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Abstract
Weanalyze the problemof recovering a source termof the form h(t) = ∑

j h jφ(t−t j )
χ[t j ,∞)(t) from space-time samples of the solution u of an initial value problem in a
Hilbert space of functions. In the expression of h, the terms h j belong to the Hilbert
space, while φ is a generic real-valued function with exponential decay at ∞. The
design of the sampling strategy takes into account noise in measurements and the
existence of a background source.
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Continuous sampling
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1 Introduction

Dynamical sampling refers to a set of problems inwhich a space-time signal u evolving
in time under the action of a linear operator as in (1) below is to be sampled on a space-
time set S = {(x, t) : x ∈ X , t ∈ T } in order to recover u0, u, F or other information
related to these functions. For example, when the goal is to recover u0, we get the so
called space-time trade-off problems (see e.g., [3, 5–7, 14, 15, 19, 26, 27]). If the goal is
to recover the unknown underlying operator A, or some of its spectral characteristics,
we get the system identification problem in dynamical sampling [9, 12, 25]. In other
situations, the goal is to identify the driving source term from space-time samples [8,
11]. In all dynamical sampling problems, frame theory plays a fundamental albeit, at
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times, hidden role (see e.g. [4, 9, 10, 14]). Moreover, this important connection has
also been used to develop frame theory and led to the concept of dynamical frames
(see e.g. [1, 2, 13, 16–18, 21]). In this paper, we consider the problem of designing
space-time sampling patterns that permit recovery of the source term of an initial value
problem (IVP) or some relevant portion thereof.

1.1 Motivation

In [8], the authors introduced a new sampling techniquewhich prescribes how onemay
sample the solution of an IVP to detect “bursts” in the driving force of the system. The
proposed special structure of the samplers allowed one to “predict” the value of the
solution at the next sampling instance provided that no burst occurred during the sam-
pling period. Thus, if the samples at the end of the period were significantly different
from the prediction, a “burst” must have occurred. In [8], the “bursts” were modeled
as a linear combination of Dirac measures. In this paper, we employ a modification of
the same technique to detect localized non-instantaneous sources which decay expo-
nentially in time after activation [22]. Such sources may describe, for example, an
irregular intake of rapidly degrading substances. In particular, the IVP we consider
may model a complex chemical reaction contaminated by such an intake, and our
goal, in this case, would be to determine when and what substances were added to the
system. Many other phenomena driven by natural mechanisms, such as the dispersion
of pollution, the spreading of fungal diseases and the leakage of biochemical waste,
can also be described by IVP with the source terms considered here (see [22–24] and
references therein). Thus, a robust sampling and reconstruction algorithm for such
IVP would be beneficial for studying these real-world applications.

1.2 Problem setting

Let us give amore precise description of our setting.We consider the following abstract
initial value problem:

{
u̇(t) = Au(t) + F(t)

u(0) = u0,
t ∈ R+, u0 ∈ H. (1)

Above, the function u : R+ → H is assumed to be almost everywhere differentiable
with the derivative u̇ ∈ L2(R+,H), where H is some Hilbert space of functions on
a subset of Rd . Additionally, F : R+ → H is a forcing term a portion of which we
wish to recover and A : D(A) ⊆ H → H is the generator of a strongly continuous
semigroup T : R+ → B(H). We shall also occasionally use the notation u = u(x, t),
where the variable x ∈ R

d is the spatial variable and t ∈ R+ represents time, with the
understanding that for each fixed t ∈ R+, u(·, t) is a function inH.

As in [8], we consider force terms of the form:

F = h + η
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Fig. 1 The solution of the IVP (1) with the following parameters: A = I , u0 = 0, η = 0, h1(x) = 3 sin(x),
h2(x) = 2.5 cos(x), h3(x) = x + 2, x ∈ [0, 1], and t1 = 0.25, t2 = 0.54, t3 = 0.78

where η is a Lipschitz continuous background source term. Unlike [8], however, the
burst-like forcing term h is assumed to be given by

h(t) =
N∑

j=1

h jφ(t − t j )χ[t j ,∞)(t), (2)

where 0 < t1 < · · · < tN , h j ∈ H, and φ is a non-negative function with a certain
prescribed decay on [0,∞). We regard t j and h j as the time and the shape of the j-th
burst, respectively.

The goal of this paper is to provide an algorithm similar to one in [8] that recovers
the “burst-like” portion h of F from space-time samples of the solution u of (1). Once
again we shall choose the structure of the samplers that would allow one to detect
an occurrence of a burst in a sampling period by comparing the predicted values of
the samples with the actual samples. In fact, we will show that the same structure of
samplers that was used in the first of the two approaches in [8] may also be used in
the current situation. The recovery algorithms in this paper, however, are significantly
different and are not just a straightforward tweak of the ones in [8]. The main difficulty
in the current setting is the need to account for the influence of past bursts which was
not an issue when those were Diracs.

To gain a visual understanding of these two cases, we set up a specific IVP with
the two types of φ and plot the respective graphs of u = u(x, t) in Fig. 1.

The model incorporating Dirac functions exhibited noticeable jumps when bursts
happened, while the model with exponential decay is smoother, highlighting the chal-
lenges of detecting the bursts and mitigating the influence of past bursts.

1.3 Paper organization

The rest of the paper is organised as follows. In Sect. 2, we remind the reader of some
basic properties of one-parameter operator semigroups and their use in solving IVP
such as (1). We also list all model assumptions for the algorithms of this paper.
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In Sect. 3, we present the main results. The section is divided into two parts. In
Sect. 3.1, the decay function φ in (2) is assumed to be of the form e−ρt for some
ρ > 0. We present the structure of measurement functions (5) for this case and utilize
discrete samples of the measurement functions to approximate the burst time and
shape in the presence of background source and measurement acquisition errors. In
Sect. 3.2, we consider a more general model, where the decay function φ does not have
a concrete formula, but is rather bounded above by a decaying exponential function.
Under additional assumptions that the shapes of the bursts are uniformly bounded
and that the differences t j+1 − t j , j = 1, ..., N − 1, are large enough, we present
a modification of the algorithm from Sect. 3.1, which solves the same problem in
this more general setting. Finally, in Sect. 4, we set up specific (synthetic) dynamical
systems to test the algorithms and describe the results of the testing.

2 IVP solution andmodel assumptions

In this section, we recall a few basic facts from the theory of one-parameter operator
semigroups and summarize our model assumptions.

2.1 IVP toolkit

Definition 2.1 A strongly continuous operator semigroup is a map T : R+ → B(H)

(where B(H) is the space of all bounded linear operators onH), which satisfies

(i) T (0) = I ,
(ii) T (t + s) = T (t)T (s) for all t, s ≥ 0, and
(iii) ‖T (t)h − h‖ → 0 as t → 0 for all h ∈ H.

Proposition 2.2 [20] There exist constants a ∈ R and M ≥ 1 such that

||T (t)|| ≤ Meat

for all t ≥ 0.

Recall [20, p. 436] that the (mild) solution of (1) can be represented as

u(t) = T (t)u0 +
∫ t

0
T (t − s)F(s)ds. (3)

Substituting F = h + η with h of the form (2) yields

u(t) = T (t)u0 +
∑

t j<t

∫ t

t j
T (t − s)h jφ(s − t j )ds +

∫ t

0
T (t − s)η(s)ds, t ≥ 0.

(4)
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In this paper, we will use the measurement function m : R+ × H → R given by

m(t, g) = 〈u(t), g〉 + ν(t, g), t ≥ 0, g ∈ G, (5)

where 〈·, ·〉 is the inner product in H, ν is the measurement acquisition noise, and G
is the collection of samplers whose structure we wish to prescribe.

2.2 Model assumptions

Assumption 1 The set of samplers G has the form G = G̃ ∪ T ∗(β)G̃ for some count-
able (possibly, finite) set G̃ ⊆ H. Additionally, in the model of Sect. 3.2, the set G̃ is
assumed to be uniformly bounded by some R ∈ R, i.e. R = supg∈G̃ ‖g‖ < ∞.

Assumption 2 In Sect. 3.2, the burst terms are uniformly bounded, i.e. ‖h j‖ ≤ H,
j = 1, . . . , N, for some H ∈ R.

Assumption 3 The background source η : R+ → H is uniformly bounded by a
constant K > 0 and Lipschitz with a Lipschitz constant L ≥ 0, i.e. supt≥0 ‖η(t)‖ ≤ K
and ‖η(t + s) − η(t)‖ ≤ Ls, t, s ∈ R+.
Assumption 4 The additive noise ν in the measurements (5) satisfies

sup
t>0, h∈H

|ν(t, h)| ≤ σ.

Assumption 5 (1) In Sect.3.1 we assume that the distance between two bursts is
bounded below: t j+1 − t j ≥ 4β.
(2) In Sect.3.2 we assume t j+1 − t j ≥ D + 4β with some positive number D.

3 Main results

3.1 Model with specific decay function

In this section, we consider the special case where the decay function φ is given by
φ(t) = e−ρt with some ρ > 0:

⎧
⎪⎨

⎪⎩

u̇(t) = Au(t) +
N∑

j
h j e−ρ(t−t j )χ[t j ,∞)(t) + η(t)

u(0) = u0.

(6)

Since the operator A generates a strongly continuous semigroup T , by Proposition
2.2, we can find real numbers M and a satisfying ||T (t)|| ≤ Meat for all t ≥ 0. We
will use these numbers to estimate the accuracy of our recovery algorithm.

We acquire the following set of measurements:

mn

(
g

β

)

=
〈

u(nβ),
g

β

〉

+ ν

(

nβ,
g

β

)

,
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mn

(
T ∗(β)g

β

)

=
〈

u(nβ),
T ∗(β)g

β

〉

+ ν

(

nβ,
T ∗(β)g

β

)

, g ∈ G̃, n ∈ N, (7)

whereβ is the time sampling step,T ∗(t) is the adjoint operator ofT (t), andν represents
an additive noise (see Assumption 4).

The first of the pair of measurements in (7) serves to assess the current state of
the system whereas the second one will be used as a predictor of the measurement at
t = (n + 1)β.

To explain our idea of the recovery algorithm, we first present what happens in the
ideal case when the measurements are noiseless (ν ≡ 0) and there is no background
source (η ≡ 0). For the convenience of exposition, we define fn ∈ H and τn ∈
[nβ, (n + 1)β) for each n as follows

{
fn = h j , τn = t j , if the j-th burst occurred in [nβ, (n + 1)β);
fn = 0, τn = nβ, if no burst occurred in [nβ, (n + 1)β).

(8)

There is no ambiguity in the above definition due to Assumption 5.
To reveal the predictive nature of the second measurement in (7), we first consider

the difference

Fn = mn+1

(
g

β

)

− mn

(
T ∗(β)g

β

)

. (9)

In the ideal case, utilizing (4) we get

Fn = mn+1

(
g

β

)

− mn

(
T ∗(β)g

β

)

=
〈

T ((n + 1)β)u0,
g

β

〉

+
∑

τi<(n+1)β

∫ (n+1)β

τi

〈

T ((n + 1)β − s) fi e
ρ(τi−s),

g

β

〉

ds

−
〈

T (nβ)u0,
T ∗(β)g

β

〉

−
∑

τi<nβ

∫ nβ

τi

〈

T (nβ − s) fi e
ρ(τi−s),

T ∗(β)g

β

〉

ds

=
∫ (n+1)β

τn

〈

T ((n + 1)β − s) fne
d(τn−s),

g

β

〉

ds

+
∑

τi<nβ

∫ (n+1)β

τi

〈

T ((n + 1)β − s) fi e
ρ(τi−s),

g

β

〉

ds

−
∑

τi<nβ

∫ nβ

τi

〈

T ((n + 1)β − s) fi e
ρ(τi−s),

g

β

〉

ds

=
∫ (n+1)β

τn

〈

T ((n + 1)β − s) fne
ρ(τn−s),

g

β

〉

ds

+
∑

τi<nβ

∫ (n+1)β

nβ

〈

T ((n + 1)β − s) fi e
ρ(τi−s),

g

β

〉

ds
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=
∫ (n+1)β

τn

〈

T ((n + 1)β − s) fne
ρ(τn−s),

g

β

〉

ds

+
∑

τi<nβ

e−ρnβ

∫ β

0

〈

T (β − s) fi e
ρ(τi−s),

g

β

〉

ds.

Remark 3.1 In the expression for Fn above, if no burst occurred in [nβ, (n+1)β) (i.e.
fn = 0), then

∫ (n+1)β
τn

〈T ((n + 1)β − s) fneρ(τn−s),
g
β
〉ds = 0. In addition, the term

∑
τi<nβ e−ρnβ

∫ β

0 〈T (β − s) fi eρ(τi−s),
g
β
〉ds represents the effect of the bursts that

had occurred before nβ.

Secondly, we calculate the difference 
n = eρβFn+1 − Fn , which involves the
measurements in two consecutive intervals [nβ, (n + 1)β) and [(n + 1)β, (n + 2)β):


n = eρβFn+1 − Fn

= eρβ

∫ (n+2)β

τn+1

〈

T ((n + 2)β − s) fn+1e
ρ(τn+1−s),

g

β

〉

ds

+
∑

τi<(n+1)β

e−ρnβ

∫ β

0

〈

T (β − s) fi e
ρ(τi−s),

g

β

〉

ds

−
∫ (n+1)β

τn

〈

T ((n + 1)β − s) fne
ρ(τn−s),

g

β

〉

ds

−
∑

τi<nβ

e−ρnβ

∫ β

0

〈

T (β − s) fi e
ρ(τi−s),

g

β

〉

ds

= eρβ

∫ (n+2)β

τn+1

〈

T ((n + 2)β − s) fn+1e
ρ(τn+1−s),

g

β

〉

ds

−
∫ (n+1)β

τn

〈

T ((n + 1)β − s) fne
ρ(τn−s),

g

β

〉

ds

+ e−ρnβ

∫ β

0

〈

T (β − s) fne
ρ(τn−s),

g

β

〉

ds

= eρβ

∫ (n+2)β

τn+1

〈

T ((n + 2)β − s) fn+1e
ρ(τn+1−s),

g

β

〉

ds

+
∫ τn

nβ

〈

T ((n + 1)β − s) fne
ρ(τn−s),

g

β

〉

ds.

The above calculation leads us to the key observation


n = 0 in the ideal case if no burst occurred in [nβ, (n + 2)β). (10)

In case the j-th burst did occur in the interval [(n+1)β, (n+2)β), we use the following
calculation to estimate the inner products 〈h j , g〉. In view of Assumption 5, we have
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fn−1 = fn = fn+2 = 0 and, for β sufficiently small, we get

e3ρβFn+2 − Fn−1

= e3ρβ

∫ (n+3)β

τn+2

〈

T ((n + 3)β − s) fn+2e
ρ(τn+2−s),

g

β

〉

ds

+
∑

τi<(n+2)β

e−ρ(n−1)β
∫ β

0

〈

T (β − s) fi e
ρ(τi−s),

g

β

〉

ds

−
∫ nβ

τn−1

〈

T (nβ − s) fn−1e
ρ(τn−1−s),

g

β

〉

ds

−
∑

τi<(n−1)β

e−ρ(n−1)β
∫ β

0

〈

T (β − s) fi e
ρ(τi−s),

g

β

〉

ds

=
∫ β

0

〈

T (β − s) fn+1e
ρ(τn+1−(n−1)β−s),

g

β

〉

ds

=
∫ β

0

〈

T (β − s)h j e
ρ(t j−(n−1)β−s),

g

β

〉

ds ≈ 〈h j , g〉,

where the last assertion is (essentially) yielded by the following lemma.

Lemma 3.2 Assume that t j ∈ [(n + 1)β, (n + 2)β) and

vk(h j , g, β) =
∣
∣
∣
∣

∫ β

0

〈

T (β − s)h j e
ρ(t j−(n−k)β−s),

g

β

〉

ds − 〈h j , g〉
∣
∣
∣
∣ , k = 0, 1.

(11)

Then

vk(h j , g, β) ≤ ‖g‖
(

M‖h j‖(e(k+2)ρβ − 1)e(aβ) + sup
s∈[0,β]

‖T (s)h j − h j‖
)

,

(12)

where M and a are as in Proposition 2.2 and

e(t) =
⎧
⎨

⎩

et − 1

t
, t �= 0;

1, t = 0.
(13)

In particular, vk(h j , g, β) → 0 as β → 0.

Proof Observe that

vk(h j , g, β) =
∣
∣
∣
∣

∫ β

0

〈

T (β − s)h j e
ρ(t j−(n−k)β−s),

g

β

〉

ds − 〈h j , g〉
∣
∣
∣
∣

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



Recovery of rapidly decaying source terms from... Page 9 of 24    15 

=
∣
∣
∣
∣

∫ β

0

〈

T (β − s)h j e
ρ(t j−(n−k)β−s) − h j ,

g

β

〉

ds

∣
∣
∣
∣

≤
∫ β

0
‖T (β − s)h j e

ρ(t j−(n−k)β−s) − h j‖‖g‖
β

ds

≤ ‖g‖
β

∫ β

0
‖T (β − s)h j e

ρ(t j−(n−k)β−s) − T (β − s)h j‖ds

+‖g‖
β

∫ β

0
‖T (β − s)h j − h j‖ds

= I1 + I2. (14)

Using Proposition 2.2, i.e. the inequality ‖T (t)‖ ≤ Meat , we get

I1 = ‖g‖
β

∫ β

0
‖T (β − s)h j e

ρ(t j−(n−k)β−s) − T (β − s)h j‖ds

≤ ‖g‖
β

∫ β

0
‖T (β − s)‖‖h j‖(e(k+2)ρβ − 1)ds

≤ ‖g‖M‖h j‖(e(k+2)ρβ − 1)
1

β

∫ β

0
ea(β−s)ds

≤ ‖g‖‖h j‖M(e(k+2)ρβ − 1)e(aβ) (15)

and

I2 = ‖g‖
β

∫ β

0
‖T (β − s)h j − h j‖ds

= ‖g‖
β

∫ β

0
‖T (s)h j − h j‖ds

≤ ‖g‖ sup
s∈[0,β]

‖T (s)h j − h j‖. (16)

Estimate (12) immediately follows from (14), (15), and (16). We get limβ→0
vk(h j , g, β) = 0 since limβ→0(e(k+2)ρβ − 1)e(aβ) = 0 and limβ→0
sups∈[0,β] ‖T (s)h j − h j‖ = 0 due to the strong continuity of the semigroup T . ��

Equipped with the above observations, we are naturally led to Algorithm 1 below.
The algorithm turns out to be robust both with respect to the considered additive mea-
surement noise and introduction of a background source as described in the following
Theorem 3.3.
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Algorithm 1. Pseudo-code for approximating the time and shape of a
possible burst with prescribed exponential decay

1: Input:Measurements:mn(
g
β
),mn(

T ∗(β)g
β

) and threshold: Q(g,β), g∈ G̃

2: Compute Fi = mi+1(
g
β
) − mi (

T ∗(β)g
β

)

3: Compute eρβFi+1 − Fi
4: For g ∈ G̃ do
5: i=1
6: while iβ < T
7: if eρβFi+1 − Fi > Q(g, β) then
8: f(g) := e3ρβFi+2 − Fi−1
9: t := (i + 1)β
10: i = i + 3
11: else
12: if eρβFi+2 − Fi+1 > Q(g, β) then
13: f(g) := e3ρβFi+3 − Fi
14: t := (i + 2)β
15: i = i + 3
16: else
17: i = i + 1
18: Output: t and f(g) for all g ∈ G̃.

Theorem 3.3 Under Assumptions 1, 3, 4 and 5, and M, a as in Proposition 2.2, let

Q(g, β) = e(ρ+a)βML‖g‖β + eaβ(eβ − 1)MK‖g‖ + 4eρβσ (17)

be the threshold in Algorithm 1. Let also t j and f j (g) be the outputs of Algorithm 1.
Then |t j − t j | ≤ β and

|f j (g) − 〈h j , g〉|
≤ 3e(3ρ+a)βML‖g‖β + eaβ(e3ρβ − 1)MK‖g‖ + 4e3ρβσ

+2eρβQ(g, β) + max{v0(h j , g, β), v1(h j , g, β)}, (18)

where vk , k = 0, 1, are given by (12). In particular, for sufficiently small β > 0, one
has |f j (g) − 〈h j , g〉| ≤ 13σ as long as σ > 0.
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Proof Adjusting the computations in the ideal case to account for the noise and the
background source, we get

Fn = mn+1

(
g

β

)

− mn

(
T ∗(β)g

β

)

=
∫ (n+1)β

τn

〈

T ((n + 1)β − s) fne
ρ(τn−s),

g

β

〉

ds

+
∑

τi<nβ

∫ β

0

〈

T (β − s) fi e
ρ(τi−nβ−s),

g

β

〉

ds

+
∫ β

0

〈

T (β − s)η(nβ + s),
g

β

〉

ds + ν

(

(n + 1)β,
g

β

)

− ν

(

nβ,
T ∗(β)g

β

)

.

The difference 
n = eρβFn+1 − Fn not only allows us to detect the burst in the ideal
case (where it kills the effect of the past bursts according to (10)), but also, as we shall
see presently, mitigates the effect of the background source. Once again, adjusting the
previous computations for noise and background source, we get


n = eρβFn+1 − Fn

=
∫ (n+2)β

τn+1

〈

T ((n + 2)β − s) fn+1e
ρ(τn+1+β−s),

g

β

〉

ds

+
∫ τn

nβ

〈

T ((n + 1)β − s) fne
ρ(τn−s),

g

β

〉

ds

+ eρβ

∫ β

0

〈

T (β − s)η((n + 1)β + s),
g

β

〉

ds

−
∫ β

0

〈

T (β − s)η(nβ + s),
g

β

〉

ds + αn,

where αn = eρβν
(
(n + 2)β,

g
β

)
− eρβν

(
(n + 1)β,

T ∗(β)g
β

)
− ν

(
(n + 1)β,

g
β

)
+

ν
(
nβ,

T ∗(β)g
β

)
.

We remark that Assumption 5 (t j+1 − t j > 4β) implies that, at most one of the
terms fn , fn+1 is non-zero in the expression of eρβFn+1 − Fn above.

Firstly, we prove that if no burst occurred in [nβ, (n + 2)β) (i.e. fn = fn+1 = 0),
then |
n| is below our chosen threshold (17). The proof is achieved via the following
computations that make use of Assumptions 3 and 4:

|
n | = ∣
∣eρβFn+1 − Fn

∣
∣

=
∣
∣
∣
∣e

ρβ

∫ β

0

〈

T (β − s)η((n + 1)β + s),
g

β

〉

ds −
∫ β

0

〈

T (β − s)η(nβ + s),
g

β

〉

ds + αn

∣
∣
∣
∣

≤
∣
∣
∣
∣e

ρβ

∫ β

0

〈

T (β − s)η((n + 1)β + s),
g

β

〉

ds − eρβ

∫ β

0

〈

T (β − s)η(nβ + s),
g

β

〉

ds

∣
∣
∣
∣
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+
∣
∣
∣
∣e

ρβ

∫ β

0

〈

T (β − s)η(nβ + s),
g

β

〉

ds −
∫ β

0

〈

T (β − s)η(nβ + s),
g

β

〉

ds

∣
∣
∣
∣ + |αn |

≤ eρβ

∫ β

0
‖η((n + 1)β + s) − η(nβ + s)‖‖T ∗(β − s)

g

β
‖ds

+(eρβ − 1)
∫ β

0
‖η(nβ + s)‖‖T ∗(β − s)

g

β
‖ds + 4eρβσ

≤ eρβCL‖g‖β + (eρβ − 1)CK‖g‖ + 4eρβσ = Q(g, β) (19)

where C = Meaβ so that ‖T ∗(β − s)‖ ≤ C .

Secondly, assume that the j-th burst with the shape h j occurred in the interval
[(n + 1)β, (n + 2)β). To analyze this situation, we will look at two cases: (1) the j-th
burst is detected by our algorithm; and (2) the j-th burst is not detected. For Case
1, the burst is detected if and only if |
n| > Q(g, β) or |
n+1| > Q(g, β) and we
need to prove (18). For Case 2, when the j-th burst is not detected, we will show that
〈h j , g〉 is small, i.e. (18) holds with f j (g) = 0.

Case 1. The j-th burst is detected in [(n + 1)β, (n + 2)β).
Assume that |
n| > Q(g, β). Then τn+1 = t j , fn+1 = h j , fn−1 = fn = fn+2 = 0

and Algorithm 1 returns t j = (n + 1)β and f j (g) = e3ρβFn+2 − Fn−1. We need to
establish (18), i.e. show that 〈h j , g〉 ≈ e3ρβFn+2 − Fn−1 for small β. We get

e3ρβFn+2 − Fn−1

=
∫ β

0

〈

T (β − s)h j e
ρ(t j−(n−1)β−s),

g

β

〉

ds

+ e3ρβ

∫ β

0

〈

T (β − s)η((n + 2)β + s),
g

β

〉

ds

−
∫ β

0

〈

T (β − s)η((n − 1)β + s),
g

β

〉

ds + α
′
n−1

where α
′
n−1 = e3ρβν

(
(n + 3)β,

g
β

)
− e3ρβν

(
(n + 2)β,

T ∗(β)g
β

)
− ν

(
nβ,

g
β

)

+ ν
(
(n − 1)β,

T ∗(β)g
β

)
. Therefore,

∣
∣f j (g) − 〈h j , g〉

∣
∣

= |e3ρβFn+2 − Fn−1 − 〈h j , g〉|

≤
∣
∣
∣
∣

∫ β

0

〈

T (β − s)h j e
ρ(t j−(n−1)β−s),

g

β

〉

ds − 〈h j , g〉
∣
∣
∣
∣ + 4e3ρβσ

+
∣
∣
∣
∣e

3ρβ

∫ β

0

〈

T (β − s)η((n + 2)β + s),
g

β

〉

ds

−
∫ β

0

〈

T (β − s)η((n − 1)β + s),
g

β

〉

ds

∣
∣
∣
∣

≤ v1(h j , g, β) + 3e3ρβCL‖g‖β + (e3ρβ − 1)CK‖g‖ + 4e3ρβσ,
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where C = Meaβ and v1(h j , g, β) is given by (12). Thus, estimate (18) is established
for the case when |
n| > Q(g, β).

Assume now that |
n| ≤ Q(g, β) and |
n+1| > Q(g, β). In this case, Algorithm
1 returns t j = (n + 2)β and f j (g) = e3ρβFn+3 − Fn . In particular,

|f j (g) − 〈h j , g〉|

≤
∣
∣
∣
∣

∫ β

0

〈

T (β − s)h j e
ρ(t j−nβ−s),

g

β

〉

ds − 〈h j , g〉
∣
∣
∣
∣

+ 3e3ρβCL‖g‖β + (e3ρβ − 1)CK‖g‖ + 4e3ρβσ,

where | ∫ β

0

〈
T (β − s)h j eρ(t j−nβ−s),

g
β

〉
ds − 〈h j , g〉| = v0(h j , g, β) is given by (12).

Thus, estimate (18) holds when |
n+1| > Q(g, β) as well, and Case 1 is covered.

Case 2. The j-th burst is in [(n+1)β, (n+2)β), but 〈h j , g〉 is too small to be detected.
We need to show that (18) holds with f j (g) = 0. We have

e2ρβFn+2 − Fn

=
∫ β

0

〈

T (β − s)h j e
ρ(t j−nβ−s),

g

β

〉

ds + e2ρβ

∫ β

0

〈

T (β − s)η((n + 2)β + s),
g

β

〉

ds

−
∫ β

0

〈

T (β − s)η(nβ + s),
g

β

〉

ds + α
′′
n (20)

where α
′′
n = e2ρβν

(
(n + 3)β,

g
β

)
− e2ρβν

(
(n + 2)β,

T ∗(β)g
β

)
− ν

(
(n + 1)β,

g
β

)
+

ν
(
nβ,

T ∗(β)g
β

)
. Using (20) to estimate 〈h j , g〉, we get

∣
∣〈h j , g〉

∣
∣

≤
∣
∣
∣
∣−

∫ β

0

〈

T (β − s)h j e
ρ(t j−nβ−s),

g

β

〉

ds

∣
∣
∣
∣

+
∣
∣
∣
∣

∫ β

0

〈

T (β − s)h j e
ρ(t j−nβ−s),

g

β

〉

ds − 〈h j , g〉
∣
∣
∣
∣

≤
∣
∣
∣
∣−

∫ β

0

〈

T (β − s)h j e
ρ(t j−nβ−s),

g

β

〉

ds + (e2ρβFn+2 − Fn)

∣
∣
∣
∣

+
∣
∣
∣Fn − e2ρβFn+2

∣
∣
∣ + v0(h j , g, β)

≤
∣
∣
∣
∣e

2ρβ

∫ β

0

〈
T (β − s)η((n + 2)β + s),

g

β

〉
ds

−
∫ β

0

〈
T (β − s)η(nβ + s),

g

β

〉
ds + α′′

n

∣
∣
∣
∣

+ eρβ
∣
∣eρβFn+2 − Fn+1

∣
∣ + ∣

∣eρβFn+1 − Fn
∣
∣ + v0(h j , g, β)

≤ 2e2ρβCL‖g‖β + (e2ρβ − 1)CK‖g‖ + 4e2ρβσ + 2eρβQ(g, β) + v0(h j , g, β),
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where we have used the fact that
∣
∣eρβFn+2 − Fn+1

∣
∣ ≤ Q(g, β),

∣
∣eρβFn+1 − Fn

∣
∣ ≤

Q(g, β), and estimated the term |e2ρβ
∫ β

0

〈

T (β−s)η((n+2)β+s), g
β

〉

ds−∫ β

0

〈

T (β−

s)η(nβ + s), g
β

〉

ds + α′′
n | in a similar way as (19). The above estimates establish (18)

in Case 2, and the theorem is proved. ��

3.2 Model with general decay function

In this section, we consider the same dynamical system, but we discuss a more general
situation. Here the decay function φ does not have a concrete formula, but its decay
velocity is restricted. The model is as follows:

⎧
⎪⎨

⎪⎩

u̇(t) = Au(t) +
N∑

j
h jφ(t − t j )χ[t j ,∞)(t) + η,

u(0) = u0,

(21)

where the function φ is continuous on [0,∞) and satisfies φ(0) = 1 and

0 < φ(t) ≤ e−ρt (22)

for some ρ > 0.
In this model, we continue to use the constants introduced in Proposition 2.2 and

Assumptions 1 to 5, aswell asC = Meaβ .We also assume that the bursts are uniformly
bounded as mentioned in Assumption 2. The constant D in Assumption 5 that controls
the time gap between the bursts (t j+1 − t j ≥ D + 4β) is chosen in a way that

ε = 2

eρD − 1
CHR (23)

is a small quantity. We shall also need the following modification of the technical
Lemma 3.2.

Lemma 3.4 Assume that t j ∈ [(n + 1)β, (n + 2)β) and

vk,i (h j , g, β) =
∣
∣
∣
∣

∫ β

0

〈

T (β − s)h j e
kρβφ((n + i)β + s − t j ),

g

β
〉ds −

〈

h j , g〉
∣
∣
∣
∣ , k, i = 2, 3.

(24)

Then

vk,i (h j , g, β) ≤ ‖g‖
(

‖h j‖M max
s∈[(i−2)β,iβ] |e

kρβφ(s) − 1|e(aβ) + sup
s∈[0,β]

‖T (s)h j − h j‖
)

,

(25)
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where e is given by (13). In particular, vk,i (h j , g, β) → 0 as β → 0, k, i = 2, 3.

Proof Similarly to (14), we separate each vk,i (h j , g, β), k, i = 2, 3, into two parts:

∣
∣
∣
∣

∫ β

0

〈

T (β − s)h j e
kρβφ((n + i)β + s − t j ),

g

β

〉

ds − 〈h j , g〉
∣
∣
∣
∣

≤ ‖g‖
β

∫ β

0
‖T (β − s)h j e

kρβφ((n + i)β + s − t j ) − T (β − s)h j‖ds

+ ‖g‖
β

∫ β

0
‖T (β − s)h j − h j‖ds

= I1 + I2.

Estimate for I2 is still given by (16). For I1, by ‖T (t)‖ ≤ Meat , we have

I1 = ‖g‖
β

∫ β

0
‖T (β − s)h j e

kρβφ((n + i)β + s − t j ) − T (β − s)h j‖ds

≤ ‖g‖
β

∫ β

0
‖T (β − s)‖‖h j‖|ekρβφ((n + i)β + s − t j ) − 1|ds

= ‖g‖‖h j‖M max
s∈[(i−2)β,iβ] |e

kρβφ(s) − 1|e(aβ).

By the assumption on φ, I1 → 0 as β → 0. ��
Algorithm 2 Pseudo-code for approximating the time and shape
of a possible burst with varying decay

1: Input:Measurements:mn(
g
β
),mn(

T ∗(β)g
β

); threshold: Q1(g, β),

for g ∈ G̃; a parameter D > 0
2: Compute Fi = mi+1(

g
β
) − mi (

T ∗(β)g
β

)

3: Compute eρβFi+1 − Fi
4: For g ∈ G̃ do
5: i=1
6: while iβ < T do
7: if eρβFi+1 − Fi > Q1(g, β) then
8: f(g) := e3ρβFi+2 − Fi−1
9: t := (i + 1)β
10: i = i + 3 + � D

β
�

11: else
12: if eρβFi+2 − Fi+1 > Q1(g, β) then
13: f(g) := e3ρβFi+3 − Fi
14: t := (i + 2)β
15: i = i + 3 + � D

β
�

16: else
17: i = i + 1
18: Output: t and f(g) for all g ∈ G̃.
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Theorem 3.5 Under Assumptions 1 to 5, Q(g, β) given by (17), and ε—by (23), let

Q1(g, β) = Q(g, β) + ε (26)

be the threshold in Algorithm 2. Let also t j and f j (g) be the outputs of Algorithm 2.
Then |t j − t j | ≤ β and

|f j (g) − 〈h j , g〉|
≤ ε + 3e(3ρ+a)βML‖g‖β + eaβ(e3ρβ − 1)MK‖g‖ + 4e3ρβσ

+2eρβQ1(g, β) + max{v3,2(h j , g, β), v3,3(h j , g, β), v2,2(h j , g, β)} (27)

where vk,i , k, i = 2, 3, are defined by (24) so that vk,i (h j , g, β) → 0 as β → 0 (by
Lemma 3.4). In particular, for sufficiently small β > 0, one has |f j (g) − 〈h j , g〉| ≤
13σ + 4ε as long as σ and ε are not both 0.

Proof Suppose that we have detected the ( j−1)-th burst in the time interval [mβ, (m+
2)β) for some m ∈ N. By Assumption 5, the next nonzero burst h j must happen
no sooner than mβ + D + 4β, thus we just need to continue our detection from
(m + 3 + � D

β
�)β. Now we simply denote (m + 3 + � D

β
�) by n and analyze the

occurrence of a burst in the interval [nβ, (n + 2)β). To do that, we first evaluate the
quantities Fn and 
n = eρβFn+1 − Fn from the measurements (7):

Fn = mn+1

(
g

β

)

− mn

(
T ∗(β)g

β

)

=
∫ (n+1)β

τn

〈

T ((n + 1)β − s) fnφ(s − τn),
g

β

〉

ds

+
∑

τi<nβ

∫ β

0

〈

T (β − s) fiφ(nβ + s − τi ),
g

β

〉

ds

+
∫ β

0

〈

T (β − s)η(nβ + s),
g

β

〉

ds + ν

(

(n + 1)β,
g

β

)

− ν

(

nβ,
T ∗(β)g

β

)

,

and


n = eρβFn+1 − Fn

= eρβ

∫ (n+2)β

τn+1

〈

T ((n + 2)β − s) fn+1φ(s − τn+1),
g

β

〉

ds

+
∫ β

0

〈

T (β − s) fne
ρβφ((n + 1)β + s − τn),

g

β

〉

ds

−
∫ (n+1)β

τn

〈

T ((n + 1)β − s) fnφ(s − τn),
g

β

〉

ds

+
∑

τi<nβ

∫ β

0

〈

T (β − s) fi (e
ρβφ((n + 1)β + s − τi ) − φ(nβ + s − τi )),

g

β

〉

ds
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+eρβ

∫ β

0

〈

T (β − s)η((n + 1)β + s),
g

β

〉

ds −
∫ β

0

〈

T (β − s)η(nβ + s),
g

β

〉

ds + αn

where αn = eρβν
(
(n + 2)β,

g
β

)
− eρβν

(
(n + 1)β,

T ∗(β)g
β

)
− ν

(
(n + 1)β,

g
β

)
+

ν
(
nβ,

T ∗(β)g
β

)
.From the expression above,we note that sincewe don’t have a concrete

formula for φ(t), we are unable to use the technique in Sect. 3.1 to cancel the effect of
the bursts that occurred prior to nβ. However, by Assumption 5, the requirement that
the distance |t j+1 − t j | between two bursts is large enough, ensures that if no burst
occurred in [nβ, (n + 2)β) (i.e. fn = fn+1 = 0), then |eρβFn+1 − Fn| is below our
chosen threshold (26). We will show that via the calculations below, where we use
(19), (22) and Assumption 5.

|
n| = |eρβFn+1 − Fn|
≤

∑

τi<nβ

∣
∣
∣
∣

∫ β

0

〈

T (β − s) fi (e
ρβφ((n + 1)β + s − τi ) − φ(nβ + s − τi )),

g

β

〉

ds

∣
∣
∣
∣

+
∣
∣
∣
∣

∫ β

0

〈

T (β − s)(eρβη((n + 1)β + s) − η(nβ + s)),
g

β

〉

ds

∣
∣
∣
∣ + |αn|

≤
∑

τi<nβ

∫ β

0
|eρβφ((n + 1)β + s − τi ) − φ(nβ + s − τi )|‖ fi‖

∥
∥
∥
∥T

∗(β − s)
g

β

∥
∥
∥
∥ds

+eρβCL‖g‖β + (eρβ − 1)CK‖g‖ + 4eρβσ

≤
∑

τi<nβ

2e−ρ(nβ−τi )C‖ fi‖‖g‖ + w(C, L, g, β, K , σ )

=
j−1∑

k=1

2e−ρ(nβ−tk )C‖hk‖‖g‖ + w(C, L, g, β, K , σ )

≤
∞∑

k=1

2e−kρDCHR + w(C, L, g, β, K , σ )

≤ 2

eρD − 1
CHR + w(C, L, g, β, K , σ )

≤ ε + w(C, L, g, β, K , σ ) = Q1(g, β) (28)

where w(C, L, g, β, K , σ ) = eρβCL‖g‖β + (eρβ − 1)CK‖g‖ + 4eρβσ. Recall that
in the above calculation C = Meaβ , ε = 2

eρD−1
CHR as defined by (23), H is

the upper bound constant in Assumption 2, L, K are the Lipschitz constant and the
background source upper bound, respectively, in Assumption 3, and R = supg∈G̃ ‖g‖
as in Assumption 1. ��
Remark 3.6 In this case, the time difference D between every pair of adjacent non-zero
bursts will influence the error estimate. When ε < σ , the past bursts only have a very
weak impact on the subsequent bursts and their influence together is even smaller than
the noise level σ.
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We now assume that the j-th burst occurred in the interval [(n + 1)β, (n + 2)β).
Similarly to our discussion in Sect. 3.1, we consider two cases: (1) the burst is detected;
and (2) the burst is not detected. As before, for Case 1, the burst is detected if and only
if |
n| > Q1(g, β) or |
n+1| > Q1(g, β). We need to establish (27) for each of the
cases (assuming f j (g) = 0 in Case 2).

Case 1. The j-th burst is detected in [(n + 1)β, (n + 2)β).
Assume that |
n| > Q1(g, β). Then τn+1 = t j , fn+1 = h j , fn−1 = fn = fn+2 =

0 and Algorithm 2 returns t j = (n + 1)β and f j (g) = e3ρβFn+2 − Fn−1. We get

e3ρβFn+2 − Fn−1

=
∫ β

0

〈

T (β − s)h j e
3ρβφ((n + 2)β + s − t j ),

g

β

〉

ds

+
∑

τi<(n−1)β

∫ β

0

〈

T (β − s) fi (e
3ρβφ((n + 2)β + s − τi ) − φ((n − 1)β + s − τi )),

g

β

〉

ds

+ e3ρβ

∫ β

0

〈

T (β − s)η((n + 2)β + s),
g

β

〉

ds

−
∫ β

0

〈

T (β−s)η((n − 1)β + s),
g

β

〉

ds + α
′
n−1

where α
′
n−1 = e3ρβν

(
(n+3)β,

g
β

)
−e3ρβν

(
(n+2)β,

T ∗(β)g
β

)
−ν

(
nβ,

g
β

)
+ν

(
(n−

1)β,
T ∗(β)g

β

)
.

Computing the error gives

∣
∣f j (g) − 〈h j , g〉

∣
∣

= ∣
∣e3ρβ Fn+2 − Fn−1 − 〈h j , g〉

∣
∣

≤
∣
∣
∣
∣

∫ β

0

〈

T (β − s)h j e
3ρβφ((n + 2)β + s − t j ),

g

β

〉

ds − 〈h j , g〉
∣
∣
∣
∣ +

∣
∣
∣α

′
n−1

∣
∣
∣

+
∣
∣
∣
∣
∣
∣

∑

τi<(n−1)β

∫ β

0

〈

T (β − s) fi (e
3ρβφ((n + 2)β + s − τi ) − φ((n − 1)β + s − τi )),

g

β

〉

ds

∣
∣
∣
∣
∣
∣

+
∣
∣
∣
∣

∫ β

0

〈

T (β − s)e3ρβη((n + 2)β + s),
g

β

〉

ds −
∫ β

0

〈

T (β − s)η((n − 1)β + s),
g

β

〉

ds

∣
∣
∣
∣

≤ v3,2(h j , g, β) + ε + 3e3ρβCL‖g‖β + (e3ρβ − 1)CK‖g‖ + 4e3ρβσ, (29)

where v3,2 is given by (24) and we estimated the last two terms of the first inequality
similarly to (28).

Now assume that |
n| ≤ Q1(g, β) and |
n+1| > Q1(g, β). Then Algorithm 2
returns t j = (n + 2)β and f j (g) = e3ρβFn+3 − Fn . We then have
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|f j (g) − 〈h j , g〉|

≤
∣
∣
∣
∣

∫ β

0

〈

T (β − s)h j e
3ρβφ((n + 3)β + s − t j ),

g

β

〉

ds − 〈h j , g〉
∣
∣
∣
∣

+ ε + 3e3ρβCL‖g‖β + (e3ρβ − 1)CK‖g‖ + 4e3ρβσ,

where | ∫ β

0 〈T (β − s)h j e3ρβφ((n + 3)β + s − t j ),
g
β
〉ds − 〈h j , g〉| = v3,3(h j , g, β)

is given by (24).

Case 2. The j-th burst is in [(n + 1)β, (n + 2)β), but 〈h j , g〉 it is not detected.
If the j-th burst occurred in [(n+1)β, (n+2)β) but was not detected by Algorithm

2, we use the fact that e2ρβFn+2 − Fn is small to show that 〈h j , g〉 ≈ 0.

e2ρβFn+2 − Fn

=
∫ β

0

〈

T (β − s)h j e
2ρβφ((n + 2)β + s − t j ),

g

β

〉

ds

+
∑

τi<nβ

∫ β

0

〈

T (β − s) fi (e
2ρβφ((n + 2)β + s − τi ) − φ(nβ + s − τi )),

g

β

〉

ds

+ e2ρβ

∫ β

0

〈

T (β − s)η((n + 2)β + s),
g

β

〉

ds −
∫ β

0

〈

T (β − s)η(nβ + s),
g

β

〉

ds + α
′′
n

where α
′′
n = e2ρβν

(
(n + 3)β,

g
β

)
− e2ρβν

(
(n + 2)β,

T ∗(β)g
β

)
− ν

(
(n + 1)β,

g
β

)
+

ν
(
nβ,

T ∗(β)g
β

)
. Now we estimate |〈h j , g〉|:

∣
∣〈h j , g〉

∣
∣

≤
∣
∣
∣
∣−

∫ β

0

〈

T (β − s)h j e
2ρβφ((n + 2)β + s − t j ),

g

β

〉

ds

∣
∣
∣
∣

+
∣
∣
∣
∣

∫ β

0

〈

T (β − s)h j e
2ρβφ((n + 2)β + s − t j ),

g

β

〉

ds − 〈h j , g〉
∣
∣
∣
∣

≤
∣
∣
∣
∣−

∫ β

0

〈

T (β − s)h j e
2ρβφ((n + 2)β + s − t j ),

g

β

〉

ds + (e2ρβFn+2 − Fn)

∣
∣
∣
∣

+
∣
∣
∣Fn − e2ρβFn+2

∣
∣
∣ + v2,2(h j , g, β)

≤ ε + 2e2ρβCL‖g‖β + (e2ρβ − 1)CK‖g‖
+4e2ρβσ + 2eρβQ1(g, β) + v2,2(h j , g, β) (30)

wherewe have used
∣
∣eρβFn+2 − Fn+1

∣
∣ ≤ Q1(g, β),

∣
∣
∣eρβFn+1−Fn

∣
∣
∣ ≤ Q1(g, β), and

estimated the term
∣
∣
∣−∫ β

0

〈
T (β−s)h j e2ρβφ((n+2)β+s−t j ),

g
β

〉
ds+(e2ρβFn+2−Fn)

∣
∣
∣

as in (28). The theorem is proved. ��
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4 Simulation

In order to evaluate the performance of our algorithms, we apply them to the following
specific IVP:

⎧
⎨

⎩

u̇(t) = u(t) + ∑

i=1
hi e−ρ(t−ti )χ[t,∞)(t) + η

u(0) = 0

with h1(x) = 3 sin(x), h2(x) = 2.5 cos(x), h3(x) = x + 2, x ∈ [0, 1], t1 = 0.25,
t2 = 0.54, t3 = 0.78, t ∈ [0, 1], and one of the two different types of background
sources: η = xe−Lt or η = x sin(Lt).

Let g1(x) = 1, g2(x) = x , and g3(x) = x2 be the sensor functions and compute
the ground truth 〈hi , g j 〉 for i, j = 1, 2, 3. In the simulation, we let ρ = 1, L = 10−2

and the noise level σ = 10−3. The goal is to find the burst times {0.25, 0.76, 1.1} and
compare the output fi (g j ) with the ground truth 〈hi , g j 〉 (i, j = 1, 2, 3) for different
time steps β = 0.015 and β = 0.01, respectively. We acquire the measurements (7)
and use the algorithm in Sect. 3.1. The results are shown in Fig. 2.

To test the algorithms for the model in Sect. 3.2, we use the same burst and sensor
functions. We also test on the same background sources and let L = 10−2. But here

Fig. 2 Plot for the bursts: model
with φ(t) = e−t , L = 10−2 and
σ = 10−3. The results for hi lie
in the i-th column. Red circles
stand for the ground truth
〈hi , g j 〉, black squares stand for
the output fi (g j ) when
β = 0.015 and blue triangles
stand for the output fi (g j ) when
β = 0.01.
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Fig. 3 Plot for the bursts: model
with φ(t) = 1

2 (e−2t + e−t ),

L = 10−2 and σ = 10−3. The
results for hi lie in the i-th
column. Red circles stand for the
ground truth 〈hi , g j 〉, black
squares stand for the output
fi (g j ) when β = 0.015 and blue
triangles stand for the output
fi (g j ) when β = 0.01

we let φ(t) = 1
2 (e

−2t + e−t ), thus 0 < φ(t) ≤ e−t . For other parameters, we let
t1 = 1.1, t2 = 9.8, t3 = 19, D = 8.6 and σ = 10−3 (ε < σ ). The goal is still to
find out the bursts and compare the output with the ground truth for β = 0.015 and
β = 0.01, respectively. We utilize the algorithm in Sect. 3.2 and the results are shown
in Fig. 3.

In Figs. 2 and 3, we plot estimates and ground truth in the same figure. The test
shows that our algorithms can find out all bursts and the error gets smaller when the
time step β gets shorter. To gain deeper insight into the impact of parameters β, L
and σ on our algorithm, we conducted simulations on the model with φ(t) = e−t

where we varied one parameter and fixed others. In our simulation, we evaluated the
accuracy of the estimates of 〈hi , g2〉 by calculating the relative error:

√
∑3

i=1

∣
∣
∣
∣

〈

hi , g2〉 − fi (g2)

∣
∣
∣
∣

2

√
∑3

i=1

∣
∣
∣
∣〈hi , g2

〉∣
∣
∣
∣

2
.

In Fig. 4, we plot the relation between the errors on 〈hi , g2〉 and the sampling time
step β by fixing the Lipschitz constant of the background source L = 0.01 and the
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Fig. 4 The error estimate of 〈hi , g2〉 vs. β: L = 10−2, σ = 10−3. The background sources are η(x, t) =
xe−Lt and η(x, t) = x sin(Lt) for the first and second columns, respectively

Fig. 5 The error estimate of 〈hi , g2〉 vs. Noise: L = 10−2, β = 0.015. The background sources are
η(x, t) = xe−Lt and η(x, t) = x sin(Lt) for the first and second columns, respectively

Fig. 6 The error estimate of 〈hi , g2〉 vs. L: β = 0.015, σ = 10−3. The background sources are η(x, t) =
xe−Lt and η(x, t) = x sin(Lt) for the first and second columns, respectively

noise level σ = 10−3. The results indicate that the error is very low when β is
sufficiently small, which demonstrates the accuracy of our algorithm. Additionally,
the error appears to grow linearly as β gets bigger.

In Fig. 5, we plot the relation between the errors and the noise level σ by fixing
the time step β and the Lipschitz constant L. We notice that in this case the noise
level has little influence on the error when it is less than 10−3. When the standard
deviation of the additive noise is σ = 10−1, it constitutes roughly 10% of the signal
values. Consequently, the error is primarily determined by the additive noise rather
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than the time step β, and the Lipschitz constant L of the underlying background η.
This phenomenon accounts for the sudden spikes in the relative recovery error.

In Fig. 6, we vary the Lipschitz constant L and fix β and σ. The test shows that
for this IVP the error is almost independent of the variance of the Lipschitz constant
when L < 10−1.
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