyu Ji, Juchuan Zhang, Wenyuan Xu, and Yi-Chao

Chen. DeMiCPU: Device Fingerprinting with Magnetic Signals Radiated

by CPU. In ACM Conference on Computer and Communications Security

(CCS), 2019.

William Cobb, Eric Garcia, Michael Temple, Rusty Baldwin, and Yong

Kim. Physical Layer Identification of Embedded Devices Using RF-

DNA Fingerprinting. In IEEE Military Communications Conference

(MILCOM), 2010.

[10]

(11]

[12]

[13]

[14]

[15]

dri in th diff R . d . Ti [16] William Cobb, Eric Laspe, Rusty Baldwin, Michael Temple, and Yong
I‘I'VCS m t. Ijee 1 ereI.]t sec.urlty scenarios, emonStr?'tmg me- Kim. Intrinsic Physical-Layer Authentication of Integrated Circuits. IEEE
Print’s ability to (1) identify known/unknown device models Transactions on Information Forensics and Security, 2012.

1015

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on May 11,2023 at 17:48:32 UTC from IEEE Xplore. Restrictions apply.

[17]
(18]
[19]
[20]

[21]

[22]

[23]

[24]

[25]
[26]

[27]

(28]

[29]

(30]

[31]

[32]

[33]

[34]

[35]

[36]
[37]

(38]

[39]

[40]

[41]

[42]

[43]

Compaq, Hewlett-Packard, Intel, Lucent, Microsoft, NEC, and Philips.
Universal Serial Bus Specification, Revision 2.0, 2000.

Andy Davis. Revealing Embedded Fingerprints: Deriving Intelligence
from USB Stack Interactions. Technical report, nccgroup, 2013.
Douglas Gilbert. sg3_utils. https://github.com/hreinecke/sg3_utils.
Clay Dubendorfer, Benjamin Ramsey, and Michael Temple. An RF-
DNA Verification Process for ZigBee Networks. In IEEE Military
Communications Conference (MILCOM), 2012.
USB Implementers Forum. Defined
https://www.usb.org/defined-class-codes.

Zimu Guo, Xiaolin Xu, Mark M. Tehranipoor, and Domenic Forte. FFD:
A Framework for Fake Flash Detection. In ACM Design Automation
Conference (DAC), 2017.

hakSdarren. USB Rubber Ducky. https://github.com/hakSdarren/USB-
Rubber-Ducky, 2016.

Grant Hernandez, Farhaan Fowze, Dave (Jing) Tian, Tuba Yavuz, and
Kevin R.B. Butler. FirmUSB: Vetting USB Device Firmware Using
Domain Informed Symbolic Execution. In ACM Conference on Computer
and Communications Security (CCS), 2017.

Hewlett-Packard, Intel, Microsoft, NEC, ST-NXP Wireless, and Texas
Instruments. Universial Serial Bus 3.0 Specification, Revision 1.0, 2008.
Hewlett-Packard, Intel, Microsoft, Renesas, ST-Ericsson, and Texas
Instruments. Universal Serial Bus 3.1 Specification, 2013.

Omar Adel Ibrahim, Savio Sciancalepore, Gabriele Oligeri, and
Roberto Di Pietro. MAGNETO: Fingerprinting USB Flash Drives via
Unintentional Magnetic Emissions. ACM Transactions on Embedded
Computing Systems, 2020.

Advanced Systems International. USB-Lock-RP. https://www.usb-lock-
rp.com/.

Jeffrey Robert Jacobs. Measuring the Effectiveness of the USB Flash
Drive as a Vector for Social Engineering Attacks on Commercial
and Residential Computer Systems. Master’s Thesis Embry-Riddle
Aeronautical University, 2011.

Karsten Nohl Jakob Lell. BadUSB - On Accessories that Turn Evil.
Blackhat USA, 2014.

Shijie Jia, Luning Xia, Zhan Wang, Jinggiang Lin, Guozhu Zhang, and
Yafei Ji. Extracting Robust Keys from NAND Flash Physical Unclonable
Functions. In Conference on Information Security (ISC), 2015.

Peter C. Johnson, Sergey Bratus, and Sean W. Smith. Protecting Against
Malicious Bits On the Wire: Automatically Generating a USB Protocol
Parser for a Production Kernel. In ACM Annual Computer Security
Applications Conference (ACSAC), 2017.

Amin Kharraz, Brandon L. Daley, Graham Z. Baker, William Robertson,
and Engin Kirda. USBESAFE: An End-Point Solution to Protect Against
USB-Based Attacks. In USENIX Research in Attacks, Intrusions and
Defenses (RAID), 2019.

Moon-Seok Kim, Dong-II Moon, Sang-Kyung Yoo, Sang-Hang Lee, and
Yang-Kyu Choi. Investigation of Physically Unclonable Functions Using
Flash Memory for Integrated Circuit Authentication. Transactions on
Nanotechnology, 2015.

Tadayoshi Kohno, Andre Broido, and K. C. Claffy. Remote physical
device fingerprinting. IEEE Transactions on Dependable and Secure
Computing, 2005.

David Kushner. The Real Story of Stuxnet, Feb 2013.

Lara Letaw, Joe Pletcher, and Kevin Butler. Host Identification via USB
Fingerprinting. In International Workshop on Systematic Approaches to
Digital Forensic Engineering (SADFE), 2011.

Yanlin Li, Jonathan M. McCune, and Adrian Perrig. VIPER: Verifying
the Integrity of PERipherals’ Firmware. In ACM Conference on Computer
and Communications Security (CCS), 2011.

Micron. NAND Flash 101: An Introduction to NAND Flash and How to
Design It In to Your Next Product, TN-29-19. Technical report, 2010.
Sebastian Neuner, Artemios G. Voyiatzis, Spiros Fotopoulos, Collin
Mulliner, and Edgar R. Weippl. USBlock: Blocking USB-Based Keypress
Injection Attacks. In Data and Applications Security and Privacy.
Springer International Publishing, 2018.

T Nguyen, Sunghyun Park, and Donghwa Shin. Extraction of Device
Fingerprints Using Built-in Erase-Suspend Operation of Flash Memory
Devices. IEEE Access, 2020.

National Institute of Standards and Technology. Security and Privacy
Controls for Federal Information Systems and Organizations, 2020.
J.L. Padilla, P. Padilla, J.F. Valenzuela-Valdés, J. Ramirez, and J.M.
Gorriz. RF Fingerprint Measurements for the Identification of Devices

Class Codes.

[44]

[45]

[40]

[47]

(48]

[49]

[50]

[51]

[52]
(53]

[54]

[55]

[56]
(571

(58]

[59]

[60]

[61]

[62]

[63]
[64]

[65]

[66]

[67]
[68]

1016

in Wireless Communication Networks Based on Feature Reduction and
Subspace Transformation. Measurement, 2014.

Raymond Pompon. Attacking Air-Gap-Segregated Computers.
https://www.£5.com/labs/articles/cisotociso/attacking-air-gap-segregated-
computers, 2018.

Pravin Prabhu, Ameen Akel, Laura M. Grupp, Wing-Kei S. Yu, G. Edward
Suh, Edwin Kan, and Steven Swanson. Extracting device fingerprints
from flash memory by exploiting physical variations. In Trust and
Trustworthy Computing. Springer Berlin Heidelberg, 2011.

Sakthi Radhakrishnan, A. Selcuk Uluagac, and Raheem Beyah. GTID:
A Technique for Physical Device and Device Type Fingerprinting. IEEE
Transactions on Dependable and Secure Computing, 2015.

Benjamin Ramsey, Michael Temple, and Barry Mullins. PHY Foun-
dation for Multi-Factor ZigBee Node Authentication. In /IEEE Global
Communications Conference (GLOBECOM), 2012.

Ulrich Ruhrmair and Jan Solter. PUF modeling attacks: An introduction
and overview. In 2014 Design, Automation & Test in Europe Conference
& Exhibition (DATE), 2014.

Sadman Sakib, Aleksandard Milenkovi¢, and Biswajit Ray. Flash
Watermark: An Anticounterfeiting Technique for NAND Flash Memories.
IEEE Transactions on Electron Devices, 2020.

Sadman Sakib, Md Rahman, Aleksandar Milenkovi¢, and Biswajit
Ray. Flash Memory Based Physical Unclonable Function. In /EEE
SoutheastCon, 2019.

Paul Sawers. US Govt. plant USB sticks in security study, 60% of
subjects take the bait. https://thenextweb.com/insider/2011/06/28/us-govt-
plant-usb-sticks-in-security-study-60-of-subjects-take-the-bait/, 2011.
ANTSpec Software. Flash Drive Information Extractor, 2019.

Steve Stasiukonis. Social Engineering, the USB Way.
https://www.darkreading.com/attacks-breaches/social-engineering-
the-usb-way/d/d-id/1128081, 2006.

Soubhagya Sutar, Arnab Raha, and Vijay Raghunathan. Memory-Based
Combination PUFs for Device Authentication in Embedded Systems.
Transactions on Multi-Scale Computing Systems, 2018.

Kuniyasu Suzaki, Yohei Hori, Kazukuni Kobara, and Mohammad Mannan.
DeviceVeil: Robust Authentication for Individual USB Devices Using
Physical Unclonable Functions. In Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN), 2019.

The Wireshark Team. Wireshark. https://www.wireshark.org/.

Dave Tian, Grant Hernandez, Joseph Choi, Vanessa Frost, Peter Johnson,
and Kevin R. B. Butler. LBM: A Security Framework for Peripherals
within the Linux Kernel. In IEEE Symposium on Security and Privacy
(S&P), 2019.

Dave Jing Tian, Adam Bates, and Kevin Butler. Defending Against
Malicious USB Firmware with GoodUSB. In ACM Annual Computer
Security Applications Conference (ACSAC), 2015.

Dave (Jing) Tian, Nolen Scaife, Adam Bates, Kevin Butler, and Patrick
Traynor. Making USB Great Again with USBFILTER. In USENIX
Security Symposium, 2016.

Jing Tian, Nolen Scaife, Deepak Kumar, Michael Bailey, Adam Bates,
and Kevin Butler. SoK: “Plug & Pray” Today — Understanding USB
Insecurity in Versions 1 Through C. In IEEE Symposium on Security
and Privacy (S&P), 2018.

Matthew Tischer, Zakir Durumeric, Sam Foster, Sunny Duan, Alec Mori,
Elie Bursztein, and Michael Bailey. Users Really Do Plug in USB Drives
They Find. In IEEE Symposium on Security and Privacy (S&P), 2016.
USB-3.0-Promoter-Group. Universial Serial Bus Type-C Authentication
Specification Release 1.0 with ECN and Errata, 2017.

Vadim Mikhailov. uhubctl. https://github.com/mvp/uhubctl.

Yinglei Wang, Wing kei Yu, Shuo Wu, Greg Malysa, G. Edward Suh, and
Edwin Kan. Flash Memory for Ubiquitous Hardware Security Functions:
True Random Number Generation and Device Fingerprints. In /IEEE
Symposium on Security and Privacy (S&P), 2012.

Sarah Xu, Wing kei Yu, G. Edward Suh, and Edwin Kan. Understanding
Sources of Variations in Flash Memory for Physical Unclonable Functions.
In International Memory Workshop (IMW), 2014.

Bo Yang, Yu Qin, Zhang Yingjun, Weijin Wang, and Dengguo Feng.
TMSUI: A Trust Management Scheme of USB Storage Devices for
Industrial Control Systems. In Information and Communications Security,
2016.

Pete Zaitcev. The usbmon: USB Monitoring Framework, 2005.

Jiexin Zhang, Alastair Beresford, and Ian Sheret. SensorID: Sensor
Calibration Fingerprinting for Smartphones. In IEEE Symposium on
Security and Privacy (S&P), 2019.

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on May 11,2023 at 17:48:32 UTC from IEEE Xplore. Restrictions apply.

APPENDIX A
ADDITIONAL TABLES

Layer Type Kernel Size | # of Filters/Neurons
1 2D Convolution (1,3) 8
2 2D Max Pool (1,2) -
3 2D Convolution (1,3) 16
4 2D Max Pool (1,2) -
5 2D Convolution (1,3) 128
6 2D Max Pool (1,2) -
7 Flatten - -
8 Dropout 1 -
9 Dense - 50
10 Dense - 50
11 Dense - 2

TABLE VI: Neural network architecture used for classification.

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on May 11,2023 at 17:48:32 UTC from IEEE Xplore. Restrictions apply.

1017

