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Abstract

Understanding solid‐ and fluid‐inertia forces and their coupling with the gravity

potential in complex motion scenarios is necessary for evaluating system stability and

identifying root causes of system failure and accidents. Because solids and fluids have

an infinite number of degrees of freedom and distributed inertia and elasticity, having

meaningful qualitative and quantitative nominal measures of the kinematics and forces

will contribute to a better understanding of the system dynamics. This paper proposes

developing new continuum‐based nominal measures for the characterization of the

oscillations and forces. By using a material‐point approach, these new nominal

measures, which have their roots in the continuum‐mechanics partial‐differential

equations of equilibrium and Frenet geometry, are independent of the formulation or

generalized coordinates used to develop the dynamic equations of motion. The paper

proposes a data‐driven‐science approach to define a nominal continuum space‐curve

geometry with nominal curvature and torsion; a nominal instantaneous motion plane

(IMP), which contains the resultant of all forces including the inertia forces; and a

nominal instantaneous zero‐force axis (IZFA) along which the resultant of all forces

vanishes. While using the material‐point approach eliminates the need for introducing

moment equations associated with orientation coordinates, the IMP and IZFA concepts

can be used to define the instantaneous axis of significant moment components, which

can lead to accidents such as in the case of vehicle rollovers.
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1 | INTRODUCTION

Solid‐ and fluid‐inertia forces and their coupling with the gravity

potential in complex motion scenarios are not well understood due to

the lack of accurate nominal measures of the continuum kinematics

and forces. Developing such nominal measures will contribute to a

better understanding of the system dynamics and stability and to

identifying the root causes of system failure and accidents. These

nominal measures are particularly important in developing operation

and safety guidelines for the transportation of hazardous materials

(HAZMAT), where the effect of liquid‐sloshing oscillations on vehicle

dynamics and stability has not been thoroughly investigated and is

not well understood. Solids and fluids have an infinite number of

degrees of freedom and have distributed inertia and elasticity, and

consequently, their dynamics is governed by high‐dimensional

nonlinear models. Having meaningful qualitative and quantitative
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low‐order nominal measures of the kinematics and forces, which

have dimensions independent of the model dimension, will contribute

to a better understanding of the system dynamics.

Three‐dimensional recorded motion trajectories (RMT) of contin-

uum points can be used to define inertia forces whose magnitudes

and directions can be more conveniently analyzed quantitatively or

qualitatively by using the new nominal geometry and force measures.

Such nominal measures, which can be designed to capture the effects

of the actual forces and reference‐configuration geometry, can

also contribute to developing credible virtual prototyping approaches

for accident reconstructions. The new nominal measures for the

characterization of continuum oscillations and forces have their roots

in the continuum‐mechanics partial‐differential equations of equilibrium

and Frenet geometry of differential calculus.1–5 The use of a material‐

point approach allows developing general procedures independent of

the formulation or the type of generalized coordinates used to

develop the dynamic equations. This allows defining a general inverse

problem to account for the actual forces by defining new force

integrals and nominal motion trajectories. Using the material‐point

approach and equating the continuum inertia force to the sum of the

applied, stress, and constraint forces lead to identifying an instanta-

neous zero‐force axis (IZFA) along which no continuum forces are

applied and an instantaneous motion plane (IMP) that includes the

resultant of all forces. In the case of vehicle dynamics, an IMP with

normal along the yaw axis leads to predominantly yaw moment, an

IMP with normal along the pitch axis leads to predominantly pitch

moment, and an IMP with normal along the roll axis leads to

predominantly roll moment; such a roll moment can cause rollover.

The new nominal measures, which are given clear physical

interpretation using new concepts such as Frenet angles for describing

curve geometry, can contribute to a better understanding of the effect

of the coupling between gravity potential, inertia forces, and reference‐

configuration geometry on the continuum oscillations. Frenet bank

angle, in particular, defines IMP superelevation. In the case of general

motion scenarios, the centrifugal forces do not lie, in general, in a plane

parallel to the horizontal plane, as it is normally assumed when

developing operation and safety guidelines such as balance speeds.

Therefore, the analysis of RMT using new data‐driven‐science (DDS)

multibody system (MBS) algorithms can shed light on new precise

force balance and balance–speed definitions. This short paper explains

the procedure for developing the nominal continuum‐based geometry

and force measures using a material‐point approach independent of the

type of formulation or generalized coordinates used to develop the

continuum dynamic equations of motion. The new nominal measures

can be considered as a generalization of force concepts used in particle

and rigid‐body mechanics.6–9

2 | BACKGROUND

The material‐point approach used in this investigation is based on the

partial differential equations of equilibrium of a continuum, which has

an infinite number of degrees of freedom, ρr ̈ f f f= + +b s e,
10,11 and

Frenet geometry that defines the Frenet frame transformation

A t n b= [ ]f ,1–5 where ρ is the mass density; f f,b s, and fe are,

respectively, vectors of body, stress, and other applied forces that

may include contact and constraint forces; and t n, , and b are,

respectively, the tangent, normal, and binormal vectors of a space

curve. To define a general inverse problem and develop the continuum

nominal force measures, a material‐point approach is adopted

regardless of the generalized coordinates used to formulate the

dynamic equations. This approach is to be distinguished from writing

r r q= ( ), where q is the vector of generalized coordinates, which can

have orientation parameters giving rise to the definition of

moments.6–8,12 For example, in the case of the absolute nodal

coordinate formulation (ANCF), finite rotations are not used as nodal

coordinates.11 For ANCF finite elements, the global position of an

arbitrary point on an element of a body i can be written as

t tr x S x e( , ) = ( ) ( )i i i , where S x( )i is the FE shape‐function matrix that

depends on the FE spatial coordinates x x xx = [ ]1 2 3
T and te ( )i is

the vector of element nodal coordinates that depends on time t.

At a given node k , absolute position and position‐vector gradients

define the vector of nodal coordinates as e r r r r= [ ]ik ik
x
ik

x
ik

x
ik TT

1

T

2

T

3

T
.

For an arbitrary point, the position vector t tr x S x e( , ) = ( ) ( )i i i , the

velocity vector t tr ̇ x S x ė( , ) = ( ) ( )i i i , and the acceleration vector

t tr ̈ x S x ë( , ) = ( ) ( )i i i that account for all the forces acting on the system

can be recorded using MBS simulations.

Therefore, regardless of the formulation and generalized

coordinates used, MBS simulations of low‐ and high‐fidelity

continuum models allow recording absolute position, velocity,

and acceleration of the FE integration points to define the

continuum inverse problem developed in this paper. A three‐

dimensional space curve can be written in a parametric form as

tr r= ( ), where t is the curve parameter, which can be considered

time.1–5 In general, the motion–trajectory curve tr r= ( ) is a general

three‐dimensional curve with non‐zero curvature and torsion. The

acceleration vector of a point can be written as s s Rr ̈ t n= ̈ + ( ̇ / )2 ,

where st r r= = ∂ /∂s is the unit tangent to the curve, n is the curve

normal, R is the radius of curvature, and s is the curve arc length.

As discussed in Refs. 13, 14, the normal vector, which defines

centrifugal‐force direction, can be written in terms of Frenet

angles as

ψ ϕ ψ θ ϕ ψ ϕ

ψ θ ϕ θ ϕ

n = [−sin cos + cos sin sin cos cos +

sin sin sin − cos sin ] ,T
(1)

where ψ θ, , and ϕ are, respectively, Frenet curvature, vertical‐

development, and bank angles. The gravity component along the

normal vector is m g θ ϕcos sinp , where m ρ V= dp is an infinitesimal

mass and g is the gravity constant. Absolute position, velocity, and

accelerations of FE integration points lie in the t n− IMP, in which

the resultant of all other forces acting on the continuum point lies.

The Frenet binormal vector b defines the IZFA at this point.15 The IMP

and IZFA definitions demonstrate that, when RMT are used, Frenet

geometry has a clear physical interpretation associated with the

actual forces applied to the system.
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3 | NOMINAL GEOMETRY AND FORCE
MEASURES

Point trajectories can be used to define nominal trajectories and

forces that have a clear physical interpretation. Using motion

trajectories recorded at FE integration points, continuum inertia

forces can be computed as

∫ ∫ρ V ρ s s R VF r ̈ r n= d = ( ̈ + ( ̇ / ) )di
V V

s
2

(2)

which can be written as F FF F F t n= + = +i it ic it c ic c, where







∫

∫

F ρ s V

F ρ s R V

F t r

F n n

= = ( ̈ )d

= = (( ̇ / ) )d

it it c V s

ic ic c V
2 (3)

tc is a nominal continuum tangent vector andnc is a nominal continuum

normal vector. The t n−c c plane defines the continuum nominal IMP

and the normal to this plane, b t n= ×c c c, defines the nominal IZFA.

The scalars Fit and Fic can be used with proper integration methods to

define continuum nominal curve geometric properties such as radius of

curvature Rc, curvature κc, and arc length sc following a procedure

similar to the one described in the literature.13,14 Furthermore,

Frenet angles can be used to define coordinates of the continuum

nominal space curve sr r= ( )c c c .
9 These new formulations, and numerical

procedures will define new continuum nominal force and geometry

measures. The centrifugal inertia force can be used to determine the

nongyroscopic inertia moment associated with wheel/road or wheel/rail

contact points,9 thereby introducing a new continuum‐based force

balance to quantify the effect of the continuum oscillations on

the system's nonlinear dynamics and stability. In the case of vehicle

dynamics, an IZFA parallel to the roll axis produces a predominantly roll

moment that can cause rollover, an IZFA parallel to the pitch axis

produces a predominantly rocking moment, and an IZFA parallel to the

yaw axis produces a predominantly sway moment. Furthermore,

the continuum‐nominal tangent vector tc can be written in terms of the

continuum‐nominal Frenet angles as9,13,14

s ψ θ ψ θ θt r= d /d = [cos     cos   sin     cos   sin   ] ,c c c c c c c c
T (4)

where subscript c refers to the nominal‐continuum variables.

Knowing nominal tangent vector tc, numerical integration can

be used to determine the continuum‐nominal space curve.

The continuum‐nominal bank angle ϕc defines the continuum IMP

superelevation.9,13,14

The force integrals obtained using the material‐point approach

used in this paper should be distinguished from the generalized

forces obtained when the system generalized coordinates are

used. For example, the integration of both sides of the equation

ρr ̈ f f f= + +b s e over the volume leads to three‐dimensional vectors

regardless of the number of generalized coordinates used. Internal

forces, which are equal in magnitude and of opposite directions, such

as elastic forces, will cancel when performing the integration. The

effect of such internal forces, however, on bodies that are in contact

with the solids and fluids is taken into consideration since the RMT

account for the effect of all applied forces including the contact

forces.

4 | SUMMARY

Geometry plays a fundamental role in developing credible proto-

typing algorithms and in the definition of continuum oscillations and

forces. Continuum inertia forces are equal to the sum of the applied,

stress, and constraint forces. The IMP includes the resultant of all

forces, and the IMP normal vector defines the moment axis of the

resultant force. An IMP normal vector parallel to the roll axis leads

to predominantly roll moment, an IMP normal vector parallel to the

pitch axis leads to predominantly pitch moment, and an IMP normal

vector parallel to the yaw axis leads to predominantly yaw moment.

Furthermore, the IMP orientation defines the effect of gravity

potential on the force balance. Using the DDS material‐point

approach, the continuum‐mechanics partial‐differential equations

of equilibrium, and RMT at FE integration points, an inverse problem

can be solved and used to define nominal inertia force integrals and

identify nominal continuum tangential and centrifugal inertia forces.

A nominal IMP and IZFA can be defined for the continuum, and

nominal IMP superelevation that enters into the definition of the

force balance and its dependence on the gravity force can be

determined. The material‐point approach proposed for the analysis

of the motion trajectories is independent of the formulation and

generalized coordinates used to develop the dynamic equations of

motion.
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