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Abstract—Containers enable a computing system to host mul-
tiple isolated applications, making more cost-efficient use of
the available computing resources. However, exploiting shared
computing resources, adversaries can launch various real-world
attacks (e.g., denial-of-service attacks) inside containers. In this
paper, we present TORPEDO, a fuzzing-based approach to detect-
ing out-of-band workloads: such workloads could largely interfere
the performance of colocated container instances on the same
host, gaining extra unfair advantages on the system resources
without being charged appropriately. TORPEDO mutates inputs
of OS syscalls and simultaneously monitors the resource con-
sumption of multiple container instances. It uses resource-guided
heuristics to find inputs that maximize the difference in resource
consumption between container instances and resource limits. We
evaluate TORPEDO on widely-used containerization platforms
and demonstrate that it can verify adversarial workloads that
are manually discovered by existing research. More importantly,
TORPEDO identifies several zero-day vulnerabilities that are not
known to the public.

I. INTRODUCTION

Containerization platforms provide environments to isolate
and provision processes running on the same host. Unlike
conventional virtualization techniques maintaining an individual
copy of the operating system (OS) and libraries for each
instance, containers enable much more lightweight and stan-
dalone isolation toward user applications. Container instances
on the same host share the same OS kernel, thus reducing
computing costs by stacking kernels and driving much higher
server efficiencies. To date, container techniques have been
widely adopted in many scenarios including cloud computing,
serverless computing, and edge computing. The value of the
container market is expected to reach $8.2 billion in 2025 [3]
as compared to $762 million in 2016 [64].

Containers employ system-wide isolation enforced by several
kernel mechanisms provided by the host OS. In particular, var-
ious Linux kernel authorization mechanisms (e.g., namespaces
and control groups) and the Linux security modules (SELinux,
AppArmor, etc.) are leveraged to constitute resource isolation
and provision [65]. Despite this spectacular progress, various
real-world attacks have been launched to abuse the shared
computing resources and affect the performance of container
instances collocated with a malicious container [29], [52], [78].
For example, recently-disclosed attacks [29] have shown that
by deliberately triggering system calls or locking up interrupts,
Denial-of-Service (DoS) attacks can be launched toward
colocated containers causing as much as 95% performance
degradation.
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Given various attacks conducted on containerization plat-
forms, previous studies reveal that many attacks are derived
from the same root cause by constantly abusing the shared
computing resource provision [29], [78]. The shared resources,
considered as “fairly” allocated across different containers
by the Linux cgroups mechanism, can be abused to starve
the host and other colocated container instances. While many
research works have manually disclosed attack strategies, a
thorough and complete analysis of containerization platforms
on their resource allocation enforcement is still missing in
understanding today’s container security landscape.

In this research, we extend the standard fuzz testing paradigm
to expose provision resource drifting of container instances by
stressing resources via system calls. Particularly, we capture
resources being subtly manipulated by (malicious) containers;
such manipulation can break the resource isolation guarantee
(e.g., enforced by Linux control groups), largely consume
shared system resources, and likely provoke various security
attacks. Compared with existing research, our automated testing-
based framework comprehensively cruises the potential attack
surface of containerization platforms, and can provide counter
examples (test inputs) that can actually trigger the defects.
The process of discovering, debugging, and even fixing the
container vulnerabilities is adequately simplified.

We have implemented the fuzzing framework into a prac-
tical and efficient tool, named TORPEDO, by addressing
multiple domain-specific challenges and incorporating several
optimizations in the container environments. TORPEDO is
an unsupervised coverage-guided fuzzer supporting multiple
containers with arbitrary resource restrictions tested on different
container runtimes. It leverages resource-guided heuristics to
find system call inputs that maximize the discrepancy between
system resource consumption and container resource limitations.
We propose to guide the fuzz testing by combining both
code coverage and system resource consumption as feedback.
We also propose testing oracles, with respect to the system-
level resource allocation guarantees commonly assumed by
the containerization platforms, to identify potential adversarial
workloads.

The proposed workflow is effective and shows promising
results when evaluated with Docker [11] with three different
container runtime settings, including the default runc [10], the
Redhat crun [24], and Google gVisor [12]. TORPEDO success-
fully re-confirms several vulnerabilities that are known to the
community, but identifies several new attacking vectors. Also,
it detects multiple new vulnerabilities concerning violations



of CPU resource limitation from these popular (commercial)
container components. We also trace the root cause for
identified vulnerabilities in the container implementation, and
investigate the potential security threats. Confirmation with
container developers also receives promising feedback, with
multiple findings have been promptly confirmed and fixed.

The proposed techniques and the developed platform can
be adopted by virtualization technique developers and security
researchers, to provide continuous updates against attackers
with access to the tremendous numbers of virtualization and
cloud services in the real world. To facilitate results verification
and follow-up research, we will release all our erroneous
detection results and a snapshot of TORPEDO.

II. BACKGROUND

To date, many container technologies are available on
the market, including LXC, OpenVZ, Linux-Vserver, and
Docker [11], [13]-[15]. In general, container engines such
as Docker create and manage the lifecycle of containers, and
container runtime is responsible for translating the visibility and
resource restrictions from the user-facing API into directives
for the kernel. There are several existing designs for container
runtimes. Native runtimes perform the necessary setup for
the container, allowing the container to share the host kernel.
Examples include the default runtime packaged with Docker,
runc [10], and the Red Hat crun [24], which is written in C for
setting up the environment before the container process starts.
Sandboxed runtimes introduce a translation layer between the
container and the host kernel, and gVisor [12] is a secure
runtime that reduces the attack space on the host kernel by
implementing a large portion of the syscall interface with
a smaller number of syscalls. At the kernel level, containers
depend on multiple independent Linux kernel components (e.g.,
namespace and cgroups) to enforce isolation among user-space
instances. Particularly, cgroups (i.e., control groups) are the
key features for controlling and limiting the total amount of
system resources for containers. We next discuss the cgroups
mechanism in detail.

A. Linux Control Group

Modern Linux OS features cgroups as a highly flexible and
configurable way to control the dynamic computing resource
allocation, including (CPU) runtime, memory, input/output
(I/0), and network bandwidth. cgroups quantitatively limit
the amount of resources assigned to a container, thus ideally, it
is designed to prevent one or a particular group of containers
from draining all the available computing resources of other
containers or the host machine. Typically, the cgroups
mechanism partitions groups of processes into hierarchical
groups with controlled behaviors, and relies on different
resource controllers (or named as subsystems) to limit, account
for, and isolate various types of system resources.

The control groups mechanism is one keystone constituting
containerization platforms, enforcing both cross-container
isolation and container-to-host isolation on multiple types of
system resources. As mentioned above, cgroups specify the
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resource allowance for one or a set of containers. For instance,
by specifying the CPU usage share of one container as 512
and another container as 1024, the latter one is provisioned
to get roughly double amount of CPU time compared to the
first one. Nevertheless, enforced cgroups, none of these two
containers can starve the other one, even if they are competing
the same CPU core. Similarly, cgroups helps to prevent
containers from draining resource over the host machine. The
cpu controller can provide a hard limit on the maximum amount
of resource utilized by a container, by specifying a quota
and period. Each container can only consume up to “quota”
microseconds within each given “period” in microseconds. For
a container set with 50,000 “quota” and 50,000 “period”, it can
consume up to the total CPU cycles of one CPU core. More
importantly, cgroups have an inheritance mechanism, ensuing
that all child processes inherit the exactly same cgroups
attributes from their parent processes, which guarantees that
all child processes will be confined under the same cgroups
policies. Overall, cgroups provide a flexible mechanism
to specify and enforce the resource quota for containers,
smoothly enabling the “pay-as-you-go” scheme for real-world
cloud platforms. More importantly, a correctly designed and
implemented cgroup mechanism shall prevent most cross-
container or container-to-host attack vectors such as Denial-of-
Service (DoS) attacks in the first place.

B. Container Attacks by Abusing Resource Allocation

Despite the encouraging and flexible enforcement provided
by Linux namespaces and cgroups, we have observed various
real-world exploitations toward containerization platforms. In a
multi-tenant environment where multiple containers belonging
to different tenants run on the same physical machine, malicious
containers might turn other co-resident containers or the host
into mal-functional. For instance, a malicious container can
drain most of the CPU computing resources and starve other
containers or even the host OS.

Ideally, the resource consumed by a container is limited by
cgroups. However, previous work [29], [45] demonstrates
that inherited cgroups confinement via process creation cannot
always guarantee consistent and fair resource accounting, and
it is possible to break the resource rein of cgroups. Gao et
al. [29] designed a set of exploiting strategies to generate out-
of-band workloads on another process (in a different cgroup)
on behalf of a constrained original (malicious) process. The
consequence is huge: Gao et al. [29] demonstrated that, by
escaping the resource limit of cgroups, a container can
consume system resources (e.g., CPU) as much as 200x of
its limit, and significantly degrade the performance of other
co-resident containers to only 5%.

Defer Work to the Kernel. The first type of strategy is to
defer or delegate workload to the kernel, as all kernel threads
are attached to the root cgroup. The amount of resources
consumed by those workloads would be counted to the target
kernel thread, instead of the initiating user-space process (i.e.,
the container). The Linux kernel by default runs multiple kernel
threads, including kworker for handling workqueue tasks [1]



and ksoftirgd for serving softirgs. Also, a container process
can exploit kernel threads as proxies to spawn new processes
(which are still attached to the root cgroup), and thus escape
the resource control. One feasible solution is to exploit the
usermode helper API, which provides a simple interface
for creating a process in the user-space. In both cases, the
corresponding consumed resources would not be limited by
any cgroups.

Deferring Work to Other Process cgroups. The second
type of strategy is to delegate workload to other userspace
processes, various system daemons and services, which are
all attached to other cgroups than a containerized process. For
example, a malicious container can exploit multiple system
processes (e.g., systemd) maintained by the Linux server for
purposes like process management, system information logging,
debugging, or container engine processes, which are required
to run on the host to support and manage container instances.
The corresponding consumed resources would not be charged
to the initiating process (i.e., malicious container), and thus
the cgroups mechanism can be escaped.

However, we consider the existing research has never fulfilled
its potential by conducting a systematic and comprehensive
study on resource allocation. Previous works largely rely on
manual analysis and thus can only find limited exploiting
methods. We thus intend to develop a system to automatically
uncover those vulnerabilities in containerization platforms.

III. PROBLEM FORMULATION AND APPROACH

In this section, we formulate the research problem and
discuss the opportunities to address it with fuzzing.

A. Problem Formulation

In general, containerization platforms are designed to deliver
a confined provision for container instances, in terms of both
static and dynamic computing resources. Container instances
should not go over a pre-defined amount of static computing
resources. More importantly, the provision of runtime resources
should not be changed no matter how the resource is accessed
by other container instances; violation of such provision may
be due to bugs or inherent design limits, revealing chances of
conducting exploitations.

Threat Model. We consider standard multi-tenant environ-
ments where multiple containers belonging to different tenants
share the same physical machine. All containers are confined
with proper resource isolation and thus can only consume
limited resources (e.g., CPU cycles, memory, etc.). The attacker
can control one or more containers by using the provided
service normally and legitimately. The malicious container
then attempts to cause system-wide impacts by consuming
more resources than allocated.

Formulation. The aforementioned research problem is formu-
lated as below. Let H represent a physical machine which
hosts n container instances C = ¢y, ¢a,. . ., C,, Tunning with
different containerization platform combinations (denoted as
P = p1,p2,...,ps). Once deployed, remote users can com-
municate with the deployed application by constantly feeding
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inputs and imposing one of the workloads W = wy, wa, . . ., ws.
To prevent inter-container exploitation, the container manager
enforces the following holistic requirement:

Ve; € C,Vw; € W,V € P Ry i < Alloc(c;,wj, pr) (1)

where function Alloc denotes the amount of computing
resources (e.g., CPU, Memory, I/O bandwidth) provisioned
for a container instance c;, and R; ;) denotes the total
amount of resources consumed by that container. In general,
this requirement specifies that a container should not be
capable of consuming more resources than allocated by the
containerization platforms.

The above formulation indicates the supposed resource
consumption by each container. However, it is challenging
to monitor out-of-band workloads for each container, as many
processes are shared among all containers. Thus, we can make
a generalization about the total resource utilization of the
host (Ryr) for an arbitrary set of containerized workloads.
Particularly, the total resource consumed by the host should be
less than the summation of allocated resources of all containers.

Ry <) Alloc(ci, wi, pr,) 2)

Although satisfying the above requirement guarantees a fair
resource provision, this requirement is still too strict for most
real-world cases. Each OS has some amount of unavoidable
overhead associated with creating and executing a containerized
workload. Therefore, we use € as a small drifting and refine
Constraint 2 such that not only containerization platforms with
strict enforcement are deemed safe, but also with small changes
€ are safe:

Ry +e< ZAlloc(ci7wj7pk)

where € can be configured by the users.

3

B. Resource-Guided Fuzz Testing

Feedback-driven fuzz testing has been widely used to
automatically generate tests to detect software faults [80]. The
strength of feedback-driven fuzz testing lies in its capability
to benefit from the “genetic algorithm” to gradually identify
and retain inputs that can maximize the fuzzing objective. We
leverage the fuzzing scheme to analyze container instances
running on the same host. Overall, while applications within
different containers usually have different functionalities, the
container instances themselves, once configured and launched,
should always be confined by the specified resource provision.
In that sense, if one or more containers exhibit observable
violations, then it means that workloads exposed over containers
provoke vulnerabilities of the tested, which should be remedied
by developers.

We aim to record the violations w.r.t. the testing oracle
measurements observed over container instance executions. For
each iteration of testing, it mutates the test inputs to guide
the fuzzer in finding inputs that maximize predefined feedback
(in this case it is the resource allocation driftings). In general,
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Fig. 1: Overview of the proposed approach.

feedback-driven approaches form a search campaign inspired
by evolutionary biology, which aims to gradually converge test
cases with high chances of success. Hence, the input creation
and mutation would consider the collected feedback. It defines
the requirement in this research as follows:

maxd = Ry — Z AllOC(Ci; wmapk)

Wm

“

where § denotes the difference of allocated resources between
the allocated and the real consumed. A large § indicates a
higher chance of conducting cgroup escape exploitations. As
shown in Equation 4, we compute the resource allocation
differences for each mutated input: inputs will be kept in a
queue for further mutation and usage in case it leads to new
(interesting) differences in the tested container instances.

IV. TORPEDO DESIGN

The goal of TORPEDO is to develop an unsupervised
coverage-guided fuzzer supporting multiple containers to be
tested on different container runtimes in parallel. Figure 1
depicts a bird’s eye view. It is similar to SYZKALLER, which
fuzzes pools of virtual machines, but is actually significantly
different from it. Instead of spawning VM, TORPEDO creates
containers with arbitrary resource restrictions and runtimes
(e.g., runC, crun, gVisor) directly, thus reducing the amount of
resource overhead incurred by additional isolation mechanisms
in VMs.

For the general architecture, a manager binary serves as
an entrypoint for the fuzzer and a central collection point for
the program corpus and execution statistics. Each manager
spawns a number of fuzzer processes and communicates
with the fuzzers over gRPC. The fuzzer binary then runs
inside a container, and is responsible for generating and
manipulating programs through various lifetime stages. It
repeatedly mutates programs to determine variants that generate
new coverage. The executor then executes a serialized program
while collecting coverage information about each call. It
implements a translation layer to forward commands directly
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Algorithm 1 Fuzz testing. Report all discrepant workloads
across container instances C starting from a corpus Z. R denotes
the resource (e.g., CPU cycles) for testing.

1: function TORPEDO(Z, C, R)

2 S+ o > discrepant workload set

3 O < CONFIGCONTAINER(C)

4 for 1 ... MAX ITER do

5: i < POPQUEUE(Z)

6 1* < MUTATE(%)

7 W <~ GENWORKLOAD(7*)

8 R+ o > resources allocated in containers

9: for con;,w; € (C,W) do

10: r < RUN(con;, w;)

11 R+ RU{r}

12: if NEWPATTERN(R) then

13: I+ TZU{i*} b record i* that exposes new
patterns

14: for oracle € O do

15: if VIOLATE(R, oracle) then

16: S + SU{#*} > record i* that violates an
oracle

17: return S

onto the host and passes logs from the fuzzer back for analysis
(i.e., between the fuzzer and executors).

TORPEDO contains an observer, which is a thread of
execution responsible for delegating workloads to executors
and examining the results of each execution. It collects a wide
spectrum of system information, including various resources
consumed by a container, the utilization of system/kernel
processes, and the resource consumed by containerization
components. For guiding adversarial program generation to
identify out-of-band workload, TORPEDO leverage an extra
library, Oracle(s), that contains the necessary logic for the
task with respect to a particular resource. With Oracles,
TORPEDO combines both code coverage information and
resource utilization to guide the fuzzing process.

Algorithm 1 specifies the testing workflow. Overall, our
approach depicts a fuzz testing procedure. We start by taking
a set of container instances deployed on the same host as
the testing target. We also require users to provide a set of
initial inputs Z as the fuzz testing seeds (see Sec. V on the
construction of Z in our research). Containers C are configured
w.r.t. the particular resource R and yields the corresponding
testing oracle set O (line 3). We then iterate the fuzz testing
process for MAX ITER times and collect all the findings. For
each iteration, n inputs are fetched from the input queue (line
5), and we mutate the fetched input set . Then, the mutated
¢* will be used to generate a set of workload WV over each
container instance (Sec. IV-A). Each container con; will be
executed with its assigned workload w; for a reasonable amount
of time (Sec. IV-B), and we collect the targeted resource
computation during this phase (line 9; Sec. IV-C). In case
the collected computing resource consumption reveals certain



unknown patterns (e.g., a larger ¢ in Equation 3; see Sec. IV-D
for elaboration), the mutated input ¢* is considered interesting
and will be kept in the input queue for further usage (line 12).
More importantly, once the provoked resource usage violates
any testing oracle for the checked property (line 14), we keep
this input as “discrepant input”. The entire set of discrepant
inputs will be returned to users (e.g., container developers) for
confirmation and bug fix of container runtime systems.

Our testing campaign subsumes several layers hidden within
the container “runtime” (see the three layers in the “Physical
Machine” box of Figure 1). In addition, it is worth noting that
while we primarily detect resource violation vulnerabilities (out-
of-band workloads), crashes hidden in the container runtime
systems and libraries could also be exposed, since the proposed
approach forms a typical fuzz testing toward the container
infrastructure. Existing research has (manually) identified
vulnerabilities of this category [18], [42], and our evaluation
successfully reveals several crashes in the Docker runtime
system (see Sec. VI). In the rest of this section, we elaborate
on each step in detail.

A. Generating Workload

SYZKALLER does not natively support the direct ingestion
of seed files for use in corpus construction. Instead, it prefers
to generate programs using a nondeterministic process that may
draw on a corpus of coverage information, if one is available.
For more efficient testing (especially reproducing existing
exploits), we envision that TORPEDO is capable of ingesting
seed files directly from an operator and using these to populate
an initial corpus. Given an input set ¢*, TORPEDO prepares a set
of workload WV that will be used by each container instance. It
then passes through a serialized execution request to a prepared
container, and distributes many heterogeneous workloads in
parallel. Since the majority of generated programs are short
(10 ms or less) and may not finish at the same time, TORPEDO
repeatedly runs those workloads and deploys a synchronization
mechanism (discussed in Section IV-C) to ensure an efficient
fuzzing process.

B. Interacting with the Container Runtime

In the native SYZKALLER design, workloads are executed
via a virtual machine that shields the syz-manager binary
(which serves as an entrypoint for the fuzzer and a central
collection point for the program corpus and execution statistics)
from kernel crashes. While TORPEDO would also benefit from
such a strategy, we also note that VMs impose a nontrivial
performance overhead and may obscure otherwise relevant
observations. When specifically considering sandboxed and
virtualized runtimes, which need to be analyzed closely for
adversarial utilization on the host, adding an additional layer
of VM translation will complicate detangling measurements
and slow down the entire fuzzing process. Thus, we choose to
execute all TORPEDO processes on the same host.

We further identify and package the smallest set of
SYZKALLER components into a container to maintain the
existing program execution workflow. Particularly, we package
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the syz-executor process (a C++ binary that reads in a serialized
program and executes it while collecting coverage information
about each call) and a simple entrypoint binary to maintain API
compatibility and allow for connection debugging. Additional
features of this entrypoint will be discussed in Section IV-C.
These two applications, when combined, form a container
image for fuzzing adversarial workloads.

C. Collecting Provisioned Computing Resources

Since the goal of TORPEDO is to identify out-of-band
workloads that will violate existing cgroup limitations, it
must accurately capture resource utilization measurements. To
do so, the first step is to observe the state of the system
while the program(s) under examination are running. Ideally,
the observation window would completely overlap with the
window of execution to capture an accurate measurement. This
poses an issue when the programs under testing have different
running times as a result of variations in the algorithmic
complexity of the underlying syscalls or simply becoming
blocked. Furthermore, when multiple containers are running
in parallel, we note that all the programs under test will
collectively contribute to the resource utilization of the host.
Thus, for accurately measuring multiple fuzzing processes in
parallel, we completely synchronize the program execution
window and extend the execution time for each program to
become comparable. We choose to have the container entrypoint
binary be responsible for this synchronization. Basically we
keep running the workloads in a loop until it reaches the
threshold, and report the number of executions and average
execution time (obtained through Unix NS timestamps). This
way, TORPEDO ensures that all parallel executor containers
terminate their execution at or before a specified timestamp.

Observer. To coordinate workload execution and measurement
taking, we introduce the concept of the observer. The observer
is a thread of execution responsible for delegating workloads to
executors, signaling executors to start, and examining the results
of each execution. These “observations” provide feedback
used to guide program generation and mutation, as well as
identify workloads that are likely adversarial. The observer has
access to all feedback results and can use them to immediately
motivate changes to each program for the following round
(Section IV-D). Additionally, the observer is responsible for
logging this information for later analysis (e.g., identifying
adversarial workloads).

D. Constituting Fuzz Testing Feedback

TORPEDO must consider two feedback mechanisms when
making decisions: code coverage and resource utilization. Code
coverage constitutes a simple “binary feedback” mechanism;
a given measurement either contains some new coverage or
does not. A program that generates more new coverage is
strictly “’better” than one that does not. However, the same
relationship does not necessarily hold for resource utilization:
a fuzzing input that generates more CPU utilization than its
predecessor may not strictly be more adversarial; it could
simply spend less time blocked. For designing TORPEDO,



we note that adversarial workloads typically exhibit some
amount of “workload amplification”, by which the total
amount of resources consumed by the host is increased some
factor beyond what the adversarial program is consuming
itself. This indicates that observing more overall resource
utilization is potentially indicative of an out-of-band workload,
especially when resource limitations have been placed on the
workloads that should restrict them. The observer thread is
then responsible for collecting and analyzing this information
to guide the generation of adversarial programs.

Furthermore, we split the process of guiding program
generation into two separate problems. The first concerns
ranking workloads with respect to "how likely” they are to
become adversarial. The second concerns identifying with some
certainty that a workload has become adversarial. The first
functionality is necessary to motivate program mutation while
evaluation is ongoing for a particular batch, and the second is
necessary for the ultimate goal of identifying programs that
violate one or more resource oracles. We conceive of an oracle
library that contains the necessary logic for both of these tasks
with respect to a particular resource R. More formally, an
oracle library must support the following operations.

1) Score a workload. A higher score indicates the workload

is more indicative of adversarial behavior.

2) Flag a workload. If the flag is thrown, the oracle believes
the workload violates one or more resource isolation
boundaries.

The question remains of how to combine oracle and code
coverage feedback in a meaningful way. Fundamentally, these
two mechanisms are incompatible. Code coverage is collected
per individual syscall in a program, whereas an oracle score
takes into account the behavior of all programs and the host.
TORPEDO solves this problem by considering both mechanisms
at separate granularity levels. Particularly, code coverage is
incorporated at the individual program level, and resource
utilization at the “set of programs” level. In this way, the current
set of all containerized workloads is considered separately from
the individual workloads that comprise the set.

V. IMPLEMENTATION
A. Instrumenting SYZKALLER

The OS kernel fuzzing framework SYZKALLER [32], [56]
takes a set of system call traces (each set is called a “corpus”)
as its seed inputs for fuzzing. Given a corpus of system call
traces, SYZKALLER perturbs input values of system calls and
also shuffles system calls on the trace to interact with the
OS kernel. SYZKALLER can also generate new traces during
the fuzzing campaign. It manifests a standard feedback driven
grey-box fuzzing setting guided by kernel code coverage. A
trace is kept for further mutations if the executing system calls
on the trace induces new coverage of the OS kernel; otherwise,
it is discarded. In TORPEDO, we instrument SYZKALLER and
take the resource consumption difference among container
instances as another feedback to guide fuzzing. The whole
implementation contains 1,500+ Go codes as well as non-trivial
C/C++ modifications.
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Replacing Virtual Machines with Containers. We begin by
implementing a VM translation layer that creates processes
on the host and passes logs from the fuzzer back for analysis.
Execution requests are passed to containers via IPC pipes
and results are returned using the same mechanism. We
also introduce a small library to support creating containers
with arbitrary resource restrictions and runtimes. Rather than
directly interacting with the Docker daemon over HTTP,
we implement a wrapper around the Docker command line
interface. This ensures that TORPEDO is capable of capturing
potential vulnerabilities created by the interaction between
the CLI and the Docker Daemon, as well as compatible with
equivalent container engines like “podman”, which use the
same CLI commands. Each container is restricted via cgroup
constraints to a single, unique physical core, which makes it
easier to identify when a containerized workload has “escaped”
to another core (i.e., breaking the cpuset cgroup).

Algorithm 2 Observe Execution. Each round lasts for 7
seconds. R represents some computing resource the observer
should monitor.

1: function OBSERVER(T, R)

2: RoundNum <+ 0

3: Workloads < @

4: RoundScore <+ 0

5: INITIALIZEEXECUTORS(S)

6: for co do

7: W < GETPROGRAMS(W, RoundScore, R)

8: StopTime < CurrentTime + T

9: for £ € Executor do

10: E.stop < StopTime

11: E.program +— w (w € W)

12: SIGNAL(E)

13: WAITFORALLEXECUTORS(E) > Wait for all
executors to signal they are ready

14: SIGNALALLEXECUTORS(E)

15: RoundScore < TAKEMEASUREMENT(7, R) >
returns after 7 seconds

16: LOGROUNDRESULTS(RoundScore)

17: RoundNum + +

18:

19: function EXECUTOR(O) > Each executor maintains a
reference to the observer

20: program <— <&

21: stop < &

22: for oo do

23: WAITFORSIGNAL()

24: PREPARETOEXECUTE(program,) > Create a
container and serialize execute request

25: SIGNALOBSERVER(O)

26: WAITFORSIGNAL()

27: EXECUTE(program, stop)

Implementing the Observer. In the SYZKALLER native
design, one thread is created for each executor and all procs



execute independently. We modify each thread and coordinate
the observer with any number of executors using algorithm 2.
Basically, this algorithm uses a two-stage latching procedure to
distribute programs and prime each executor (each executor is
distributed with one program, as Line 11), then starts the
execution window to align with a pre-defined number of
resource measurements.

The observer divides execution periods into rounds of time
T duration each. With preliminary exploration, we observe
that a short interval (7") is more susceptible to being disrupted
by temporary “noise spikes” from the host (e.g., cron jobs,
sudden arrival of network packets, system logging events, etc),
whereas longer intervals produce more useful measurements
but significantly reduce program throughput. We choose values
in the range of a few full seconds, often between three and
five, to achieve a fair balance of throughput and precision.

Implementing Oracles. In anticipation of fuzzing for adver-
sarial CPU utilization, we create an oracle framework suitable
for collecting both per-process and per-core utilization measure-
ments (Line 15 of algorithm 2, TakeMeasurements). The former
can be easily collected from the PROC file system, specifically
through ‘/proc/stat‘. This pseudofile exposes information about
how much time each CPU core has spent in various categories,
including userspace, kernel space, and idling.

Collecting per process CPU utilization is more difficult, but
can provide equally useful insights. Tracking the usage of
individual processes is particularly helpful in understanding
where out-of-band workloads are being created and tracking
their efficacy. To implement this, we fork an existing Golang
library [7] with a wrapper for the top (1) command. We filter
this output by selecting common categories of interest, such
as ‘docker’, ‘kworker’ threads, ‘kauditd’, ‘systemd-journal’,
and miscellaneous kernel threads (most of them are reported
in [29]).

The implementation of top on Linux has a number of hidden
idiosyncrasies that make it difficult for our purpose. First, even
when invoked with a custom duration between updates, top has
an unavoidable “warm up time” to generate its first frame that
produces inaccurate results. We modify the Linux wrapper for
top to discard these warm-up measurements. Secondly, top is
incapable of reporting CPU utilization by processes that begin
or end during the time between frames. For our purposes, this
only makes it suitable for measuring CPU utilization from
daemons or otherwise long-lived processes. If a program were
to trigger the creation of many short lived kernel threads,
TORPEDO would still observe it from the broader per-core
CPU usage measurement. The combination of these two metrics
gives an excellent “snapshot” of CPU allocation during a time
period and can easily be analyzed to determine adversarial
workloads.

B. Leveraging the Oracle Library

As in Section IV-D, we implement each oracle to support
two objectives. The first concerns scoring workload resource
utilization to serve as a feedback mechanism, and the second
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concerns identifying adversarial workloads based on a set of
heuristics.

Scoring Workloads. As in SYZKALLER, candidate programs
are evaluated for new code coverage patterns and only accepted
for triage if they are judged to be interesting. Each batch
of programs is subjected to many repeated mutations in an
attempt to motivate the generation of adversarial programs.
We conceive of two states that a set of programs may be in
at any time; “mutation”, where each program in the set is
perturbed in an attempt to generate more adversarial resource
utilization, and “confirm”, where programs are rerun to confirm
some interesting observation exists and was not a result of
system noise. The Oracle score is used to determine when a
mutation has achieved some meaningful change and should
be confirmed as a new baseline for the batch (Algorithm 2,
Line 15, RoundScore, used to GetPrograms on line 7). After
some amount of time without a meaningful improvement, the
Oracle determines the batch has been exhausted and calls for
new programs.

Combining Coverage and Ultilization Feedback. As the
primary assumption behind most fuzzing tools, high code
coverage generally means that it is more likely for a test
to uncover a bug. Nevertheless, this might not be sufficient
for our focus, aiming at finding bugs enabling adversarial
workloads. Thus, TORPEDO needs to combine both code
coverage information and system utilization feedback to guide
the fuzzing process. This is not straightforward, because
code overage comes from an individual program but system
utilization comes from all programs. To this end, our design
splits the SYZKALLER program state machine into two separate
state machines: one for each program and the other for the
whole batch of programs. Figure 2 depicts the result of dividing
relevant states between the level of an individual program and
a batch of programs. The program state machine is focused on
coverage collection: it discards programs that are not interesting
and ensures to keep getting new traces to test. The batch state
machine is focused on the system utilization: it decides how
to mutate programs. Thus, programs that do not generate new
coverage are typically rejected before they spend too much
time being mutated. Also, only the set of mutated workloads
that generate the most adversarial resource usage are recorded
into the corpus.

To reduce the impact of system noise (e.g., generated by
mutation operations), we implement the “shuffle” state, where
individual programs are shuffled between cores but the order
of syscalls in each trace remains unchanged. This helps to
reduce false positives from the scenarios where system noise
is concentrated on a subset of cores and is unrelated to the
program under test.

Flagging Workloads. The Observer could easily apply an
Oracle’s flagging heuristic to each observation as it becomes
available, although as true violations are likely to be rare, this
would reduce overall program throughput. Instead, TORPEDO
uses this Oracle functionality to parse through log files from
each round and isolate small numbers of adversarial programs
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asynchronously from program execution. If the adversarial pro-
gram is indeed correlated with a higher score from the Oracle’s
scoring functionality, then we expect the adversarial program
to be retained for the remainder of the batch, which serves
to confirm the program is the cause of whatever adversarial
behavior has been flagged. Once identified, TORPEDO leverages
a tool-assisted minimization workflow to automatically isolate
the adversarial programs (i.e., a sequence of system calls)
for further analysis. Basically, we systematically remove calls
from the program until we obtain the smallest set of calls that
result in the originally observed oracle violations. After that,
we further manually confirm and isolate the vulnerabilities
through kernel trace debugging.

VI. EVALUATION
A. Research Questions

TORPEDO is designed to discover vulnerabilities existed
in containerization components, which can be exploited to
generate out-of-band workloads and escape the resource limit
of cgroups. While many aspects of the tool are novel, much of
the design is a natural extension of the existing SYZKALLER
framework. Also, we source much of TORPEDO’s initial testing
corpus directly from a selection of seeds from Moonshine [56],
which is another SYZKALLER extension project concerned with
improving the quality of seeds distilled from the framework
seeds. Particularly, we attempt to explore that (1) Can TORPEDO
discover new vulnerabilities and how efficient is that? (2)
Are there discrepancies among different implementations of
container components (e.g., runtime)? (3) How is TORPEDO’s
code coverage mechanism?

B. Environment Setups

Multiple popular container implementations are commonly
used in the real world. This paper aims at presenting an in-depth
understanding of today’s container security landscape, where
we will leverage TORPEDO to test three popular container
runtime implementations: runc, crun, and gVisor.

TORPEDO is designed as a blackbox testing framework
that does not rely on any implementation details of the
underlying container implementation. In principle, the proposed
technique can be smoothly migrated to test different container
infrastructure implementations. We consider this as a big
advantage, compared to existing container security analysis
techniques where heavyweight program analysis methods are
conducted [57]. The following paragraphs discuss each of the
container runtimes we target in detail.
runc. This runtime is used in a typical container execution
environment (usually as the default container runtime), where
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the native Linux together with runc [10] are executed directly
on top of the hardware. runc denotes a low-level container
runtime library mainly supporting “high-level” container engine
(e.g. Docker) to spawn and run containers. For instance, the
Docker engine leverages runc to handle tasks such as running
a container, attaching a process to an existing container, and
SO on.

crun. Much like runc [24], crun is a bare-metal runtime
that interfaces directly with Linux to create a containerized
process. Unlike runc, which is written in Golang, crun is written
entirely in C. The project authors advertise that crun functions
identically to runc, but due to its implementation, is faster
and more memory efficient. Also, the crun is completely
compatible with Docker.

gVisor. This runtime is indicative of another popular container
execution environment, where the gVisor (runsc) process
serves as a secure sandbox for the untrusted containerized
code. gVisor functions as a userspace kernel (comparable
to LibOS [9]) with a subtle difference. gVisor essentially
provides an extra layer between the container and host OS
kernel, intercepting system calls made by the containerized
applications. To date, gVisor has successfully supported 211
out of 319 x86-64 Linux system calls, by using only 64 system
calls on the host system [12].

For the duration of our experiments, we fix TORPEDO to
use the Docker ecosystem with a selected container runtime.
By rotating adversarial programs between different runtimes,
TORPEDO empowers testers to quickly identify discrepancies
between each implementation, as well as expose underlying
OS bugs or higher-level bugs in Docker.

C. Evaluation Procedure

For each fuzzer execution, we choose a small number of
Moonshine seeds and use TORPEDO’s seed ingestion workflow
to enqueue these as candidate programs. We allow the fuzzer
to run unattended and review the execution logs after all seeds
have been exhausted. The corpus of coverage information is
purged between each fuzzer invocation, which serves to prevent
adversarial system call traces from being continually injected
into future programs and preventing new, interesting findings
from being revealed.

Each execution encompasses some number of rounds, each
of which produces a detailed log file of resource utilization
during the period. These log files are batched and passed over
by an automated script that examines each round for resource
pattern violations as defined by one or more Oracles. This work
focuses primarily on the results from a CPU Oracle, which
uses the heuristics given in Table I. Specific constants for each



TABLE I: TORPEDO CPU Oracle Heuristics

Notes
Expect above some threshold
Expect below some threshold
Expect below some threshold
Expect below some threshold

Heuristic
Fuzzing core CPU utilization
Idle core CPU utilization
Total CPU utilization
System process CPU utilization

heuristic vary according to test parameters, and specifically the
selected container runtime and amount of parallelism.

Due to the relationship between patterns of adversarial CPU
utilization and an increased score from the CPU Oracle, we
assume that the adversarial properties of a program will be
preserved by TORPEDO during operation and will exhibit
the same patterns over many subsequent rounds. Therefore,
for a given batch of programs, any commonalities between
programs flagged by the Oracle for similar resource violations
can be extracted and minimized by a human operator with little
difficulty. We consider any set of system call traces that creates
an adversarial workload when isolated and run independently
of the TORPEDO framework to be a discovered vulnerability
for the purposes of evaluation.

All tests were executed on a machine equipped with an AMD
Ryzen 3600X with 12 cores and 16 gigabytes of RAM running
Linux kernel version 5.8 (Ubuntu 20). We run 3 containers in
parallel: each is pinned to one core and restricted with 100%
CPU utilization of one core, using the cpusets and cpu
controllers following [29]. For the fuzzing process, each round
lasts 5 seconds, and multiple batches (each typically contains
between 30 and 50 rounds) are conducted. The specific number
depends on whether the seed is interesting or not.

D. Summary of Identified Vulnerabilities

Table II presents a summary of our fuzzing results. We
also report a computed “amplification factor” as [29], which
defines the difference between the CPU utilization measured
on the container cgroup (via docker stat) and the actual
system utilization. Over the course of our testing, TORPEDO
identifies three new vulnerabilities concerning CPU utilization
with different attack vectors for baremetal runtimes (e.g., runc
and crun). The first involves a technique that exploits the
kernel module loading system to create processes outside the
cgroup of the caller. The second allows a privileged container to
directly place work on a kernel workqueue. The third involves
manipulating a container into a state that will cause the Docker
daemon to expend significant resources when the container is
reclaimed by the system. Also, sandbox runtime incurs less
problems compared with baremetal runtimes. To the best of our
knowledge, these vulnerabilities are not currently documented
in the literature.

TORPEDO also identifies several new attacking vectors
belonging to known vulnerability categories, such as several
new ways to trigger coredump, which can be exploited to
amplify more than 200x workloads [29]. Also, it identifies
bugs that can cause container crashes on gVisor, and another

type of problems causing unwanted seccomp logs on crun.

Both were confirmed and fixed by the developers [5], [8].
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Based on the breadth of these findings, we conclude that
TORPEDO is capable of identifying both known and new
vulnerabilities. Note that the SYZKALLER authors have already
spent some time fuzzing gVisor (not through a container
interface). TORPEDO can still uncover new bugs. A detailed
discussion of these findings is presented in Section VII.

E. Comparison of Code Coverage and Program Throughput

While TORPEDO and SYZKALLER are designed for different
purposes with a different feedback collecting mechanism, the
code coverage mechanism is similar. In general, SYZKALLER is
capable of collecting much more coverage than TORPEDO over
a given time delta, as all components execute asynchronously.
Furthermore, SYZKALLER can more quickly screen out candi-
date programs that do not produce new coverage. TORPEDO
is fundamentally slowed by the nature of its observation
mechanisms, which requires both expensive synchronization
and repetition. We run TORPEDO using different round times
(e.g., 3 and 5 seconds) for 16 hours. We collect two metrics
from each experiment: the number of executed programs and
the amount of coverage generated. For ease of comparison, we
choose to fuzz gVisor, which does not allow granular coverage
collection. The “Coverage” refers to the number of unique
combinations of syscall number and error code.

We observe that TORPEDO is magnitudes slower at collecting
coverage than stock SYZKALLER. For example, TORPEDO with
3s rounds takes about 10 hours to reach a similar coverage
as SYZKALLER for fuzzing one hour on our testbed. This is
directly related to the difference in the number of programs
executed per time delta. SYZKALLER executes 20,000 programs
in less than an hour, whereas TORPEDO takes nearly six hours.
To some extent, this gap is also exacerbated by differences in
the coverage collection algorithm. SYZKALLER requires at least
one program execution per syscall in a given candidate program
to confirm coverage, whereas TORPEDO examines coverage
for each syscall in a given program at once. In this respect,
TORPEDO is marginally more efficient than SYZKALLER.
However, after running TORPEDO for enough time, it can
achieve similar coverage. While it is a magnitude slower
than SYZKALLER at accumulating coverage, this downtime is
necessary to collect additional feedback that allows TORPEDO
to identify more bugs than kernel crashes.

VII. DISCUSSION
A. Confirmation of Existing Resource Vulnerabilities

Over the course of testing, TORPEDO independently recon-
firms all vulnerabilities already known to the community [29].
For example, the tool can identify calls flushing data from
containerized programs to a TTY on the host, which causes
additional utilization on dockerd and containerd. Also, the
kernel core-dump mechanism creates out-of-band workload in
userspace for each core dump produced by a containerized
process. Basically, the core-dump code in the kernel invokes
a user-space application via the usermode helper API. The
resource consumed by the user-space application will be
charged to the kernel, instead of the initiating container. This



TABLE II: Summary of Uncovered Vulnerabilities

Concerned syscall | Runtimes Attack vector Amplification factor Notes
socket runc, crun | modprobe via usermodehelper 120x ERRNO 93, 94, 97
unshare runc, crun kworker queue 2x CLONE__NETNS, requires NET__ADMIN
mkdir runc, crun docker daemon N/A reclaiming container stresses dockerd
mount and others crun seccomp unwanted logs 2.3x any usage
rt_sigreturn runc, crun coredump via SIGSEGV 200x any usage
rseq runc, crun coredump via SIGSEGV 200x invalid arguments
fallocate, ftruncate | runc, crun coredump via SIGXFSZ 200x argument exceeds max file size
open gVisor invalid argument N/A container crash

can amplify the workload more than 200x. Although the
attacking vector is known, TORPEDO is still able to disclose
several system calls with particular usages (shown in Table II)
tripping the core-dump mechanisms.

B. Case Study: sockets

TORPEDO observes consistent workload placed on non-
executor cores when programs contained certain socket related
calls, which means that both cpu and cpuset cgroups are
escaped. Through tool-assisted minimization, we discover
that the socket syscall produces adversarial behavior. An
investigation into the implementation of socket(2) by the kernel
revealed a new attack vector exploiting the kernel module hot-
loading mechanism. In particular, when a process creates a
socket, it can specify a wealth of options including socket type,
protocol, and address family. Some of these options, however,
are invalid in certain combinations, or when the kernel has
not been compiled to support them. Frequently, specific socket
implementations are compiled as modules. When the kernel
receives a request for a socket option it understands but has no
implementation for, it will attempt to load a module from disk
by means of the modprobe(8) tool. On success, this module is
loaded into kernel memory for the remainder of execution. On
failure, an error is returned to the caller. The modprobe(8) tool
is invoked in userspace via the problematic usermode helper
API, which changes the invoked program to the kernel’s cgroup
as part of execution [29].

Repeated requests from userspace for a socket that triggers
an unsuccessful module hot-load create a significant out-of-
band workload in userspace. With a reasonably optimized
single threaded implementation, we find that an adversarial
container allocated just 0.2% of the CPU on our testbed can
cause an overall system utilization of 10%. This corresponds
to an amplification factor of close to 120x. Also, TORPEDO
discovered several variations of arguments to socket(2) that
would trigger the vulnerability, corresponding to errno 93, 94
and 97 respectively.

C. Case Study: unshare

TORPEDO observes a significant spike in kthread utiliza-
tion when repeated invoking unshare(CLONE_NETNS) in
privileged containers (i.e., executing unshare(2) on the NET
namespace), which directly correlates to the creation of a
work item on a kernel work queue. The adversarial effects of
unshare(2) have already been noted with respect to increasing
container startup time [55], as the creation of a new net names-
pace requires holding a global lock [4]. We also demonstrate
that it can be exploited to generate adversarial out-of-band
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TABLE III: dockerd utilization per number of directories

Number of dirs | dockerd utilization (percent of entire CPU)
20k 15%
40k 24%
100k 25%

workloads to consume extra CPU utilization. A naive program
on our testbed can cause an amplification factor of more than
2x. Also, a large amount of system memory is consumed by
the unsharing processes during the test.

D. Case Study: file systems

TORPEDO consistently observes increased utilization from
the docker daemon when test programs contained calls to
mkdir(2). Particularly, this behavior is correlated to the period
where the container is torn down. Subsequent experiments with
destroying containers that contain many directories yielded the
observations in Table III. On our testbed, dockerd committed
three threads to tear down a container with many directories,
leading to an out-of-band workload of 25% with 100k dirs. This
workload persisted linearly with an increase in the number of
directories in the container: 40k directories took approximately
two seconds, but 100k directories took far longer. We note that
the notion of an “amplification factor” does not make sense for
this vulnerability, as the process that “caused” the utilization
is no longer running when the workload manifests.

Troublingly, this workload is still out of band, as restricting
the CPU, I/O or PID limitations on the container does not
limit this workload. We conceive of a potential attack whereby
a malicious user creates many such containers that contain
millions of directories across a series of hosts. These “landmine”
containers are relatively harmless until the user allows the
container engine to reclaim them, at which time the docker
daemon will degrade the performance of all workloads running
on the host until reclamation is complete. To the best of our
knowledge, this is the first potential attack that exploits the
container teardown process to escape cgroup limitations.

E. Bugs

Through the course of testing, TORPEDO discovers several
bugs in the crun and gVisor runtimes respectively. While
fuzzing crun, TORPEDO identified periodic utilization spikes on
the Linux audit subsystem (kauditd and journald) from seem-
ingly unrelated program traces. The examination determines
these spikes occurred from overzealous logging stemming from
crun’s interpretation of the Docker default seccomp profile [8].
It can cause an amplification factor about 2.3x. This bug was
promptly addressed by the crun team.



While fuzzing gVisor, TORPEDO repeatedly detects a con-
tainer crash across many different seeds. During minimization,
a commonality is unearthed concerning the open(2) syscall and
a specific argument bitfield combination. This would cause
gVisor to translate a syscall not allowed by its own seccomp
profile, and the container would be terminated [5]. This bug
was recognized by the gVisor team and promptly fixed.

F. Future Work

While this work mainly concentrates on finding vulnerabili-
ties related to the CPU resource, TORPEDO can be extended to
uncover potential issues in other cgroups subsystems (e.g.,
memory). We will explore this direction in our future work.

VIII. RELATED WORK

In this section, we review existing research efforts that inspire
our work. We mainly focus on the following areas:

Container Security. Containers typically have better perfor-
mance than traditional VMs [27], [54] and thus can support
real-time applications [62]. Meanwhile, container security
has also received much attention. Several previous research
efforts, including Gupta [34], Bui [18], and Grattafiori et
al. [33], have presented a brief analysis of Docker security
in terms of the isolation and corresponding kernel security
mechanisms. Particularly, it has been demonstrated that some
of the existing exploits can successfully launch attacks from
inside the container [50]. Gao et al. [28], [30] also investigated
the information leakage problem and its security implications in
Linux containers caused by problems in namespaces. Multiple
works have also been proposed to secure containers. Lei
et al. proposed to reduce the number of available system
calls to applications [48]. Sun et al. [65] proposed new
security namespaces enabling autonomous security control for
containers, and Arnautov et al. [16] secured Linux containers
using Intel SGX.

In terms of the security problems in resource control, Gao
et al. [29], combined with other previous research [45], have
disclosed that particular workloads can generate extra out-
of-band workloads than the limit of cgroups, which can
further slow down the container [46], [88]. Yang et al. further
demonstrated that the shared kernel variables and data structure
can cause DoS attacks against other containers [78]. Liu et al.
also discovered significant performance variations in container-
based multi-tenant environments for CPU utilization. Our work
further attempts to systematically explore the security problems
related to container resource control.

Security Testing of System Software. Typical system software
are highly complicated software with millions of lines of
code, complex program structures, deep call hierarchies, and
also stateful execution models. To date, fuzz testing has been
commonly used to pinpoint vulnerabilities residing within the
system software [74] due to its automated nature. In recent
years, there has been growing research interest on fuzzing in
both industry and academia [2], [6], [69]. Particularly, Grey-
Box fuzzers [19], [22], [58] use lightweight instrumentation
to track program coverage for each input without requiring
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extensive knowledge of the target application. Kernel fuzzing
[23], [35], [41], [47], [60] has been an important topic as
vulnerabilities in kernel code cause serious security breaches,
from information leakage to privilege escalation. One key
strategy in kernel fuzzing is to utilize types and dependencies
of system calls (syscalls). Google has developed SYZKALLER
[32] as an unsupervised coverage-guided kernel fuzzer specified
for fuzzing operating system kernels through the system call
interface. Recent research works [35], [56], [68] perform
advanced analysis (e.g., reinforcement learning) to synthesize
system call traces of high coverage. In addition, recent research
works also conduct security fuzz testing of OS drivers and
file systems [43], [61], [74]. Under most circumstances, the
majority of the work surrounding fuzzing is related to isolating
crashes. This perspective, however, fails to take into account
the wide range of behaviors that do not result in errors or
crashes exhibited by a program, which also motivates our work.
TORPEDO instead focuses on finding out-of-band vulnerabilities
in containers, and takes resource utilization as fuzzing feedback
for the first time.

Cloud Security and Side/Covert Channel Attacks. Resource
sharing facilitates cloud platforms by improving hardware
utilization and reduce cost. Nevertheless, various real-world
attacks have been launched to abuse the shared computing
resource and affect the performance of cloud service users
co-located with a malicious user [21], [36]. In typical clouds,
attackers can place malicious VMs co-resident with targets
on the same server [59] and then launch various attacks
(e.g., side-channel [26], [44], [51], [79] and covert-channel
attacks [25], [63]). Zhang et al. demonstrated that it is feasible
to launch real side-channel attacks on the cloud [73], [84],
[85]. Methods like last level cache [75], memory bus [70],
memory deduplication [71], core temperature [17], [53] are
effective for covert-channel construction. While multiple de-
fense mechanisms have also been proposed [20], [72], [81],
[83], [86], [87], it is still possible to achieve co-residence in
existing mainstream cloud services [67], [76]. With the shared
underlying computing resources, DoS attacks are thus possible
in clouds, including resource-freeing attacks [66], memory DoS
attacks [82], I/O exhausting attacks [37]. Moreover, multiple
attacks [31], [38]-[40], [49], [77] attempt to exhaust the shared
infrastructures (e.g., power facility) to launch DoS attacks. As
the insufficiencies in cgroups could also be exploited to launch
multiple attacks (e.g., covert channel / DoS) [29], our work
can help mitigate potential threats in clouds.

IX. CONCLUSION

We have presented TORPEDO, a fuzz testing framework
that aims to detect out-of-band workloads in containerization
platforms that can abuse the system resource allocation and gain
extra unfair advantages. TORPEDO leverages resource-guided
heuristics to find system call inputs that maximize the unfairness
in system resource consumption across container instances. Our
evaluation confirms vulnerabilities in popular containerization
platforms which were found with manual efforts. We also
identify several vulnerabilities that are unknown to the public.
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