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1 | INTRODUCTION

Abstract

Understanding solid- and fluid-inertia forces and their coupling with the gravity
potential in complex motion scenarios is necessary for evaluating system stability and
identifying root causes of system failure and accidents. Because solids and fluids have
an infinite number of degrees of freedom and distributed inertia and elasticity, having
meaningful qualitative and quantitative nominal measures of the kinematics and forces
will contribute to a better understanding of the system dynamics. This paper proposes
developing new continuum-based nominal measures for the characterization of the
oscillations and forces. By using a material-point approach, these new nominal
measures, which have their roots in the continuum-mechanics partial-differential
equations of equilibrium and Frenet geometry, are independent of the formulation or
generalized coordinates used to develop the dynamic equations of motion. The paper
proposes a data-driven-science approach to define a nominal continuum space-curve
geometry with nominal curvature and torsion; a nominal instantaneous motion plane
(IMP), which contains the resultant of all forces including the inertia forces; and a
nominal instantaneous zero-force axis (IZFA) along which the resultant of all forces
vanishes. While using the material-point approach eliminates the need for introducing
moment equations associated with orientation coordinates, the IMP and IZFA concepts
can be used to define the instantaneous axis of significant moment components, which

can lead to accidents such as in the case of vehicle rollovers.
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nominal measures are particularly important in developing operation

and safety guidelines for the transportation of hazardous materials

Solid- and fluid-inertia forces and their coupling with the gravity
potential in complex motion scenarios are not well understood due to
the lack of accurate nominal measures of the continuum kinematics
and forces. Developing such nominal measures will contribute to a
better understanding of the system dynamics and stability and to

identifying the root causes of system failure and accidents. These

(HAZMAT), where the effect of liquid-sloshing oscillations on vehicle
dynamics and stability has not been thoroughly investigated and is
not well understood. Solids and fluids have an infinite number of
degrees of freedom and have distributed inertia and elasticity, and
consequently, their dynamics is governed by high-dimensional

nonlinear models. Having meaningful qualitative and quantitative
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low-order nominal measures of the kinematics and forces, which
have dimensions independent of the model dimension, will contribute
to a better understanding of the system dynamics.
Three-dimensional recorded motion trajectories (RMT) of contin-
uum points can be used to define inertia forces whose magnitudes
and directions can be more conveniently analyzed quantitatively or
qualitatively by using the new nominal geometry and force measures.
Such nominal measures, which can be designed to capture the effects
of the actual forces and reference-configuration geometry, can
also contribute to developing credible virtual prototyping approaches
for accident reconstructions. The new nominal measures for the
characterization of continuum oscillations and forces have their roots
in the continuum-mechanics partial-differential equations of equilibrium
and Frenet geometry of differential calculus.>™> The use of a material-
point approach allows developing general procedures independent of
the formulation or the type of generalized coordinates used to
develop the dynamic equations. This allows defining a general inverse
problem to account for the actual forces by defining new force
integrals and nominal motion trajectories. Using the material-point
approach and equating the continuum inertia force to the sum of the
applied, stress, and constraint forces lead to identifying an instanta-
neous zero-force axis (IZFA) along which no continuum forces are
applied and an instantaneous motion plane (IMP) that includes the
resultant of all forces. In the case of vehicle dynamics, an IMP with
normal along the yaw axis leads to predominantly yaw moment, an
IMP with normal along the pitch axis leads to predominantly pitch
moment, and an IMP with normal along the roll axis leads to
predominantly roll moment; such a roll moment can cause rollover.
The new nominal measures, which are given clear physical
interpretation using new concepts such as Frenet angles for describing
curve geometry, can contribute to a better understanding of the effect
of the coupling between gravity potential, inertia forces, and reference-
configuration geometry on the continuum oscillations. Frenet bank
angle, in particular, defines IMP superelevation. In the case of general
motion scenarios, the centrifugal forces do not lie, in general, in a plane
parallel to the horizontal plane, as it is normally assumed when
developing operation and safety guidelines such as balance speeds.
Therefore, the analysis of RMT using new data-driven-science (DDS)
multibody system (MBS) algorithms can shed light on new precise
force balance and balance-speed definitions. This short paper explains
the procedure for developing the nominal continuum-based geometry
and force measures using a material-point approach independent of the
type of formulation or generalized coordinates used to develop the
continuum dynamic equations of motion. The new nominal measures
can be considered as a generalization of force concepts used in particle

and rigid-body mechanics.®™?

2 | BACKGROUND

The material-point approach used in this investigation is based on the

partial differential equations of equilibrium of a continuum, which has

10,11
fe,

an infinite number of degrees of freedom, pf = f, + f; + and

Frenet geometry that defines the Frenet frame transformation
Ar=[tn b],'> where p is the mass density; f,, f,, and f. are,
respectively, vectors of body, stress, and other applied forces that
may include contact and constraint forces; and t, n, and b are,
respectively, the tangent, normal, and binormal vectors of a space
curve. To define a general inverse problem and develop the continuum
nominal force measures, a material-point approach is adopted
regardless of the generalized coordinates used to formulate the
dynamic equations. This approach is to be distinguished from writing
r = r(q), where q is the vector of generalized coordinates, which can
have orientation parameters giving rise to the definition of
moments.®®*2 For example, in the case of the absolute nodal
coordinate formulation (ANCF), finite rotations are not used as nodal
coordinates.!* For ANCF finite elements, the global position of an
arbitrary point on an element of a body i can be written as
ri(x, t) = S(x)ef(t), where Si(x) is the FE shape-function matrix that
depends on the FE spatial coordinates x = [x; X x3]7 and €i(t) is
the vector of element nodal coordinates that depends on time t.
At a given node k, absolute position and position-vector gradients
i v eI
For an arbitrary point, the position vector ri(x, t) = S'(x)ei(t), the

. . i T
define the vector of nodal coordinates as ek = [rk r

velocity vector Fi(x,t) = S'(x)é/(t), and the acceleration vector
fi(x, t) = S'(x)&/(t) that account for all the forces acting on the system
can be recorded using MBS simulations.

Therefore, regardless of the formulation and generalized
coordinates used, MBS simulations of low- and high-fidelity
continuum models allow recording absolute position, velocity,
and acceleration of the FE integration points to define the
continuum inverse problem developed in this paper. A three-
dimensional space curve can be written in a parametric form as
r = r(t), where t is the curve parameter, which can be considered
time.2~> In general, the motion-trajectory curver = r(t) is a general
three-dimensional curve with non-zero curvature and torsion. The
acceleration vector of a point can be written as ¥ = 5t + ($2/R)n,
where t = r; = 9r/09s is the unit tangent to the curve, n is the curve
normal, R is the radius of curvature, and s is the curve arc length.
As discussed in Refs. 13, 14, the normal vector, which defines
centrifugal-force direction, can be written in terms of Frenet

angles as

n=[-sinycosep+cosyPsinbsing cosy coso +
sin Y sin 6 sin ¢ - cos 8 sin @],

where ¢, 6, and ¢ are, respectively, Frenet curvature, vertical-
development, and bank angles. The gravity component along the
normal vector is mpg cos 6 sin ¢, where m, = pdV is an infinitesimal
mass and g is the gravity constant. Absolute position, velocity, and
accelerations of FE integration points lie in the t = n IMP, in which
the resultant of all other forces acting on the continuum point lies.
The Frenet binormal vector b defines the 1ZFA at this point.*> The IMP
and IZFA definitions demonstrate that, when RMT are used, Frenet
geometry has a clear physical interpretation associated with the
actual forces applied to the system.
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3 | NOMINAL GEOMETRY AND FORCE
MEASURES

Point trajectories can be used to define nominal trajectories and
forces that have a clear physical interpretation. Using motion
trajectories recorded at FE integration points, continuum inertia

forces can be computed as

F = fvpi"dv = j;p(§r5 + ($2/R)n)dV )
which can be written as F; = F; + Fi. = F;t. + F.n., where

F,-t = Fetc = [, pGr)dV

F,Cnc £, p((8%/R)n)dV @)
t. is a nominal continuum tangent vector and n. is a nominal continuum
normal vector. The t. — n. plane defines the continuum nominal IMP
and the normal to this plane, b, = t. x n., defines the nominal IZFA.
The scalars F; and F. can be used with proper integration methods to
define continuum nominal curve geometric properties such as radius of
curvature R, curvature k., and arc length s, following a procedure
similar to the one described in the literature.*®'* Furthermore,
Frenet angles can be used to define coordinates of the continuum
nominal space curver, = r:(s.).? These new formulations, and numerical
procedures will define new continuum nominal force and geometry
measures. The centrifugal inertia force can be used to determine the
nongyroscopic inertia moment associated with wheel/road or wheel/rail
contact points,” thereby introducing a new continuum-based force
balance to quantify the effect of the continuum oscillations on
the system's nonlinear dynamics and stability. In the case of vehicle
dynamics, an IZFA parallel to the roll axis produces a predominantly roll
moment that can cause rollover, an IZFA parallel to the pitch axis
produces a predominantly rocking moment, and an IZFA parallel to the
yaw axis produces a predominantly sway moment. Furthermore,
the continuum-nominal tangent vector t. can be written in terms of the

continuum-nominal Frenet angles as”*3*

t. = dr./ds. = [cos . cos B, sin Y cos 6, sin 6]7,  (4)

where subscript ¢ refers to the nominal-continuum variables.
Knowing nominal tangent vector t., numerical integration can
be used to determine the continuum-nominal space curve.
The continuum-nominal bank angle ¢, defines the continuum IMP
superelevation.”1%14

The force integrals obtained using the material-point approach
used in this paper should be distinguished from the generalized
forces obtained when the system generalized coordinates are
used. For example, the integration of both sides of the equation
pf = f, + f; + f, over the volume leads to three-dimensional vectors
regardless of the number of generalized coordinates used. Internal
forces, which are equal in magnitude and of opposite directions, such
as elastic forces, will cancel when performing the integration. The
effect of such internal forces, however, on bodies that are in contact
with the solids and fluids is taken into consideration since the RMT

account for the effect of all applied forces including the contact

forces.

4 | SUMMARY

Geometry plays a fundamental role in developing credible proto-
typing algorithms and in the definition of continuum oscillations and
forces. Continuum inertia forces are equal to the sum of the applied,
stress, and constraint forces. The IMP includes the resultant of all
forces, and the IMP normal vector defines the moment axis of the
resultant force. An IMP normal vector parallel to the roll axis leads
to predominantly roll moment, an IMP normal vector parallel to the
pitch axis leads to predominantly pitch moment, and an IMP normal
vector parallel to the yaw axis leads to predominantly yaw moment.
Furthermore, the IMP orientation defines the effect of gravity
potential on the force balance. Using the DDS material-point
approach, the continuum-mechanics partial-differential equations
of equilibrium, and RMT at FE integration points, an inverse problem
can be solved and used to define nominal inertia force integrals and
identify nominal continuum tangential and centrifugal inertia forces.
A nominal IMP and IZFA can be defined for the continuum, and
nominal IMP superelevation that enters into the definition of the
force balance and its dependence on the gravity force can be
determined. The material-point approach proposed for the analysis
of the motion trajectories is independent of the formulation and
generalized coordinates used to develop the dynamic equations of

motion.
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