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Actuation and Motion Control
of Flexible Robots: Small
Deformation Problem

This paper introduces a new computational approach for the articulated joint/deformation

actuation and motion control of robot manipulators with flexible components. Oscillations

Ahmed A. Shaban a1 due to smgll d.eformatim?s of relqll:vely stiff robot components whici_z cannot be ignored, are
- modeled in this study using the finite element (FE) floating frame of reference (FFR) formu-

lation which employs two coupled sets of coordinates: the reference and elastic coordinates.
The inverse dynamics, based on the FFR formulation, leads to driving forces associated
with the deformation degrees of freedom. Because of the link flexibility, two approaches
can be considered to determine the actuation forces required to achieve the desired
motion trajectories. These two approaches are the partially constrained inverse dynamics
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between the inverse- and forward-dynamics solutions. A procedure for determining the
actuation forces associated with the deformation degrees of freedom is proposed and is
exemplified using piezoelectric actuators. The PCID solution is used to define a new set
of algebraic equations that can be solved for the piezoelectric actuation voltages required
to maintain the forward-dynamics oscillations within their inverse-dynamics limits. A
planar two-link flexible-robot manipulator is presented to demonstrate the implementation
of the joint/deformation actuation approach. The results obtained show deterioration in the
robot precision if the deformation actuation is not considered. [DOI: 10.1115/1.4051438]
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1 Introduction procedure. The concept of equipollent systems of forces is used
to transform the actuation forces associated with the FFR reference
and elastic coordinates to physically meaningful forces of actuation
devices such as conventional articulated-joint actuators and motors
as well as piezoelectric (PZT) actuators for the deformation control.

The analysis of robot manipulators can be broadly classified into
three different groups that require different mathematical
approaches. These groups are rigid-body robots, flexible robots,
and soft robots. While rigid robots, often modeled using the
Newton-Euler equations, are an idealization that implies that the
link deformations do not have a significant effect on the robot pre-
cision and/or functional operation; flexible-robot dynamics is con-
cerned with the small-deformation problem resulting from the
relatively high stiffness of the robot links. For this class of flexible-
robot systems, widely used in manufacturing applications, the
small link deformation can have a significant effect on the robot pre-
cision and performance, and therefore, such a small deformation
cannot be ignored. The approach most widely used for the analysis
of articulated flexible robots is the FFR formulation that allows fil-
tering out insignificant high-frequency modes of vibration while
preserving the accuracy of the dynamic model. Soft robots, on the
other hand, require using a full finite element (FE) discretization
in order to capture the complex deformation shapes.

Precision is an important issue in the design of flexible-robot
manipulators, which have several advantages that include lighter
- weight, smaller actuation-power requirements, higher degree of
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and control of flexible-robot systems [1-9]. For such systems,
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In the floating frame of reference (FFR) formulation, widely used
in modeling flexible robots, a linear elasticity problem is created and
exploited to significantly reduce the number of coordinates and
eliminate high-frequency modes of oscillations. These high-
frequency modes, in most applications, have a negligible effect
on the solution of the problem. Nonetheless, using a modal
approach in the FFR formulation leads to challenging problems in
the control of robot manipulators that consist of flexible bodies
(links). The mode shapes, which describe the body deformation
with respect to the FFR body reference, are not associated with dis-
crete physical material points at which actuation forces can be
applied. This creates the challenge of defining proper actuation
forces and moments that produce the desired motion trajectories.
A review of previous investigations has shown that there is no
approach available in the literature for defining the actuation
forces using the inverse-dynamics constraint forces associated
with the finite element (FE)/FFR deformation degrees of freedom.
In this paper, this fundamental issue is addressed by developing a
new articulated joint/link deformation actuation approach,
simply referred to as joint/deformation actuation. In this approach,
the generalized actuation forces associated with the reference and
modal coordinates are first determined using an inverse-dynamics
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including aerospace, manufacturing, and mechanical engineering
[7-17]. In order to improve the motion stability, increase the track-
ing accuracy, and suppress the vibration of the flexible robotic
system; a large number of investigations have been concerned
with developing control strategies [18-24]. Certain control strate-
gies have been proposed including sliding mode control [25,26],
fuzzy control [27-29], adaptive control [11,30], and neural
network control [31,32]. These control strategies are used to
design the actuation systems with the goal of achieving the
desired accuracy and performance.

The actuation forces of robotic systems are often determined
using an inverse-dynamics solution procedure based on multibody
system (MBS) computational approaches [33—42]. After computing
the actuation control forces or torques using control strategies or
inverse dynamics, the proper actuators are selected to achieve the
desired performance. In the case of flexible robots, two classes of
actuators can be recognized; the first includes conventional joint
actuators and motors, while the second includes deformation- and
shape-control actuators such as piezoelectric (PZT), shape
memory alloy (SMA), and ultrasonic and thermal actuators. Piezo-
electric actuators have the advantages of low cost, simple structure,
small size, fast response, large force generation, and high control
precision [43-45]. Therefore, PZT actuators are widely used in
vibration control and trajectory tracking of various flexible-robot
manipulators [46-55]. Piezoelectric materials can also be used for
both vibration measurement and control of flexible manipulators
[56-59].

This paper is focused on using the FE/FFR formulation in which
the concept of the reference conditions is fundamental. Different
choices of the body coordinate system, defined using different sets
of reference conditions, lead to different modes and different defor-
mations defined with respect to the selected body coordinate
system. The FFR forces associated with these modes may lack
any physical interpretation because of the non-unique definition
of the deformation modes associated with different body coordinate
systems. Consequently, there is a need for a new approach that
allows transformation of the forces associated with the FFR
modes to actuation forces that have clear physical interpretation
and can be used in a hybrid actuation approach for the control of
both articulated-joint and deformation degrees of freedom. The
concept of the FFR equipollence systems of forces is central for
developing such a hybrid control strategy.

2 Scope, Contributions, and Organization of
This Investigation

A literature review reveals that the FFR specified-trajectory
forces associated with the FE/FFR deformation degrees of
freedom have not been considered in the definition of the robot actu-
ation forces. One of the main objectives of this study is to use the
FFR force definitions to define physically meaningful actuation
forces associated with physical material points or axes of rotations.
To this end, a new computational joint/deformation actuation
approach is developed for the motion control of robot manipulators
with flexible components whose oscillations cannot be ignored and
can negatively impact the robot’s precision and functional opera-
tions. The small deformations of the stiff robot components are ana-
lyzed using the FE/FFR formulation which employs two coupled
sets of coordinates; the reference and elastic coordinates. The
FFR formulation allows creating a local linear problem that can
be exploited to reduce the model dimension by eliminating insignif-
icant high-frequency deformation modes. Because the FFR inverse-
dynamics problem leads to driving actuation forces associated with
the deformation degrees of freedom, such forces cannot be
neglected in the robot control systems. Two different inverse-
dynamics problems can be used to determine the actuation forces
required to achieve the desired motion trajectories. These are the
partially constrained inverse dynamics (PCID) and the fully con-
strained inverse dynamics (FCID). The FCID approach, which
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will be considered in future investigations and allows for motion
and shape control, can be used to achieve the desired motion trajec-
tories and suppress undesirable oscillations. The new PCID
approach introduced in this study, on the other hand, allows achiev-
ing the desired motion trajectories, determining the actuation forces
and moments associated with the robot joint and elastic degrees of
freedom, and avoiding deteriorations in the vibration characteristics
as measured by the differences between the inverse- and forward-
dynamics solutions. The new procedure for determining the actua-
tion forces associated with the elastic coordinates is exemplified
using piezoelectric actuators. The PCID solution is used to deter-
mine the voltage of the piezoelectric actuation required to maintain
the forward-dynamics oscillations within their inverse-dynamics
limits. A planar two-link flexible-robot manipulator is presented
to demonstrate using the joint/deformation actuation approach pro-
posed in this study. The specific contributions and organization of
this paper can be summarized as follows:

(1) A review of the basic FFR kinematic and force equations
used in this study is presented in Sec. 3. As discussed in
Sec. 3, a force vector that acts at an arbitrary point on a flex-
ible body is equipollent to a system of FFR generalized
forces that include forces associated with the deformation
coordinates. The FFR forces may lack a clear physical inter-
pretation because of using the floating coordinate system.
Using concepts discussed in Sec. 3, actuation forces that
have clear physical interpretations are developed in Sec. 4.
This is accomplished using a point mesh which has a
number of points consistent with the number of degrees of
freedom of the model. A transformation between the FFR
coordinates and the point-mesh coordinates is developed
and used to define the actuation forces that can be used in
the case of small-deformation problems.

(3) A new procedure for computing the actuation forces from the
solution of the FFR inverse-dynamics problem is introduced
in Sec. 5. The two approaches of partially constrained and
fully constrained inverse dynamics are defined. The fully
constrained inverse dynamics (FCID) can be used for
motion and shape control and will be subject of future inves-
tigations. The partially constrained inverse dynamics
(PCID), used in this investigation, allows for motion
control only while maintaining the forward-dynamics oscil-
lations within the inverse-dynamics limits.

The control-actuation approach developed in this study is
verified in Sec. 6 using a benchmark mechanism example
that has a flexible link. In the numerical verification study,
the driving constraint forces predicted using the algorithm
developed in this investigation are compared with results pre-
viously published in the literature.

(5) To demonstrate the formulation of the control forces using
the proposed joint/deformation actuation approach, piezo-
electric actuation forces based on the inverse-dynamics solu-
tion are developed in Sec. 7, in which a control law that
combines conventional articulated-joint and deformation
PZT actuation is defined. The conventional joint actuation
contributes to controlling the joint variables, while the PZT
actuation controls the amplitude of the deformation modes
and keeps the forward-dynamics oscillations within their
inverse-dynamics limits. The procedure described in Sec. 7
leads to a new set of algebraic equations that can be solved
for the PZT voltages and the conventional joint actuation
forces. This procedure is used to evaluate the effect of the
deformation actuation often neglected in the design of
robot systems.

Implementation of the small-deformation FFR actuation-
force approach developed in this study is demonstrated
using a two-link flexible robot. The robot end-effector
motion is specified, and the joint and PZT actuation
moments are calculated. The results obtained using the
inverse and forward dynamics are compared in Sec. 8
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These results demonstrate deterioration in the robot precision
by relying only on the joint actuation and not considering the
deformation actuation. Section 9 presents summary and con-
clusions drawn from this study.

While the literature includes a large number of investigations on
the inverse and forward dynamics and control of flexible-robot
systems [2,60-62], this paper differs from previous investigations
by making the specific contributions summarized above and using
the concept of the FFR equipollent systems of forces to define phys-
ically meaningful actuation forces with clear interpretation. This
defines a new hybrid articulated-joint/deformation actuation
approach consistent with the FE/FFR reference conditions that
can lead to different definitions of the deformations with respect
to the selected body coordinate system and to different FFR
forces associated with the deformation modes.

3 Generalized Modal Forces

Nonlinear dynamics of flexible robots with an infinite number of
degrees of freedom makes flexible-robot control more complicated.
Different flexible-body models are proposed for flexible robots
based on different assumptions and requirements [63—69]. In this
section, the FFR kinematic equations, used in this study, are sum-
marized and used to define the generalized forces associated with
the deformation modes. In the case of flexible bodies, a force
acting at a point is equipollent to a system of forces that consist
of the same force, a moment that depends on the body deformation,
and a set of generalized forces associated with the modal coordi-
nates. A review of the literature of robotic systems reveals that
the forces associated with the FE/FFR deformation coordinates
have not been considered when developing robot actuation. There-
fore, one of the main objectives of this study is to use the modal-
force expressions to define physically meaningful material-point
and/or rotation-axis actuations.

3.1 Kinematic Equations. In the FFR formulation, the motion
of the flexible body is described using two sets of coordinates: the
reference and elastic coordinates. The reference coordinates define
the location and orientation of the body coordinate system X} X} X}
with respect to the global coordinate system X;X,X3, as shown in
Fig. 1. The elastic coordinates are used to define the body deforma-
tion with respect to the body coordinate system. Using these coor-
dinates, the global position of an arbitrary point on the body can be
written as [70]

r' =R+ A'(@, + 1) =R+ A'(@, + S'q)) (1)
In this equation, R’ is the global position of the body reference
point, Al is the matrix that defines the orientation of the body coor-
dinate system, ﬁ; =Xx= [x1 X7 X3 ]T is the constant position vector
of the arbitrary point before deformation with respect to the body
coordinate system, ﬁ]’} = Siq} is the deformation vector, S’ = S'(x)
is a shape function matrix, and q} is the vector of elastic coordinates

that define the body deformation with respect to its reference. A
virtual change in the position vector of the arbitrary point leads to

o' = 6R' — A'5'G'50' + A'S'5q) = L'sq’ @

In this equation, o' is the skew symmetric matrix associated with the
vector i’ =@, + i}, G' is the matrix that relates the angular velocity
vector @', defined in the body coordinate system, to the time deriv-

atives of the orientation parameters 0', that is @' = (_}'61, and

L"=[1 ~AFG A"S"], qi=[R"T 0" q}:"]T &)

While forces associated with the FFR coordinates may lack a
clear physical interpretation because of using the floating frame,
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Fig. 1

Spatial rigid body

the FFR kinematic equations can be used to formulate actuation
forces that have clear physical interpretations, as demonstrated in
this study.

3.2 Generalized Modal Forces. Using the virtual displace-
ment of the arbitrary point, the virtual work of a force vector F'
acting at the arbitrary point, as shown in Fig. 1, can be written as

SWi=F"5r' =F'6R' — F" AWG'o0' + F" A'S'sq
=Q}5R' + Q) 50 + Qi 5q’ )

where Qi =F', Q;=G" i A”F', and Q. =S" A" F'. It is clear
from the definition of the virtual work that in flexible-body dynam-
ics, the force is no longer a sliding vector as in the case of rigid-body
dynamics. Furthermore, a force F' acting at a point is equipollent to
a system of forces that consist of the same force, a deformation-
dependent moment, and a set of generalized forces associated
with the modal coordinates. The generalized modal forces are asso-
ciated with modes that describe the overall body deformation and
are not associated with discrete physical material points at which
the actuators can be placed. These modal forces cannot be
ignored in the robot design and control because link deformations
absorb energy. It is, therefore, important to replace the system of
forces given in the FFR equations with another equipollent
system that consists of forces and/or moments associated with mate-
rial points and motor axes, respectively.

3.3 Actuation Points. There is an infinite number of arrange-
ments for the body floating frame of reference with respect to which
the body deformation is defined. Because deformations are relative
measures, the generalized forces previously obtained in this section
may lack a physical meaning and may not be used directly in the
control of robots and mechanisms that consist of deformable
bodies. In case of rigid-body dynamics, the body coordinate
system is rigidly attached to a material point, and therefore, the
forces obtained have a clear physical interpretation. In case of
flexible-body dynamics, on the other hand, the generalized forces
may not have such a clear interpretation because of the fact that
deformations are relative measures. In order to define forces that
have clear physical interpretation, the system of forces obtained
in this section is converted to another equipollent system of
forces and moments associated with coordinates of points and/or
axes, as previously mentioned. This is accomplished in the

FEBRUARY 2022, Vol. 14 / 011002-3
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following section by using the absolute coordinates of a set of dis-
crete points, referred to in this paper as the actuation points, whose
position coordinates can be determined using the FFR coordinates.
In a later section of this paper, it is shown how to replace the FFR
generalized forces with joint and piezoelectric moments.

4 Actuation Forces
In the FFR formulation, one set of reference coordinates qi =

[R” ¢ ]T is used for the entire body with a set of elastic physical
or modal coordinates q} that define the body deformation relative to
its reference. The use of one point and a set of modes does not allow
developing an effective control strategy to achieve the desired
motion. This challenge can be addressed by transforming the FFR
forces to another equipollent system of forces associated with posi-
tion coordinates. It is assumed that the FFR actuation forces
(Qﬁe)u, (Qg)a, and (Q)’})a associated, respectively, with the FFR coor-
dinates R', ¢, and q} are known from the solution of the FFR
inverse-dynamics problem in which the desired motion trajectories
are specified.

Considering a set of n,, actuation points for the flexible body 7 and
assuming that the unknown actuation force vector at an actuation
point k is F* one can write the virtual work

ny, n,
sWi=">"F¥or* = [Z F* L”‘i| 5q’ (5)
k=1 k=1
where r* = R’ + A'(@ + @) is the global position vector of the
actuation point expressed in terms of the FFR generalized coordi-
nates, and L* is the matrix L’ evaluated at the actuation point k.
The virtual work of the preceding equation must be equal to the
virtual work of the generalized actuation forces obtained from the
solution of the inverse-dynamics problems, that is

[ F"”L""}mf =Q, 5q’ (©)

k=1

where Q' = [(Q;)Z @Q)F (@) ]T is the vector of generalized
actuation forces computed using the inverse-dynamics procedure,
as explained in the following section. Because the elements of the
vector ¢ in the augmented Lagrangian formulation can be treated
as independent, one has ZZP:I F¥ Lk = Q;. The vector on the left-
hand side of this equation can be written as

Fil
" i2
Z L Fik — [LllT LzZT L”’Z ] : = L;IF; (7)
= -
where
Lin _ [L”T L2 ... L ], F; = [F”T F2 Fin ]T
3)
It follows that
L,F,=Q, ©)

This system of algebraic equations can be solved for the actuation
force vector F, as

F,=@;,L,)"'L,Q, (10)

These actuation forces at the 7, actuation points can be used as input
in a forward-dynamics algorithm in order to evaluate the effective-
ness of the control strategy. The number of coordinates of the actu-
ation points can be selected equal to the number of coordinates of

011002-4 / Vol. 14, FEBRUARY 2022

the flexible body when solving the inverse-dynamics problem.
This ensures that the coefficient matrix L/, in Eq. (9) is a square
matrix, and in this case, there is no need to multiply Eq. (9) by
the transpose of ! . Furthermore, actuation points must be selected

such that the coefficient matrix L, or LZLLI in the preceding equa-
tions is nonsingular. In the case of the forward-dynamics problem,
on the other hand, the number of coordinates of the actuation points
does not have to be equal to the number of the flexible-body
coordinates.

5 Floating Frame of Reference Inverse-Dynamics
Problems

In the inverse-dynamics problem, the desired motion trajectories
are specified using a set of algebraic constraint equations. The
dynamic equations can be formulated and solved considering
these algebraic equations to determine the driving (actuation)
forces that produce the desired motion. In case of robot manipulators
that consist of rigid bodies, the number of algebraic equations is
often equal to the number of the robot degrees of freedom. In this
case of rigid-body dynamics, one obtains a set of algebraic equations
which can be solved for the accelerations and the actuation forces
and torques. There is no need in this case to perform numerical inte-
gration of the system differential equations of motion.

In the case of flexible-body dynamics, on the other hand, deform-
able bodies have deformation degrees of freedom introduced using
approximation methods. Using a large number of actuators may not
be economically or design feasible. Furthermore, in many applica-
tions of robots that consist of flexible links, the focus is on obtaining
desired motion trajectories and reducing the vibration to achieve the
required precision. As will be discussed in this section, these
requirements do not necessarily lead to the conventional inverse-
dynamics problem in which only algebraic equations are solved
for the actuation forces. As explained below, the inverse-dynamics
problem may require numerical integration of a system of differen-
tial/algebraic equations (DAEs) if the number of specified motion-
trajectory constraint equations is less than the number of the system
degrees of freedom. Therefore, in flexible-body dynamics, distinc-
tion is made between motion control and motion/shape control.

5.1 Partially- and Fully Constrained Inverse Dynamics. In
the case of motion control, the desired end-effector motion trajec-
tories are specified in the inverse-dynamics problem. Because of
the deformation degrees of freedom, the number of motion con-
straint equations is less than the number of the system coordinates.
This is the case of partially constrained inverse dynamics (PCID),
which requires using direct numerical integration to determine the
driving constraint forces. In the PCID approach, despite the fact
that no constraints are imposed on the deformation coordinates,
the solution of the FFR inverse problem leads to driving constraint
forces associated with the reference and elastic coordinates. The
driving constraint forces associated with the elastic coordinates
cannot be ignored if the link oscillations in the forward-dynamics
problem are to remain within the inverse-dynamics limits.

In case of motion/shape control, all the degrees of freedom are
prescribed, including the deformation degrees of freedom. In this
case, the number of specified motion-trajectory constraint equations
is equal to the number of system degrees of freedom. While in this
case the number of constraint equations is increased to impose con-
straints on the deformation shape to suppress the vibration, this case
of fully constrained inverse dynamics (FCID) leads to a system of
algebraic equations which can be solved for the accelerations and
driving constraint forces. In this FCID case, there is no need for
using direct numerical integration methods since the solution of
the resulting system of the algebraic equation provides the informa-
tion needed for developing the control-actuation strategy. This
investigation is concerned with the motion control which can be
addressed using the PCID approach.
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5.2 Specified Motion-Trajectory Constraints. In general,
the specified motion-trajectory and any other performance-criteria
constraints can be formulated using a set of algebraic constraint
equations which can be written in a vector form as Cy(q, t) =0,
where q is the vector of the system coordinates that include the
rigid-body and flexible-body reference and deformation coordi-
nates. The constraint equations C,(q, #) = 0 can be of the rheonomic
(explicit function of time) type. Other constraint equations that
define mechanical joints of the articulated robot systems are
denoted as C,,(q, r) = 0. Therefore, the total vector of algebraic

. . . [T 717 _
constraint equations can be written as C(q, 1) = [Cx Cm] =0.

5.3 Generalized Actuation Forces. The system algebraic
constraint equations, including the specified motion-trajectory and
performance-criteria constraints, can be combined with the system
differential equations of motion to form a differential/algebraic
equation (DAE) system using the technique of Lagrange multipli-
ers. Lagrange multipliers and the constraint Jacobian matrix can
be used to determine the generalized constraint forces associated
with the reference and elastic coordinates of the flexible bodies.
The system differential equations of motion can be written as
Mg =Q, +Q., where M is the system symmetric and nonlinear
mass matrix in the case of the FFR formulation, Q, is the vector of
applied and quadratic-velocity inertia forces, and Q, is the vector
of constraint forces written in terms of Lagrange multipliers as

c][2] an

T
In this equation, Cq =0C/0q = [CSTq Cflq} is the constraint

— Ty _ T T _ T
Q. =~Cjh=~Cl, - Chohn = €I,

mq“m

Jacobian matrix; A = [ }»ST xf,; ]T is the vector of Lagrange multipli-
ers; Cyq = 0C,/0q and C,,q = 0C,,/0q are, respectively, the Jacobian
matrices of the constraint equations Cy and C,,; and A, and A, are
Lagrange multipliers associated, respectively, with the constraint
equations C; and C,,. The constraint equations at the acceleration
level is defined by differentiating the constraints twice with respect

to time as
.. Cyq |.. Q
Cyd=| " li=| 3" ] 12
qq |: Cmq ]q |: Qdm ( )

where Q, and Q,,, are vectors that result from differentiating the
constraint equations twice with respect to time and absorb terms
which are not linear in the accelerations.

Using the system differential equations of motion,
Mg =Q, +Q,, and the constraint equations at the acceleration
level, the augmented form of the equations of motion can be
written as

M ¢, ., ]fad Q.
Cq 0 0 Ay | =1 Qus 13)
Cmq 0 0 )‘fm Qdm

This sparse matrix equation can be solved for the acceleration
vector ¢ and the vectors of Lagrange multipliers A; and A,,. If the
number of algebraic constraint equations is not equal to the
number of the system degrees of freedom, one has the PCID case
that requires numerical integration of the acceleration vector {q to
determine the coordinates and velocities. It is necessary, however,
to use a numerical algorithm that ensures that the constraint equa-
tions are satisfied at the position, velocity, and acceleration levels.
To this end, the independent accelerations are identified and inte-
grated forward in time to determine the independent coordinates
and velocities. The dependent variables are determined from the
algebraic constraint equations and their derivatives. This procedure
ensures consistency with the D’Alembert-Lagrange principle or the
principles upon which accurate numerical integration methods are
developed. In the FCID case, on the other hand, the number of alge-
braic constraint equations is equal to the number of coordinates, and
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in this case, there is no need for performing numerical integration
since the algebraic constraint equations and their derivatives
completely define the system coordinates, velocities, and
accelerations.

In both PCID and FCID cases, the vectors of Lagrange multipli-
ers Ay and A, can be used to determine, respectively, the generalized
actuation and joint-reaction forces. In particular, for a body i in the
system, the driving constraint forces can be evaluated as
Q = —CSTq, Ay, where C,q = 6C,/0q and ¢ is the vector of gener-
alized coordinates of the FFR body i. The vector of generalized
actuation forces Q, can be used to determine the actuation-force
vectors F*, k=1,2,..., n,, at the actuation points, as previously
described.

6 Verification of the Proposed Approach

In this section, a benchmark example of a flexible slider-crank
mechanism [35] is used to provide verification of the inverse- and
forward-dynamics approaches proposed in this study. Figure 2
shows the slider-crank mechanism, which consists of four bodies;
the ground (body 1), the crankshaft (body 2), the connecting rod
(body 3), and the slider block (body 4). All the links are made of
steel and assumed rigid except the connecting rod which is consid-
ered flexible. The connecting rod has a length of 0.35 m, a diameter
of 0.006 m, a mass density of 7800 kg/m°, and a modulus of elas-
ticity of 2.0x 10'' N/m?. The connecting rod is modeled using
the FE method and is divided into four two-dimensional beam ele-
ments. The first six modes, with 1% modal damping for all modes,
are used in the simulation. The dimensions and properties of the
mechanism are shown in Table 1. In the numerical simulation,
the motion of the slider block is specified and is defined using the
harmonic function Rf =0.35 - 0.12sin(w 1), where Rf is the coordi-
nate of the slider block in the horizontal direction, and @ = 100 rad/
s. The simulations of the flexible slider-crank mechanism are per-
formed using the general-purpose MBS software SIGMA/SAMS
(Systematic Integration of Geometric Modeling and Analysis for
the Simulation of Articulated Mechanical Systems). The results
of the inverse and forward dynamics of the proposed approach
are compared with the results presented in the literature [35].
Using the specified motion trajectory, the driving constraint force
that produces the desired motion is obtained using the PCID
approach. The desired motion of the slider block can then be
obtained using an actuator that drives the slider block.

Y

Fig. 2 Planar slider-crank mechanism

Table 1 Slider-crank mechanism dimensions and inertia
properties

Link number Diameter (m) Length (m) Mass (kg)
2 0.006 0.15 0.03308
3 0.006 0.35 0.07719
4 _ - 0.1
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Fig. 3 Actuator force (—l— [35]; —A— proposed approach)
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Fig. 4 Motion trajectory of the slider block (—@— Specified
motion trajectory; —A— Desired motion predicted using
forward dynamics)

Figure 3 shows the driving constraint force, which is the actuation
force predicted using the PCID approach, and it is the force required
to achieve the desired motion of the slider block. The results pre-
sented in this figure show that the actuation force obtained by the
PCID method is in good agreement with the results presented in
the literature [35]. Figures 4 and 5 show, respectively, the actual
motion trajectory of the slider block and the midpoint transverse
deformation of the flexible connecting rod. These results show
good agreement with the results reported in the literature [35].

7 Characterization of Joint/Deformation Actuations

In this section, the piezoelectric actuation is used as an example
to demonstrate the procedure of using the inverse-dynamics solu-
tion to determine the piezoelectric voltages required to produce
actuation moments associated with the deformation modes. These
actuation moments have a clear physical interpretation regardless
of the FFR coordinates which may lack an obvious physical
meaning because of the nature of the FFR coordinate system used.

7.1 Piezoelectric Actuators. Using PZT actuators, as the one
shown in Fig. 6, actuation moments proportional to the control
voltage can be produced using the relationship [71-73]

Mp i = crVi(t) (14)
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Fig. 5 Midpoint transverse displacement of the connecting rod
(—@— [35]; —M— Inverse dynamics results; —A— Forward-
dynamics results)

A

PZT actuator _| ]

Flexible link

Cross-section

Fig. 6 A flexible link with piezoelectric actuator

where M, is the actuation moment; Vi= V() is the control
voltage applied to the kth piezoelectric actuator; subscripts p and
k refer, respectively, to piezoelectric and kth piezoelectric actuator,
and ¢ is a constant which depends on the material and geometric
properties of the piezoelectric actuator and represents the actuating
moment per unit volt. This constant can be written in terms of the
material properties and dimensions of the piezoelectric actuator as
cx=Epd3 wy(t, +1,)/2, where E, is Young’s modulus, d3; is PZT
material constant, w,, and ¢, are, respectively, the width and thick-
ness of the PZT actuator, and ¢, is the thickness of the flexible
link on which the PZT is placed. Therefore, the virtual work of
the kth PZT actuator force based on the FFR formulation can be
written as W),y =M, (68, x> — 58, 1), where 6, and 0,,, are
the rotation angles of the two ends of the PZT actuator, which
can be expressed in terms of the FFR shape function matrix and
nodal coordinates of flexible link i. Therefore, 6W,; can be
written as

5W§,Yk = M"p,k(zseip’kz - 56"[,,,(1) =c} V,itl)i’kéq} (15)

where <I>i,‘k =[S'(x2)—S'(x¢.1)], S is the shape function matrix of
the flexible link, S’ = 8S/0x, x is the axial coordinate of the flexible
link, x;; and x;, are the coordinates of the two ends of the PZT
actuator, and q} is the vector of elastic coordinates of the flexible
link, which can be written in terms of the vector of modal coordi-
nates p} as qf = @/, pi, where ®;, is the modal matrix [70]. Using
the virtual change éq} = (I)fnﬁpf"-, the virtual work of n,,, PZT actua-

tors on a flexible link i can be written in terms of the modal coordi-
nates as

np; Npz
i i i i o i /i bl ioi iT oo i
5sz = (; Mp,k(l)e,k>q)m6pf = (k ] Ckaq’e,k>‘Dm5Pf = szépf
(16)
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which defines the generalized PZT actuation forces associated with
the modal coordinates as

T e . iz T . .
F =@ (Z o kM’l,,k> =X (Z @) kqv,ﬁ) =@,V (17)
k=1 k=1

: ; i — | P i Pl i P
In this equation, @ —‘I’m[cl‘be,1 P, Cn, P, | and

. . . AT
V= [V{ |23 V,’,W is the vector of the piezo-
electric voltage of the flexible body i. This definition of the gener-
alized piezoelectric forces associated with the modal coordinates
will be used to define a system of algebraic equations that can be
solved for the piezoelectric voltages required to define the PZT

actuation moments.

7.2 System Kinematics. Using the FFR coordinate vector
the rigid-body dynamics when the structures rotate as rigid bodies
can be achieved. When the modal coordinates are used, one can

of the flexible body i, exact modeling of

introduce  the  vector q;,:[R‘T 0 p}r] and  write

5q' =D'sq),, where

i I 0

L .
L
In this equation, I is the identity matrix. The vector of generalized
coordinates of a system that has n;, bodies can be written as

a=[q" ¢’

this vector of coordinates can be written in terms of the vector g, =

T .
q"f ] . In case of articulated robot system,

r T
[q{‘f q}zf q;’l’] of the Cartesian and elastic degrees of
freedom. Using these notations, the virtual change in q can be
written in terms of the virtual change in q, as 5q =Ddq,, where
D is a block-diagonal matrix whose block-diagonal elements are
the matrices D' of the bodies. Furthermore, using the system kine-
matic constraint equations, the vector of Cartesian and modal coor-
dinates ¢, can be written in terms of the vector q; of the
independent joint and elastic modal coordinates as 6q, = D,dq,,
where D), is a velocity transformation matrix defined using the kine-
matic constraint equations of the joints [70]. In this case, one can
write the virtual change in the absolute Cartesian and physical
elastic coordinates in terms of the virtual change of the system
degrees of freedom as

5q =Déq, =DD,5q;, = D5, 19)

where D, = DD, is the velocity transformation matrix that relates
the virtual changes of the two vectors q and qj,.

7.3 Piezoelectric Forces. In the FFR formulation, origin of the
body coordinate system may not be rigidly attached to a material
point on the body. Therefore, the reference coordinates and the
elastic coordinates, which define the body deformation with
respect to its coordinate system, may lack an obvious physical
meaning. In developing a simulation-based control strategy,
however, the goal is to define actuation forces that have a clear
physical interpretation. The obtained simulation results based on
accurate computer models can be used to define parameters that
enter into the definition of physically meaningful actuation forces.
In case of piezoelectric actuation, the inverse-dynamics results
can be systematically used to define the voltage-time history
required to produce the desired motion. When this voltage is
used, the desired physically meaningful piezoelectric actuation
bending moments can be computed as previously mentioned in
this section.

Journal of Mechanisms and Robotics

Regardless of the reference conditions used in the FFR formula-
tion, the driving control forces F, associated with the coordinate
vector q can be obtained using the inverse-dynamics procedure, pre-
viously discussed, as F, = —CSTq)»S, where C,q is the Jacobian
matrix of the driving constraints, and A, is the vector of Lagrange
multipliers associated with the driving constraints. Knowing the
vector F,, the virtual work can be used to determine the actuation
forces F, associated with the coordinates q,. To this end, one
can write

5Wj. =F] 5q = (F,D,c)3q;, 0
= _O‘ST CsqDje)oq je = F;‘eaq_i(’

where the driving joint and PZT moments are defined using the
inverse-dynamics solution as

Fj,=-D},Cl A 1)

This equation can be used to define the actuation joint and PZT
moment equations.

7.4 Algebraic Joint-Moment and Voltage Equations. The
actuation forces can be classified as an articulated joint force and
moments defined by the vector F,; associated with the articulated
joint degrees of freedom q,,; and piezoelectric moments F ,; associ-
ated with the modal coordinates q,,, which can represent all or a
subset of the system modal coordinate vector p;. The vector F,
is the assembly of the vectors Fi,z, i=1,2,..., np, defined previ-
ously in this section in terms of the PZT voltages as

F’lpz = (I)i:( o CDch};V,i) =®, V. Using this equation and

using the notation of the system voltage vector
V= [VlTva R v ]T, the vector F,; can be written as
F.=|p" g’ e
r=|F, F, F.
Vl
2
=[®, @} .. @] =®yV (22)
v

Using these definitions, the virtual work of the actuation forces can

be written in a different form as
T T T : : .

oW =¥, 6q;, =F 64, +F, 5q,, where in this equation

q;,= [qgj qu ]T. Because the vector Fj, can be computed from
the inverse-dynamics solution, the definition of the virtual work
W, =F7,5q;, = FL.6q, +F' 5q,, leads to the following system
of algebraic equations:

1 0 ][F,]_.
B

This system can be solved at every time-step in order to determine
the joint actuation forces and/or moments, and the PZT voltages
required to define the PZT actuation moments.

8 Numerical Results

In this section, the two-link flexible-robot manipulator system as
shown in Fig. 7 is used to demonstrate the proposed joint/deforma-
tion actuation and control approach. The model, which consists of
two flexible links, has two revolute joints: one connects the first
flexible link to the ground, and the second connects the first and
second flexible links. In this example, the manipulator is assumed
to move in XY-plane and the goal is to control the end-effector
motion using two motors placed at the two joints, and PZT actuators
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End-effector

(xd syd)

Motion Trajectory

Fig. 7 Two-link flexible-robot manipulator

distributed along the length of each flexible link. As previously dis-
cussed, the flexible MBS motion cannot be controlled by simply
providing actuation-force inputs equal to the number of the joint
degrees of freedom. The uncontrolled elastic degrees of freedom
can induce instability and undesirable oscillations, and therefore,
it is necessary to provide actuation forces associated with the defor-
mation modes [35]. Therefore, in this study, motors at the joints and
PZT actuators bonded on the flexible links are used to control both
the joint and elastic displacements. In this study, the number of PZT
actuators of each flexible link is equal to the number of the link
elastic coordinates. This choice allows using a number of force
inputs equal to the number of degrees of freedom and ensures
that the coefficient matrix in Eq. (23) is a square matrix. The
virtual work of the actuating moments can be considered as a
special case of the more general expression previously developed
and can be written as

Npzl Npz2
Wjo=M}50, + M350, + Z M), @} D) 5p; + Z M, @, D, 5p;
k=1 k=1

(24)

where M(’;. /=1, 2, are the articulated-joint actuation moments; and
n,;1 and n,,;; are, respectively, the number of piezoelectric actuators
of the first and second links.

8.1 Model Data. Table 2 shows the dimensions and inertia
properties of the two-link robot considered in the numerical inves-
tigation. Each link is divided into 20 Euler—Bernoulli beam ele-
ments, and in the dynamic simulation model, simply-supported
and cantilever reference conditions are used for the first link and
second link, respectively. For each link, ten modal coordinates
are used. The elastic modulus is assumed 2.068427 x 10" N/mz,
and the density is 7850 kg/m>. The initial configuration of links
1 and 2 are, respectively, defined by the angles ¢, =0 and
0, = n/3. The gravity effect is considered using the gravity constant
¢=9.81 m/s>. The motion of the end-effector is specified according
to x,(t) =xpcos(nt/4), y,(t) =yocos(nt/4). The simulations are per-
formed using the general-purpose MBS software SIGMA/SAMS.

8.2 Motion and Force Results. The simulation results of the
motion trajectory of the end-effector are presented in Fig. 8§,

Table 2 Two-link robot dimensions and inertia properties

Link Length Mass Mass moment of

number (m) Cross section (kg) inertia (kg - m?)

1 1 0.025 mx 2.94375 0.2453125
0.015m

2 1 0.025 mx 2.94375 0.98125
0.015 m

011002-8 / Vol. 14, FEBRUARY 2022

0.9 T T T T r

0851 7

08 1

¥ (m)

0.7F 7

0.65 7

0.6 . L . . L
1 1.1 1.2 1.3 1.4 1:5 1.6

X (m)

Fig. 8 Motion trajectory of the end-effector (—@— Specified
motion trajectory; —A— Desired motion from forward dynamics)
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Fig. 9 Global X-coordinate of the end-effector (—l— Inverse
dynamics; —A— Forward dynamics)
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Fig. 10 Global Y-coordinate of the end-effector (—l— Inverse
dynamics; —A— Forward dynamics)
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Fig. 11

which shows the desired specified trajectory x,; and y, as well as the
end-effector motion predicted using the forward dynamics based on
driving forces determined using the PCID approach. The results
shown in Fig. 8 demonstrate that the forward-dynamics motion tra-
jectory is in good agreement with the desired trajectories. The
results of the global coordinates of the end-effector presented in
Figs. 9 and 10 show also good agreement between the solutions
of the inverse and forward dynamics. Figure 11 shows the motion
of the planar robot at selected time points. Figures 12 and 13
show that the transverse deformations of flexible links 1 and 2
obtained using the inverse and forward dynamics are in good agree-
ment; demonstrating that the application of the joint and deforma-
tion actuation driving moments does not lead to a noticeable
increase in the link oscillations. The joint actuation moments at
joints O and A are shown in Fig.14.

8.3 Piezoelectric Voltages. The parameters of piezoelectric
materials selected are shown in Table 3 [72]. In this example, 10
PZT actuators are used for each flexible link to control the 10
modes in the forward-dynamics simulation. The control voltages
of the PZT actuator arrangement are shown in Figs. 15 and 16,
which show volt oscillations due to the link deformations, a beha-
vior consistent with results reported in the literature [46,47,73—
76]. Normally, the PZT actuators can generate large forces with
relatively small voltage [72]. For practical considerations, the
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Fig. 12 Transverse deformation of the midpoint of link 1 (—l—
Inverse dynamics; — A— Forward dynamics)
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Robot configurations at different time points

control voltages of the PZT actuators are limited to +£200 V [73].
It should be noted that different numbers and locations of the piezo-
electric actuators can lead to different control voltages [77,78]. The
approach proposed in this work can be used to determine the
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Fig. 13 Transverse deformation of the end-effector of link 2
(—M— Inverse dynamics; —A— Forward dynamics)
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Fig. 14 Joint actuation moments (—A— Joint O and —@—
Joint A)
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Table 3 Parameters of piezoelectric (PZT) material

Parameters Values
Modulus 63 GPa
Length 0.05 m
Thickness 0.75 mm
Width 0.025 m
Density 7600 kg/m®
ds, 110x 1072 myv
14 T T T T
12 .
10 y
8
S
T 6
oh
24
>
2 ' I
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_4 il 1 1 s
0 0.2 0.4 0.6 0.8 1

Time (s)

Fig.15 Control voltage for the PZT actuator on the flexible link 1
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_90 L 1 ' i ¥
0 0.2 0.4 0.6 0.8 1

Time (s)

Fig. 16 Control voltage for the PZT actuator on the flexible link 2

piezoelectric control voltages required to achieve the desired
motion trajectories. Future investigations will be focused on study-
ing the optimum numbers and locations of PZT actuators and their
effect on power consumption. Figure 17 shows the solution
obtained when the piezoelectric deformation actuation is not
applied and only the joint actuation is used. The results presented
in this figure demonstrate a significant increase in the amplitude
of vibration of the end effector when relying only on the joint actu-
ation without consideration of the deformation actuations.

8.4 Efficiency of the PCID and FCID Procedures. It is to be
noted that the efficiency of the PCID procedure depends on the

011002-10 / Vol. 14, FEBRUARY 2022
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Fig. 17 Transverse deformation of end-effector (—@l— Inverse
dynamics; —A— Forward dynamics without PZT actuators)

number of uncontrolled elastic modes in the model because they
represent the degrees of freedom whose second derivatives must
be integrated. In the case of the FCID procedure, on the other
hand, none of the elastic accelerations is integrated, and therefore,
the FCID problem is reduced to solving a system of algebraic equa-
tions that can be used to determine the actuation forces. This latter
case is very efficient, as previously noted, since it does not require
numerical integration and can be used for both motion and shape
control [79].

The computer simulations were performed in this investigation
using an Intel(R) Xeon(R) CPU E5-1650 0@3.20 GHZ computer.
The CPU time for the partially constrained inverse-dynamics
problem used to determine the actuation forces was found to be
13 s. The use of fully constrained inverse-dynamics problem for
the motion and shape control of the flexible-robot system can
lead to a significant reduction in the CPU time, as previously
explained since only solving algebraic equations is required.

9 Summary and Conclusions

The inverse-dynamics procedure for flexible-robot manipulators
leads to driving forces associated with the deformation modes.
These forces, which have been ignored in developing actuations
of flexible robots, may lack clear physical interpretation because
of the nature of the coordinates used in the FFR formulation. A lit-
erature survey has shown that there is no computational procedure
in existence that can be used to convert these FFR driving forces to
actuation forces that have clear physical meaning. This paper
addresses this fundamental issue by introducing a new computa-
tional joint/deformation actuation approach for the motion control
of flexible-robot manipulators. The goal is to ensure that the
desired motion trajectories are achieved while the flexible link oscil-
lations remain within the inverse-dynamics boundaries. As dis-
cussed in the paper, two approaches can be considered in order to
determine the actuation forces required to achieve the desired
motion trajectories; the PCID and FCID approaches. The FCID
approach will be considered in future investigations to achieve
motion and shape controls, while the PCID approach, considered
in this study, allows achieving the desired motion trajectories, deter-
mining systematically the actuation forces and moments associated
with the joint and elastic degrees of freedom and avoiding deterio-
rations in the vibration characteristics as measured by the inverse-
dynamics solutions. The procedure for determining the actuation
forces associated with the deformation modes is developed and
exemplified using piezoelectric actuators. The PCID solution is
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used to construct a set of algebraic equations that are solved for the
PZT voltages. The implementation of the proposed actuation and
control approach is demonstrated using a planar two-link flexible-
robot manipulator. The results obtained in this investigation demon-
strate deterioration in the robot performance by relying only on the
joint actuation and not considering the deformation actuation.

In this studys, it is assumed that the motion trajectories are speci-
fied at the position level using holonomic constraint equations. The
case of nonholonomic constraints which cannot be integrated to
obtain constraints between coordinates is not considered in this
investigation. For nonholonomic systems, the number of indepen-
dent coordinates is different from the number of independent velo-
cities. That is, nonholonomic constraints do not impose restrictions
on the coordinates. This is an important problem since the actuation
is associated with the number of degrees of freedom of the system
that must be controlled. One can use an inverse-dynamics procedure
similar to the one used in this investigation in the case of linear non-
holonomic constraint equations. Lagrange multipliers associated
with the nonholonomic constraints can be used to determine the
actuation forces that ensure that the nonholonomic constraints are
imposed on the velocities. However, the variations in the coordi-
nates are not governed by these nonholonomic constraint equations.
A more detailed and thorough analysis is required to be able to
address this problem and have a good understanding of the
control of flexible-robot systems subjected to nonholonomic velo-
city constraints.
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