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In Stokes flow, Purcell’s scallop theorem forbids objects with time-reversible (reciprocal)
swimming strokes from moving. In the presence of inertia, this restriction is eased and
reciprocally deforming bodies can swim. A number of recent works have investigated
dimer models that swim reciprocally at intermediate Reynolds numbers Re ≈ 1–1000.
These show interesting results (e.g. switches of the swim direction as a function of inertia)
but the results vary and seem to be case specific. Here, we introduce a general model
and investigate the behaviour of an asymmetric spherical dimer of oscillating length
for small-amplitude motion at intermediate Re. In our analysis we make the important
distinction between particle and fluid inertia, both of which need to be considered
separately. We asymptotically expand the Navier–Stokes equations in the small-amplitude
limit to obtain a system of linear partial differential equations. Using a combination
of numerical (finite element) and analytical (reciprocal theorem, method of reflections)
methods we solve the system to obtain the dimer’s swim speed and show that there are two
mechanisms that give rise to motion: boundary conditions (an effective slip velocity) and
Reynolds stresses. Each mechanism is driven by two classes of sphere–sphere interactions,
between one sphere’s motion and (1) the oscillating background flow induced by the
other’s motion, and (2) a geometric asymmetry induced by the other’s presence. We can
thus unify and explain behaviours observed in other works. Our results show how sensitive,
counterintuitive and rich motility is in the parameter space of finite inertia of particles and
fluid.
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1. Introduction
The importance of how objects swim in fluids is evident in many contexts including
biology, robotics, medicine and industrial applications. From the intricate mechanisms
behind flagellar swimming of bacteria that need to break time reversibility or the design
of self-propelled nanoparticles that can deliver drug cargo to cells inside the human body,
to autonomous underwater vehicles that can reach the depths of the ocean for scientific
expeditions or military purposes, swimming occurs across a wide range of length scales
(Childress 1981; Nachtigall 2001; Vogel 2008; Gazzola, Argentina & Mahadevan 2014).

At small length scales, represented by small values of the Reynolds number Re, inertia
is unimportant and viscous effects dominate. Non-inertial swimmers must use other
methods to create forward motion, chiefly viscous drag asymmetry. Due to the time
reversibility of the Stokes equations, locomotion on the microscopic scale is subject to
the scallop theorem: for a swimming gait to give rise to motion, it must not consist
of a time-reversible series of body deformations. Such gaits are ‘non-reciprocal’. The
scallop theorem can be restated as forbidding reciprocal swimming in the absence
of inertia (Taylor 1951; Purcell 1977). Low-Re swimmers have received a great deal
of attention. Theoretical models include the squirmer model that was developed to
represent the swimming of ciliates (Pedley 2016), and slender-body theory representing
swimmers as lower-dimensional thin filaments (Lighthill 1960). Other theoretical models
for non-reciprocal swimmers in Stokes flow include the three-sphere swimmer (Najafi
& Golestanian 2004), Purcell’s three-linked swimmer (Becker, Koehler & Stone 2003)
and three-body swimmers of various shapes (Bet et al. 2017). These studies have led
to classifications of Stokesian swimmers into ‘pushers’ (e.g. bacteria) and ‘pullers’
(e.g. algae) that effectively summarise the similarities and differences between swimmers
across different sizes, shapes and gaits (Lauga & Powers 2009).

In contrast, at large length scales, viscous effects can be neglected. Inertial swimmers
leverage Newton’s third law to propel themselves forward by creating a backwards-directed
fluid jet. The driving swimming gaits can be reciprocal, as in the case of an oscillating
rigid fin, or non-reciprocal, as in the case of a motorboat propeller. Swimming in this
regime has been the subject of much study, yielding a detailed understanding of how these
swimming methods scale in speed and efficiency with the properties of the swimmer and
its surrounding fluid (Childress 1981; Wu 2011; Gazzola et al. 2014; Becker et al. 2015;
Daghooghi & Borazjani 2015; Hemelrijk et al. 2015; Gazzola et al. 2016; Maertens, Gao
& Triantafyllou 2017).

Between these two regimes, where Re ≈ 1–1000, viscous forces and inertial effects are
of comparable magnitude, and the equations describing swimming cannot be simplified
by neglecting one or the other (Vogel 2008; Klotsa 2019). Investigation of swimming
in this intermediate-Re regime has typically concentrated on particular species (Fuiman
& Webb 1988; McHenry, Azizi & Strother 2003; Bartol et al. 2009; Herschlag &
Miller 2011). Examination of model swimmers can shed light on general properties
of mesoscale swimming that may be used to more efficiently design and fabricate
artificial swimmers (Park et al. 2016; Feldmann, Das & Pinchasik 2021). Reciprocal
swimmers are of particular interest, because any emergent locomotion can be strictly
attributed to inertial effects. In recent years, an asymmetric dimer has been proposed
as a convenient model system for such research, because the geometry is simple and
facilitates experimental, computational and analytical studies. An important property of
the dimer design is the origin of relative sphere motion. The experimental results of Klotsa
et al. (2015) show motion of an asymmetric dimer connected by a spring in a vibrated
tank, similar to investigations of the motion of asymmetric bodies in oscillating flows
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Figure 1. Kinematic and dynamic model schematics. (a) The model system consists of a pair of spheres,
labelled j = 1 or 2, with oscillating centre positions zj(t) = z̄j + ẑj eiωt. The distance between the spheres
is ζ(t) = d +∆ eiωt, with d = z̄2 − z̄1 and ∆ = ẑ2 − ẑ1. The spheres are not generally in-phase, such that
sphere 1 leads the other by a phase difference φ. (b) Each sphere is subject to two applied forces. The
central connector exerts a pair of equal and opposite, time-dependent forces F(i)

2 = −F(i)
1 , defined to produce

the kinematics in (a). The resulting motion induces fluid-mediated forces F( f )
j applied via surface tractions over

the sphere surfaces. These include Stokes drag, the Basset force and the added mass effect. (c) The spheres’
velocity Fourier magnitudes Ûj are plotted in the complex plane, illustrating the relationship between the phase
difference φ and the individual phase lags φj between the spheres’ oscillation and that of the separation rate of
change, which has complex Fourier amplitude iω∆ = Û2 − Û1 ∝ 1.

(Rednikov & Sadhal 2004; Wright, Swift & King 2008; Pacheco-Martinez et al. 2013;
Nadal & Lauga 2014; Collis, Chakraborty & Sader 2017; Lippera et al. 2019).

The dimer swimmer can also be cast as an active agent that produces its own propulsion,
as it would be in nature, such that the sphere separation distance oscillates not in response
to external stimuli but due to internal actuation as in figure 1(a). This system, probed
extensively in work by Dombrowski et al. (2019) and Dombrowski & Klotsa (2020),
shows a remarkably rich variety of behaviour for a system with a single internal degree of
freedom. At small Re, the dimer swims in the direction of the small sphere. However, the
swim speed varies non-monotonically with Re, eventually changing direction at a critical
value so that the dimer swims in the direction of the large sphere. Similar transitions were
observed by Collis et al. (2017) examining a rigid dimer in an oscillating flow, where
the shape and mass asymmetries could be independently tuned to give rise to two distinct
transitions, and by Nguyen et al. (2021), modelling flow through avian respiratory systems.

Building on investigations of the breakdown of the scallop theorem in the presence
of inertia, Lauga (2007, 2011) and Gonzalez-Rodriguez & Lauga (2009) investigated the
behaviour of an asymmetric dimer with large sphere densities relative to the surrounding
fluid. The oscillating spheres’ motions are exactly out of phase within the non-inertial
reference frame of the dimer centre of mass, but this is not true in the inertial lab
frame where a phase lag is introduced. Within the parameter space, this phase lag
represents a second degree of freedom in addition to the sphere–sphere distance. While
the fluid remains Stokesian, the two degrees of freedom allow for non-reciprocal gaits
and, therefore, net motion, effectively side stepping the scallop theorem.

This line of research was experimentally and computationally realised in the recent work
of Hubert et al. (2021), who applied a general model for bead-based swimmers (Ziegler
et al. 2019) describing the motion of each sphere with mobility matrix coefficients.
The inertial contribution of the dense spheres is reflected in the matrix entries of
the acceleration term (‘mass matrix’) in a vector differential equation. In the part of
the parameter space investigated, the authors observed swimming in the direction of the
small sphere for low Re. The analysis is tractable, in part, because of the assumption of
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inertia-free fluid. Fluid analysis of the (linear) Stokes equations is greatly simplified as
compared with that of the (nonlinear) Navier–Stokes equations.

Earlier, Felderhof (2016) used a similar method to describe swimming of an asymmetric
dimer in an inertial fluid, capturing added mass effects with contributions to the mass
matrix from the sphere and fluid densities. However, this analysis did not capture or
represent the time-averaged flow driven by Reynolds stress effects in the bulk, commonly
referred to as ‘steady streaming’. Thus, the system investigated was equivalent to that of
Hubert et al. (2021), with an additional contribution to particle inertia from the added
mass effect. As in Hubert et al. (2021), the analysis only showed motion in the direction
of the small sphere.

Riley (1966) showed that a sphere oscillating in a surrounding fluid gives rise to a
time-averaged flow where, within a viscous boundary layer, fluid is drawn in towards the
sphere at the poles along the axis of oscillation and ejected radially along the equator.
Outside of the layer, transport takes place in the opposite direction driven by a Reynolds
stress. Riley presented an analytical form for the flow in the limit of a large and small
boundary layer (compared with the sphere radius), corresponding to the limit of large and
small Re describing the leading-order oscillation. Numerical research has examined the
nonlinear streaming flow away from those limits (Chang & Maxey 1994, 1995; Alassar
& Badr 1997; Swift et al. 2009) and experimental results have recorded such flows using
particle velocimetry (Tatsuno 1973, 1981; Kotas, Yoda & Rogers 2007; Otto, Riegler &
Voth 2008; Coenen 2016). Dombrowski et al. (2019) show this reversal of flow is observed
around the individual spheres in the oscillating dimer and suggest this steady streaming
plays a role in the swimming direction transition.

This system was generalized to arbitrary reciprocal surface deformations by Felderhof &
Jones (1994). The authors asymptotically expanded the Navier–Stokes equations to obtain
a linear equation describing a leading-order oscillatory gait-driven flow. Knowledge of
this leading-order flow suffices to calculate the swim speed arising from the lower-order
steady streaming flow through the reciprocal theorem. They showed that within such
an expansion, the swim speed can be decomposed into contributions stemming from an
effective steady slip velocity and a Reynolds stress in the bulk. Finally, they formulated an
eigenvalue problem relating different gaits to swimming efficiencies, describing the flow
using vector spherical harmonics. In more recent analyses (Felderhof & Jones 2017, 2019)
the authors adjusted the set of vector harmonic basis functions to remain non-singular in
the limit of small inertia, allowing them to probe over the full range of fluid inertia. They
observed the effects of the Reynolds stress vanish at small inertia, and that the motion
arising from the Reynolds stress and steady slip nearly balance at large values of inertia.
They also observed for some gaits a switch in the swimming direction like that observed
in the dimer geometry by Dombrowski et al. (2019) and Dombrowski & Klotsa (2020).
Later they updated their approach (Felderhof & Jones 2021), recognising that motion of
the sphere’s centre of mass must be accounted for in the system force balance.

In this work our goal is to elucidate general principles behind reciprocal mesoscale
swimming, particularly with regard to the roles of fluid and particle inertia, and to provide
a unifying physical explanation in terms of size and mass asymmetries for the switch-like
changes of direction observed in the works of Collis et al. (2017), Felderhof & Jones
(2017), Dombrowski et al. (2019) and Dombrowski & Klotsa (2020). We proceed as
follows. In § 2 we introduce the model swimmer, variables, equations and parameters.
Applying an asymptotic expansion, we derive two coupled linear partial differential
equations (PDEs) describing the leading-order oscillatory and steady flow. We also use
the reciprocal theorem to decompose the swim speed into contributions from an effective
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Reciprocal swimming at intermediate Reynolds number

slip velocity and Reynolds stress. In § 3 we describe a numerical solution using the finite
element method. The swim speed as a function of inertia is shown for representative
example systems, including the dense Stokes swimmer of Felderhof (2016) and Hubert
et al. (2021). Finally, in § 4 we derive asymptotic scalings for the swim speed in the
limit of small and large degrees of inertia, linking them to the mechanisms leading to
changes in the swim direction. We find at small Re, motion towards the smaller sphere
emerges due to each sphere’s interaction with the oscillating background flow caused
by the other. In contrast, at large Re this background flow becomes subdominant. In this
regime, the interaction between the spheres is geometric, as for each sphere the presence
of the other breaks spatial symmetry. The resulting motion is directed towards the more
massive sphere.

2. Model system

2.1. System parameters
Our model system consists of two spheres submerged in a fluid of density ρ and viscosity
µ. We denote the fluid domainΩ and the domain of sphere k asΩk for k = 1, 2. We let the
radius and density of sphere k be ak and ρk, respectively. As shown in figure 1, each of the
spheres is oscillating along the line connecting their centres as if connected by a massless
rod of variable length applying equal and opposite forces. We refer to the internal force,
denoted with superscript (i), applied to sphere 2 as F(i)

2 and to sphere 1 as F(i)
1 = −F(i)

2 .
While the flow induced by this motion appears time reversible at leading order, over many
cycles of oscillation small but finite inertial effects give rise to steady time-averaged drift
of the two-sphere system at velocity U. We seek to describe the flow velocity and pressure
u = u(x, t) and p = p(x, t) as functions of position x and time t to precisely describe the
hydrodynamic mechanisms giving rise to this steady motion and determine the form of U
in terms of the system parameters. Some of the symbols used in this work are compiled
and presented in table 1 for the reader’s reference.

We align the z axis so that it passes through both sphere centres, letting zk = zk(t) be the
instantaneous position of sphere k, and specifying z2 > z1 and a1 < a2 so the positive z
direction points toward the larger sphere. We adopt the reference frame of the swimmer, so
that the time-averaged sphere positions z̄k are constants and the time-dependent velocity
of each sphere Uk = żk is periodic and zero averaged. In particular, we let

Uk(t) = iωẑk eiωt, (2.1)

where ω is the frequency of oscillation and ẑk is the complex oscillation amplitude of
sphere k. Here and throughout, we implicitly take complex expressions to be equal to their
real parts. Generally, for an arbitrary time-dependent field ψ(t), we will denote the zeroth
and first Fourier coefficients with a bar (ψ̄) and hat (ψ̂), respectively.

The positive separation distance ζ = z2 − z1 is thus an oscillatory function

ζ(t) = d +∆ eiωt, d = z̄2 − z̄1, ∆ = ẑ2 − ẑ1, (2.2a–c)

where we have introduced the time-averaged separation distance d = ζ̄ and oscillation
amplitude ∆ = ζ̂ for ease of notation. Symmetry arguments require that any steady flow
must depend only on the magnitude of oscillation |∆|, not its phase.

Without loss of generality, we assume that the separation distance rate of change d∆/dt
has a Fourier amplitude iω∆ ∝ 1, so that the complex arguments of the velocity Fourier
amplitudes (2.1) correspond to phase lags with respect to the sphere separation rate of
change.
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Symbol Description Definition (if derived)

ak Radius of sphere k
ρk Density of sphere k
ρ Fluid density
µ Fluid viscosity
ω Frequency of oscillation
ψ̂ First Fourier coefficient of arbitrary field or parameter ψ = ψ(t, . . .)
ψ̄ Time-averaged value of arbitrary field or parameter ψ = ψ(t, . . .)
zk Time-dependent position of sphere k centre
ζ Time-dependent sphere separation distance z2 − z1
∆ First Fourier amplitude of separation distance ζ̂

d Time-averaged separation distance ζ̄
Uk Time-dependent velocity of sphere k
F(n)

k Net force on sphere k
F( f )

k Fluid force on sphere k
F(i)

k Interior force on sphere k F(n)
k − F( f )

k
Re Reynolds number ρωa2|∆|/µ
M2 Fluid inertial parameter ρωa2

2/µ

S2 Solid inertial parameter 2ρ2ωa2
2/3µ

ε Dimensionless amplitude of oscillation |∆|/a2
u Velocity
p Pressure
E Rate-of-strain tensor
T Cauchy stress tensor

Table 1. List of symbols used in this paper.

These amplitudes are given by

Û1 = iωẑ1 = |ωẑ1| exp(i(ωt + π + φ1)), Û2 = iωẑ2 = |ωẑ2| exp(i(ωt − φ2)),
(2.3a,b)

and we define the phase difference

φ = φ1 + φ2 (2.4)

between the spheres’ extremal positions. The sign of φ identifies which sphere leads the
other: when φ > 0, sphere 1 reaches its maximum velocity before sphere 2; when φ = 0,
the spheres are exactly 180◦ out of phase; and when φ < 0, sphere 2 leads sphere 1. This
relationship is illustrated in figure 1(c). Shifting the argument of∆ corresponds to shifting
both trajectories in figure 1(a) or rotating all of the vectors in figure 1(c) through the same
angle, neither of which can have any effect on the time averages obtained by integrating
over a period of oscillation. Thus, we expect at leading order U ∼ ∆∆∗, since this is
the simplest function of ∆ that can be constructed that is independent of its phase. We
also expect U may depend on φ, |Û1| and |Û2|, as these values are also preserved by the
aforementioned shifts.

2.2. Dimensionless system
Introducing characteristic length, velocity, density and stress scales L = a2, V = Lω, ρ
andΣ = µV/L, we non-dimensionalise the model system. In the following, variables and
parameters should be assumed dimensionless unless otherwise specified. Our choice of
the length scale is based on the primary contribution to the Stokes drag of the dimer. We
will explicitly represent factors of the dimensionless radius a2 = 1.
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Reciprocal swimming at intermediate Reynolds number

The fluid system can be reduced to two non-dimensional parameters. Firstly, we
introduce M2 = ρωa2

2/µ relating the time partial derivative in the Navier–Stokes
equations to viscous stressesΣ . This is the same dimensionless number and notation used
to describe a single oscillating sphere by Riley (1966), although we let M ∈ R while Riley
defines it as a complex number. The quantity also appears in Stokes’ second problem as
the decay rate of a boundary layer with increasing height above an oscillating surface
(Acheson 1990), and it takes the same form as the Womersley number Wo describing
pulsing flow through pipes (Nguyen et al. 2021). In settings similar to the current work, it
has also been referred to as a scale parameter s2 (Felderhof 2016) and oscillatory Reynolds
number Reω (Lauga 2007).

Secondly, we introduce the ratio of oscillation amplitude to system size ε = |∆|/L,
which is the inverse of the Strouhal number. The scaling of the sphere velocities (2.1)
shows the dimensionless sphere velocities Uk ∼ ε, so the Reynolds number describing
flow about the oscillating spheres is Re = εM2. In the following we will assume that
|∆| ( a1, a2 ( d, so that the amplitude of oscillation is small and the separation distance
is large compared with the sphere sizes. In this regime, the flow is naturally described
by the parameters M2 and ε, but at higher oscillation amplitudes, as in the work of
Dombrowski et al. (2019) and Dombrowski & Klotsa (2020), Re and ε are a more
convenient set of independent parameters.

Finally, in consideration of the Stokes case, we define the parameter S2 = 2ρ2ωa2
2/3µ,

representing the relative magnitude of the spheres’ inertia and viscous stresses in the fluid.
The factor of 2/3 is included for comparison between the solid and fluid inertial cases.
Using this convention, in the fluid inertial case with ρ1 = ρ2 = 1, the effective mass
(physical mass plus added mass effect) of sphere k is 2πM2a3

k . In the solid inertial case
M2 = 0, there is no added mass effect and the mass of sphere k is 2πS2a3

k . Thus, using
the respective parameters for these two cases will yield a direct comparison between the
effective masses of the spheres.

The flow obeys the Navier–Stokes equations

M2
(
∂u
∂t

+ u · ∇u
)

= −∇p + ∇2u, ∇ · u = 0, (2.5a,b)

subject to the boundary conditions

u (xk) = Ukez, lim
|x|→∞

u(x) = −Uez, (2.6a,b)

where xk ∈ ∂Ωk denotes an arbitrary position on the boundary of sphere k. The right-hand
side of (2.5a,b) can be written as the divergence of the Cauchy stress tensor T ,

T = −pI + 2µE, E = 1
2
[
∇u + (∇u)ᵀ

]
, (2.7a,b)

where I is the identity tensor and E is the rate-of-strain tensor.
As shown in figure 1, the spheres are subjected to a vertical flow-mediated force

F( f )
k – including contributions from the Stokes drag, Basset force and added mass effect –

in addition to the force pair F(i)
k applied by the central connector, given by

F( f )
k =

∫

∂Ωk

ez · T · en dS, (2.8)
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where en is the normal vector pointing into the fluid. The net vertical force on sphere k can
be calculated from the acceleration as

F(n)
k = iM2ρk

ρ

(
4
3
πa3

k

)
Uk = i2πS2a3

k
ρk

ρ2
Uk, (2.9)

and at all times each sphere satisfies

F(n)
k = F( f )

k + F(i)
k . (2.10)

Since F(i)
1 = −F(i)

2 , the pair of spheres satisfies

F(n)
1 − F( f )

1 = F( f )
2 − F(n)

2 . (2.11)

2.3. Series representation
As mentioned above, the sphere velocities (2.1) scale as Uk ∼ ε ( 1, suggesting the
advective term in the Navier–Stokes equations u · ∇u ∼ ε2 will be small and may, as
a product of oscillatory functions, have a steady component. As such, the flow can be
described as a double sum over powers of ε and Fourier modes. See Appendix A for a
detailed derivation. The approach follows that of Felderhof & Jones (1994), who applied
it to a single-sphere geometry. Ignoring all terms with no effect on the O

(
ε2) swim speed,

we adopt the ansätz
u = εû eit + ε2ū, p = εp̂ eit + ε2p̄, (2.12a,b)

so that (û, p̂) are complex fields describing the Fourier amplitudes of a leading-order
oscillatory flow and (ū, p̄) the steady flow field generated by inertial effects as described
above. A π-periodic flow is also induced at the same order as the steady flow, which it
does not influence. For this reason, we omit its description as in the work of Felderhof
& Jones (1994). Since we have chosen an inertial reference frame, U = ε2Ū. Similarly,
the periodic sphere velocities are decomposed as Uk(t) = εÛk eit, where Ûk are the
non-dimensionalisation of the complex Fourier amplitudes (2.3a,b), implying the net
force is F(n)

k = εF̂(n)
k eit. The convention of using hats and bars to denote first and zeroth

Fourier amplitudes should now be understood to include this normalisation by ε and ε2,
respectively, so that the amplitudes are O (1).

The form of (2.12a,b) shows a potential inconsistency: if Ū grows large at high M2, there
may be steady flow at order 1 or even order 0, violating the assumptions under which the
ansätz was introduced. However, it is shown in § 4 that the swim speed Ū approaches a
finite value Ū∞ as M → ∞ rather than growing unboundedly. Other similar analyses in
the one-sphere geometry (Felderhof & Jones 1994, 2017) have also shown that the steady
flow remains bounded at high inertia. We note that the ansätz analysis does break down at
large enough M2 or ε. However, this is due to turbulent effects that are not represented in
this laminar description as opposed to an inconsistent set of assumptions.

Substituting the expansion (2.12a,b) into the Navier–Stokes equations (2.5a,b) shows
the Fourier amplitudes are described by

(
∇2 − iM2

)
û = ∇p̂, ∇ · û = 0. (2.13a,b)

These are a complex version of the Brinkman equations, a combination of the Stokes
equations and Darcy flow where both viscous stresses and frictional drag force are
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Reciprocal swimming at intermediate Reynolds number

non-negligible (Durlofsky & Brady 1987). In this case, the ‘drag term’ −iM2u is
imaginary, arising not from the effects of some porous structure but from the acceleration
of the unsteady fluid 90◦ out of phase. The oscillation gives rise to a boundary layer of
width 1/M over which the resulting vorticity is diffused (Riley 1966).

The steady component of the corresponding advective term can be interpreted as a
Reynolds stress R̄ driving the second-order steady flow according to the Stokes equations

∇2ū = ∇p̄ − ∇ · R̄, R̄ = −M2

2
û ⊗ û∗, (2.14a,b)

where the asterisk denotes a complex conjugate. The factor of 1/2 in the Reynolds stress
arises from considering the real part of a product of complex exponentials, as described in
Appendix A.

The sphere boundaries ∂Ωk are moving. To obtain a time-independent system, we
derive flow constraints on the time-averaged boundaries ∂Ωk by Taylor expanding the
flow fields about points on this surface and matching terms at each order in the ansätz.
This process, described in Appendix A, yields boundary conditions on a static geometry
for the Brinkman amplitudes

û(x)|x∈∂Ωk
= Ûkez, lim

|x|→∞
û(x) = 0 (2.15a,b)

and steady flow

ū(x)|x∈∂Ωk
= ūseθ := iÛk

2
∂û∗

∂z
, lim

|x|→∞
ū(x) = −Ūez. (2.16a,b)

We have introduced the steady tangential slip velocity ūs = ūs(θ) defined on ∂Ωk, where
θ is the polar angle from the z axis in spherical coordinates originating at the centre of
sphere k. We emphasise that this slip velocity is unrelated to the Brinkman boundary layer
described above, instead arising as in the ‘swimming sheet’ of Taylor (1951) from periodic
motion of the boundary.

Writing û = ûrer + ûθeθ and ū = ūrer + ūθeθ (letting r, θ and their associated unit
vectors refer to the spherical coordinates at sphere k), we briefly show that ∂zû ∝ eθ
on sphere k as claimed. Since ∂θ û = 0 on the sphere surface, ∂zû = cos θ∂rû, implying
ūr ∝ ∂rûr. The divergence-free condition requires ∂rûr = −(2ûr + cot θ ûθ + ∂θ ûθ )/r.
Substituting in ûr = Ûk cos θ and ûθ = −Ûk sin θ shows this quantity vanishes and ūr = 0
on the surface. Thus, the order-ε2 steady flow field ū obeys the physical requirement of no
flux through sphere surfaces.

The swim speed Ū is unknown, as are the individual sphere oscillation amplitudes Û1
and Û2. We introduce

F̂( f )
k :=

∫

∂Ωk

ez · T̂ · en dS, F̄( f )
k :=

∫

∂Ωk

ez · T̄ · en dS, (2.17a,b)

where T̂ and T̄ are the Cauchy stress tensors corresponding to the oscillatory and steady
flows (û, p̂) and (ū, p̄), respectively. The three unknowns are thus fixed by the constraints

Û2 − Û1 = 1, F̂i,1 + F̂i,2 = 0, F̄f ,1 + F̄f ,2 = 0. (2.18a–c)

See Appendix A for a complete derivation of the boundary conditions and force conditions.
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Due to linearity, the steady solution ū = ūb + ūr can be decomposed into flows driven
exclusively by the boundary condition (ūb, pb) and Reynolds stress (ūr, pr), respectively,
such that

∇2ūb = ∇p̄b, ūb(x)|x∈∂Ωk
= useθ , lim

|x|→∞
ūb = −Ūbez, (2.19a–c)

∇2ūr = ∇p̄r − ∇ · R̄, ūr(x)|x∈∂Ωk
= 0, lim

|x|→∞
ūr = −Ūrez, (2.20a–c)

where the mechanism-specific swim speeds Ūb and Ūr satisfy Ū = Ūb + Ūr. In particular,
by applying the reciprocal theorem as in Appendix B, the two speeds can be written as

Ūb =
2∑

k=1

iÛk

2F′

∫

∂Ωk

en · T ′ · ∂û∗

∂z
dS, Ūr = M2

2F′

∫

Ω
û · E ′ · û∗ dV, (2.21a,b)

where the primed variables correspond to the Stokes flow resulting from towing the dimer
at a velocity U′ with a force F′. The full set of model equations (2.13a,b)–(2.18a–c) may
be solved numerically using the finite element method and analytically with the method
of reflections. In the next section we use the finite element approach to examine the swim
speed as a function of M2 or, when considering a dense swimmer in Stokes flow as in
(Hubert et al. 2021), a function of S2. In § 4 we interpret these results analytically.

3. Numerical treatment

3.1. Finite element method
The dimensionless Brinkman equations, given a parameter α representing an inverse
screening length, are written as

(
∇2 − α2

)
u = ∇p − f , ∇ · u = 0. (3.1a,b)

They describe flow subject to a body force f ∈ L2(Ω) in a porous region where a
drag force −α2u is of the same magnitude as viscous stresses. If α = 0, they are the
Stokes equations. Therefore, we develop our numerical solution procedure for arbitrary
complex α.

If u has Dirichlet boundary conditions, it is well known (Iliev, Lazarov & Willems 2011)
that (3.1a,b) has a unique weak solution (u, p) ∈ H1(Ω)2 × L2

0(Ω) such that, for all test
functions (v, q) ∈ H1(Ω)2 × L2

0(Ω),
∫

Ω

[
(∇v : ∇u) + α2 (v · u) − (∇ · v)p

]
dV =

∫

Ω
v · f dV,

∫

Ω
q(∇ · u) dV = 0.

(3.2a,b)

At this point we discretise our axisymmetric domain into two ne × ne grids of curvilinear,
quadrilateral elements using the bispherical coordinates (ξ, η). The surface of sphere k
is given by ξ = ξk, with ξ1 < 0 < ξ2, and by symmetry the system is agnostic to the
substitution η → 2π − η. The grids are periodic over η ∈ [0, 2π), spanning ξ ∈ [ξ1, 0]
and ξ ∈ [0, ξ2], respectively. We denote the collection of elements Tne . On each element,
we consider functions defined within the space Qm = span{ξ jηk : 0 ≤ j, k ≤ m}, and
globally we consider piecewise combinations of these. In particular, we let C1

m(Tne)
be the space of such functions that are globally continuous. We seek approximate
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Reciprocal swimming at intermediate Reynolds number

solutions (uh, ph) ∈ C1
np

(Tne)
2 × C1

np−1(Tne), i.e. defined on the so-called generalized

Taylor–Hood (Qnp − Qnp−1) element. In terms of basis functions for vector and scalar
fields, !k(x) ∈ C1

np
(Tne)

2 and ψk(x) ∈ C1
np−1(Tne), we write

uh =
Nu∑

j

uh
j ! j, ph =

Np∑

j

ph
j ψj, (3.3a,b)

where Nu and Np are the number of velocity and pressure degrees of freedom, respectively.
Considering test functions (vh, qh) ∈ C1

np
(Tne)

2 × C1
np−1(Tne) and substituting into

(3.2a,b), the coefficients uh
j and ph

j are known to satisfy the linear system
(

A(α2) −BT

B 0

)(
uh

ph

)
=
(

F
0

)
, (3.4)

where the block matrix elements are given by

Aij(α
2) =

∫

Ω

(
∇! i : ∇! j + α2! i · ! j

)
dV, Bij =

∫

Ω
ψi
(
∇ · ! j

)
dV, (3.5a,b)

and the source term on the right-hand side is

Fi =
∫

Ω
! i · f dV. (3.6)

In bispherical coordinates the velocity boundary conditions can be written as

u(ξk, η) = Vkez + vs(η)eθ , u(0, 0) = −V, (3.7a,b)

for a set of sphere velocities Vk, a boundary slip velocity vs and the velocity V of the
swimmer frame relative to the lab frame. We use V and v to distinguish numerical
parameters from system parameters. In all cases below, we directly solve (3.4) using
the distributed-memory version of the SuperLU library (Li 2005) and PETSc library for
scientific computation (Balay et al. 1997, 2021a,b), working in C++. The code used to
generate the data presented is publicly available at https://github.com/nderr/reciprocal_
swimming. The solution procedure is as follows.

3.2. Solution procedures

3.2.1. Brinkman equations
The Brinkman equations (2.13a,b) correspond to the linear system (3.4) with α2 = iM2,
f = 0, Vk = Ûk, vs = 0 and V = 0. The unknown numerical solution (uh, ph) are
complex fields, stemming from the complex symmetric block matrix A. Recall the sphere
amplitudes Ûk are unknown and fixed by the constraints (2.18a–c). To find them, we set
Vk = Ũk, trial values of the sphere velocity amplitudes, which we consider as a vector
in C2. These yield a corresponding set of force amplitudes F̃(i)

k ∈ C2 upon solution
of (3.4).

Since the equations are linear, we have F̃(i)
k = CkjŨj for some constant complex

matrix C ∈ C2×2, with Ckj = dF̃(i)
k /dÛj. In our approach, we calculate F̃(i)

k (Ũj) at
(Ũ1, Ũ2) = (1, 0), (0, 1), and (0, 0), and we use the results to compute dF̃(i)

k /dŨj at (0, 0)
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via finite difference. The constraints (2.18a–c) require F̂(i)
1 = −F̂(i)

2 and Û2 − Û1 = 1.
From the problem definition, F̃(i)

k = 0 at (Ũ1, Ũ2) = 0, so we set

Ûk = Ûk,∗

Û2,∗ − Û1,∗
, Ûk,∗ = C−1

kj F̃(i)
j,∗, F̃(i)

2,∗ = −F̃(i)
1,∗ = 1, (3.8a–c)

for an intermediate set of force and velocity amplitudes F̃(i)
k,∗ and Ûk,∗. We solve (3.4) once

more with this set of velocity amplitudes to obtain a solution that satisfies (2.18a–c).

3.2.2. Stokes equations
The Stokes equations (2.14a,b) correspond to (3.4) with α2 = 0, f = ∇ · R̄, Vk = 0,
vs = ūs and V = −Ū, where the quantities R̄ and ūs are computed by post-processing
the solution above. Now, the unknowns (uh, ph) are real fields, since A and F are real. As
before, Ū is not known a priori, and must be calculated to satisfy F̄ = 0 by initially solving
with a trial value V = −Ũ. Let F̃ now denote the calculated value of F̄ given the velocity
input V = −Ũ.

By the equations’ linearity, F̃ = DŨ + F̃0 for some constants D = dF̃/dŨ and F̃0 =
F̃(0), the steady force at Ũ = 0. We compute the two constants by solving the system for
Ũ = 0 and Ũ = 1, calculating F̃ for both. The former gives F̃0 directly; we calculate D via
finite difference as before. Finally, we let Ū = −F̃0/D. Solving (3.4) once more gives the
steady flow field (ū, p̄). Note that we can calculate Ūb or Ūr in isolation by altering the
parameters in accordance with (2.19a–c) or (2.20a–c) as necessary.

3.3. Results
Using the procedure above, we solve for the steady flow ū and associated swim speed Ū
as a function of inertia. We also calculate the mechanism-specific speeds Ūb (boundary
condition) and Ūr (Reynolds stress) for three characteristic examples. In all cases we let
a1 = 1/2 and d = 3. Recall a2 = 1 due to the chosen length scale.

3.3.1. Visualisation of steady flow field
First, we consider the steady flow field of a dimer with the same density as the surrounding
fluid, ρ1 = ρ2 = 1, as studied by Dombrowski et al. (2019). The streamlines depict flow
in the reference frame of the swimmer. Figure 2(a) shows the system at M2 = 1, with a
set of vortex rings detectable around each sphere as predicted by Riley (1966) in the case
of a single sphere. Note the dimer is moving towards the small sphere in the lab frame.
In this regime, the dimer acts as a puller, attracting fluid along its axis of symmetry and
ejecting it radially. As M2 increases, a boundary layer develops. Panels (b) and (c) show
its width decrease, and the development of inner and outer vorticity regions of opposing
sign. The corresponding set of double vortex rings was also calculated by Riley (1966)
in the high-M2 limit. Finally, in panel (d) the swim direction has switched. Below, we
will calculate the swim speed’s functional form for the ρ1 = ρ2 = 1 case and two others.
Ultimately, we will interpret the results using asymptotic scalings of Ūb and Ūr for small
and large inertia values that are analogous to Riley’s limits.
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Vorticity

M2 = 1 M2 = 80M2 = 40 M2 = 120

–10–1 10–1–10–2 10–2–10–3 10–3–10–4 10–4

(a) (b) (c) (d )

Figure 2. The steady flow field as a function of fluid inertia M2, plotted via streamlines in the reference frame
of the swimmer. Vorticity is denoted with colour. (a) At small M2 the dimer acts as a ‘puller’, attracting fluid
along its axis of symmetry and ejecting it radially as it swims in the direction of the small sphere. This produces
an approximately Stokesian straining flow. (b,c) For intermediate M2, there exists a boundary layer outside of
which the flow is noticeably weaker. As M2 grows, the inner layer grows thinner. (d) At large M2, the dimer
swims toward the large sphere and acts as a pusher. Parameters: (a1, a2, d, ρ1, ρ2) = (1/2, 1, 3, 1, 1).

3.3.2. Inertial dependence of the swim speed
In figure 3 we show the functional form of three characteristic model systems versus the
degree of inertia in the system. The first row (a–c.i) shows the overall swim speed; the
second (a–c.ii) shows the mechanism-specific speeds.

In the first column (a) we consider the equal-density case ρ1 = ρ2 = 1, where the
two mechanisms drive motion in opposite directions. The blue dots in (a.i) correspond
to the four steady flows shown in figure 2. At low levels of fluid inertia, the swim
speed is dominated by the boundary velocity and Ū ≈ Ūb. At high levels of fluid inertia,
|Ūr| ≈ |Ūb|, and the total swim speed magnitude is much lower than that of either
mechanism in isolation. The results indicate that the direction of motion changes at a
critical level of inertia, as in the full Navier–Stokes simulations of Dombrowski et al.
(2019) and Dombrowski & Klotsa (2020). The swim speed calculated here and shown in
figure 2(a) has the same qualitative shape as that work. One difference to note is that there
the direction switch occurs at a critical value of Re = εM2 across different systems.

This change of direction was also observed in the single-sphere swimmer investigated
by Felderhof & Jones (2017) and in rigid dimers in an externally oscillated flow (Collis
et al. 2017). Later, Felderhof & Jones (2021) showed the swim direction switch depended
on the particular choice of surface deformation stroke as defined by a vector of multipole
expansion coefficients. In the current work the number of degrees of freedom of the stroke
is much smaller, depending on the relative size and mass of the two spheres. It will be
shown that low- and high-inertial limiting swim speeds can be understood as functions of
the size and mass asymmetries, respectively, of the dimer.

In the second column (b) we consider a system where the smaller sphere is heavier than
the larger one. We introduce the effective mass of sphere k,

mk = a3
k(ρk + 1/2), (3.9)

including the sphere’s actual mass and the added mass effect caused by accelerating the
surrounding fluid. For this case, we choose ρ1 and ρ2 so m1 = 2m2 with ρ1a3

1 + ρ2a3
2 =

ρ(a3
1 + a3

2), such that the dimer is neutrally buoyant. While we again observe motion
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Ūr

Ūb
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Figure 3. Survey of net dimer swim speeds (a–c.i) and contributions from each mechanism (a–c.ii) for three
representative systems. In all cases, {a1, a2, d} = {1/2, 1, 3}. (a) For equal-density spheres and fluid ρ1 =
ρ2 = 1, the dimer undergoes a switch in direction when the contribution from the Reynolds stress (Ūr), driving
motion towards the large sphere, overcomes that of the boundary velocity (Ūb), which favours motion towards
the small sphere. In (a.i) the blue dots correspond to the flow fields presented in figure 2. (b) If m1 > m2 the
dimer may experience two direction switches as shown here, and the mechanism-specific swim speeds Ūb and
Ūr are not monotonic. (c) In Stokes flow (M2 = 0) with ρ1 = ρ2, there is no change in swimming direction,
and no motion at large S2.

towards the small sphere at M ( 1, the direction of swimming changes much sooner than
in the previous case before switching again near the previous critical M2. In (b.ii) we see
each mechanism changes direction as well. Note that, consistent with (a), the dimer moves
towards the small sphere at small M2 and towards the more massive sphere at large M2.
This is similar to the double switch in direction observed by Collis et al. (2017).

In (c) the same system is shown without the effects of fluid inertia (M2 = 0), so that Ū
is shown as a function of the solid inertia S2 for ρ1 = ρ2. This is the case investigated by
Hubert et al. (2021). It is also mathematically equivalent to the model of Felderhof (2016),
which neglected the effects of Reynolds stress.

By definition, Ūr = 0, so in the second column rather than replotting Ū = Ūb we instead
plot the function in log–log space. There are no changes in direction, and we observe that
Ū → 0 as S2 → ∞ in contrast to the other cases where Ū diverges as M2 → ∞. Below,
we will see this functional form is proportional to the quantity imag{Û1Û∗

2}, indicating
the swim speed is determined by interactions between the oscillating flow fields of each
sphere. The functional form in (c.i) is identical to the swim speed presented by Felderhof
(2016) when the effective sphere masses (including the added mass effects of accelerating
the surrounding fluid) are substituted for the spheres’ actual masses. Next, we consider
how those effects enter the problem as one considers small values of the quantity M2/S2.

In figure 4 we consider the functional form of Ū, Ūb and Ūr with S2 for varying
values of the ratio M2/S2. When this value is 0, we recover Stokes flow, plotted with a
dashed black line. Plot (a) shows the boundary velocity and Reynolds stress contributions
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Figure 4. Swim speeds as a function of solid inertia for varying fluid–solid inertia ratios. The M2 = 0 case
is plotted as a black dashed line, and ρ1 = ρ2 for all cases. (a) Contributions to the swim speed from the
boundary velocity (Ūb) and Reynolds stress (Ūr) are plotted as a function of the solid inertia S2 for a variety
of M2/S2. Note that Ūr = 0 for M2 = 0. (b) The dimer swim speed is plotted for the same fluid–solid inertia
ratios. Parameters: {a1, a2, d} = {1/2, 1, 3}.

to the swim speed behave qualitatively differently with respect to S2. While Ūr = 0 for
M2 = 0, it is non-zero and monotonically increasing in the presence of any fluid inertia.
In contrast, Ūb is non-monotonic for M2 ( S2. Its magnitude increases to a peak near
S2 ∼ 1 before beginning to decrease. If M2 = 0, it attenuates completely, but for M2 > 0,
the contribution ultimately begins increasing again for S2 0 1. Note that if M2/S2 is large,
this non-monotonicity is not detected. Plots of the total swim speed (b) suggest that Ū does
not vanish as S2 → ∞ for any M2 > 0.

4. Analytical treatment
Although solving the Stokes equations (2.14a,b) is necessary to obtain the steady flow field
ū, the swim speed is completely determined by the Brinkman amplitudes û (2.13a,b) as
can be seen from the form of (2.21a,b). As such, in order to interpret the results above,
we turn to the axisymmetric motion of two spheres in a Brinkman medium to describe the
various swim mechanisms analytically.

4.1. Describing flow about two spheres
The motion of two spheres in a Brinkman theorem, especially in an axisymmetric
configuration, has been the subject of much study. Kim & Russel (1985) developed a set
of Faxén laws relating the force and moment on a sphere in a Brinkman medium to the
background flow at its location. This was accomplished using the well-known method of
reflections from low-Reynolds number flow theory, applicable in Brinkman media because
of the linearity of the Brinkman equations. An initial approximation to the solution about
two spheres is established by considering the Brinkman solution to flow about each sphere
in unbounded fluid. The presence of each sphere’s flow does not vanish on the other
sphere’s surface. Consequently, correction flows must be added to correct this violation of
the boundary conditions. In the limit of infinite reflections, the series of flows converges
to the solution. In practice, the sum can be truncated at a desired precision.
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Kim & Russel (1985) define these correction flows in integral form, a convenient choice
for calculating the force and torque on the spheres. They note that the process can be
completed using an explicit velocity representation using addition theorems to describe
flows about one sphere around the other using spherical harmonics. Recently, Liu &
Bhattacharya (2020) have employed this approach to devise a solution for Brinkman
flow in the presence of two spheres undergoing general relative motion. Here, we have
developed a more limited procedure restricted to axisymmetric motion in the absence of
torsion, significantly reducing the space of basis functions.

4.2. General solution about one sphere
The general axisymmetric solution to the Brinkman equations can be written in terms of
two scalar functions χ = χ(x) and φ = φ(x), where the flow fields

u = ∇φ + ∇ × ∇ × (xχ) , p = −α2µφ (4.1a,b)

are a solution to the Brinkman equations if φ is harmonic and χ satisfies the Helmholtz
equation, (

∇2 − α2
)
χ = 0. (4.2)

The presence of the Helmholtz equation significantly alters the structure of the flow and
the method of solution as compared with the Stokes equations. First, χ = χ(αr, θ) based
on dimensional considerations, suggesting the aforementioned boundary layer effects
manifest purely through the function χ . Second, the Helmholtz equation is not separable
in bispherical coordinates, so exact solutions in this coordinate system are not possible,
unlike in the case of the Stokes equations.

General solutions f = f (x) to each of the scalar functions can be written in terms of the
Laplace spherical harmonics Yl(θ) defined in Appendix C such that

f (x) =
∞∑

l=0

fl(r)Yl(θ), (4.3)

where the fl are a series of radially varying functions. Solutions to the Laplace equation
are

φ−
l = 1

rl+1 , φ+
l = rl, (4.4a,b)

giving rise to the so-called solid harmonics. The Helmholtz solutions to (4.2) are

χ−
l = kl(αr), χ+

l = gl(αr), (4.5a,b)

where gl and kl are the modified spherical Bessel functions of the first and second kind,
respectively. The superscripts + and − denote solutions that are regular and singular as
r → 0, respectively. These four functions provide four basis functions for Brinkman flows
at the lth mode of spherical harmonics,

ul0 = ∇(φ−
l Yl), ul1 = ∇ × ∇ × (xχ−

l Yl),

ul2 = ∇(φ+
l Yl), ul3 = ∇ × ∇ × (xχ+

l Yl).

}

(4.6a–d)

In this way the scalar fields may be discretised and represented by a series of coefficients.
The solution can be obtained to desired accuracy by truncating to nl terms in the spherical
harmonic expansion, representing the scalar field via a vector in R4nl .
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Reciprocal swimming at intermediate Reynolds number

We will denote a set of coefficients defined about sphere k with a superscript label, c(k),
describing a flow u(k) = u(−k) + u(+k) such that

u(−k) =
nl∑

l=1

(
c(k)

l0 ul0 + c(k)
l1 ul1

)
, u(+k) =

nl∑

l=1

(
c(k)

l2 ul2 + c(k)
l3 ul3

)
. (4.7a,b)

We similarly denote c(+k)
lj and c(−k)

lj as the regular and singular coefficients of c(k)
lj , such

that, for the former, j takes the values 0 and 1 and, for the latter, 2 and 3. Note the sum
starts from l = 1 because the l = 0 flow modes violate the incompressibility condition.
For flows about an isolated sphere in unbounded flow, u(+k) = 0, so the flow vanishes as
r → ∞. Note as well that ul1 only varies within the boundary layer, since it depends only
on χl(αr). Now, we construct the vector of coefficients c(k)

lj about sphere k in the presence
of another sphere by using the method of reflections.

4.3. Solution procedure about two spheres
As shown by figure 5, we begin by considering a superposition of flows describing motion
of each sphere in unbounded flow without regard to the presence of the other. We will
iteratively introduce additional flows (‘reflections’) to correct the violation of boundary
conditions stemming from existing terms. Let the coefficients c(−k,j) describe the singular
coefficients of the flow about sphere k at the jth step in the reflection. We let c(k,0) be
the ‘zeroth’ reflection, i.e. the flow about an isolated sphere, such that c(+k,0)

lm = 0. We let
c(+k,1) denote the regular modes describing the flow incident at sphere k originating at
sphere m /= k. By linearity, there exists an expression

c(+k,j)
ln = Amk

lnopc(−m,j−1)
op , (4.8)

relating the two sets of coefficients via some interaction tensor A. Similarly, each singular
reflection flow must be linearly related to the incident flow it corrects, i.e.

c(−k,j)
ln = Bk

lnopc(+k,j)
op (4.9)

for some induction tensor B. The functional forms of A and B are reported in Appendix C,
and together they comprise a total reflection tensor R,

c(−k,j)
ln = Rmk

lnopc(−m,j−1)
op , Rmk

lnop = Bk
lnqsA

mk
pqop. (4.10a,b)

Note the coefficients c(k,0) must be linearly related to the velocity Ûk, but that c(k,1) will
be proportional to Ûm as demonstrated in figure 5. In general, c(k,j) contains a factor Ûk if
j is even and Ûm if j is odd. Introducing the notation

Û(k,j) =
{

Ûk if j mod 2 = 0,

Ûm otherwise,
(4.11)

we can rewrite the coefficients above as c(k,j) → c̃(k,j) and let c̃(k,j) = Û(j,k)c(j,k) for a
set of normalised coefficients c(j,k) that are agnostic to the sphere velocity magnitudes.
The unknown amplitudes Û1 and Û2 can be determined by noting, as before, that
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c(–2,0)

c(+1,1)c(–1,0)

c(+2,1) c(–2,1)

c(+1,2)c(–1,1)

c(+2,2) c(–2,2)

c(+1,3)c(–1,2)

c(+2,3) c(–2,3)

c(+1,4)c(–1,3)

c(+2,4)

Sphere 1

∝ Û1

Sphere 2

∝ Û2

Figure 5. Schematic of the method of reflections for calculating the Brinkman flow field around two spheres
undergoing axisymmetric relative motion. A set of coefficients c(−k,0) represents the exact solution of the flow
about sphere k in unbounded fluid, but the presence of this flow violates the boundary conditions at the other
sphere m. This incident flow can be described in terms of harmonics about sphere m by a set of coefficients
c(+m,1), and the spheres’ resistance to deformation creates a reflection flow c(−m,1) that exactly cancels out
the incident flow at sphere m. However, this induces a new incident flow at sphere k described by c(+k,2). This
process can be repeated and truncated after a specified number of iterations. Each set of coefficients are linearly
related to those they are induced by. Here, all the red coefficients are proportional to Û2, and all the blue to Û1.

F̂(i)
j = CjkÛk for a matrix C. Given nr reflections, the components of C may be calculated

according to

Cjk =






iM2

(
4πa3

k
3

)

−
1nr/22∑

m=0

c(j,2m)
1n Fnj, j = k,

−
3nr/24−1∑

m=0

c(j,2m+1)
1n Fnj, j /= k,

(4.12)

where Fnk is the force applied to sphere k by the nth l = 1 basis flow harmonic u1n,

Fnj =
∫

∂Ω j

t1n · ez dS, (4.13)

and tln is the traction associated with uln. Then Ûk can be calculated just as in (3.8a–c).
Note the swim speeds (2.21a,b) as determined by the reciprocal theorem also depend

on the Stokes flow u′ corresponding to a static dimer being towed through the medium.
This flow can also be represented in terms of a harmonic expansion though the method of
reflections, and the process of doing so is similar to the above. Details can be found in, for
example, Happel & Brenner (2012).

4.4. Asymptotic contributions to swim speed
Using this approach, we construct asymptotic approximations to the swim speed Ū and
the contributions Ūb + Ūr = Ū related to the steady boundary velocity and Reynolds
stress. Because we are interested in the leading-order description of the behaviour, we
consider the first two modes’ (nl = 2) interactions through a single reflection (nr = 1). In
the description of the swim speeds via the reciprocal theorem (2.21a,b), each contribution
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Û1Û1
∗ Û1Û2

∗

Û2Û1
∗Û2Û2

∗

Sphere 2

Sphere 1

u∞

u∞

Geometric interaction Flow interactions

(a) (b)

Figure 6. Schematic of the types of sphere interactions and their relation to products of the complex Fourier
amplitudes Û1 and Û2. Sphere interactions can be decomposed into geometric and flow contributions. The
presence of the other sphere creates a time-invariant geometric asymmetry akin to an oscillating sphere near
a wall (a). Each sphere is also moving within an oscillating background flow generated by the motion of the
other (b). By linearity, we can associate products of the velocity amplitudes ÛjÛ∗

k with the different interaction
types. The geometric interactions correspond to products of each sphere’s amplitude with itself, and the flow
interactions to the product of both spheres’ amplitudes.

depends quadratically on the Brinkman amplitude fields û and û∗. Since each term in the
harmonic expansion of û is proportional to Û1 or Û2, each term in the expansions of Ūb and
Ūr will be proportional to Û1Û∗

2 , |Û1|2 or |Û2|2. Note that since Û1 = |Û1| exp(i(π + φ1))

and Û2 = |Û2| exp(−iφ2) as in (2.4) and figure 1(c), then

Û1Û∗
2 = −|Û1||Û2| eiφ, φ = φ1 + φ2, (4.14a,b)

where φ is the phase difference between the spheres’ extrema. This provides a method of
categorising the physical origin of each contribution to the swim speed in terms of flow-
or geometry-driven interactions, illustrated in figure 6.

Contributions to the speeds proportional to Û1Û∗
2 correspond to interactions between

one sphere’s motion and the oscillating background flow induced by the other. In the
presence of a non-zero phase difference φ /= 0, this interaction is not time reversible, and,
thus, can give rise to motion even in the absence of fluid inertia (M2 = 0), since the scallop
theorem does not apply. We refer to these terms in the swim speeds as ‘flow interactions’.
On the other hand, contributions proportional to |Û1|2 and |Û2|2 arise from the effects on
one sphere’s motion caused by the other’s presence, which breaks geometric symmetry.
We refer to these as ‘geometric interactions’.

4.4.1. Velocity magnitudes and phase difference
Recall from (4.12) that we can relate the fluid force amplitude F̂( f )

k to the two-sphere
amplitudes Ûk via a mobility matrix defined by the harmonic expansion coefficients. This
is sufficient to find the asymptotic dependence of the velocity amplitudes on the fluid
inertia M2 (reported in table 2, columns two and three) or, for the Stokes case, the solid
inertia S2 (reported in table 2, columns four and five.) In the Stokes limit, we assume the
dimensionless ratio ρ2/ρ becomes large such that S2 = 2M2ρ2/3ρ takes a finite value in
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Quantity 0 < M2 ( 1 1 ( M2 0 < S2 ( 1 1 ( S2

|Û1|
a2

a1 + a2

m2

m1 + m2

a2

a1 + a2

m2

m1 + m2

|Û2|
a1

a1 + a2

m1

m1 + m2

a1

a1 + a2

m̃1

m̃1 + m̃2

sinφ
3
8
(a2 − a1)dM2 9

2
a2

1m2 − a2
2m1√

2 m1m2

1
M

2
9

a1m̃2 − a2m̃1

a1a2
S2 9

2
a1m̃2 − a2m̃2

m̃1m̃2

1
S2

cosφ 1 1 1 1

Table 2. Leading-order scalings of the velocity amplitude magnitudes |Ûk| and trigonometric functions of the
sphere phase difference φ. The second and third columns correspond to the small- and large-inertia limits in
the presence of non-zero fluid inertia (M2 /= 0), and the fourth and fifth columns are the same limits for Stokes
flow (M2 = 0). For the M2 /= 0 case, values are given in terms of the effective mass mk (3.9). For Stokes flow,
rescalings of the actual sphere masses m̃k (4.15) are used.

the limit M2 → 0. We introduce a rescaling of the actual mass of sphere k,

m̃k = a3
k
ρk

ρ2
(4.15)

such that 2M2mk = 3S2m̃k. The Stokes scalings in table 2 are reported in terms of this
value.

In both cases, the velocity magnitudes undergo a transition from depending on the
sphere sizes at low-inertia levels to sphere masses at high-inertia levels, and the phase
difference φ vanishes in both limits as the sphere–sphere interactions become dominated
by Stokes drag or added mass effects, respectively. However, the rate at which the phase
difference changes is not the same, as observed in the functional form of sinφ. In the fluid
inertial case, we observe that at low inertia, the smaller sphere leads the larger sphere since
φ > 0 for a2 > a1 and sinφ ∝ (dM)[(a2 − a1)M]. This factor of d in the proportionality
relation stems from the reduction of the Brinkman boundary layer width as M increases. At
high inertia, there is a more complicated comparison for determining the leading sphere
which involves both size and mass asymmetries, as φ > 0 if a2

1m2 > a2
2m1. Due to the

presence of the Basset force that is proportional to M, the phase difference falls off as 1/M.
In the Stokes case, there is no boundary layer evolution and no Basset force. The relevant
asymmetry is the same in both low- and high-inertial limits, as φ > 0 if a1m̃2 > a2m̃1,
and the dependence on S in the proportionalities is always quadratic since the added mass
effect is the only inertial coupling between the spheres.

Below, we report the leading-order contributions for each combination of inertial
limit (M2 ( 1 vs M2 0 1), mechanism (boundary velocity versus Reynolds stress), and
interaction type (flow versus geometric). See Appendix E for the complete derivation. For
ease of notation, we introduce the quantities

a+ = a1 + a2, a- = 1
a−1

1 + a−1
2

, [a] = a2 − a1

a1 + a2
,

m+ = m1 + m2, m- = 1
m−1

1 + m−1
2

, [m] = m2 − m1

m1 + m2
.





(4.16)

The quantities a+ and a- approach the large and small sphere sizes as the difference
between them becomes large, and [a] is a dimensionless measure of the size asymmetry.
The m symbols are the same, with respect to the effective sphere masses mk.
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Reciprocal swimming at intermediate Reynolds number

4.4.2. Stokes flow
In the Stokes limit (M2 = 0), the leading-order boundary velocity contribution is

Ūb = −3a-
2d2 |Û1||Û2| sinφ, (4.17)

consistent with previous investigations of inertial dimers in Stokes flow (Hubert et al.
2021). Note that φ /= 0 is required for motion according to the scallop theorem, that this
symmetry is broken by the presence of solid inertia (S2 > 0) and that the dimer swims
towards the leading sphere (i.e. towards sphere 1 when φ > 0.) As mentioned, the sign
of sinφ and, thus, Ūb is the same in both limits, since it depends in both cases on the
quantity a1m̃2 − a2m̃1. By definition (2.21a,b) there is no Reynolds stress contribution in
the Stokes case, so Ū = Ūb. Substituting in the values for |Ûk| and φ in table 2 yields

Ū ≈






a-
3a2

+d2 (a2m̃1 − a1m̃2) S2, 0 < S2 ( 1

27a-
4m̃2

+d2 (a2m̃1 − a1m̃2)
1
S2 , S2 0 1.

(4.18)

In the case of ρ1 = ρ2, this implies motion towards the small sphere as observed in our
numerical results and the work of Felderhof (2016) and Hubert et al. (2021).

4.4.3. Mechanisms at low inertia
For non-zero fluid inertia 0 < M2 ( 1, the leading-order boundary velocity contribution
is

Ūb =
[
−3a-

2d2 sinφ + 3a+a-

4
√

2d2
[a] M cosφ

]
|Û1||Û2|

+ 3a-

4
√

2
M
(

a2|Û2|2 − a1|Û1|2
)

. (4.19)

It may appear that the Stokesian term will be small compared with the others as M grows.
However, substituting the expressions in table 2 for the velocity magnitudes shows the
cosφ part of the flow interaction cancels the geometric interaction at leading order,

Ūb = − 3a2
-

2a+d2 sinφ − 3a2
-

2
√

2d2
[a] M sin2

(
φ

2

)
, (4.20)

so that, as before, the dimer swims towards the leading sphere. Upon substitution for sinφ,
the first term dominates and

Ūb = C(b)
- M2, C(b)

- = −9a2
-

16d
[a] . (4.21a,b)

The boundary velocity contribution always promotes motion towards the smaller sphere,
proportional to the dimensionless size asymmetry [a]. Boundary layer effects are
manifested in the scaling for sinφ ∝ dM, so that C(b)

- ∝ 1/d rather than 1/d2 as in the
other coefficients arising from the method of reflections in (4.19). Numerical results for
a1 ∈ [0.1, 0.9] and d ∈ {3, 5, 10} are shown in the bottom row of figure 7, normalised by
the proportionality in (4.21a,b). The agreement is good for Md < 1, when each sphere lies
within the Brinkman boundary layer surrounding the other.
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Figure 7. Normalised swim speeds at low fluid inertia for an equal-density swimmer with ρ1 = ρ2 = 1. The
swim speed contributions from the boundary velocity Ūb (d–f ) and Reynolds stress Ūr (a–c) are plotted with
respect to M2 ≤ 1 for a variety of small sphere radii a1 (denoted by line colour) and separation distances d
(separated by column.) In each plot, a black vertical line marks where Md = 1. For points to the left of this
line, the spheres lie within the others’ Brinkman boundary layer. To the right of the line, the boundary layers are
small and do not extend to the other sphere. The speeds are scaled by C(b/r)

− , given by (4.21a,b) and (4.23a,b),
and lie parallel to the dashed line of slope 1, showing that in this region Ūb/r ≈ C(b)

− M2 within the boundary
layers.

The leading-order Reynolds stress contribution takes the form

Ūr = 15a2
+a-

32d2 [a] M2|Û1||Û2| cosφ. (4.22)

There is no contribution from geometric interactions here because it can be shown to
vanish at order M2/d2 (see Appendix E.) Substitution of the values in table 2 yields

Ūr = C(r)
- M2, C(r)

- = 15a2
-a+

32d2 [a] M2, (4.23a,b)

so the Reynolds stress contribution always promotes motion towards the larger sphere.
Numerical comparisons to the scaling are shown in the top row of figure 7. As in the case
of the boundary velocity contribution, there is good agreement with the computed scaling,
although there is less variability with respect to both the small sphere radius and separation
distance d. As in that case, however, the agreement is better for Md < 1.

4.4.4. Mechanisms at high inertias
In the large-inertia limit M2 0 1, the boundary velocity takes the form

Ūb =
[

1
2
√

2
a2

+a2
-M

d4 ([a] cosφ + sinφ)

]
|Û1||Û2|

+ 3
4
√

2
a-M
d2

(
a2|Û2|2 − a1|Û1|2

)
. (4.24)

Since Md > 1 in this limit, the spheres do not exist within each other’s boundary layers
and, as a result, the flow interactions are weaker (∝ 1/d4) than in the small-inertial
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Figure 8. Normalised swim speeds at high fluid inertia for an equal-density swimmer with ρ1 = ρ2 = 1. The
swim speed contributions from the boundary velocity Ūb (d–f ) and Reynolds stress Ūr (a–c) are plotted with
respect to M2 ≥ 1 for a variety of small sphere radii a1 (denoted by line colour) and separation distances d
(separated by column.) The speeds are scaled by the large-M2 coefficient C+ from (4.25a,b) and (4.27). The
lines’ approaching the 1/2 slope of the dashed line indicate that at high levels of inertia Ūb/r ≈ C+M. There
is little variation with respect to d, as the spheres exist outside of each others’ boundary layers for all of the
provided inertial range.

limit (∝ 1/d2). The geometric interactions remain the same strength (∝ 1/d2) and, thus,
dominate at order M. Substituting in the values in table 2 gives

Ūb ≈ C+M, C+ = 3
4
√

2
a-

d2m2
+

(
a2m2

1 − a1m2
2

)
. (4.25a,b)

Performing the same analysis for the Reynolds stress shows that at order M, the
flow and geometric effects exactly cancel. However, there exists an additional geometric
contribution at order 1 that is not present in the boundary velocity contribution,

Ūr = −
[

1
2
√

2
a2

+a2
-M

d4 ([a] cosφ + sinφ)

]
|Û1||Û2|

− 3
4
√

2
a-M
d2

(
a2|Û2|2 − a1|Û1|2

)
+ 9a-

8d2

(
|Û1|2 − |Û2|2

)
. (4.26)

At leading order, then, the isolated Reynolds stress contribution is

Ūr ≈ −C+M. (4.27)

Numerical results comparing to the scalings (4.25a,b) and (4.27) are shown in figure 8.
In contrast to the low-inertia case, there is little variation with respect to a1 or d. The
agreement with the scalings is good, especially at higher M where the effects of the
constant term in (4.27) become negligible.

4.4.5. Total swim speed
Using the scalings for each mechanism listed in the previous subsection, we can determine
the asymptotic form of the total swim speed in the low- and high-inertial limits.
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Figure 9. Plots of the total swim speed Ū as a function of fluid inertia M2. (a) The swim speed is plotted for
a system with a1 = 1/2 and d = 3 for a variety of effective mass ratios m1/m2. Positive values correspond to
motion towards sphere 2. At high M2, motion is towards the more massive sphere. (b) The normalised swim
speed Ū/Ū∞ is plotted over the same range of inertia. Positive values here correspond to motion in the same
direction as the theoretical limiting value Ū∞ (4.29) as M2 → ∞. The collapse indicates consistent scaling
across mass ratios.

At 0 < M2 ( 1, the boundary velocity scaling (4.21a,b), which scales as 1/d, dominates
that of the Reynolds stress (4.23a,b), at 1/d2. As such,

Ū ≈ −9a2
-

16d
[a] M2, (4.28)

so that across the entire parameter space we expect motion towards the small sphere at
small-but-finite levels of fluid inertia.

At M2 0 1, the total swim speed Ū = Ūb + Ūr will have no order-M contribution, since
the C+M terms in (4.25a,b) and (4.27) will cancel. We are left with the order-1 term in
(4.26), which gives a theoretical limiting speed as M2 → ∞,

Ū ≈ 9a-
8d2 [m] =: Ū∞, (4.29)

showing that at high inertia motion is always directed towards the more massive sphere.
This confirms the impression formed by figure 3(a,b) that at M2 ( 1 motion is directed
towards the smaller sphere and at M2 0 1 towards the heavier sphere.

Numerically calculated swim speeds for several dimers with a1 = 1/2 and d = 3 (the
same as in figures 2 and 3) are plotted in figure 9. Each line corresponds to a different
effective mass ratio m1/m2 and, as before, the densities are chosen such that the dimer
is neutrally buoyant. In (a) the raw speeds are plotted as a function of inertia, yielding a
range of velocities. In (b) the speeds are normalised by the limiting factor Ū∞, collapsing
for M2 0 1 onto a single trajectory.

For the single-sphere case, Felderhof & Jones (2017) derived analogous asymptotic
limits in terms of the multipole coefficients of the swim stroke. There are a few differences
worth noting that stem from the dimer geometry. First, for a single sphere, the boundary
is always subject to the Brinkman boundary layer. Thus, the introduction of the separation
distance d represents a unique aspect of the parameter system. In particular, it yields two
separate transitions. The low-M2 scalings in figure 7 are valid only until Md > 1 and the
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Reciprocal swimming at intermediate Reynolds number

spheres exit each others’ boundary layers. However, the high-M2 scalings in figure 8 do
not show good agreement until M > 1, when the added mass effect dominates the velocity
amplitude ratios in table 2. These multiple transitions give rise to the double direction
switch observed in figure 3(b).

Secondly, while multipole coefficients are widely useful in a wide variety of contexts
including squirmer analysis (Pedley 2016), the dimer geometry provides a clear and
intuitive understanding of the results in terms of different types of asymmetries in the
problem. We clearly see the transition from a dependence on size asymmetry (due to
the domination of Stokes drag) to mass asymmetry (due to the domination of the added
mass effect.) One difference from the one-sphere analysis is that Felderhof & Jones (2021)
found swimming could proceed in either direction as a function of the surface deformation
stroke. However, in this case the gait (corresponding to the choice of Û1 and Û2) is initially
unknown and must be solved for as a function of the level of fluid and solid inertia.

5. Conclusions
In this work we have investigated the motion of an asymmetric dimer at intermediate
Reynolds number. The distance between the dimer’s constituent spheres is set to oscillate
with respect to time, as though driven by an internal force exerted by a connecting rod.
While this actuation would yield no motion at Re = 0 according to the scallop theorem,
the dimer swims in the presence of inertia. Recent works have investigated similar systems,
in one case restricting to the particle inertial effects of very dense spheres in Stokes flow
(Gonzalez-Rodriguez & Lauga 2009; Felderhof 2016; Hubert et al. 2021), and in the other
including the effects of fluid and particle inertia (Dombrowski et al. 2019). We generalize
these analyses to include the effects of both fluid and particle inertia in terms of a variant
of the Reynolds number M2; thus explaining and unifying the above results. We also find
novel behaviour of the dimer reminiscent of the double direction switches observed by
Collis et al. (2017).

Our calculation of the dimer’s swim speed shows that the steady flow field is driven by
an effective slip velocity and Reynolds stress that can be understood as two mechanisms
giving rise to motion. Each mechanism is driven by two classes of sphere–sphere
interactions, between one sphere’s motion and (1) the oscillating background flow induced
by the other’s motion, and (2) a geometric asymmetry induced by the other’s presence.
The previous investigations into dense swimmers in Stokes flow correspond only to the
flow–flow interaction, since time-invariant geometric asymmetries are not sufficient to
evade the effects of the scallop theorem. Under these conditions, the swim speed of the
dense dimer in Stokes flow can be shown as in Hubert et al. (2021) to depend in a simple
way on the phase difference φ between the spheres’ oscillations. The speed vanishes as
S2 → 0 and S2 → ∞, and asymptotic analysis shows the same direction of motion, which
is towards sphere 2 if a2m̃1 > a1m̃2. If the sphere densities are equal, this is towards the
small sphere.

In the presence of fluid inertia, the interplay between the four mechanism–interaction
combinations yields a richer set of behaviours. The flow interaction is the primary driver
of each mechanism at small M2, while the geometric interaction dominates at large M2.
For M2 ( 1, each mechanism drives translation of the dimer in opposing directions as
observed in figure 3(a.ii) and the scalings (4.21a,b) and (4.23a,b): the slip velocity causes
swimming in the direction of the smaller size sphere, and the Reynolds stress towards the
larger. The contribution to swimming of the slip velocity (∼1/d) dominates that of the
Reynolds stress (∼1/d2), consistently driving overall motion towards the small sphere.
At larger M2 0 1, the leading-order contributions of the two methods cancel as shown
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in (4.25a,b) and (4.27), but there is an O (1) part of the swim speed originating from the
geometric interaction that drives motion towards the more massive sphere (4.29).

A similar decomposition was found in the work of Felderhof & Jones (1994, 2017,
2019). That analysis also showed boundary velocity effects dominating at low inertia and a
balance between boundary velocity and Reynolds stress effects at high inertia, suggesting
the physical mechanisms driving variation of the dimer’s swim speed in inertial fluid are
the same as in the swimming of a deforming single sphere. However, the dimer geometry
provides an understanding of how symmetry breaking arises out of the spheres’ size and
mass asymmetry as a function of inertia, as opposed to ascribing it to particular modes of
surface deformation. It also gives rise to an additional transition in the mechanism as M2

grows, stemming from the introduction of the second length scale d, the sphere separation
distance, which has no analogue in the single-sphere system.

When Md becomes larger than 1, a boundary layer around the spheres becomes smaller
than their separating distance. This weakens the flow-mediated interactions and renders
the corresponding scalings (4.21a,b) inaccurate. We may understand this as the transition
from the ‘low-inertia’ to ‘high-inertia’ parts of § 4. Secondly, when M is much smaller
than 1, the spheres’ relative oscillation is a function of size asymmetry, as the forces they
experience are dominated by Stokes drag. When M becomes larger than 1, this transitions
to oscillation as a function of mass asymmetry, because the forces they experience become
dominated by the added mass effect. This represents a switch from the 0 < M ( 1 column
to the M 0 1 column in the table of velocity and phase scalings table 2. These two
transitions are what give rise to the double direction switch observed in figure 3(b) and
the work of Collis et al. (2017).
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Appendix A. Derivation of ansätz
In this section we show the ansätz (2.12a,b) corresponds to the leading terms in a
series expansion of the flow fields (u, p), which satisfy the dimensionless Navier–Stokes
equations (2.5a,b). The sphere velocities (2.1) are 2π periodic and scale as Uk ∼ ε,
suggesting the leading-order flow is of order ε and also 2π periodic in time.

We introduce the series expansions

u = εu1 + ε2u2 + · · · , p = εp1 + ε2p2 + · · · . (A1a,b)

Substituting into (2.5a,b) yields the following equations at the first two orders of ε:

M2 ∂u1

∂t
= −∇p1 + ∇2u1, (A2)

M2 ∂u2

∂t
= −∇p2 + ∇2u2 − M2u1 · ∇u1. (A3)
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Reciprocal swimming at intermediate Reynolds number

More generally, the substitution transforms the nonlinear Navier–Stokes equations into a
series of coupled linear PDEs for the order εk flow (uk, pk). Each of these flows can depend
nonlinearly on the order ε j velocity field uj, with j < k, allowing for successive evaluation
and substitution.

Because the order ε flow is driven by the spheres’ periodic motion, we let u1 = û eit and
p1 = p̂ eit. Substituting into (A2) yields

(
∇2 − iM2

)
û = ∇p̂, (A4)

which is (2.13a,b). Now, the quadratic forcing term in (A3) can be calculated in terms of
û, taking the form

−M2u1 · ∇u1 = −M2Re{u1} · Re{∇u1}

= −M2
(

û eit + û∗ e−it

2

)
·
(∇û eit + ∇û∗ e−it

2

)

= −M2
[(

û · ∇û∗ + û∗ · ∇û
4

)
+
(

û · ∇û e2it + û∗ · ∇û∗ e−2it

4

)]

= −M2
[

Re{û · ∇û∗}
2

+ Re{û · ∇û e2it}
2

]

= −M2

2
û · ∇û∗ − M2

2
û · ∇û ei2t

=: f̄ + ̂̂f ei2t, (A5)

where we have introduced steady and oscillatory body forces f̄ and ̂̂f ei2t. This implies
the existence of steady and oscillatory parts of u2 = ū + ̂̂u ei2t that, upon substituting into
(A3), yields

0 =
[
∇2ū − ∇p̄ + f̄

]
+
[(

∇2 − i2M2
)
̂̂u − ∇̂̂p + ̂̂f

]
ei2t. (A6)

Both bracketed relations must be zero at all times. Setting the first to zero reproduces
(2.14a,b), which describes the steady flow of interest. The second describes a π-periodic
flow, but the steady contribution resulting from this flow is O

(
ε4), from the advective term

u2 · ∇u2 present in the order-ε4 unsteady Stokes equation. At order ε2, the swim speed
does not depend on̂̂u. Thus, despite being order ε2 itself, we omit it from our analysis. This
is consistent with similar treatments in related work (Felderhof & Jones 2017). Truncating
the series expansion (A1a,b) after two terms and neglecting the π-periodic part of the ε2

term yields the ansätz (2.12a,b) used in the main text. As written in the main text, we
also adopt the form of the ansätz for other variables in the problem. In particular, we let
p = εp̂ eit + ε2p̄, Uk(t) = εÛk eit and U = ε2Ū. Following from this is the net force of
sphere k, F(n)

k = [iÛkρk(4πa3
k/3)] eit =: F̂(n)

k eit.
While the boundary conditions for u (2.6a,b) are defined with respect to the moving

sphere surfaces ∂Ωk, we can relate them to conditions on û and ū on the time-averaged
boundaries ∂Ωk = {x : |x − z̄kez| = ak}. We let a pair of positions xk denote a position
xk ∈ ∂Ωk and xk,0 ∈ ∂Ωk denote the corresponding position on the time-averaged surface.
The time-dependent displacement between the two points is xk − xk,0 = −iεÛk eitez, so
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arbitrary fields matching our ansätz ψ(x) = εψ̂ eit + ε2ψ̄ can be evaluated on the moving
boundary as

ψ(xk) = εψ̂(xk,0) eit + ε2

[

ψ̄ − iÛk

2
∂ψ̂∗

∂z

]

x=xk,0

+ O
(
ε2 ei2t

)
+ O

(
ε3
)

. (A7)

The factor of 1/2 comes from multiplying the real parts of complex functions, so that the
Taylor series term

Re
{
(xk − xk,0)

}
· Re

{
∇εψ̂

}
= ε2

4

(
−iÛk eit + iÛ∗

k e−it
)(∂ψ̂

∂z
eit + ∂ψ̂∗

∂z
e−it

)

= ε2

2

[

Re

{

−iÛk
∂ψ̂∗

∂z

}

+ Re

{

−iÛk
∂ψ̂

∂z
ei2t

}]

(A8)

again produces steady and oscillatory terms at order ε2, with the steady portion relevant to
the boundary condition (A7). Expanding the boundary velocity term u = εÛk eit yields, at
x = xk,

εû eit + ε2

[

ū − iÛk

2
∂û∗

∂z

]

= εÛk eitez, (A9)

giving the conditions

û = Ûkez, ū = iÛk

2
∂û∗

∂z
(A10a,b)

on the static surface ∂Ωk. The condition as |x| → ∞ is translated in a more
straightforward way as

εû + ε2ū = −ε2Ūez, (A11)

to obtain the conditions

lim
|x|→∞

û = 0, lim
|x|→∞

ū = −Ūez (A12a,b)

at the far point.
The fluid-mediated force on sphere k, to the orders accepted in our ansätz, is

F( f )
k =

∫

∂Ωk

en ·
[

εT̂ eit + ε2

(

T̄ − iÛk

2
∂ T̂ ∗

∂z

)]

· ez dS. (A13)

If we introduce the force fields

F̂( f )
k =

∫

∂Ωk

en · T̂ · ez dS, F̄( f )
k =

∫

∂Ωk

en · T̄ · ez dS, (A14a,b)

and the effective steady applied force on sphere k,

F̄(a)
k = − iÛk

2

∫

∂Ωk

en · ∂ T̂ ∗

∂z
· ez dS, (A15)

then the fluid-mediated force takes the form

F( f )
k = εF̂( f )

k eit + ε2
(

F̄( f )
k + F̄(a)

k

)
. (A16)
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Reciprocal swimming at intermediate Reynolds number

However, F̄(a) = F̄(a)
1 + F̄(a)

2 = 0, since by the divergence theorem (letting ∂Ω = ∂Ω1 ∪
∂Ω2),

F̄(a) =
∫

∂Ω
en · ∂ T̂ ∗

∂z
· ez dS

=
∫

Ω
∇ · ∂ T̂ ∗

∂z
· ez dV

=
∫

Ω

∂

∂z

(
∇ · T̂ ∗ · ez

)
dV

=
∫

Ω

∂

∂z

(
α2û∗ · ez

)
dV. (A17)

Here we have used ∇ · T̂ = α2û. After writing ûz = û · ez, the equality F̄(a) = 0 follows
from writing

F̄(a) =
∫ ∞

−∞

∫ ∞

−∞
D(x, y) dx dy, D(x, y) =

∫
z s.t.

(x, y, z) ∈ Ω
α2 û∗

z
∂z

dz, (A18a,b)

where D(x, y) corresponds to the integral of the exact derivative α2∂zû∗
z over all z in the

fluid for the provided x, y. Since ûz → 0 as z → ±∞ and is constant on both spheres,
D(x, y) = 0 ∀ x, y.

Finally, we note that F(i)
1 = −F(i)

2 and that by symmetry the time-averaged force applied
to the fluid must vanish. This yields the conditions

F̂(n)
1 − F̂( f )

1 = F̂( f )
2 − F̂(n)

2 , F̄( f )
1 + F̄( f )

2 = 0. (A19a,b)

Appendix B. Calculation of swim speeds via the reciprocal theorem
In this section we describe the Lorentz reciprocal theorem and show that it can be used
to calculate the time-averaged swim speed of the dimer as a function of the leading-order
oscillation described by the Brinkman amplitude field (û, p̂).

Consider two Stokes flows (ū, p̄) and (u′, p′) defined on the domain Ω , driven by
body forces f̄ and f ′, with associated traction vectors t̄ = T̄ · en and t′ = T ′ · en on the
time-averaged boundary ∂Ω , where en points into the fluid (i.e. the tractions correspond
to forces applied to the spheres.) The generalized reciprocal theorem (Happel & Brenner
2012) requires that the two flows satisfy

∫

Ω
ū · f ′ dV −

∫

∂Ω
ū · t′ dS =

∫

Ω
u′ · f̄ dV −

∫

∂Ω
u′ · t̄ dS. (B1)

Now, we let the barred flow represent our steady flow defined by (2.14a,b), shifted to
the lab frame (instead of the swimmer frame.) We denote the surface velocity on sphere
k as ūs := (iÛk/2)∂zû∗ (i.e. ūs refers generally to the surface velocity on either sphere.)
We define the primed flow as the one resulting from motion of the two-sphere system at
a speed U′ under the influence of an applied force F′ in the absence of any body force.
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With this assumption, f ′ = 0, and on the boundary of sphere k, u′ = U′ez and ū = Ūez +
ūs as in (2.6a,b). After making these substitutions, (B1) simplifies to

ŪF′ =
∫

∂Ω
ūs · t′ dS +

∫

Ω
u′ · f̄ dV, (B2)

where we have used the fact that
∫
∂Ω u′ · t̄ dS = 0, and

∫
∂Ω ū · t′ dS = −ŪF′ +

∫
∂Ω ūs ·

t′ dS. Each of these terms can be understood in terms of physical effects. The first integral
corresponds to a slip velocity directed, on average, in one direction. This yields motion in
the other direction as in the case of squirmers (Pedley 2016), since to first order t′ ∝ −ez.
The second integral corresponds to a body force in the fluid that drives motion in the same
direction in which it points. Finally, note that

f̄ = −(M2/2)û · ∇û∗ = −(M2/2)∇ · (û ⊗ û∗) = ∇ · R̄, (B3)
as discussed in the main text. We can integrate by parts to find that

∫

Ω
u′ · f̄ dV =

∫

∂Ω
en · R̄ · u′ dS −

∫

Ω
(∇u′) : R̄ dV, (B4)

but since R̄ ∝ ez ⊗ ez on sphere surfaces, the surface integral above vanishes. Noting also
that R̄ is symmetric, we have

ŪF′ =
∫

∂Ω
ūs · t′ dS −

∫

Ω
E ′ : R̄ dV, (B5)

which, on substituting back in for the definitions of R̄ and ūs, gives (2.21a,b).

Appendix C. Scalar, vector and tensor spherical harmonics

C.1. Spherical harmonics

C.1.1. Orthogonal bases for scalar, vector and tensor functions
Let (r, θ,φ) denote the usual spherical coordinates where θ is the polar angle measured
from the positive z axis. We define the following inner products over the surface of the
sphere for scalar fields (e.g. g = g(x), h = h(x)), vectors (g, h) and tensors (G, H):

〈g, h〉 =
∫

Ω
gh dΩ, 〈g, h〉 =

∫

Ω
g · h dΩ, 〈G, H〉 =

∫

Ω
G : H dΩ. (C1a–c)

We seek an orthogonal, axisymmetric set of basis functions for scalar, vector and
tensor fields, which we will define in terms of spin-weighted spherical harmonics Yls, a
generalization of the Laplace harmonics that can be defined in terms of an axisymmetric
spin-raising operator (Dray 1985). Letting

Yls = Ds
+Yl, D±f :=

(
sin±s θ

) ∂
∂θ

[(
sin∓s θ

)
f
]
, (C2a,b)

then

Yls(θ) = (−1)s
√

2l + 1
4π

sins θP(s)
l (cos θ), (C3)

where P(s)
l (cos θ) is the sth derivative of the Legendre polynomial Pl. These satisfy

〈
Yls, Yjt

〉
= (l + s)!

(l − s)!
δljδst. (C4)

Note the normalisation chosen here is different than the usual by a factor (l + s)!/(l − s)!,
and that we include a factor (−1)s. This is so that Yl1 = Y ′

l (θ). Now, we can define a set
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Reciprocal swimming at intermediate Reynolds number

of vector harmonics

Y (r)
l = Yl0er, Y (θ)

l = Yl1(θ)eθ , (C5a,b)

which are orthogonal such that

〈
Y (β)

j , Y (γ )
k

〉
= νj,βδjkδβγ , (C6)

with

νl,r = 1, νl,θ = l(l + 1). (C7a,b)

Finally, we define a set of five rank-2 tensors using Cartesian unit vectors. Let

Y (rr)
l = Yl0erer, Y (Ωi)

l = 1
2 Yl0(eθeθ + eφeφ) (C8a,b)

describe axial and hoop isotropic tensors, both of which have non-zero traces, and let the
traceless tensors

Y (rθ)
l = Yl1ereθ , Y (θr)

l = Yl1eθer, Y (Ωs)
l = 1

2 Yl2(eθeθ − eφeφ) (C9a–c)

describe radial–polar and hoop shear tensors. This tensor basis is orthogonal, satisfying

〈
Y (β)

j , Y (γ )
k

〉
= κj,βδjkδβγ , (C10)

with

κj,rr = κj,Ωi = 1, κj,rθ = κj,θr = l(l + 1), κj,Ωs = (l + 2)!
(l − 2)!

. (C11a–c)

These five are sufficient to describe the tensor fields we will encounter, since the
assumption of axisymmetry precludes any azimuthal component to vector shear.

We also consider a triple product between two vector fields g, h and a tensor field G,

〈g, G, h〉 =
∫

∂Ω
g · G · h dS. (C12)

We define a quantity Nj,k,l
m,n,o in terms of the Wigner 3j symbols,

Nj,k,l
m,n,o =

√
(2j + 1)(2k + 1)(2l + 1)

4π

(
j k l
0 0 0

)(
j k l
m n o

)
, (C13)

which by symmetry is non-zero only if j + k + l is even. Then the basis harmonics satisfy

〈
Y (β)

j , Y (γ )
k , Y (µ)

l

〉
= Λ

(β,γ ,µ)
j,k,l , (C14)
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N.J. Derr, T. Dombrowski, C.H. Rycroft and D. Klotsa

where the non-zero elements of Λ are

Λ
(r,rr,r)
j,k,l = Nj,k,l

0,0,0, (C15)

Λ
(θ,Ωi,θ)
j,k,l = −

√
1
2

(j + 1)!
(j − 1)!

(l + 1)!
(l − 1)!

Nj,k,l
1,0,−1, (C16)

Λ
(r,rθ,θ)
j,k,l = −

√
(k + 1)!
(k − 1)!

(l + 1)!
(l − 1)!

Nj,k,l
0,1,−1, (C17)

Λ
(θ,θr,r)
j,k,l = −

√
(k + 1)!
(k − 1)!

(j + 1)!
(j − 1)!

Nj,k,l
−1,1,0, (C18)

Λ
(θ,Ωs,θ)
j,k,l =

√
1
2

(j + 1)!
(j − 1)!

(k + 2)!
(k − 2)!

(l + 1)!
(l − 1)!

Nj,k,l
−1,2,−1. (C19)

C.2. Velocity field expansions
Knowledge of these bases allows for easier calculation of the integrals in the swim speed
equations (2.21a,b), but first, we consider expansions and derivative fields of a flow (u, p)
in terms of the scalar and vector harmonics above. For some scalar functions ur,l(r) and
uθ,l(r), we have

u(r, θ) =
∞∑

l=1

ur,l(r)Y
(r)
l (θ) + uθ,l(r)Y

(θ)
l (θ), p(r, θ) =

∞∑

l=1

pl(r)Yl(θ). (C20a,b)

Let Hl;j = (ur,l − juθ,l)/r. Then the corresponding surface traction is

t(r, θ) =
∞∑

l=1

[(
2u′

r,l − pl
)

Y (r)
l +

(
Hl;1 + u′

θ,l
)

Y (θ)
l

]
, (C21)

and the rate-of-strain tensor is

E(r, θ) =
∞∑

l=1

[
u′

r,lY
(rr)
l +

√
2Hl;l(l+1)/2Y (Ωi)

l

+ 1
2
(
Hl;1 + u′

θ,l
) (

Y (rθ)
l + Y (θr)

l

)
+ uθ,l√

2r
Y (Ωs)

l

]
. (C22)

Note that each mode of the surface traction and rate-of-strain tensor depend only on the
same mode of the velocity field. In contrast, the derivative in the z direction is, letting
Ml = 1/

√
(2l − 1)(2l + 1),

∂u
∂z

= Ml

[
l
[
(l + 1)Hl;1 + u′

r,l
]

Y (r)
l−1 +

[
−Hl;(l+1)2 + (l + 1)u′

θ,l
]

Y (θ)
l−1

]

+ Ml+1

[
(l + 1)

[
−lHl;1 + u′

r,l
]

Y (r)
l+1 +

[
Hl;l2 + lu′

θ,l
]

Y (θ)
l+1

]
, (C23)

so each mode l of the vertical-derivative field depends on modes l + 1 and l − 1 of the
velocity field.
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Reciprocal swimming at intermediate Reynolds number

Appendix D. Addition theorems and reflection tensors
Recall from the main text that we consider reflected flows so that

u(k,r) =
nl∑

l=1

4∑

m=0

c(k)
lm ulm (D1)

is the flow, written in harmonics about sphere k, at the rth step in the reflection. We also
decompose this into singular and regular parts

u(−k,r) =
nl∑

l=1

(
c(k)

l0 ul0 + c(k)
l1 ul1

)
, u(+k,r) =

nl∑

l=1

(
c(k)

l2 ul2 + c(k)
l3 ul3

)
, (D2a,b)

and identify the corresponding set of coefficients as c(−k)
lm = {c(k)

l0 , c(k)
l1 } and c(+k)

lm =
{c(k)

l2 , c(k)
l3 }. The total velocity field can thus be approximately expressed as

u ≈
∞∑

r=0

u(1,r) ≈
∞∑

r=0

u(2,r) ≈
∞∑

r=0

(
u(−1,r) + u(−2,r)

)
. (D3)

In other words, near sphere 1 or 2 we may consider the flow field in terms of a mixture
of regular and singular modes centred around that sphere. This is useful for evaluating
integrals over sphere surfaces or in volumes closely surrounding them, but the presence
of regular harmonics causes the expression to diverge as the distance from the origin
approaches the sphere separation.

We may also consider the flow in terms of the sum of the singular fields originating
around both spheres, which is more consistent with the physical description of each step
in the reflection, wherein each rigid sphere induces a singular flow field to cancel out the
influence of the other sphere’s flow (represented at the location of the first sphere in terms
of regular harmonics.) Thus, applying the method of reflections as in figure 5 requires two
steps: first, one must describe a set of singular vector spherical harmonics originating at
one sphere (k) in terms of regular harmonics about the other (m). This is accomplished
through the application of addition theorems that we detail in this section. Second, one
must describe the singular field that is induced at sphere m by the presence of the flow
originating at k. We refer to the tensor describing these interactions as a ‘reflection tensor’.

D.1. Addition theorems
Now, we seek to relate singular fields about one sphere to regular fields about the other.
This is achieved through the interaction tensor A, with

c(+j)
lm = A jk

lmnoc(−k)
no . (D4)

The elements can be derived from addition theorems for spherical harmonics. Recall from
(4.6a–d) that ul0 = ∇φ−

l , where φ−
l is the lth singular solid harmonic. Since the flow

depends linearly on the spherical harmonic, we can use addition theorems for the singular
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N.J. Derr, T. Dombrowski, C.H. Rycroft and D. Klotsa

solid harmonics f −
l (x) = φ−

l (r)Yl(θ) that in the axisymmetric case are given by

ul0(x + d) =
∞∑

λ=0

A(φ)
lλ (d)uλ2(x). (D5)

A(φ)
lλ (d) = 4π(−1)λ

2λ+ 1

(
2l + 2λ

2λ

)(
l + λ
λ

)−1
f −
l+λ(d)Nl,λ,l+λ

0,0,0 . (D6)

Here x is a position vector in a spherical coordinate system about sphere j, and d = ±dez
is the displacement from sphere k to sphere j. Similarly, addition theorems exist for ul1 =
∇ × ∇ × (xχ−

l ) as wave solutions to the vector Helmholtz equation (Felderhof & Jones
1987). Letting f −

l (x) = χ−
l (r)Yl(θ) gives

ul1(x + d) =
∞∑

λ=0

A(χ)
lλ (d)uλ3(x), (D7)

A(χ)
lλ (d) =

min{l,λ}∑

ν=0

4π(−1)λ

λ(λ+ 1)
[2(l + λ− ν)ν − lλ] f −

l+λ−2ν(d)Nl,λ,l+λ−2ν
0,0,0 . (D8)

Using these definitions,

Ajk
l2m0 = A(φ)

lm (xk − xj), Ajk
l3m1 = A(χ)

lm (xk − xj), (D9a,b)

where xm are the centres of sphere m.

D.2. Induction and reflection tensors
At the nth step in the reflection procedure, the presence of an incident flow at sphere j
originating at sphere k is indicated by non-zero regular coefficients c(+j,n+1)

lm . In order
to satisfy the velocity boundary condition on each sphere, we must find the singular
coefficients c(−j,n+1)

lm corresponding to no flow on the boundary, so that u(j,n+1)
l = 0

on r = aj. This can be accomplished by projecting the incident field u(+j,n+1)
l onto the

singular basis {ul0, ul1}. The coefficients must therefore satisfy

c(−j,n)
lm = B j

lmnoc(+j,n)
no , B j

lmno = − 〈ulm, uno〉
(aj)
j , (D10a,b)

where 〈∗, ∗〉(a)
j describes the angular inner product (C6) in the sphere j coordinate system,

with radial coordinate r = a. Note that this implies the only non-zero elements are B j
lmln

for m ∈ {0, 1} and n ∈ {2, 3}. Recalling that kl = kl(αr) and gl = gl(αr) are the singular
and regular modified spherical Bessel functions, these can be calculated as

B j
l0l2 =

la2l+1
j

l + 1
kl+1

kl−1
, B j

l0l3 = 2l + 1
l + 1

rl−1

αkl−1
, (D11a,b)

B j
l0l3 = αlrl+2

(2l + 1)kl−1
(gl−1kl+1 − gl+1kl−1) , B j

l1l3 = gl−1

kl−1
. (D12a,b)

Combining these two relations gives us the total reflection tensor R with

c(−j,n)
lm = Rjk

lmpqc(−k,n−1)
pq , Rjk

lmpq = B j
lmnoAjk

nopq. (D13a,b)
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Reciprocal swimming at intermediate Reynolds number

Appendix E. Swim speed calculations
In this section we relate the integrals in (2.21a,b) to inner products in the space of
harmonics above. In doing so, we associate the leading-order swim speed contributions
with the appropriate interaction types in figure 6. The swim speeds are given by

Ūb =
2∑

k=1

iÛk

2F′

∫

∂Ωk

t′ · ∂û∗

∂z
dS, Ūr = M2

2F′

∫

Ω
û · E ′ · û∗ dV, (E1a,b)

where t′ = en · T ′ is the traction associated with the Stokes tow flow. Let ul, E ′
l and

t′l denote the lth harmonic contribution to the Brinkman velocity flow and Stokes
rate-of-strain tensor and traction vector, respectively. We will investigate the leading-order
effects of the zeroth and first reflections. At this order, the flow interaction corresponds
to products of the l = 2 Brinkman flow mode with the l = 1 Stokes fields. The geometric
interaction corresponds to products of the l = 2 modes of the virtual Stokes flow traction
or strain with the l = 1 Brinkman flow.

E.1. Boundary velocity mechanism
Note that Ūb in (E1a,b) consists of integrals over the sphere surfaces and, thus, can be
written exactly as

Ūb =
nl∑

j,k=1

Ūjk
b , Ūjk

b = i
2F′

(

Û1a2
1

〈
t′j,
∂û∗

k
∂z

〉(a1)

1
+ Û2a2

2

〈
t′j,
∂û∗

k
∂z

〉(a2)

2

)

, (E2a,b)

where 〈∗, ∗〉(a)
k denotes the inner product (C6), using an expansion in terms of spherical

harmonics about sphere k, evaluated at the radial coordinate r = a in the appropriate
coordinate system. With this convention, Ūjk

b represents the contribution from an
interaction between the jth traction mode and kth velocity mode.

E.1.1. Low inertia
At small M2, the leading-order contributions to the swim speed are

Ū21
b =

[

−
3
√

2a2
1a2

2(a2 − a1)

8(a1 + a2)3d2 + O
(

1/d3
)]

M + O
(

M3
)

, (E3)

corresponding to the geometric interaction, and

Ū12
b =

[
3
√

2a2
1a2

2(a2 − a1)

8(a1 + a2)3d2 + O
(

1/d3
)]

M

+
[

9a2
1a2

2
16(a1 + a2)3d

+ O
(

1/d2
)]

M2 + O
(

M3
)

, (E4)

corresponding to the flow interaction (∝ Û1Û∗
2). The dominant parts of the order-M2

contribution from both cancel out, yielding the order M reported in the main text.
In the M2 = 0 case using S2 as a parameter, the leading-order contribution is also from

this interaction, and

Ū12
b =

[
−a1a2(a2m1 − a1m2)

3(a1 + a2)2d2 + O
(

1/d4
)]

S2 + O
(

S4
)

. (E5)
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E.1.2. High inertia
At large M2, the leading-order contributions to the swim speed are

Ū21
b =

[
3a1a2(a2m2

1 − a1m2
2)

4
√

2(a1 + a2)(m1 + m2)2d2

]

M + O (1/M) (E6)

from the geometric interaction, and

Ū12
b =

[
a2

1a2
2(a2 − a1)m1m2

2
√

2(a1 + a2)(m1 + m2)2d4

]

M + O (1/M) (E7)

from the flow interaction. As described in the main text, at high-inertial levels the
geometric interaction dominates the flow interaction, since outside of the width-M−1 size
boundary layer the Brinkman flow is weak.

In the M2 = 0 Stokes case, as before, the only contribution is from the flow interaction,
which yields

Ū12
b =

[
27a1a2(a2m1 − a1m2)

4(a1 + a2)(m1 + m2)2d2

]
1
S2 + O

(
1
S4

)
. (E8)

E.2. Reynolds stress mechanism
While the volume integral in (E1a,b) cannot be computed exactly in terms of angular
integrals in the two spheres’ coordinate systems, it can be computed approximately. In the
limit a1, a2 ( d and M ( 1 or M 0 1, we write

Ūr ≈ Ūjkl
r , Ūjkl

r ≈ M2

2F′

(∫ ∞

a1

〈
ûj, E ′

k, û∗
l
〉(r)
1 r2 dr +

∫ ∞

a2

〈
ûj, E ′

k, û∗
l
〉(r)
2 r2 dr

)
,

(E9a,b)

since the dominant contribution to the integrals in each case is concentrated near the sphere
surfaces. As before, we write the speed as a sum of contributions from interactions between
particular harmonic modes, so that Ūjkl

r corresponds to the three-way interaction between
the jth and lth flow modes and the kth mode of the virtual Stokes rate-of-strain field.

The integrals over r consist of sums of basis functions and flow coefficients, and some
of these terms (corresponding to products of the regular basis functions) grow with r and,
thus, yield divergent integrals. However, for the l = 1 and 2 harmonic modes, it is possible
by rescaling the two integrals’ radial coordinates to combine them into a convergent
integral.

E.2.1. Low inertia
For the flow interaction, we introduce Ū( f )

r = Ū112
r + Ū211

r , which can be written in terms
of two integrals

Ū( f )
r =

∫ ∞

a1

f1(r) dr +
∫ ∞

a2

f2(r) dr (E10)

for two functions f1 and f2. For the first integral, we let ξ = r/a2 and, for the second
integral, ξ = r/a1. This gives rise to

Ū( f )
r =

∫ ∞

a1/a2

g1(ξ) dξ +
∫ ∞

a2/a1

g2(ξ) dξ (E11)
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Reciprocal swimming at intermediate Reynolds number

for g1(ξ) = a2f1(ξa2) and g2(ξ) = a1f2(ξa2). In particular,

g1(ξ)

=
[

a3
1(12a9

1 − 96a7
1a2

2ξ
2 + 140a5

1a4
2ξ

4 + 3a4
1a5

2ξ
5 − 60a3

1a6
2ξ

6 − 14a2
1a7

2ξ
7 + 15a9

2ξ
9

80a6
2(a1 + a2)3d2ξ9

+ O
(

1/d4
)]

M2 + O
(

M3
)

, (E12)

and g2(ξ) = −g1(ξ)|a1↔a2 , where the notation ψ |x↔y indicates that the symbols x and
y are swapped within some expression ψ . The only divergent term is the last in the
numerator, which has the same magnitude and opposite sign in both functions. Thus, we
can write

I∞ =
∫ ∞

a2/a1

[
g1(ξ) + g2(ξ)

]
dξ, (E13)

and obtain a convergent integral, since the most slowly decaying term in the integrand is
order ξ−2. After letting

I1 =
∫ a2/a1

a1/a2

g1(ξ) dξ (E14)

to account for the portion of the first integral not included in I∞, we obtain

Ū( f )
r = I∞ + I1 =

[
15a2

1a2
2(a2 − a1)

32(a1 + a2)2d2 + O
(

1/d4
)]

M2 + O
(

M3
)

. (E15)

The geometric interaction is represented by a single contribution

Ū121
r =

∫ ∞

a1

f1(r) dr +
∫ ∞

a2

f2(r) dr (E16)

for two functions f1 and f2. Now, we let ξ = r/a1 for the first integral and ξ = r/a2 for the
second. This yields

Ū121
r =

∫ ∞

1

[
g1(ξ) + g2(ξ)

]
dξ, (E17)

where gk(ξ) = akfk(ξak). Here,

g1(ξ) =
[

a3
1a3

2
(
−36 + 97ξ2 − 106ξ4 + ξ5 + 45ξ6 − 2ξ7 + 81ξ9)

160(a1 + a2)3d2ξ9

+ O
(

1/d4
)]

M2 + O
(

M3
)

, (E18)

and g2(ξ) = −g1(ξ). Thus, at this order Ū121
r ≈ 0 and there is no contribution from the

geometric interaction, since the two integrals diverge at corresponding oppositely signed
rates.
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E.2.2. High inertia
In the high-inertia limit the Stokeslet-like portion of the Brinkman flow is confined to a
thin boundary layer around each sphere. Thus, the flow interactions are weak, and Ū( f )

r is
O
(
1/d4).

For the geometric interaction, we again obtain a solution of the form of (E17). We can
make a further substitution ζ = M(ξ − 1), so that the small coordinate ζ corresponds to
progress through the boundary layer. We find that at leading order,

g1(ξ) + g2(ξ) = gin(ζ ) + gout(ξ), lim
ζ→∞

gin(ζ ) = 0. (E19a,b)

Thus, we write the integral (E17) in terms of two integrals,

Ū121
r ≈

∫ ∞

0
gin(ζ ) dζ +

∫ ∞

1
gout(ξ) dξ, (E20)

where the integrands can be calculated as

gin(ζ )

=





3a1a2

(
a2

1m2
2 exp(−a1ζ/

√
2) cos

(
a1ζ√

2

)
− a2

2m2
1 exp(−a2ζ/

√
2) cos

(
a2ζ√

2

))

4(a1 + a2)(m1 + m2)2d2

+ O
(

1/d4
)


M +
[

3a1a2

4
√

2(a1 + a2)(ma + m2)2

(
a2m2

1
d2 exp

(
−a2ζ√

2

)

×
[

3 exp
(

−a2ζ√
2

)
− 5 cos

(
a2ζ√

2

)
− sin

(
a2ζ√

2

)]
−

a1m2
2

d2 exp
(

−a1ζ√
2

)

×
[

3 exp
(

−a1ζ√
2

)
− 5 cos

(
a1ζ√

2

)
− sin

(
a1ζ√

2

)])

+ O
(

1/d4
)]

+ O (1/M) ,

(E21)

gout(ξ) =
[

a1a2(a2
1m2

2 − a2
2m2

1)(−36 + 25ξ2 + ξ5)

40(a1 + a2)(m1 + m2)2ξ9d2 + O
(

1/d4
)]

M2 + O (M) . (E22)

At this order the outer integral
∫∞

1 gout(ξ) dξ = 0. Thus, the contribution comes from
within the boundary layer, and

Ū121
r =

∫ ∞

0
g(ζ ) dζ =

[
3a1a2(a1m2

2 − a2m2
1)

4
√

2(a1 + a2)(m1 + m2)2d2
+ O

(
1/d4

)]

M

+
[

9a1a2(m2 − m1)

8(a1 + a2)(m1 + m2)d2 + O
(

1/d4
)]

+ O (1/M) . (E23)
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