
1

Learning Approximate Execution Semantics from
Traces for Binary Function Similarity

Kexin Pei∗, Zhou Xuan†, Junfeng Yang∗, Suman Jana∗, Baishakhi Ray∗
∗Columbia University, †Purdue University

Abstract—Detecting semantically similar binary functions – a crucial capability with broad security usages including vulnerability
detection, malware analysis, and forensics – requires understanding function behaviors and intentions. This task is challenging as
semantically similar functions can be compiled to run on different architectures and with diverse compiler optimizations or obfuscations.
Most existing approaches match functions based on syntactic features without understanding the functions’ execution semantics. We
present TREX, a transfer-learning-based framework, to automate learning approximate execution semantics explicitly from functions’
traces collected via forced-execution (i.e., by violating the control flow semantics) and transfer the learned knowledge to match
semantically similar functions. While it is known that forced-execution traces are too imprecise to be directly used to detect semantic
similarity, our key insight is that these traces can instead be used to teach an ML model approximate execution semantics of diverse
instructions and their compositions. We thus design a pretraining task, which trains the model to learn approximate execution semantics
from the two modalities (i.e., forced-executed code and traces) of the function. We then finetune the pretrained model to match
semantically similar functions. We evaluate TREX on 1,472,066 functions from 13 popular software projects, compiled to run on 4
architectures (x86, x64, ARM, and MIPS), and with 4 optimizations (O0-O3) and 5 obfuscations. TREX outperforms the state-of-the-art
solutions by 7.8%, 7.2%, and 14.3% in cross-architecture, optimization, and obfuscation function matching, respectively, while running 8×
faster. Ablation studies suggest that the pretraining significantly boosts the function matching performance, underscoring the importance
of learning execution semantics. Our case studies demonstrate the practical use-cases of TREX – on 180 real-world firmware images,
TREX uncovers 14 vulnerabilities not disclosed by previous studies. We release the code and dataset of TREX at
https://github.com/CUMLSec/trex.

Index Terms—Software Security, Large Language Models, Binary Analysis

✦

1 INTRODUCTION

Semantic function similarity, which quantifies the behavioral
similarity between two functions, is a fundamental program analysis
capability with a broad spectrum of real-world security usages, such
as vulnerability detection [3], [13], exploit generation [7], tracing
malware lineage [10], [27], [39], [76], software patching [44],
[98], and forensics [53]. OWASP lists “using components with
known vulnerabilities” as one of the top-10 security risks [68]
in 2020. Therefore, identifying similar vulnerable functions in
massive software projects can save significant manual effort.

When matching semantically similar functions for security-
critical applications (e.g., vulnerability discovery), we often have to
deal with software at binary level, such as commercial off-the-shelf
products (i.e., firmware images) and legacy programs. However,
this task is challenging, as the functions’ high-level information
(e.g., data structure definitions) are removed during the compilation
process. Establishing semantic similarity gets even harder when the
functions are compiled to run on different architectures with various
compiler optimizations or obfuscated with simple transformations.

Recently, Machine Learning (ML) approaches have shown
promise in tackling these challenges [23], [57], [93] by learning
features that can identify similar function binaries across different
architectures, compiler optimizations, or even some types of
obfuscation. Specifically, ML models learn function representations
(i.e., embeddings) from function binaries and use the distance
between the embeddings of two functions to compute their
similarity. The smaller the distance, the more similar the functions

are to each other. Such approaches have achieved state-of-the-art
results, outperforming traditional methods [100] using hand-crafted
signatures (e.g., number of basic blocks). Such embedding distance-
based strategy is particularly appealing for large-scale function
matching – taking only around 0.1 seconds searching over one
million functions [30].

Execution semantics. Despite the impressive progress, it remains
challenging for these approaches to match semantically similar
functions with disparate syntax and structure [58]. An inherent
cause is that the code semantics is characterized by its execution
effects. However, all existing learning-based approaches are ag-
nostic to program execution semantics, training only on the static
code. Such a setting can easily lead a model into matching simple
patterns, limiting their accuracy when such spurious shortcuts are
absent or changed [1], [72].

For instance, consider the following pair of x86 instructions:
mov eax,2;lea ecx,[eax+4] are semantically equivalent
to mov eax,2;lea ecx,[eax+eax*2]. An ML model fo-
cusing on syntactic features might pick common substrings (both
sequences share the tokens mov, eax, lea, ecx) to establish their
similarity, which does not encode the key reason of the semantic
equivalence. Without grasping the execution semantics, an ML
model can easily learn such spurious patterns without understanding
the inherent cause of the equivalence: [eax+eax*2] computes
the same exact address as [eax+4] when eax is 2.

Limitations of existing dynamic approaches. Existing dynamic
approaches try to avoid the above issues by directly comparing the

https://github.com/CUMLSec/trex

Stacked

Head

Function
Source

Phase 2: Finetuning (Function Similarity)

Compile f1

f2

Pretrained

Model

Assembly code

Dynamic value

Phase 1: Pretraining (Masked LM)

Transfer

Transfer

h1

h2

Function

Embedding

Semantically

Similar

Maximize
Agreement

Phase 3: Inference (Matching Functions)

Function
Binaries

Function
Embedding
Database

Function
Binary

Query

Pretrained

Model

Stacked

Head

Pretrained

Model

Pretrained

Model

Stacked

Head

Pretrained

Model

Stacked

Head

Function
Source

Compile
Forced-Execution Trace

Fig. 1. TREX’s workflow. We first pretrain the model on the functions’ traces obtained from forced-execution, consisting of instructions and dynamic
values, based on the masked LM task. We then finetune the pretrained model on the semantically similar function (only static instruction) pairs for
function similarity tasks. During inference, the finetuned model computes the function embedding, whose distance encodes the function similarity.

functions’ behaviors. As finding program inputs reaching the target
functions is extremely challenging and time-consuming, the prior
works perform forced-execution by initializing the function input
states (e.g., registers, memory) with random values and directly
executing the target functions by ignoring the control flow [25], [75].
While forced-execution improves the coverage and can thus execute
all instructions within a function, the traces collected in such a way
is often too noisy to be representative of function behavior, as the
randomly initialized inputs might not be feasible during program
execution and the control flow is violated. Therefore, when such
traces are directly used to compute similarities, they lead to many
false positives [23]. Worse, executing every function pair during
matching is extremely hard to scale to millions of function pairs.

Limitations of ML-based approaches on dynamic traces. Recent
studies have shown that incorporating traces as an additional input
helps the ML model to learn a better program representation [66],
[87], which improves on many downstream program analysis tasks
such as type inference [73] and program repair [86]. Their key idea
is that instead of executing programs, they employ ML models
to learn an approximate summary of program behavior from the
dynamic information and use that knowledge for the target analysis
task. However, these approaches are limited when directly applied
for matching functions. In order to model traces, they often resort
to mimicking regular execution and therefore the modeled traces
have low coverage [73]. In the context of matching functions,
such partial program behaviors with limited coverage are often not
representative enough to help the model learn a holistic summary
of the function behavior to match their similarity. An obvious
followup question is can we employ forced-execution to teach an
ML model to generate high-coverage representation of binary code?
Unfortunately, training on forced-execution traces is challenging.
As existing ML-based approaches are often formulated in a way
that takes the traces and directly train for the target task, the noise
in the traces can significantly bias the model into learning spurious
correlation between the noise and the target.

Our approach. We present TREX, a transfer-learning-based
framework, that trains ML models to learn the execution semantics
from forced-execution traces. Unlike prior works, which use noisy
traces to directly measure similarity or learning on regular traces
with limited coverage, TREX pretrains a model on a mix of regular
and forced-execution traces with a dedicated pretraining task that
is less susceptible to the noise in the trace. Our key observation is
that while some traces are noisy, i.e., being forced-executed and

occasionally violating the control flow behavior, most parts of the
traces preserve the same effects to those of regular execution within
some neighboring context, e.g., straight-line code or branches where
the control flow falls through. Therefore, we design our pretraining
task to make the model to observe and learn the execution effect
of individual instructions and their compositions from the local
context (§2.2). In order to generalize to diverse traces collected
from various functions, the model has to be resistant to the noise
introduced from forced-execution and learn the execution semantics
preserved across a mix of regular and forced-execution traces.

After learning the approximate execution semantics, we fine-
tune the pretrained model to learn to compose its learned knowledge
of various instructions to match semantically similar functions
(Figure 1). As a result, during inference, we do not need to execute
any functions on-the-fly to match them. Instead, our model only
uses the function instructions, but with an augmented understanding
of their approximate execution semantics. Importantly, such a
design also saves significant runtime overhead by eliminating the
need of performing forced execution during the matching time.

We pretrain the model on traces with a task inspired from
masked language modeling (masked LM) [22]. Specifically, it
randomly masks instructions and values in traces and asks the
model to predict the masked parts based on those not masked in
the context. Such a design forces the model to learn how individual
instructions and their compositions behave in order to infer the
masked parts correctly, automating learning execution semantics
without manual feature engineering. To facilitate learning on traces,
TREX adapts the hierarchical Transformer [73] to model long-range
execution effects of instructions on trace values.

To facilitate cross-architecture function matching and learning
on traces collected from different architectures, we extend the
existing forced-execution algorithm [25], [75] that only works for
x86 to support ARM and MIPS. As a result, we are able to train
and evaluate TREX on 1,472,066 functions collected from 13 open-
source software projects across 4 architectures (x86, x64, ARM,
and MIPS) and compiled with 4 optimizations (O0-O3), and 5
obfuscation strategies [97]. Our experiments demonstrate that TREX

outperforms the state-of-the-art systems by 7.8%, 7.2%, and 14.3%
in matching functions across different architectures, optimizations,
and obfuscations, respectively. Our ablation studies show that the
pretraining task improves the accuracy of matching semantically
similar functions by 15.7%. We also apply TREX in searching
vulnerable functions in 180 real-world firmware images developed
by well-known vendors and deployed in diverse embedded systems,

2

<priv_encode_gost>:

...

1 and eax,0xfff

2 cmp eax,0x80

3 jne 0x1068

...

<priv_encode_gost>:

...

1 lsl r3,r3,#0x14

2 lsr r3,r3,#0x14

3 cmp r3,#0x80

4 bne #0x1070

...

Change target architecture (x86 to ARM)

openssl-1.0.1f libcrypto.a

(a) Cross-architecture

<wd_comparator>:

1 push ebp
2 mov ebp,esp

3 mov eax,dword ptr [ebp+8]

4 shl eax,3

5 pop ebp

6 ret

<wd_comparator>:

1 mov eax,dword ptr [esp+4]

2 shl eax,3

3 ret

Increase optimization (O0 to O3)

coreutils-8.32 basenc

(b) Cross-optimization

<CMS_add0_cert>:

...
1 mov eax,dword ptr [rbp-0x2c]
2 add eax,1
3 mov dword ptr [rbp-0x2c],eax
....

<CMS_add0_cert>:

...

1 xor ecx,ecx
2 mov eax,dword ptr [rbp-0x2c]
3 sub ecx,1
4 sub eax,ecx
5 mov dword ptr [rbp-0x2c],eax
...

Add obfuscation (substitute instruction)

-mllvm -enable-subobf

openssl-1.0.1u libcrypto.a

(c) Cross-obfuscation

Fig. 2. Challenging cases of matching similar functions across different architectures, optimizations, and obfuscations. (a) Function
priv_encode_gost is from libcrypto.a in openssl-1.0.1f. The upper function is compiled to x86 while the lower is compiled to ARM. (b)
Function <wd_comparator> is from basenc in coreutils-8.32. The upper and lower function is compiled by GCC-7.5 with -O0 and -O3,
respectively. (c) Function <CMS_add0_cert> is from libcrypto.a in openssl-1.0.1u. The upper function is compiled using clang with default
options. The lower function is compiled by turning on the instruction substitution using Hikari [97], e.g., -mllvm -enable-subobf.

including WLAN routers, smart cameras, and solar panels. Our
case study shows that TREX helps find 14 CVEs not disclosed in
previous studies.

Contributions. We make the following contributions.
• We propose a new approach to first train the model to learn

program execution semantics from a mix of regular and forced-
execution trace and then train the model to compose its learned
knowledge to identify semantically similar functions.

• We extend forced-execution that can expose diverse function
behavior to support multiple architectures for pretraining. We
then develop a dedicated pretraining objective that helps the
model to efficiently learn the instructions’ execution semantics.

• We release our large-scale binary functions and their traces
collected from a wide spectrum of open-source software projects,
with diverse architectures, optimizations, and obfuscations, to
foster future research in this direction.

• We demonstrate that TREX is faster and more
accurate than the state-of-the-art tools in cross-
architecture/optimization/obfuscation function matching,
while running up to 8× faster. Moreover, TREX helps uncover
new vulnerabilities in real-world firmware images not disclosed
by previous studies. We open-source the code, the trained model,
and the dataset of TREX at https://github.com/CUMLSec/trex.

2 OVERVIEW

We use the real-world functions as motivating examples to describe
the challenges of matching semantically similar functions and how
the pretraining task could address them.

2.1 Challenging Cases
We use three semantically equivalent but syntactically different real-
world function pairs (Figure 2) to illustrate the typical challenges
of learning from only static code for matching similar functions.

Cross-architecture. Consider Figure 2a, where two functions have
the same effects as they both take the lower 12-bit of a register

and compare it to 0x80. Detecting they are similarity requires
understanding the execution semantics of and in x86 and lsl/lsr
in ARM. It also requires understanding how the values (i.e., 0xfff
and 0x14) in the code are manipulated. However, learning on static
code without observing how each instruction behaves will fall short
to teach the model how to make such an inference.

Cross-optimization. Consider the two functions in Figure 2b. They
are semantically equivalent as [ebp+8] and [esp+4] access the
same argument pushed on the stack by the caller. To detect such
similarity, the model should understand push decreases the stack
pointer esp by 4. The model should also notice that mov at line
2 assigns the decremented esp to ebp such that ebp+8 in the
upper function equals esp+4 in the lower function. However, such
information is not manifested in any static code patterns.

Cross-obfuscation. Figure 2c demonstrates a simple obfuscation by
substituting instructions, which replaces eax+1 with eax-(-1).
While both functions increment the value at stack location
[rbp-0x2c] by 1, the upper function achieves this by loading
the value to eax, incrementing it by 1, and writing eax back
to stack, but the lower function takes a convoluted way by first
letting ecx to store -1, decrementing eax by ecx, and writing
eax to stack. Detecting the equivalence requires understanding
how arithmetic operations such as xor, sub, and add, execute.
However, static information cannot fully expose such knowledge.

2.2 Pretraining Masked LM on Traces
We describe the intuition how the pretraining task encourages
the model towards learning approximate execution semantics of
different instructions under different masking scenarios, and thus
potentially help address the challenging cases in Figure 2. Recall
the operation of our pretraining task: given a function’s trace (i.e.,
instructions and values), we mask some random parts and train the
model to predict the masked parts using those not masked.

Masking register. Consider masking the eax in line 3 in the upper
function of Figure 2c. To correctly predict its name and trace value,
the model has to understand the semantics of add and can deduce

3

https://github.com/CUMLSec/trex

the value of eax in line 3 after observing the value of eax in line 2
(before the addition takes the effect). Similarly, when masking the
values of ecx in line 4 and eax in line 5, the model needs to learn
the semantics of xor and sub to minimize the prediction losses.
Such an understanding helps the model to attribute the similarity
(during finetuning) based on the similar execution effects between
the two functions, as opposed to their similar syntax.

Masking opcode. Besides masking the register and its value, we
allow masking the opcode of an instruction. Predicting the masked
opcode requires the model to reversely infer its execution effect.
Consider Figure 2b, where we mask the mov in line 2 of upper
function. To correctly predict the opcode, the model should learn
several key aspects of the function.

First, according to its context, i.e., the value of ebp at line 3
and esp at line 2, the model needs to understand that mov operates
as an assignment in order to predict it correctly. Other opcodes
are less likely as their execution effect conflicts with the observed
resulting register values, e.g., add will assign ebp with ebp+esp,
which conflicts with the value observed at line 3.

Second, the model should learn the calling conventions and
basic syntax of x86 instructions, e.g., only a subset of opcodes
accept the stack operands (ebp,esp). It can thus exclude many
syntactically impossible opcodes such as push, jmp, etc. As a
result, the model is able to infer ebp (line 3 of upper function)
equals to esp. Assuming that the model may have also learned
(from other masked samples) push decrements stack pointer esp
by 4 bytes, now when such a pretrained model is finetuned to match
the two functions, it is more likely to learn that the similarity is due
to that [ebp+8] in the upper function accesses the same address
pointed by [esp+4] in the lower function.

Other masking strategies. We are not constrained by the number
or the type of tokens (e.g., operand, opcode, values, etc.) in the
code and trace to mask, i.e., we can mask multiple tokens in one or
more instructions and also multiple trace values. During training,
the masking operation selects a random subset of code blocks and
trace values at each training iteration and training samples. Such
a random masking strategy enables the model to learn execution
effect of diverse instructions and their compositions.

How pretraining on noisy traces helps match similarity. While
the examples in Figure 2 are straight-line code that their execution
will not introduce noisy traces, they can still be forced-executed if
triggering them requires violating certain control flow constraints
(i.e., predicates in the branch conditions). However, even though
such traces might contain infeasible values, learning from such
noisy traces can still be useful. As the above examples show,
predicting the masked code and trace values requires the model to
make local inference based on its understanding of the neighboring
instructions. Thus, noisy forced-execution traces can still encode
meaningful local behavior that requires the model to learn their
approximate execution semantics. During finetuning, the model is
further trained to compose its understanding of various instructions’
execution effect and expected to more likely attribute the function
similarity to their similar behavior instead of their syntax.

3 METHODOLOGY

This section elaborates on TREX’s design, including the forced-
execution algorithms, the architecture, and the training workflow.

::=	[]
::=	 := 	|	nop	|	call()	|	jmp()

::=	{+,	-,	*,	/,	>,	<,	...}	

::=	 	|	 	|	 	 	

::=	{pc,	sp,	eax,	r0,	$a0,	...}
::=	{true,	false,	0x0,	0x1,	...}

Instruction
Function

Operator
Expr

Register
Const

|	ret	|	store()	|	 :=load()

Fig. 3. Low-level IR for representing assembly code. The IR abstracts
away the disparate syntax across multiple architectures.

3.1 Forced-Execution

IR Language. We extend forced-execution [75] to handle x64,
ARM, and MIPS, where the original paper only describes x86 as the
use case. We introduce a low-level intermediate representation (IR)
to abstract away the complexity of different architectures’ syntax
(Figure 3). The IR here only serves to facilitate the discussion of
the forced-execution algorithm. In our implementation, we use real
assembly instructions as model’s input (§3.2).

We denote memory reads and writes by load(e) and
store(ev, ea) (i.e., store the value ev to address ea), which
generalize to both the load-store (i.e., ARM, MIPS) and register-
memory architecture (i.e., x86). Both operations can take as input e –
an expression that can be an explicit hexadecimal number (denoting
the address or a constant), a register, or a result of an operation
on two registers. We use jmp to denote the jump instruction
including both direct and indirect jump (i.e., the expression ea
can be a constant c or a register r). The first parameter in jmp
is the conditional expression ec and it evaluates to true for
unconditional jump. We represent function invocations and returns
by call and ret, where call is parameterized by an expression,
which can be a constant (direct call) or a register (indirect call).

Algorithm. Algorithm 1 outlines the steps to forced-execute a
function f . First, it initializes the memory and all registers except
the special-purpose register, such as the stack pointer and the
program counter. It then linearly executes instructions of f . We map
the memory on-demand when the instruction attempts to access
them. If the instruction reads from memory, we further initialize a
random value in the mapped memory addresses. We skip call/jump
instructions following the forced execution strategy [75]. Forced-
execution terminates when it finishes executing all instructions,
reaches ret, or times out. Note that for straight-line programs or
when the initialized inputs happen to lead all the condition-checks
to false, we obtain a regular (not forced) execution trace.

3.2 Input Representation

Given a function f and its trace t, we prepare the model input x,
consisting of 5 aligned sequences with the same size n. Figure 4
shows the example of TREX’s input and output and how the
input tokens are embedded using different strategies. We follow
StateFormer’s [73] approach for tokenizing inputs so we only
briefly describe each sequence below for completeness.

Code. The first sequence xf is the assembly code sequence:
xf = {mov, eax,+, ...}n, generated by tokenizing all assembly
instructions. Note that unlike StateFormer, where their code
sequences come from complete static code of a function, here
xf are instructions along one forced-executed path in a function.
We move all numeric values to the value sequence (see below) and

4

Algorithm 1 Forced-execute a function f

Input: Function binary f . All registers r.
Output: Forced-execution trace t.
1: I← get instructions(f) ▷ put all instructions in f into a queue
2: t← empty vector
3: sp← init stack pointer addr() ▷ stack pointer address
4: pc← init program counter addr() ▷ first instruction’s address
5: sm← mem map(sp,STACK_SIZE) ▷ initialize stack memory
6: cm← mem map(pc, |I|) ▷ initialize memory for code

7: for each register ri in r\{sp,pc} do
8: ri ← random_init() ▷ initialize register values
9: while I ̸= ∅ do

10: i← dequeue(I)
11: if i.type = load or i.type = store then ▷ memory access
12: mem map(i.access addr, i.access size)
13: if i.type = load then
14: write random(i.access addr)

15: t← t ∪ execute(i)
16: else if i.type = jmp or i.type = call or i.type = nop then
17: continue ▷ skip control transfer
18: else ▷ all other instructions
19: t← t ∪ execute(i)

replace them with a special token num. With all these preprocessing
steps, the vocabulary size of xf across all architectures is 3,300.
Value. The second sequence xt is the trace value sequence. As
discussed in §2, we keep explicit numerical values in xt, which
denote the value for each token (e.g., register) in an instruction
before it is executed. For example, in mov eax,0x8; mov
eax,0x3, the trace value of the second eax is 0x8. For code
token without dynamic value, we use dummy values (see how we
encode trace values in the following).
Auxiliary sequences. There are 3 additional sequences to encode
some structural and syntactic hints: the instruction positions xc,
opcode/operand positions xo, and the architecture sequence xa. xc

is a sequence of integers encoding the position of each instruction.
All opcodes/operands within a single instruction share the same
value. xo is a sequence of integers encoding the position of each
opcode and operands within a single instruction. xa specifies which
instruction set architecture that the trace belongs to: xa = {x86,
x64, ARM, MIPS}n.
Encoding trace values. As numerical values can lead to pro-
hibitively large vocabulary (264 possible values on a 64-bit
machine), we follow StateFormer’s hierarchical encoding to address
this challenge. Let xti denote the i-th value in xt, we represent xti

as an (padded) 8-byte fixed-length byte sequence xti ={0x00, ...,
0xff}8 ordered in Big-Endian. Unlike StateFormer that uses a
neural arithmetic unit (NAU) that treats each byte independently,
we employ a bidirectional LSTM (bi-LSTM) that takes xti as input
and use its last hidden cell’s output as the value representation
ti = bi-LSTM(xti). As a recurrent network, bi-LSTM is more
amenable to learn the dependencies between high and low bytes
within a single value. To make the micro-trace code tokens without
dynamic values (e.g., opcode) align with the byte sequence, we use
a dummy sequence (##) with the same length. Figure 4a shows how
bi-LSTM takes the byte sequence and computes the embedding.

3.3 Pretraining with Traces

Input embeddings. We embed each token in the 5 sequences with
the same embedding dimension demb. Specifically, let Ef (xf),
Et(xt), Ec(xc), Eo(xo), Ea(xa) denote applying the embedding

to the tokens in each sequence, respectively. We have the embed-
ding of xi: Ei = Ef (xfi) + Et(xti) + Ec(xci) + Eo(xoi) +
Ea(xai

). Here xfi denotes the i-th token in xf , where other
sequences follow the similar notation. Note that Et(xti) is the
output from bi-LSTM (§3.2) while the others are simply one-hot
encoded with an embedding matrix. Figure 4a illustrates the two
embedding strategies.

Masked LM. To pretrain the model with the masked LM
objective, we mask the code token and value token in xf and
xt, respectively, and replace them with a special token <MASK>.
Let m(Ei) denote the embedding of the masked xi and MP
a set of positions on which the masks are applied. The model
gp (to be pretrained) takes as input a sequence of embeddings
with random tokens masked: (E1, ...,m(Ei), ..., En), i ∈ MP,
and predicts the code and the values of the masked tokens:
{x̂fi , v̂i|i ∈ MP} = gp(E1, ...,m(Ei), ..., En). Let gp be
parameterized by θ, the objective of training gp is to search for θ
that minimizes the cross-entropy losses between (1) the predicted
masked code and the actual code, and (2) the predicted masked
values (8 bytes) and the actual values (Figure 4a).

argmin
θ

|MP|∑︂
i=1

(−xfi log(x̂fi) + α
8∑︂

j=1

−xtij log(x̂tij)) (1)

x̂tij denotes the predicted j-th byte of xti (the i-th token in
xt). α is a hyperparameter that weighs the cross-entropy losses
between predicting code tokens and predicting values.

Contextualized embeddings. We employ the self-attention lay-
ers [84] to endow contextual information to each embedding Ei,
which encodes the context-sensitive meaning of each token (e.g.,
eax in mov eax,ebx has different embedding with that in jmp
eax). This is in contrast with static embeddings commonly used in
the prior works [23], [24], where a code token is assigned to a fixed
embedding regardless of the changed context. Given k self-attention
layers, let Ek,i denote the learned embeddings after the last layer.
Ek,i will be used to predict the masked code in pretraining and
match similar functions in finetuning (see following).

3.4 Finetuning for Function Similarity

After the model is pretrained, we finetune the model to predict
function similarity. Given a function pair, we feed each function’s
static code (instead of the traces that only cover one path as
described in §3.2) to the pretrained model gp and obtain the
pair of embedding sequences produced by the last self-attention
layer of gp: E(1)

k = (E
(1)
k,1, ..., E

(1)
k,n) and E

(2)
k = (E

(2)
k,1, ..., E

(2)
k,n)

where E
(1)
k and E

(2)
k correspond to the first and second function,

respectively. Let y = {−1, 1} be the ground-truth indicating
the similarity between two functions. We stack a 2-layer Multi-
layer Perceptrons (MLP) gt, taking as input the mean pooling of
all embeddings within each function, and producing a function
embedding (Figure 4b):

gt(Ek) = tanh((
n∑︂

i=1

Ek,i)/n) ·W1) ·W2

Here W1 ∈ Rdemb×demb and W2 ∈ Rdemb×dfunc transforms the
mean-pooled Ek with demb dimensions into the function embed-
ding with dfunc dimensions. Let gt be parameterized by θ, the fine-
tuning objective minimizes the cosine embedding loss lce between

5

mov eax ebx

(1)	Code	Prediction

add eax num
Micro-trace

Code
Sequence

Micro-trace
Value

Sequence

1 1 1 2 2 2Inst	POS
Sequence

1 2 3 1 2 3OP	POS
Sequence

+ + + + + +

+ + + + + +

+ + + + + +

mov

bi-LSTM

xt1 xt2 xt3 xt5xt4 xt6

x86 x86 x86 x86 x86 x86Architecture
Sequence

+ + + + + +

##

##

##

##

##

##

##

##

00

00

00

00

00

00

00

00

3a

8b

4f

00

00

00

00

00

3a

8b

4f

00

00

00

00

00

##

##

##

##

##

##

##

##

03

00

00

00

00

00

00

00

Aggregate	Micro-trace	Values	as	Embedding
Transformer	Self-attention	Layers

... eax

1st	byte 00 ... FF

8th	byte 00 ... FF

......

(2)	Value	Prediction

t1 t2 t3 t5t4 t6

Input

Output

xt1 xt2 xt3 xt4 xt5 xt6

Code	Embedding

0.1 0.2 0.4 0.3 0.9
0.8 0.7 0.6 0.1 0.3
...
0.2 0.3 0.8 0.4 0.7

mov
eax
...
add

(a) Pretraining for masked code and trace value prediction

mov eax ebx add eax num

1 1 1 2 2 2

1 2 3 1 2 3

+ + + + + +

+ + + + + +

+ + + + + +

t1 t2 t3 t5t4 t6

x86 x86 x86 x86 x86 x86

+ + + + + +

Pretrained Self-attention Layers

Function 1

Pretrained Self-attention Layers

2-Layer MLP Prediction Head

Cosine Embedding Loss

2-Layer MLP Prediction Head

add rax rdi mov rbp rsp

1 1 1 2 2 2

1 2 3 1 2 3

+ + + + + +

+ + + + + +

+ + + + + +

t1 t2 t3 t5t4 t6

x64 x64 x64 x64 x64 x64

+ + + + + +

Function 2

(b) Finetuning for binary similarity

Fig. 4. (Left) Pretraining input-output examples and model architecture. (Right) Finetuning input-output examples. We mark the value sequence xt as
grey to indicate they are dummy values (§3.4), i.e., we statically compare two functions’ similarity. The border colors of the box are made consistent
across sub-figures to indicate the same type of input sequences.

the ground-truth and the cosine distance between two function
embeddings (Figure 4b): argminθ lce(gt(E

(1)
k), gt(E

(2)
k), y),

where

lce(x1, x2, y) =

{︃
1− cos(x1, x2) y = 1

max(0, cos(x1, x2)− ξ) y = −1
(2)

ξ is the margin chosen between 0 and 0.5 [70]. As both gp and gt
are differentiable, optimizing Equation 1 and Equation 2 can be
guided by gradient descent via backpropagation. After finetuning
gt and gp, we compute the function embedding femb = gt(gp(f))
and the function similarity is measured by the cosine similarity
between their embedding vectors: cos(f (1)

emb, f
(2)
emb).

4 IMPLEMENTATION AND SETUP

We implement TREX using fairseq [67] based on PyTorch 1.6.0
with CUDA 10.2 and CUDNN 7.6.5. We run all experiments on
a Linux server running Ubuntu 18.04, with an Intel Xeon 6230 at
2.10GHz with 80 virtual cores including hyperthreading, 385GB
RAM, and 8 Nvidia RTX 2080-Ti GPUs.

Datasets. To train and evaluate TREX, we collect 13 popular open-
source software projects (Table 1). We compile these projects
into 4 architectures, i.e., x86, x64, ARM, and MIPS, with 4
optimization levels, i.e., O0-O3, using GCC-7.5. We also ob-
fuscate all projects using 5 types of obfuscations by Hikari [97] on
x64. The obfuscations include bogus control flow (bcf), control
flow flattening (cff), register-based indirect branching (ibr),
basic block splitting (spl), and instruction substitution (sub).
We turn off the compiler optimization in case it optimizes away
the obfuscated code. As we encounter several errors in cross-
compilation using Hikari (based on Clang) [97], and the baseline
system (i.e., Asm2Vec [23]) to which we compare only evaluates
on x64, we restrict the obfuscated binaries for x64 only. As a result,
we have 1,472,066 functions.

Forced-execution. We implement forced-execution by Uni-
corn [79]. We forced-execute each function 3 times with different
initialized registers and memory, generating 3 traces for each
function in pretraining. We leverage multi-processing to parallelize

forced-executing each function and set 30 seconds as the timeout
in case any instruction gets stuck (i.e., infinite loops).

Baselines. For comparing cross-architecture performance, we
consider 2 state-of-the-art baselines. The first one is SAFE [57]. As
SAFE’s model is publicly available, we run their trained models
on our collected binaries. We also compare TREX with SAFE’s
reported results on their dataset, i.e., OpenSSL-1.0.1f and OpenSSL-
1.0.1u. The second baseline is Gemini [93]. As Gemini’s trained
model is not available, we use their reported numbers directly on
their evaluated dataset, i.e., OpenSSL-1.0.1f and OpenSSL-1.0.1u.

For cross-optimization/obfuscation comparison, we consider
Asm2Vec [23] and Blex [25] as the baselines. Asm2Vec achieves
the state-of-the-art cross-optimization/obfuscation results, based on
learned embeddings from static assembly code. Blex, on the other
hand, leverages functions’ dynamic behavior to match function
binaries. As we only find a third-party implementation of Asm2Vec
that achieves extremely low Precision@1 (the metric used in
Asm2Vec) from our testing (e.g., 0.02 vs. their reported 0.814), and
we have contacted the authors and do not get replies, we directly
compare to their reported numbers. Blex is not publicly available
either, so we also compare to their reported numbers directly.

Metrics. As the cosine similarity between two function embeddings
can be an arbitrary real value between -1 and 1, we consider the
receiver operating characteristic (ROC) curve, which measures the
tradeoff of model’s true/false positives under different thresholds.
Specifically, we use the area under curve (AUC) of the ROC curve
to quantify the accuracy of TREX– the higher the AUC score, the
better the model’s accuracy. Certain baselines do not use AUC score
to evaluate their system. For example, Asm2Vec uses Precision at
Position 1 (Precision@1), and Blex uses the number of matched
functions as the metric. Therefore, we also include these metrics to
evaluate TREX when needed.

Training setup. We separate the functions in pretraining, finetuning,
and testing to ensure they are non-overlapping. Note that pretraining
is agnostic to any ground-truth that indicates function similarity.
Therefore, we can pretrain on large-scale codebases including the
functions for finetuning [22]. It is thus worth noting that our setup

6

TABLE 1
Number of functions for each project across 4 architectures with 4 optimization levels and 5 obfuscations. The functions with the same name in

different version of projects or in different projects are considered as different functions.

ARCH OPT
OBF

Functions
Binutils Coreutils Curl Diffutils Findutils GMP ImageMagick microhttpd TomCrypt OpenSSL PuTTy SQLite Zlib Total

O0 25,492 19,992 1,067 944 1,529 766 2,938 200 779 11,918 7,087 2,283 157 75,152
O1 20,043 14,918 771 694 1,128 704 2,341 176 745 10,991 5,765 1,614 143 60,033
O2 19,493 14,778 765 693 1,108 701 2,358 171 745 11,001 5,756 1,473 138 59,180
O3 17,814 13,931 697 627 983 680 2,294 160 726 10,633 5,458 1,278 125 55,406

ARM

Total # Functions of ARM 249,771

MIPS

O0 28,460 18,843 1,042 906 1,463 734 2,840 200 779 11,866 7,003 2,199 153 76,488
O1 22,530 13,771 746 653 1,059 670 2,243 176 745 10,940 5,685 1,530 139 60,887
O2 22,004 13,647 741 653 1,039 667 2,260 171 743 10,952 5,677 1,392 135 60,081
O3 20,289 12,720 673 584 917 646 2,198 161 724 10,581 5,376 1,197 121 56,187

Total # Functions of MIPS 253,643
O0 37,783 24,383 1,335 1,189 1,884 809 3,876 326 818 12,552 7,548 2,923 204 95,630
O1 32,263 20,079 1,013 967 1,516 741 3,482 280 782 11,578 6,171 2,248 196 81,316
O2 32,797 21,082 1,054 1,006 1,524 728 3,560 265 784 11,721 6,171 2,113 183 82,988
O3 34,055 22,482 1,020 1,052 1,445 707 3,597 284 760 11,771 5,892 1,930 197 85,192

x86

Total # Functions of x86 358,261

x64

O0 26,757 17,238 1,034 845 1,386 751 2,970 200 782 12,047 7,061 2,190 151 73,412
O1 21,447 12,532 739 600 1,000 691 2,358 176 745 11,120 5,728 1,523 137 58,796
O2 20,992 12,206 734 596 976 689 2,374 171 742 11,136 5,703 1,380 132 57,831
O3 19,491 11,488 662 536 857 667 2,308 160 725 10,768 5,390 1,183 119 54,354

Total # Functions of x64 244,393
bcf 27,734 17,093 998 840 1,388 746 2,833 200 782 10,768 7,069 2,183 151 72,785
cff 27,734 17,093 998 840 1,388 746 2,833 200 782 10,903 7,069 2,183 151 72,920
ibr 27,734 17,105 998 842 1,392 746 2,833 204 782 12,045 7,069 2,183 151 74,084
spl 27,734 17,093 998 840 1,388 746 2,833 200 782 10,772 7,069 2,183 151 72,789
sub 27,734 17,093 998 840 1,388 746 2,833 200 782 11,403 7,069 2,183 151 73,420

x64

Total # Obfuscated Functions 365,998
Total # Functions 1,472,066

of separating functions for pretraining and finetuning makes the
testing more challenging. For finetuning, we choose 50,000 random
function pairs for each project and select random 80% for training,
and the remaining is used as the testing set.

Hyperparameters. We pretrain and finetune the models for 10
epochs and 30 epochs, respectively. We choose α = 0.125 in
Equation 1 such that the cross-entropy loss of code prediction
and value prediction have the same weight. We pick ξ = 0.1 in
Equation 2 to make the model slightly inclined to treat functions
as dissimilar because functions in practice are mostly dissimilar.
We use 12 self-attention layers with each having 12 self-attention
heads. We fix the largest input length to be 512 and split the
functions longer than this length into subsequences for pretraining.
The complete description of the hyperparameters can be found in
our supplementary material.

5 EVALUATION

Our evaluation aims to answer the following questions.
• RQ1: How accurate is TREX in matching functions across different

architectures, optimizations, and obfuscations?
• RQ2: How does TREX compare to the state-of-the-art?
• RQ3: How fast is TREX compared to other tools?
• RQ4: How much does pretraining on forced-execution traces help

improve the accuracy of matching functions?

5.1 RQ1: Accuracy
We evaluate how accurate TREX is in matching similar functions
across different architectures, optimizations, and obfuscations. We
prepare function pairs for each project with 5 types of partitions.
(1) ARCH: the function pairs have different architectures but
same optimizations. (2) OPT: the function pairs have different
optimizations but same architectures. (3) OBF: the function pairs
have different obfuscations with same architectures (x64). (4)

TABLE 2
TREX results (in AUC score and its standard deviation) on function pairs

across architectures, optimizations, and obfuscations.

Cross-

ARCH OPT OBF ARCH+
OPT

ARCH+
OPT+
OBF

Binutils .991 .992 .988 .959 .947
Coreutils .988 .99 .989 .955 .945

Curl .991 .993 .99 .967 .956
Diffutils .989 .992 .99 .973 .961

Findutils .99 .991 .99 .966 .962
GMP .99 .989 .989 .967 .964

ImageMagick .992 .994 .987 .957 .95
microhttpd .991 .994 .99 .97 .965
TomCrypt .989 .991 .99 .971 .97
OpenSSL .991 .99 .989 .967 .957

PuTTy .989 .992 .99 .965 .95
SQLite .99 .992 .99 .967 .959

Zlib .989 .992 .987 .968 .961

Average .99 .992 .989 .966 .957

ARCH+OPT: the function pairs have both different architectures
and optimizations. (5) ARCH+OPT+OBF: the function pairs can
have arbitrary architectures, optimizations, and obfuscations.

Table 2 reports the testing AUC scores of TREX. On average,
TREX achieves > 0.957 (and up to 0.992) AUC scores, even in
the most challenging setting where the functions can come from
different architectures, optimizations, and obfuscations at the same
time. We note that TREX performs the best on cross-optimization
matching. This is intuitive as the syntax of two functions from
different optimizations are not changed significantly (e.g., the name
of opcode, operands remain the same). Nevertheless, we find the
AUC scores for matching functions from different architectures is
only 0.002 lower, which indicates the model is robust to entirely
different syntax between two architectures.

7

Fig. 5. ROCs of matching functions across different architectures.

Trex SAFE

Binutils

Coreu
tils Curl

Diffu
tils

Findutils GMP

Im
ageM

agick

Libmicr
ohttp

d

LibTomCrypt

OpenSSL
PuTTy

SQLite Zlib
0.0

0.5

1.0

A
U

C
 sc

or
e

Fig. 6. Comparison between TREX and SAFE on matching functions
compiled to different architectures.

5.2 RQ2: Baseline Comparison

Cross-architecture. As described in §4, we first compare TREX

with SAFE and Gemini on OpenSSL-1.0.1f and OpenSSL-1.0.1u
with their reported numbers (as they only evaluated on these two
projects). We then run SAFE’s released model on our dataset.

Figure 5 shows that TREX’s AUC score is higher than those
reported in SAFE and Gemini. While SAFE’s AUC score is close
to TREX’s, it drops to 0.976 when run our testing set – possibly
because the distribution shift between different testing set [95].
For example, Figure 6 shows that TREX consistently outperforms
SAFE on our dataset, i.e., by 7.3% on average. As SAFE is only
trained on OpenSSL, we also train TREX on the same dataset.

Inspired by Arp et al. [6], we study the distribution shift by
measuring the KL-divergence [49] between SAFE’s dataset and
ours. We find the KL-divergence is 0.02, which is significant
to indicate the distribution shift. Therefore, this observation
demonstrates the generalizability of TREX– when pretrained to
approximately learn execution semantics explicitly, it can quickly
generalize to match unseen functions.
Cross-optimization. We compare TREX with Asm2Vec and BLEX
on matching functions compiled by different optimizations. As
both Asm2vec and Blex run on single architecture, we restrict the
comparison on x64. Besides, since Asm2Vec uses Precision@1 and
Blex uses accuracy as the metric (§4), we compare with each tool
separately using their metrics and on their evaluated dataset.

Table 3 shows TREX outperforms Asm2Vec in Precision@1 (by
7.2% on average) on functions compiled by different optimizations
(i.e., between O2 and O3 and between O0 and O3). As the syntactic
difference between O0 and O3 is more significant than that between
O2 and O3, both tools’ AUC scores decrease (5% drop for TREX

TABLE 3
Comparison between TREX and Asm2Vec (in Precision@1) on function

pairs across optimizations.

Cross Compiler Optimization
O2 and O3 O0 and O3

TREX Asm2Vec TREX Asm2Vec
Coreutils 0.955 0.929 0.913 0.781

Curl 0.961 0.951 0.894 0.850
GMP 0.974 0.973 0.886 0.763

ImageMagick 0.971 0.971 0.891 0.837
LibTomCrypt 0.991 0.991 0.923 0.921

OpenSSL 0.982 0.931 0.914 0.792
PuTTy 0.956 0.891 0.926 0.788
SQLite 0.931 0.926 0.911 0.776

Zlib 0.890 0.885 0.902 0.722
Average 0.957 0.939 0.907 0.803

Coreutils Binaries
0

1000

2000

3000

C
or

re
ct

 M
at

ch
es Trex

Blex

Fig. 7. Cross-optimization matching between O0 and O3 in Coreutils by
TREX and Blex. We sort the 109 binaries by their function count, and
aggregate the matched functions every 10 utilities.

TABLE 4
Comparison between TREX and Asm2Vec (in Precision@1) on function

pairs across different obfuscations.

GMP LibTomCrypt ImageMagic OpenSSL Average
TREX 0.926 0.938 0.934 0.898 0.924

bcf Asm2Vec 0.802 0.920 0.933 0.883 0.885

ccf
TREX 0.943 0.931 0.936 0.940 0.930

Asm2Vec 0.772 0.920 0.890 0.795 0.844
TREX 0.949 0.962 0.981 0.980 0.968

sub Asm2Vec 0.940 0.960 0.981 0.961 0.961

All TREX 0.911 0.938 0.960 0.912 0.930
Asm2Vec 0.854 0.880 0.830 0.690 0.814

and 14% for Asm2Vec), but TREX’s AUC score drops much less
than that of Asm2Vec.

To compare to Blex, we evaluate TREX on Coreutils between
optimizations O0 and O3, where they report to achieve better
performance than BinDiff [100]. As Blex shows the matched
functions of each program in a barchart without including the
numbers of matched functions, we estimate their matched functions
using their reported average percentage, i.e., 75%.

Figure 7 shows that TREX consistently outperforms Blex in
number of matched functions in all utility programs of Coreutils.
Note that Blex also executes the function and uses the dynamic
features to match binaries. The observation here thus implies that
the learned execution semantics from TREX is more effective than
the hand-coded features in Blex for matching similar binaries.

Cross-obfuscation. We compare TREX to Asm2Vec on matching
obfuscated function binaries. Asm2Vec is evaluated on obfuscations
including bcf, cff, and sub – a subset of our evaluated
obfuscations. As Asm2Vec only evaluates on 4 projects, i.e., GMP,
ImageMagic, LibTomCrypt, and OpenSSL, we focus on the same
ones, and Table 2 shows the TREX’s results on other projects.

Table 4 shows TREX achieves better Precision@1 score (by

8

Trex SAFE Gemini

Binutils Putty Findutils Diffutils

101

102

103

Ti
m

e
in

 S
ec

on
ds

(a) Function parsing
Binutils Putty Findutils Diffutils

100

101

Ti
m

e
in

 S
ec

on
ds

(b) Embedding generation

Fig. 8. Runtime (log-scaled) performance of TREX, SAFE, and Gemini
on (a) function parsing and (b) embedding generation.

14.3% on average) throughout different obfuscations. Importantly,
the last two rows show when multiple obfuscations are combined,
TREX performance is not dropping as significant as Asm2Vec. It
also shows TREX remains robust under varying obfuscations with
different difficulties. For example, instruction substitution simply
replaces a limited instructions (i.e., arithmetic operations) while
control flow flattening dramatically changes the function code.
Asm2Vec has 12.2% decrease when the obfuscation is changed
from sub to ccf, while TREX only decreases by 4%.

5.3 RQ3: Execution Time
We evaluate the speed of generating function embeddings for
computing similarity. We compare TREX with SAFE and Gemini
on generating functions in 4 projects, i.e., Binutils, Putty, Findutils,
and Diffutils, which have disparate total number of functions (see
supplementary material). This tests how TREX scales to different
number of functions. Since the offline training (i.e., pretraining
TREX) of all the learning-based tools is a one-time cost, it can be
amortized in the function matching process so we do not explicitly
measure the pretraining time. Moreover, the output of all tools are
embedding vectors, which can be indexed and efficiently searched
using locality sensitive hashing (LSH) [33]. Therefore, we do not
compare the matching time of function embeddings as it simply
depends on the underlying LSH implementation. Particularly, we
compare the runtime of two procedures in matching functions. (1)
Function parsing, which transforms the function binaries into the
format that the model needs. (2) Embedding generation, which
computes the embedding for the parsed function binary. We test
the embedding generation using our GPU (see §4).

Figure 8 shows that TREX is more efficient than the other
tools in both function parsing and embedding generation for
projects with different number of functions. Gemini requires
manually constructing control flow graph and extracting inter-
/intra-basic-block features. It thus incurs the largest overhead.
For generating function embeddings, our underlying network
architectures leverage the self-attention layers, which is more
amenable to parallelization with GPU than the recurrent counterpart
(used by SAFE) and graph neural network (used by Gemini) [84].
As a result, TREX runs up to 8× faster than SAFE and Gemini.

5.4 RQ4: Ablation Study
In this section, we perform extensive ablation studies to show
the effectiveness of various design in TREX. We also compare
to existing baselines We first quantify how pretraining helps
in matching function binaries. We then evaluate how TREX’s
pretraining strategy, i.e., predicting both code and trace values on

Pretrained with 100%
Pretrained with 66%

Pretrained with 33%
Not pretrained

Binutils

Coreu
tils Curl

Diffu
tils

Findutils GMP

Im
ageM

agick

Libmicr
ohttp

d

LibTomCrypt

OpenSSL
PuTTy

SQLite Zlib
0.0

0.5

1.0

A
U

C
 sc

or
e

Fig. 9. Comparison of testing AUC scores between models pretrained
with different fraction of the pretraining set.

0 5 10 15 20 25 30
Finetuning Epochs

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

A
U

C
 S

co
re

Trex StateFormer

Fig. 10. Comparison between TREX and StateFormer, where StateFormer
does not perform forced execution and omits predicting code tokens
during pretraining.

the forced-executed traces, compares to the that on regular traces.
We leave other ablations such as the effectiveness of including
traces in pretraining and the contribution of each auxiliary field
(§3.2) to the supplementary material.

Pretraining effectiveness. We compare the testing AUC scores
achieved by TREX (1) with pretraining (except the target project
that will be finetuned), (2) with 66% of pretraining functions in
(1), (3) with 33% of pretraining functions in (1), and (4) without
pretraining (the function embedding is computed by randomly-
initialized model not pretrained). The function pairs can come from
arbitrary architectures, optimizations, and obfuscations.

Figure 9 shows that the model’s AUC score drops significantly
(on average 15.7%) when the model is not pretrained. Interestingly,
we observe that the finetuned models achieve similar AUC scores,
i.e., with only 1% decrease when pretrained with just 33% of
the functions. This is likely that 33% of the pretraining set
still has around 400k functions for pretraining. Therefore, such
a pretraining set can still be large enough to achieve a decent
finetuning performance. To test this hypothesis, we further reduce
the number of pretraining set by 10x, using 40k samples. We find
the finetuning performance drops by 11.6% on OpenSSL, getting
much closer to the drop (15.7%) when the model is not pretrained.
This implies pretraining on large-scale dataset is necessary to
effectively boost the finetuning performance.

Comparison to StateFormer. To empirically evaluate which
pretraining strategy (between TREX and StateFormer) is better
suited for matching similar functions, we take the pretrained
model from StateFormer, which is pretrained on regular execution
traces with control/data-flow prediction as the pretraining objective,

9

Pretrained w/ trace Pretrained w/o trace SAFE

Binutils

Coreu
tils Curl

Diffu
tils

Findutils GMP

Im
ageM

agick

Libmicr
ohttp

d

LibTomCrypt

OpenSSL
PuTTy

SQLite Zlib
0.0

0.5

1.0
A

U
C

 sc
or

e

Fig. 11. Comparison of testing AUC scores between models pretrained
with and without forced-execution trace.

and finetune on the same set of functions. Figure 10 shows the
testing AUC scores in matching similar functions across different
architectures, optimizations, and obfuscations, at each finetuning
epoch. We observe that TREX outperforms StateFormer by 5.3%
in AUC score and is more stable during finetuning.

Pretraining w/o traces. The above experiment studies TREX’s
finetuning performance when excluding each of the input sequences.
In this section, we also study whether including the trace values in
pretraining can help the model to learn better execution semantics
than learning from only static assembly code, which in turn results
in better function matching accuracy. Specifically, we pretrain
the model on the data that contains only dummy value sequence
(see §3), and follow the same experiment setting as described
above. Besides replacing the input value sequence as dummy value,
we accordingly remove the prediction of dynamic values in the
pretraining objective (Equation 1).

Figure 11 shows that the AUC scores decrease by 7.2% when
the model is pretrained without traces (and even 0.035 lower than
that of SAFE). However, the model still performs reasonably well,
achieving 0.88 AUC scores even when the functions can come from
arbitrary architectures, optimizations, and obfuscations. Moreover,
we observe that pretraining without traces has less performance
drop than the model simply not pretrained (7.2% vs. 15.7%). This
demonstrates that even pretraining with only static assembly code
is indeed helpful to improve matching functions. One possible
interpretation is that similar functions are statically similar in
syntax, while understanding their inherently similar execution
semantics just further increases the similarity score.

6 CASE STUDIES ON VULNERABILITY SEARCHING

In this section, we study how TREX can help discover vulnerabili-
ties in firmware images. Firmware images often include third-party
libraries. However, these libraries are frequently patched but the
manufacturers often fall behind in updating them accordingly [68].
Therefore, we study whether our tool can uncover functions in
firmware images similar to known vulnerable functions. We find
existing state-of-the-art binary similarity tools all perform their
case studies on the firmware images and vulnerabilities that have
already been studied before. Therefore, we decide to collect our
own dataset with more updated firmware images and the latest
vulnerabilities, instead of reusing the existing benchmarks. This
facilitates finding 1-day vulnerabilities in most recent firmware
images not disclosed before.

Specifically, we crawl firmware images in 180 products from
22 vendors including WLAN routers, smart cameras, and solar
panels, from well-known manufacturers’ latest official releases and

TABLE 5
Vulnerabilities we have confirmed (✓) in firmware images (latest version)

from 4 well-known vendors and products.

CVE Ubiquiti
sunMax

TP-Link
Deco-M4

NETGEAR
R7000

Linksys
RE7000

CVE-2016-6303 ✓ ✓ ✓ ✓
CVE-2016-6302 ✓ ✓ ✓ ✓
CVE-2016-2842 ✓ ✓ ✓ ✓
CVE-2016-2182 ✓ ✓ ✓ ✓
CVE-2016-2180 ✓ ✓ ✓ ✓
CVE-2016-2178 ✓ ✓ ✓ ✓
CVE-2016-2176 ✓ ✓ ✗ ✓
CVE-2016-2109 ✓ ✓ ✗ ✓
CVE-2016-2106 ✓ ✓ ✗ ✓
CVE-2016-2105 ✓ ✓ ✗ ✓
CVE-2016-0799 ✓ ✓ ✗ ✓
CVE-2016-0798 ✓ ✓ ✗ ✓
CVE-2016-0797 ✓ ✓ ✗ ✓
CVE-2016-0705 ✓ ✓ ✗ ✓

third-party providers such as DD-WRT [34] (see our supplementary
material for firmware details). For each function in the firmware
images, we construct function embedding and build a database us-
ing Open Distro for Elasticsearch [5], which supports vector-based
indexing with efficient search support based on NMSLIB [12].

Table 5 shows the 14 CVEs we use to search in the firmware
images and we include their details in the supplementary details.
For each CVE, we compile the corresponding vulnerable functions
in the specified library version and generate the vulnerable function
embeddings via TREX. As the firmware images are stripped, we do
not know with which optimizations they are compiled, we compile
the vulnerable functions to both MIPS and ARM with O3 and rely
on TREX’s cross-architecture/optimization matching capability to
match functions potentially compiled in different architectures and
with different optimizations. We then obtain the functions ranked
top-10 similar to the vulnerable one and manually verify if they
are vulnerable. We leverage strings command to identify the
OpenSSL versions indicative of the corresponding vulnerabilities.
Note that such information can be stripped for other libraries so
it is not a reliable approach in general. We have confirmed all 14
CVEs in 4 firmware models (Table 5) developed by well-known
vendors, i.e., Ubiquiti, TP-Link, NETGEAR, and Linksys. These
cases demonstrate the practicality of TREX, which helps discover
real-world vulnerabilities in large-scale firmware databases.

Vulnerability search performance. We quantify the accuracy of
TREX in searching vulnerable functions in the firmware images and
compare it to that of SAFE. As SAFE does not work for MIPS, we
study how it performs on NETGEAR R7000 model, the only model
that runs on ARM (Table 5). Specifically, we compile OpenSSL to
ARM and x64 with O3, and feed both our compiled and firmware’s
binaries to TREX and SAFE to compute embeddings. Based on the
embeddings, we search the compiled OpenSSL functions in the
NETGEAR R7000’s embedded libraries, and test their top-1/3/5/10
errors. For example, the top-10 error measures when the query
function does not appear in the top-10 most similar functions in the
firmware. Figure 12 shows that TREX has 5.5% and 5.6% lower
error rate than SAFE on average, when the query functions are
from the same or different architectures, respectively.

7 THREATS TO VALIDITY

Learning approximate execution semantics. In this paper, our
pretraining task is designed to help an ML model towards reasoning

10

Top-1 Top-3 Top-5 Top-10
0.0

0.1

0.2

0.3

0.4

0.5

0.6
Er

ro
r

Trex
SAFE

(a) Same architecture
Top-1 Top-3 Top-5 Top-10

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Er
ro

r

Trex
SAFE

(b) Cross architecture

Fig. 12. Top-1/3/5/10 error of TREX and SAFE in searching functions in
firmware. The queries and the firmware are from (a) both ARM, (b) x64
and ARM, respectively.

how programs execute. However, it does not guarantee the trained
model fully understands the execution semantics. Therefore, we can
only resort to empirical studies by designing various measurements
to test the trained model’s understanding of execution semantics.
Our evaluation shows the promise (see supplementary material) –
TREX obtains high accuracy on predicting diverse masked code
and trace values of millions of functions and generalizes to unseen
functions and trace values. Our case studies (in supplementary
material) on unseen test samples also demonstrate the model learns
beyond simply memorizing patterns or taking spurious shortcuts.

While empirical evidence suggests that TREX likely learns
approximate execution semantics, formally proving that an ML
model has learned execution semantics precisely remains an
open problem [43], [47]. So far, only a simple and restricted
set of properties can be formally verified on a limited types
of neural net architectures [16], [88], [92]. To the best of our
knowledge, no existing works can verify that a model has learned
execution semantics – an extremely complex and non-linear
property of program code. Therefore, we envision an appealing
future research direction in verifying that an ML model learned
execution semantics correctly.

Ground truth bias. Following previous works [23], [57], [93],
we treat functions compiled from the same source as similar,
regardless of architectures, compilers, optimizations, and obfus-
cation transforms. However, two semantically similar functions
can differ beyond architectures, compilers, etc., as long as they
have the similar input-output behavior. For example, quick sort and
merge sort are two equivalent implementations in terms of their
input-output behavior. Therefore, TREX can suffer from potentially
uncaptured false negatives, missing retrieving vulnerable functions
when matching firmware images.

We note that obtaining the ground truths of arbitrary semanti-
cally similar functions is not easy. As TREX aims to learn execution
semantics without the function pair ground truth, it can potentially
benefit this task as well. We leave this as the future study.

Dynamic trace bias. In this work, we use concrete dynamic
traces to pretrain TREX. However, the concrete value space can be
too large to exhaustively enumerate. This leads to the question
how TREX pretrained on limited trace values generalizes to
unseen samples. In our supplementary material, we have included
generalizability study for binary similarity. Moving forward, it
can be interesting to study how pretrained TREX generalizes to
unseen trace values and how to improve it. An interesting future
direction is to use symbolic execution traces, a more compact form
of program behavior, but the caveat is that symbolic execution is
much more expensive than micro-execution, which might restrict
its capability in obtaining large-scale training samples.

8 RELATED WORK

Traditional approaches to binary similartiy. Existing static ap-
proaches extract hand-crafted features by domain experts to match
similar functions. The features often encode the functions’ syntactic
characteristics. For example, BinDiff [100] extracts the number
of basic blocks and the number of function calls to determine the
similarity. Other works [18], [19], [29], [46], [47], [65] introduce
more carefully-selected static features. For example, ESH [19]
decomposes functions into strands of instructions based on data
dependencies and compares the function by composing the simi-
larity across these strands. Instead of relying on manually-defined
compositions, TREX learns the compositions by predicting the
execution effects across multiple instructions (§2.2). Therefore, our
pretraining task automates the process of encoding compositions.
Our case study (see supplementary material) demonstrated how our
model reasons over the compositions of multiple instructions.

Another popular static approach is to compute the structural
distance between functions to determine the similarity [11], [20],
[21], [26], [38], [78], [100], such as the edit distance between basic
block expression trees [78] or instruction sequences [21], [38]. As
discussed in §2, these features are susceptible to obfuscations and
optimizations. TREX automates learning approximate execution
semantics and has been empirically shown more robust.

In addition to the static approaches, dynamic approaches [25],
[32], [37], [39], [45], [58], [61], [62], [77], [82] construct hand-
coded dynamic features, such as values written to memory [25] or
system calls [62] by executing the function to match similar func-
tions. These approaches can detect semantically similar functions
by observing their execution behavior. However, these approaches
are expensive (because execution happens at query time) [77] and
can suffer from false positives due to the noise introduced by
forced-execution [23], [41]. TREX only uses the traces to learn
approximate execution semantics of instructions and transfer the
learned knowledge to match functions without directly comparing
their dynamic behavior. Therefore, it is more efficient and less
susceptible to the imprecision introduced by the forced-execution.

Besides dynamic execution based on concrete inputs, symbolic
execution has been proposed as an effective alternative to capture
the comprehensive behavior of the program over all paths [15],
[31], [53], [63]. However, the key limitation of symbolic execution
approach is their scalability. The authors of CoP [53] have
acknowledged their high computational overhead, taking an hour
to complete a comparison between two reasonable-sized programs,
e.g., thttpd and sthttpd. As a reference comparison, we run TREX

on all the function pairs between thttpd (102 functions) and sthttpd
(103 functions). TREX takes only 6.8 minutes to compare all the
10,000 pairs. Therefore, symbolic execution is much less practical
in real-world use cases, e.g., matching large-scale functions, and
the most recent study on binary similarity task [56] chose to discard
all these approaches as they are inherently slow.

ML-based approaches to binary similarity. Most recent learning-
based works [23], [24], [30], [42], [50], [57], [81], [93], [94],
[96], [99] learn a function representation that is supposed to
encode the function in low dimensional vectors, known as function
embeddings [56]. The embeddings are constructed by taking the
functions’ structures (e.g., control flow graph) [24], [28], [30],
[59], [93] or instruction sequences [23], [50], [57] and training
a neural net to align the function embedding distances to the
similarity scores. All existing approaches are based only on static
code, which lacks the knowledge of function execution semantics.

11

Moreover, the ML architectures adopted in these approaches require
constructing expensive graph features (attributed CFG [30], [93]).
By contrast, TREX learns approximate execution semantics from
traces without extra manual feature engineering effort.

Recently, Marcelli et al. [56] evaluated a fairly comprehensive
set of ML based binary similarity tools, in which TREX ranks the
second in terms of vulnerability searching performance. The best
performed model based on graph matching neural networks [51],
however, requires pairwise comparison for retrieval, i.e., it cannot
extract embeddings and perform approximate nearest neighbor
searching. Therefore, it suffers from poor scalability.
Learning representations of program code. There has been
a growing interest in learning neural program representation for
code modeling tasks [4]. The learned embedding of the code
encodes the program’s key properties, useful for many applications
beyond function similarity, such as program repair [69], [86], [89],
recovering symbol names, types, memory dependencies, and other
higher-level constructs [8], [9], [17], [36], [40], [50], [55], [71],
[73], [74], bug detection and investigation [2], [35], [54], [60], [64],
[80], [83], [85], [90], [91], and forensics [14], [48], [52]. Recent
studies have shown promising results that the learned program
representations can be further improved by program execution
behaviors [66], [73], [86], [87]. As opposed to just incorporating
traces as additional input [86], [87], TREX shows that ML models
can learn approximate execution semantics from large-scale traces
explicitly and still improves downstream analysis tasks, even the
traces are noisy and might deviate substantially from their actual
program behavior. Such a relaxation on the quality of traces can
potentially benefit a broad spectrum of program analysis tasks
where collecting traces is challenging.

9 CONCLUSION

We introduced TREX to match semantically similar functions based
on the function execution semantics. We design a pretraining
task to pretrain an ML model to learn approximate execution
semantics from noisy forced-execution traces and then transfer
the learned knowledge to match semantically similar functions.
Our evaluation showed that pretraining on forced-execution traces
drastically improves the accuracy of matching semantically similar
functions – TREX excels in matching functions across different
architectures, optimizations, and obfuscations. We release the code
and dataset of TREX at https://github.com/CUMLSec/trex.

REFERENCES

[1] H. Aghakhani, F. Gritti, F. Mecca, M. Lindorfer, S. Ortolani,
D. Balzarotti, G. Vigna, and C. Kruegel, “When malware is packin’
heat; limits of machine learning classifiers based on static analysis
features,” in 2020 Network and Distributed Systems Security Symposium,
2020.

[2] W. U. Ahmad, S. Chakraborty, B. Ray, and K.-W. Chang, “Unified pre-
training for program understanding and generation,” in 2021 Conference
of the North American Chapter of the Association for Computational
Linguistics, 2021.

[3] M. Ahmadi, R. M. Farkhani, R. Williams, and L. Lu, “Finding bugs
using your own code: Detecting functionally-similar yet inconsistent
code,” in 30th USENIX Security Symposium, 2021.

[4] M. Allamanis, E. T. Barr, P. Devanbu, and C. Sutton, “A survey of
machine learning for big code and naturalness,” ACM Computing Surveys,
2018.

[5] I. Amazon Web Services, “Open Distro for Elasticsearch,” https:
//opendistro.github.io/for-elasticsearch/, 2020.

[6] D. Arp, E. Quiring, F. Pendlebury, A. Warnecke, F. Pierazzi, C. Wressneg-
ger, L. Cavallaro, and K. Rieck, “Dos and Don’ts of Machine Learning
in Computer Security,” arXiv preprint arXiv:2010.09470, 2020.

[7] T. Avgerinos, S. K. Cha, A. Rebert, E. J. Schwartz, M. Woo, and
D. Brumley, “Automatic exploit generation,” Communications of the
ACM, 2014.

[8] P. Banerjee, K. K. Pal, F. Wang, and C. Baral, “Variable name recovery
in decompiled binary code using constrained masked language modeling,”
arXiv preprint arXiv:2103.12801, 2021.

[9] S. Bardin, T. Benoit, and J.-Y. Marion, “Compiler and optimization
level recognition using graph neural networks,” in MLPA 2020-Machine
Learning for Program Analysis, 2021.

[10] U. Bayer, P. M. Comparetti, C. Hlauschek, C. Kruegel, and E. Kirda,
“Scalable, behavior-based malware clustering,” in 2009 Network and
Distributed System Security Symposium, 2009.

[11] M. Bourquin, A. King, and E. Robbins, “Binslayer: Accurate comparison
of binary executables,” in 2nd ACM SIGPLAN Program Protection and
Reverse Engineering Workshop, 2013.

[12] L. Boytsov and B. Naidan, “Engineering efficient and effective non-
metric space library,” in International Conference on Similarity Search
and Applications, 2013.

[13] D. Brumley, P. Poosankam, D. Song, and J. Zheng, “Automatic patch-
based exploit generation is possible: Techniques and implications,” in
2008 IEEE Symposium on Security and Privacy, 2008.

[14] L. Cai, Z. Chen, C. Luo, J. Gui, J. Ni, D. Li, and H. Chen, “Structural
temporal graph neural networks for anomaly detection in dynamic
graphs,” in Proceedings of the 30th ACM International Conference
on Information & Knowledge Management, 2021, pp. 3747–3756.

[15] M. Chandramohan, Y. Xue, Z. Xu, Y. Liu, C. Y. Cho, and H. B. K.
Tan, “Bingo: Cross-architecture cross-os binary search,” in 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, 2016.

[16] Y. Chen, S. Wang, Y. Qin, X. Liao, S. Jana, and D. Wagner, “Learning
security classifiers with verified global robustness properties,” in 2021
ACM SIGSAC Conference on Computer and Communications Security,
2021.

[17] Z. L. Chua, S. Shen, P. Saxena, and Z. Liang, “Neural nets can learn
function type signatures from binaries,” in Proceddings of the 26th
USENIX Security Symposium, 2017.

[18] J. Crussell, C. Gibler, and H. Chen, “Andarwin: Scalable detection of
semantically similar android applications,” in European Symposium on
Research in Computer Security, 2013.

[19] Y. David, N. Partush, and E. Yahav, “Statistical similarity of binaries,”
ACM SIGPLAN Notices, 2016.

[20] ——, “Similarity of binaries through re-optimization,” in 38th ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation, 2017.

[21] Y. David and E. Yahav, “Tracelet-based code search in executables,” Acm
Sigplan Notices, 2014.

[22] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” in 2019
Annual Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, 2019.

[23] S. H. Ding, B. C. Fung, and P. Charland, “Asm2vec: Boosting static rep-
resentation robustness for binary clone search against code obfuscation
and compiler optimization,” in 2019 IEEE Symposium on Security and
Privacy, 2019.

[24] Y. Duan, X. Li, J. Wang, and H. Yin, “Deepbindiff: Learning program-
wide code representations for binary diffing,” in 2020 Network and
Distributed System Security Symposium, 2020.

[25] M. Egele, M. Woo, P. Chapman, and D. Brumley, “Blanket execution:
Dynamic similarity testing for program binaries and components,” in
23rd USENIX Security Symposium, 2014.

[26] S. Eschweiler, K. Yakdan, and E. Gerhards-Padilla, “discovre: Efficient
cross-architecture identification of bugs in binary code,” in 2016 Network
and Distributed System Security Symposium, 2016.

[27] M. Fan, X. Luo, J. Liu, M. Wang, C. Nong, Q. Zheng, and T. Liu,
“Graph embedding based familial analysis of android malware using
unsupervised learning,” in 2019 IEEE/ACM International Conference on
Software Engineering, 2019.

[28] C. Fang, Z. Liu, Y. Shi, J. Huang, and Q. Shi, “Functional code clone
detection with syntax and semantics fusion learning,” in Proceedings of
the 29th ACM SIGSOFT International Symposium on Software Testing
and Analysis, 2020, pp. 516–527.

[29] M. R. Farhadi, B. C. Fung, P. Charland, and M. Debbabi, “Binclone:
Detecting code clones in malware,” in International Conference on
Software Security and Reliability, 2014.

[30] Q. Feng, R. Zhou, C. Xu, Y. Cheng, B. Testa, and H. Yin, “Scalable
graph-based bug search for firmware images,” in 2016 ACM SIGSAC
Conference on Computer and Communications Security, 2016.

12

https://github.com/CUMLSec/trex
https://opendistro.github.io/for-elasticsearch/
https://opendistro.github.io/for-elasticsearch/

[31] D. Gao, M. K. Reiter, and D. Song, “Binhunt: Automatically finding
semantic differences in binary programs,” in International Conference
on Information and Communications Security. Springer, 2008, pp.
238–255.

[32] J. Gao, X. Yang, Y. Fu, Y. Jiang, H. Shi, and J. Sun, “Vulseeker-
pro: Enhanced semantic learning based binary vulnerability seeker
with emulation,” in 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, 2018.

[33] A. Gionis, P. Indyk, R. Motwani et al., “Similarity search in high
dimensions via hashing,” in Vldb, 1999.

[34] S. Gottschall, “Dd-wrt,” https://dd-wrt.com/, 2005.
[35] W. Guo, D. Mu, X. Xing, M. Du, and D. Song, “DEEPVSA: Facilitating

value-set analysis with deep learning for postmortem program analysis,”
in 28th USENIX Security Symposium, 2019.

[36] K. Heo, H. Oh, and K. Yi, “Machine-learning-guided selectively unsound
static analysis,” in 2017 IEEE/ACM 39th International Conference on
Software Engineering (ICSE). IEEE, 2017, pp. 519–529.

[37] Y. Hu, Y. Zhang, J. Li, and D. Gu, “Binary code clone detection across
architectures and compiling configurations,” in IEEE/ACM International
Conference on Program Comprehension, 2017.

[38] H. Huang, A. M. Youssef, and M. Debbabi, “Binsequence: Fast, accurate
and scalable binary code reuse detection,” in 2017 ACM on Asia
Conference on Computer and Communications Security, 2017.

[39] J. Jang, M. Woo, and D. Brumley, “Towards automatic software lineage
inference,” in 22nd USENIX Security Symposium, 2013.

[40] M. Jeon, S. Jeong, S. Cha, and H. Oh, “A machine-learning algorithm
with disjunctive model for data-driven program analysis,” ACM Transac-
tions on Programming Languages and Systems (TOPLAS), vol. 41, no. 2,
pp. 1–41, 2019.

[41] L. Jiang and Z. Su, “Automatic mining of functionally equivalent code
fragments via random testing,” in 18th International Symposium on
Software Testing and Analysis, 2009.

[42] S. Jiang, C. Fu, Y. Qian, S. He, J. Lv, and L. Han, “Ifattn: Binary
code similarity analysis based on interpretable features with attention,”
Computers & Security, p. 102804, 2022.

[43] Z. Jiang, F. F. Xu, J. Araki, and G. Neubig, “How can we know
what language models know?” Transactions of the Association for
Computational Linguistics, vol. 8, pp. 423–438, 2020.

[44] Z. Jiang, Y. Zhang, J. Xu, Q. Wen, Z. Wang, X. Zhang, X. Xing,
M. Yang, and Z. Yang, “Pdiff: Semantic-based patch presence testing
for downstream kernels,” in Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security, 2020.

[45] A. Kapravelos, Y. Shoshitaishvili, M. Cova, C. Kruegel, and G. Vigna,
“Revolver: An automated approach to the detection of evasive web-based
malware,” in 22nd USENIX Security Symposium, 2013.

[46] W. M. Khoo, A. Mycroft, and R. Anderson, “Rendezvous: A search
engine for binary code,” in 10th Working Conference on Mining Software
Repositories, 2013.

[47] D. Kim, E. Kim, S. K. Cha, S. Son, and Y. Kim, “Revisiting binary code
similarity analysis using interpretable feature engineering and lessons
learned,” arXiv preprint arXiv:2011.10749, 2020.

[48] H. Koo, S. Park, D. Choi, and T. Kim, “Semantic-aware binary code
representation with bert,” arXiv preprint arXiv:2106.05478, 2021.

[49] S. Kullback and R. A. Leibler, “On information and sufficiency,” The
annals of mathematical statistics, vol. 22, no. 1, pp. 79–86, 1951.

[50] X. Li, Q. Yu, and H. Yin, “Palmtree: Learning an assembly language
model for instruction embedding,” in 2021 ACM SIGSAC Conference on
Computer and Communications Security, 2021.

[51] Y. Li, C. Gu, T. Dullien, O. Vinyals, and P. Kohli, “Graph matching
networks for learning the similarity of graph structured objects,” in
International conference on machine learning. PMLR, 2019, pp. 3835–
3845.

[52] F. Liu, Y. Wen, D. Zhang, X. Jiang, X. Xing, and D. Meng, “Log2vec: a
heterogeneous graph embedding based approach for detecting cyber
threats within enterprise,” in 2019 ACM SIGSAC Conference on
Computer and Communications Security, 2019.

[53] L. Luo, J. Ming, D. Wu, P. Liu, and S. Zhu, “Semantics-based
obfuscation-resilient binary code similarity comparison with applications
to software plagiarism detection,” in ACM SIGSOFT International
Symposium on Foundations of Software Engineering, 2014.

[54] O. Lutz, H. Chen, H. Fereidooni, C. Sendner, A. Dmitrienko, A. R.
Sadeghi, and F. Koushanfar, “Escort: Ethereum smart contracts vulnera-
bility detection using deep neural network and transfer learning,” arXiv
preprint arXiv:2103.12607, 2021.

[55] A. Maier, H. Gascon, C. Wressnegger, and K. Rieck, “TypeMiner:
Recovering types in binary programs using machine learning,” in

International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment, 2019.

[56] A. Marcelli, M. Graziano, X. Ugarte-Pedrero, Y. Fratantonio, M. Man-
souri, and D. Balzarotti, “How machine learning is solving the binary
function similarity problem,” in 31st USENIX Security Symposium
(USENIX Security 22), 2022, pp. 2099–2116.

[57] L. Massarelli, G. A. Di Luna, F. Petroni, R. Baldoni, and L. Querzoni,
“Safe: Self-attentive function embeddings for binary similarity,” in
International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment, 2019.

[58] D. McKee, N. Burow, and M. Payer, “Software ethology: An accurate
and resilient semantic binary analysis framework,” arXiv preprint
arXiv:1906.02928, 2019.

[59] N. Mehrotra, N. Agarwal, P. Gupta, S. Anand, D. Lo, and R. Purandare,
“Modeling functional similarity in source code with graph-based siamese
networks,” arXiv preprint arXiv:2011.11228, 2020.

[60] W. Melicher, C. Fung, L. Bauer, and L. Jia, “Towards a lightweight,
hybrid approach for detecting DOM XSS vulnerabilities with machine
learning,” in Web Conference, 2021.

[61] J. Ming, M. Pan, and D. Gao, “ibinhunt: Binary hunting with inter-
procedural control flow,” in International Conference on Information
Security and Cryptology, 2012.

[62] J. Ming, D. Xu, Y. Jiang, and D. Wu, “Binsim: Trace-based semantic
binary diffing via system call sliced segment equivalence checking,” in
26th USENIX Security Symposium, 2017.

[63] J. Ming, D. Xu, and D. Wu, “Memoized semantics-based binary diffing
with application to malware lineage inference,” in IFIP International
Information Security and Privacy Conference. Springer, 2015, pp.
416–430.

[64] D. Mu, W. Guo, A. Cuevas, Y. Chen, J. Gai, X. Xing, B. Mao,
and C. Song, “Renn: Efficient reverse execution with neural-network-
assisted alias analysis,” in 34th IEEE/ACM International Conference on
Automated Software Engineering, 2019.

[65] G. Myles and C. Collberg, “K-gram based software birthmarks,” in 2005
ACM symposium on Applied computing, 2005.

[66] M. Nye, A. J. Andreassen, G. Gur-Ari, H. Michalewski, J. Austin,
D. Bieber, D. Dohan, A. Lewkowycz, M. Bosma, D. Luan et al., “Show
your work: Scratchpads for intermediate computation with language
models,” arXiv preprint arXiv:2112.00114, 2021.

[67] M. Ott, S. Edunov, A. Baevski, A. Fan, S. Gross, N. Ng, D. Grangier,
and M. Auli, “fairseq: A fast, extensible toolkit for sequence modeling,”
in 2019 Annual Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Language Technologies:
Demonstrations, 2019.

[68] OWASP, “Top 10 web application security risks,” https://owasp.org/
www-project-top-ten/, 2010.

[69] S. Parihar, Z. Dadachanji, P. K. Singh, R. Das, A. Karkare, and
A. Bhattacharya, “Automatic grading and feedback using program repair
for introductory programming courses,” in 2017 ACM Conference on
Innovation and Technology in Computer Science Education, 2017.

[70] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An
imperative style, high-performance deep learning library,” in Advances
in neural information processing systems, 2019.

[71] J. Patrick-Evans, L. Cavallaro, and J. Kinder, “Probabilistic naming of
functions in stripped binaries,” in Annual Computer Security Applications
Conference, 2020.

[72] M. Payer, S. Crane, P. Larsen, S. Brunthaler, R. Wartell, and M. Franz,
“Similarity-based matching meets malware diversity,” arXiv preprint
arXiv:1409.7760, 2014.

[73] K. Pei, J. Guan, M. Broughton, Z. Chen, S. Yao, D. Williams-King,
V. Ummadisetty, J. Yang, B. Ray, and S. Jana, “Stateformer: Fine-
grained type recovery from binaries using generative state modeling,”
in Proceedings of the 29th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, 2021.

[74] K. Pei, J. Guan, D. Williams-King, J. Yang, and S. Jana, “XDA: Accurate,
Robust Disassembly with Transfer Learning,” in 2021 Network and
Distributed System Security Symposium, 2021.

[75] F. Peng, Z. Deng, X. Zhang, D. Xu, Z. Lin, and Z. Su, “X-force: Force-
executing binary programs for security applications,” in 23rd USENIX
Security Symposium, 2014.

[76] R. Perdisci, A. Lanzi, and W. Lee, “Mcboost: Boosting scalability in
malware collection and analysis using statistical classification of exe-
cutables,” in 2008 Annual Computer Security Applications Conference,
2008.

13

https://dd-wrt.com/
https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/

[77] J. Pewny, B. Garmany, R. Gawlik, C. Rossow, and T. Holz, “Cross-
architecture bug search in binary executables,” in 2016 IEEE Symposium
on Security and Privacy, 2016.

[78] J. Pewny, F. Schuster, L. Bernhard, T. Holz, and C. Rossow, “Leveraging
semantic signatures for bug search in binary programs,” in 30th Annual
Computer Security Applications Conference, 2014.

[79] N. A. Quynh and D. H. Vu, “Unicorn: Next generation cpu emulator
framework,” BlackHat USA, 2015.

[80] S. Reddy, C. Lemieux, R. Padhye, and K. Sen, “Quickly generating
diverse valid test inputs with reinforcement learning,” in 2020 IEEE/ACM
42nd International Conference on Software Engineering (ICSE). IEEE,
2020, pp. 1410–1421.

[81] K. Redmond, L. Luo, and Q. Zeng, “A cross-architecture instruction
embedding model for natural language processing-inspired binary code
analysis,” arXiv preprint arXiv:1812.09652, 2018.

[82] K. Rieck, P. Trinius, C. Willems, and T. Holz, “Automatic analysis
of malware behavior using machine learning,” Journal of Computer
Security, 2011.

[83] S. L. Shrestha and C. Csallner, “Slgpt: Using transfer learning to directly
generate simulink model files and find bugs in the simulink toolchain,”
arXiv preprint arXiv:2105.07465, 2021.

[84] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in 2017
Advances in Neural Information Processing Systems, 2017.

[85] H. Wang, G. Ye, Z. Tang, S. H. Tan, S. Huang, D. Fang, Y. Feng,
L. Bian, and Z. Wang, “Combining graph-based learning with automated
data collection for code vulnerability detection,” IEEE Transactions on
Information Forensics and Security, vol. 16, pp. 1943–1958, 2020.

[86] K. Wang, R. Singh, and Z. Su, “Dynamic neural program embedding for
program repair,” in Proceedings of ICLR 2018, 2017.

[87] K. Wang and Z. Su, “Blended, precise semantic program embeddings,”
in Proceedings of the 41st ACM SIGPLAN Conference on Programming
Language Design and Implementation, 2020, pp. 121–134.

[88] S. Wang, K. Pei, J. Whitehouse, J. Yang, and S. Jana, “Formal security
analysis of neural networks using symbolic intervals,” in 27th USENIX
Security Symposium, 2018.

[89] S. Wang, P. Wang, and D. Wu, “Semantics-aware machine learning
for function recognition in binary code,” in 2017 IEEE International
Conference on Software Maintenance and Evolution, 2017.

[90] L. Wartschinski, Y. Noller, T. Vogel, T. Kehrer, and L. Grunske, “Vudenc:
Vulnerability detection with deep learning on a natural codebase for
python,” Information and Software Technology, p. 106809, 2022.

[91] M. Wen, R. Wu, and S.-C. Cheung, “How well do change sequences
predict defects? sequence learning from software changes,” IEEE
Transactions on Software Engineering, vol. 46, no. 11, pp. 1155–1175,
2018.

[92] E. Wong and Z. Kolter, “Provable defenses against adversarial examples
via the convex outer adversarial polytope,” in International Conference
on Machine Learning. PMLR, 2018, pp. 5286–5295.

[93] X. Xu, C. Liu, Q. Feng, H. Yin, L. Song, and D. Song, “Neural
network-based graph embedding for cross-platform binary code simi-
larity detection,” in 2017 ACM SIGSAC Conference on Computer and
Communications Security, 2017.

[94] J. Yang, C. Fu, X.-Y. Liu, H. Yin, and P. Zhou, “Codee: A tensor
embedding scheme for binary code search,” IEEE Transactions on
Software Engineering, 2021.

[95] L. Yang, W. Guo, Q. Hao, A. Ciptadi, A. Ahmadzadeh, X. Xing, and
G. Wang, “Cade: Detecting and explaining concept drift samples for
security applications,” in 30th USENIX Security Symposium, 2021.

[96] Z. Yu, W. Zheng, J. Wang, Q. Tang, S. Nie, and S. Wu, “Codecmr:
Cross-modal retrieval for function-level binary source code matching,”
Advances in Neural Information Processing Systems, vol. 33, pp. 3872–
3883, 2020.

[97] N. Zhang, “Hikari – an improvement over Obfuscator-LLVM,” https:
//github.com/HikariObfuscator/Hikari, 2017.

[98] L. Zhao, Y. Zhu, J. Ming, Y. Zhang, H. Zhang, and H. Yin, “Patchscope:
Memory object centric patch diffing,” in Proceedings of the 2020 ACM
SIGSAC Conference on Computer and Communications Security, 2020.

[99] F. Zuo, X. Li, P. Young, L. Luo, Q. Zeng, and Z. Zhang, “Neural machine
translation inspired binary code similarity comparison beyond function
pairs,” arXiv preprint arXiv:1808.04706, 2018.

[100] Zynamics, “BinDiff,” https://www.zynamics.com/bindiff.html, 2019.

14

https://github.com/HikariObfuscator/Hikari
https://github.com/HikariObfuscator/Hikari
https://www.zynamics.com/bindiff.html

	Introduction
	Overview
	Challenging Cases
	Pretraining Masked LM on Traces

	Methodology
	Forced-Execution
	Input Representation
	Pretraining with Traces
	Finetuning for Function Similarity

	Implementation and Setup
	Evaluation
	RQ1: Accuracy
	RQ2: Baseline Comparison
	RQ3: Execution Time
	RQ4: Ablation Study

	Case Studies on Vulnerability Searching
	Threats to Validity
	Related Work
	Conclusion
	References

