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Constrained Large-Displacement
Thermal Analysis
Two different cases are encountered in the thermal analysis of solids. In the first case,
continua are not subject to boundary and motion constraints and all material points expe-
rience same displacement-gradient changes as the result of application of thermal loads.
In this case, referred to as unconstrained thermal expansion, the thermal load produces
uniform stress-free motion within the continuum. In the second case, point displacements
due to boundary and motion constraints are restricted, and therefore, continuum points
do not move freely when thermal loads are applied. This second case, referred to as con-
strained thermal expansion, leads to thermal stresses and its study requires proper identi-
fication of the independent coordinates which represent expansion degrees-of-freedom.
To have objective evaluation and comparison between the two cases of constrained and
unconstrained thermal expansion, the reference-configuration geometry is accurately
described using the absolute nodal coordinate formulation (ANCF) finite elements.
ANCF position-gradient vectors have unique geometric meanings as tangent to coordi-
nate lines, allowing systematic description of the two different cases of unconstrained
and constrained thermal expansions using multiplicative decomposition of the matrix of
position-gradient vectors. Furthermore, generality of the approach for large-
displacement thermal analysis requires using the Lagrange–D’Alembert principle for
proper treatment of algebraic constraint equations. Numerical results are presented to
compare two different expansion cases, demonstrate use of the new approach, and verify
its results by comparing with conventional finite element (FE) approaches.
[DOI: 10.1115/1.4056182]
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1 Introduction

Temperature has significant effect on a wide range of physics
and engineering applications that include manufacturing, automo-
tive, machine, and aerospace systems. While expansion due to
thermal loads in absence of boundary and motion constraints is
considered stress-free process, such an expansion can lead to sig-
nificant change in the reference-configuration geometry as well as
material properties. Temperature effect cannot be ignored as evi-
denced by large number of investigations in the areas of solid and
fluid mechanics [1–11]. In conventional computational
approaches for solution of thermo-elasticity problems, thermal
expansion has been assumed, for the most part, to produce volu-
metric changes without distortion or shear [12]. Nonetheless, vol-
umetric change and thermal expansion can lack uniformity
because of constraints or restrictions imposed on displacements of
boundary points.

Therefore, in case of thermal-load applications, two different
cases of displacements can be encountered. In the first case,
motion of the boundary points of the continuum is not restricted.
In this case, under assumption of homogeneous and isotropic
material and constant thermal-expansion coefficients, all material
points experience the same displacement-gradient change as the
result of thermal-load application. This case of homogeneous con-
tinuum motion is referred to as an unconstrained thermal expan-
sion. In a second and different scenario, the motion of material
points is restricted due to boundary and/or motion constraints, and
therefore, such points do not move freely when the thermal load is
applied, as in case of a rod with its endpoints are not allowed to

move during thermal-expansion process. This case is referred to
in this paper as constrained expansion because displacements of
material points are subjected to boundary and/or motion con-
straints when thermal loads are applied. Therefore, “constrained
thermal expansion” refers to thermal expansion that is not stress-
free because of kinematic restrictions.

In both cases of unconstrained and constrained thermal expan-
sions, however, reference-configuration geometry needs to be
accurately described. Consequently, geometry plays an important
role in formulation of continuum governing equations. In compu-
tational geometry methods, control points are used with knot mul-
tiplicity and knot vectors to define shapes and degree of continuity
of curves, surfaces, and volumes [13–18]. However, as discussed
in the literature, use of computational geometry methods as
mechanics analysis tools has limitations, which include rigid
structure, use of nonmaterial points, and use of the concepts of
knot vector and knot multiplicity that restrict the generality of for-
mulating the multibody system (MBS) constraint equations [19].

Study of articulated mechanical systems (AMS) has been con-
sidered in mechanical-design literature separately from the vast
field of thermal analysis. Articulated mechanical systems are sub-
ject to nonlinear motion constraints that must be enforced at posi-
tion, velocity, and acceleration levels in the process of numerical
integration of motion equations. Articulated mechanical systems,
whose dynamics is governed by Lagrange–D’Alembert principle,
often operate in high-temperature environment, as in the case of
slider-crank mechanisms, commonly used in engines. Despite
such common examples, the literature lacks an approach that
allows solving thermo-elasticity problems of articulated mechani-
cal systems. To address this limitation, a new approach is pro-
posed in this investigation for solving thermo-elasticity problems,
in which systems subjected to boundary and motion constraints
may undergo arbitrarily large displacements. This approach is
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based on integration of Lagrange–D’Alembert principle and
large-displacement thermal analysis based on multiplicative
decomposition of position-gradient matrix.

In the computational multiplicative-decomposition approach
proposed in this investigation, four configurations are used to
define continuum displacements and solve thermo-elasticity prob-
lems [20–22]. The four configurations are conveniently described
using FE absolute nodal coordinate formulation (ANCF), which
allows for large displacements including rigid-body displace-
ments, and employs position-gradient vectors with unique geo-
metric meaning as tangents to coordinate lines [23]. Therefore,
the computational approach proposed in this study allows apply-
ing thermal loads during constrained large displacements, does
not impose restrictions on choice of thermal coefficients, accu-
rately captures reference-configuration geometry, and allows for
systematic integration with multibody system (MBS) algorithms.
While ANCF finite elements have been widely used in many
applications [24–52], such elements have not previously been
used to provide objective evaluation for and comparison between
unconstrained and constrained thermal expansions. The specific
contributions of this study can be summarized as follows:

(1) A new approach is proposed for the solution of thermo-
elasticity problems, in which system components subjected
to boundary and motion constraints may undergo arbitrarily
large displacements. This approach, applicable to articu-
lated mechanical systems, requires integration of
Lagrange–D’Alembert principle and large-displacement
thermal analysis based on multiplicative decomposition of
position-gradient matrix.

(2) Differences in kinematic description used in two different
cases of unconstrained and constrained thermal expansions
are explained. It is shown that in case of constrained ther-
mal expansion, displacements of different material points
as the result of applying thermal loads are not the same
because of boundary constraints.

(3) Configuration of constrained thermal expansion is intro-
duced and used in the formulation of continuum kinematic
equations. Use of strain additive decomposition is avoided
to generalize the method to large-displacement and thermal
analysis of MBS applications. To this end, use of
Lagrange–D’Alembert principle is necessary for proper
treatment of algebraic constraint equations enforced during
system motion.

(4) In the study of constrained thermal expansion considered in
this investigation, four configurations are employed to develop
kinematic equations: straight configuration, reference configu-
ration, thermal-expansion configuration, and current configu-
ration. The four-configuration approach allows changing
temperature during system large displacement while capturing
accurate reference-configuration geometry.

(5) Fundamental differences between the approach used in this
paper and conventional FE approaches used in thermal
analyses are identified. As discussed in the paper, use of
ANCF position-gradient vectors as nodal coordinates
allows for describing reference and thermal-expansion con-
figurations using nodal coordinates. Furthermore, fully par-
ameterized ANCF beam elements capture Poisson effect,
required for accurate modeling of cross section
deformations.

(6) Numerical results are presented to demonstrate using the
approach presented in this investigation, compare between
results obtained using assumptions of unconstrained and
constrained thermal expansions, and compare results with
results obtained using conventional FE approaches. MBS
mechanism subjected to large displacements including
finite rotations is considered to demonstrate integration of the
proposed thermal-analysis approach with Lagrange–
D’Alembert principle.

The transient heat conduction equation is a first-order partial
differential equation, while the motion equations of the continuum
are second-order ordinary differential equations obtained from the
continuum-mechanics partial differential equations using approxi-
mation methods. In this study, the temperature profile is assumed
known and the two equations are assumed decoupled, therefore,
the solution of the first-order partial differential equation of the
heat conduction is assumed known. Nonetheless, the heat equation
can be solved using an interpolation similar to the ANCF interpola-
tion that ensures continuity of the spatial derivatives. The use of
such an interpolation for the temperature to solve the heat equation
ensures the continuity of the temperature gradients at the nodal
points when the heat equation is numerically solved.

2 Displacement Field

In case of unconstrained thermal expansion, changes in gradients
throughout the continuum are assumed the same for all material
points; while in case of constrained expansion, material points may
experience different displacements. These two different cases, uncon-
strained and constrained expansions, are further explained using the
fully parameterized ANCF elements briefly reviewed in this section.

2.1 Absolute Nodal Coordinate Formulation Finite Ele-
ments. The basic difference between unconstrained and con-
strained expansions can be explained using displacement field of
the fully parameterized ANCF finite elements. In general, ANCF
displacement field is written as rðx; tÞ ¼ SðxÞeðtÞ, where r is the
global position vector of an arbitrary FE point, S is the FE shape-
function matrix, e is the FE vector of coordinates, x ¼
½ x1 x2 x3 �T is the vector of element spatial coordinates, and t
is time [40]. In case of ANCF elements, polynomial coefficients
are replaced by position and position-gradient coordinates. Use of
position-gradient coordinates eliminates need for using, as nodal
coordinates, noncommutative finite rotations which may lack
clear physical interpretations and are not directly related to curva-
ture and torsion in case of large-displacement analysis [53].

For fully parameterized ANCF elements, the vector of coordi-
nates at given node k can be written in the spatial analysis as
ek ¼ ½ rkT rk

T

x1
rk

T

x2
rk

T

x3
�T ; k ¼ 1; 2;…; nn, where nn is the

number of element nodes, and rxl ¼ @r=@xl; l ¼ 1; 2; 3. The fact
that independent polynomial coefficients can be replaced by
ANCF position and position-gradient coordinates without encoun-
tering singularities implies that all ANCF coordinates are inde-
pendent. Because nine position gradients define nine independent
modes of displacements; three rotation and six deformation
modes, ANCF kinematic description can be used to explain inde-
pendence of shear and bending in case of beam problems [54].

2.2 Absolute Nodal Coordinate Formulation Planar Beam
Element. The planar ANCF shear-deformable beam element,
used in this study, has two nodes. Each node k has six coordinates:
two translational coordinates rk and four position-gradient coordi-
nates defined by two two-dimensional vectors rkx1 and
rkx2 ; k ¼ 1; 2, where x ¼ ½ x1 x2 �T are element spatial coordi-
nates. Therefore, vector of nodal coordinates at node k is defined
as ek ¼ ½ rkTrkTx1 r

kT

x2
�T , that is, the element has total of twelve coor-

dinates. The position vector of element arbitrary point is written
as rðx; tÞ ¼ SðxÞeðtÞ, where t is time, and SðxÞ and eðtÞ are,
respectively, element shape-function matrix and vector of nodal
coordinates defined for this element as

S ¼ ½ s1I s2I s3I s4I s5I s6I �
e ¼ ½ ðe1ÞT ðe2ÞT �T ¼ ½ r1T r1

T

x1
r1

T

x2
r2

T

r2
T

x1
r2

T

x2
�T

)
(1)

where I is 2� 2 identity matrix; and si; i ¼ 1; 2;…; 6, are shape
functions defined as
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s1 ¼ 1� 3n2 þ 2n3; s2 ¼ lðn� 2n2 þ n3Þ;
s3 ¼ lðg� ngÞ; s4 ¼ 3n2 � 2n3;

s5 ¼ lð�n2 þ n3Þ; s6 ¼ lng

9>=
>; (2)

where n ¼ x1=l; g ¼ x2=l, and l is element length. Using
element displacement field, one can show that vectors of
position gradients at an arbitrary point on the element can be
written as

rx1 ¼
@r

@x1
¼ s1;1r

1 þ s2;1r
1
x1
þ s3;1r

1
x2
þ s4;1r

2 þ s5;1r
2
x1
þ s6;1r

2
x2

rx2 ¼
@r

@x2
¼ s3;2r

1
x2
þ s6;2r

2
x2

9>>=
>>;
(3)

where sm;n ¼ @sm=@xn, m ¼ 1; 2;…; 6, n ¼ 1; 2, and

s1;1 ¼ 6ð�nþ n2Þ=l; s2;1 ¼ ð1� 4nþ 3n2Þ;
s3;1 ¼ �g; s4;1 ¼ 6ðn� n2Þ=l; s5;1 ¼ ð�2nþ 3n2Þ;
s6;1 ¼ g; s3;2 ¼ ð1� nÞ; s6;2 ¼ n

9>>=
>>; (4)

are derivatives of the shape functions with respect to the FE spa-
tial coordinates.

3 Unconstrained Expansion

Unconstrained expansion refers in this study to displacement
mode in which all element material points have same change in
displacement gradients during thermal-expansion process. This
mode of displacement is observed in case of stress-free thermal
expansion without any constraints imposed on the motion of the
continuum boundary points. In process of thermal expansion, the
orientation of position-gradient vectors is assumed to remain
unchanged, and therefore, there is no shearing. That is, gradient
vectors experience only stretch and such a stretch leads to only
volumetric change.

For simplicity, if an assumption is made that the element is ini-
tially straight and undeformed, longitudinal and transverse
position-gradient vectors at arbitrary FE points can be written,
respectively, as rx1 ¼ ½ 1 0 �T and rx2 ¼ ½ 0 1 �T . Stretches a1
and a2 of longitudinal and transverse gradient vectors lead,
respectively, to

Drx1 ¼ a1½ 1 0 �T ; Drx2 ¼ a2½ 0 1 �T (5)

In case of unconstrained expansion, it is assumed that position of
material points is determined from the following differential
equation

dr ¼ ð@r=@xÞdx ¼ ½ @r=@x1 @r=@x2 �
dx1
dx2

� �
¼ Jdx (6)

where J ¼ @r=@x ¼ ½ @r=@x1 @r=@x2 � is matrix of position-
gradient vectors. Using the preceding two equations with the
assumption that the first node remains fixed defines position of
material points after unconstrained expansion as

rðx1; x2Þ ¼ ro þ Dr ¼ ½ x1ð1þ a1Þ x2ð1þ a2Þ �T (7)

where ro ¼ ½ x1 x2 �T is the arbitrary-point position before expan-
sion. This equation shows that all material points have the same
change in displacement gradients. It is clear that in this case of
unconstrained expansion, beam length and height change linearly
as functions of a1 and a2, respectively. Figure 1 shows an example

of such unconstrained stretch. The element nodal positions after
expansion are determined by integrating differential equation of
Eq. (6).

4 Constrained Expansion

In case of constrained expansions, motion of continuum bound-
ary points during thermal-load application is constrained. That is,
position of these boundary points cannot be determined from the
differential relationship presented in the preceding section alone
since independent coordinates must be identified first and used to
determine dependent gradients. Material-point translations can be
independent of gradients because an infinitesimal volume in pla-
nar analysis has six modes of displacements, stretch of gradients
at a point does not always imply displacement of this particular
point. That is strains at a point that has zero displacements can be
different from zero; a fact that can be easily demonstrated using
ANCF displacement field.

4.1 Strains and Displacements. If longitudinal and trans-
verse position-gradient vectors are stretched by amounts a1 and

a2, respectively; one can still write rx1 ¼ ð1þ a1Þ½ 1 0 �T and

rx2 ¼ ð1þ a2Þ½ 0 1 �T for all material points. In case of ANCF

planar element considered, one has at the nodal points rkx1 ¼
ð1þ a1Þ½ 1 0 �T and rkx2 ¼ ð1þ a2Þ½ 0 1 �T ; k ¼ 1; 2. If posi-

tions of the two nodes remain fixed, one has r1 ¼ ½ 0 0 �T and

r2 ¼ ½ l 0 �T . Therefore, the vector of nodal coordinates in this
case can be written as

e¼ ½0 0 ð1þa1Þ 0 0 ð1þa2Þ l 0 ð1þa1Þ 0 0 ð1þa2Þ �T

(8)

Using this displacement field, one can write the position vector of
arbitrary element point as the result of constrained expansion as

r ¼ Se ¼ l
ð1þ a1Þn� a1ð3n2 � 2n3Þ

gð1þ a2Þ

" #
(9)

Clearly, this equation leads to definitions of positions of material
points different from the definitions obtained in case of

Fig. 1 Effect of unconstrained expansion on the beam (Dashed
line: Unconstrained expansion, a15 1, a25 0.5; Solid line: No
expansion)

Fig. 2 Effect of constrained expansion on the beam (Dashed
line: Constrained expansion, a15 1, a25 0.5; Solid line: No
expansion)
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unconstrained expansion. Using this equation, one can also show
the effect of the FE interpolation on position gradients within the
element. Figure 2 shows an example of such constrained thermal
expansion in case of the planar beam element. The results of this
figure show that in case of constrained thermal expansion, nodal
positions do not change, causing displacements of continuum inte-
rior points depicted by dashed lines. Effect of restrictions caused
by boundary constraints becomes clear by comparing with results
of interior displacements in case of unconstrained thermal expan-
sion shown by dashed lines shown in Fig. 1. Figure 3 shows plots
of positions and displacements of points along beam centerline
ðx2 ¼ 0Þ whose overall length does not change as result of the
expansion. Figure 4 shows norm of rx1 as function of spatial coor-
dinate x1 when x2 ¼ 0. Using Eq. (9), it can be shown that the
norm of rx2 remains constant along the beam and is equal to
1þ a2. Position-gradient vectors can be also defined using Eq. (9)

as rx1 ¼ ½ 1þ a1ð1� 6ðn� n2ÞÞ 0 �T and rx2 ¼ ½ 0 1þ a2 �T .
Conditions r1 ¼ ½ 0 0 �T and r2 ¼ ½ l 0 �T for nodal positions

at thermal-analysis preprocessing stage do not imply that motion
of nodes are constrained in any subsequent dynamic analysis.

That is, the conditions r1 ¼ ½ 0 0 �T and r2 ¼ ½ l 0 �T are used to
determine the displacement field after constant initial thermal

expansion, but nodes are free to move in subsequent dynamic
analysis as demonstrated in the section of numerical examples.

4.2 Generalization. In case of constrained thermal expan-
sion, boundary and motion constraints can in general be written in
a vector form as Cðx; e; tÞ ¼ 0, where C is vector function of nc
algebraic constraint equations that restrict motion of boundary or
interior nodes, and e is vector of FE mesh nodal coordinates which
has dimension n. While simple examples are used in this study to
focus on constrained-expansion concepts, vector C of constraint
functions can be nonlinear and can depend on large-displacement
coordinates. Motion constraints on boundary of the FE mesh
can be used to eliminate degrees-of-freedom using
Lagrange–D’Alembert procedure, which is the foundation of
MBS algorithms. A virtual change in constraint functions C leads
to Cede ¼ 0, where Ce ¼ @C=@e is constraint-Jacobian matrix.
When ANCF elements are used, the vector of mesh coordinates e
can be written as e ¼ eo þ ed , where eo is constant vector of nodal
coordinates in the reference configuration, and ed is the displace-
ment vector. Therefore, one can write Cede ¼ Ceded ¼ 0.
Because of the constraints, the vector of nodal displacements can
be partitioned as independent coordinates edi and dependent coor-

dinates edd, that is, ed ¼ ½ eTdi eTdd �
T
. Using this partitioning and

assuming that constraint equations are linearly independent, one
can write Ceded ¼ Cedddedd þ Cedidedi ¼ 0, where Cedd ¼
@C=@edd is nc � nc square nonsingular constraint Jacobian matrix
associated with the dependent coordinates edd, and Cedi ¼
@C=@edi is nc � ðn� ncÞ constraint Jacobian matrix associated
with the independent coordinates edi. One can, therefore,

write dedd ¼ �C�1
edd
Cedidedi. This equation, leads to

de ¼ ½ deTdi deTdd �
T ¼ ½ I �ðC�1

edd
CediÞ

T �Tdedi, where I is ðn�
ncÞ � ðn� ncÞ identity matrix. It follows that de ¼ Bdidedi, where
Bdi ¼ ½ I �ðC�1

edd
CediÞ

T �T is velocity-transformation matrix. In

case of linear constraints, equation de ¼ Bdidedi leads to
e ¼ Bdiedi, as demonstrated in the appendix of the paper. The par-
titioning of the coordinates as independent and dependent is
accomplished using a Gaussian forward elimination procedure
applied to the nonsquare Jacobian matrix of the constraint equa-
tions. The linearly independent columns after the Gaussian elimi-
nation define the dependent coordinates. This procedure of
identifying the independent coordinates has been used in the MBS
literature and there are no numerical problems associated with
such a procedure as long as the kinematic constraint equations are
linearly independent.

Fig. 3 Position and displacement of the points along the
beam centerline in case of constrained expansion ((a) Position,
(b) Displacement)

Fig. 4 Norm of rx1 along the beam centerline in case of con-
strained expansion
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A procedure based on Lagrange–D’Alembert principle for
treatment of boundary and motion constraints requires satisfying
the algebraic constraint equations at the position, velocity, and
acceleration levels during computer simulations. For systems sub-
jected to large displacements, spinning motion, and nonlinear
kinematic constraints, thermal loads can be applied during system
motion with thermal and material coefficients that are
temperature-dependent.

5 Position-Gradient Multiplicative Decomposition

In case of large strains, use of assumptions of strain additive
decomposition often adopted for small-deformation thermal anal-
ysis is not justified [55,56]. In the strain additive decomposition,
based on super-position principle, displacement gradients (not
position gradients) are used to define thermal expansion. This sim-
plified approach, which has been used with conventional FE dis-
placement fields, does not allow for properly capturing complex
reference-configuration geometries. In this conventional thermal-
analysis approach, normal strains are approximated using
gradients of displacement vector u ¼ ½ u1 u2 u3 �T as
eii ¼ @ui=@xi; i ¼ 1; 2; 3. Because such linearization of
Green–Lagrange strains is not applicable to large-displacement
problems and neglects geometric nonlinearities, in this section,
assumptions underlying strain additive decomposition are high-
lighted before discussing a gradient multiplicative decomposition.
ANCF finite elements have been also used in thermo-elasticity
analysis in different applications [57–61]. However, these investi-
gations are not based on the multiplicative decomposition adopted
in this study [62].

5.1 Additive Decomposition. In the conventional FE strain
additive decomposition used in the small-deformation thermal
analysis, total strain, defined using Green–Lagrange strain tensor
e ¼ ðJTJ� IÞ=2, is equal to sum of elastic strain ee and stress-free
thermal strain eH, that is, e ¼ ee þ eH. In Voigt vector form, total
strains can be written as ðeÞv ¼ ½ e11 e22 e33 e12 e13 e23 �T ,
where eii; i ¼ 1; 2; 3, and eij; i 6¼ j; i; j ¼ 1; 2; 3, are, respectively,
normal and shear strains. Total strains ðeÞv are assumed known from
solution of the system equations. The stress-free thermal strain is writ-
ten as ðeHÞv ¼ ½ aH1DH aH2DH aH3DH 0 0 0 �T , where
aHi; i ¼ 1; 2; 3 are the coefficients of thermal expansion, and DH is
the temperature change [12]. Therefore, the elastic strain is defined as

ðeeÞv¼ðeÞv�ðeHÞv
¼½ðe11�aH1DHÞ ðe22�aH2DHÞ ðe33�aH3DHÞ e12 e13 e23 �T

(10)

This equation shows the strain additive decomposition, based on
principle of super-position, and consequently, is not applicable to
nonlinear large-strain problems.

5.2 Four-Configuration Multiplicative Decomposition. In
analysis of large-displacements, multiplicative decomposition of
matrix of position-gradient vectors is used instead of strain addi-
tive decomposition. As shown in Fig. 5, the continuum kinematics
in the thermal analysis can be described using four different con-
figurations, namely, straight configuration defined by coordinates
x ¼ ½ x1 x2 x3 �T , reference configuration defined by coordi-
nates X ¼ ½X1 X2 X3 �T , thermally expanded configuration
defined by coordinates XH ¼ ½XH1 XH2 XH3 �T , and current
configuration defined by coordinates r ¼ ½ r1 r2 r3 �T . Refer-
ence configuration is the configuration before thermal-load appli-
cation, while thermally expanded configuration is configuration
after thermal-load application. If temperature is not constant and
is function of time, the thermally expanded configuration also
changes with time. The reference configuration is assumed stress-
free configuration before considering effect of temperature

change, and thermally expanded configuration evolves with
expansion that does not contribute to elastic stresses. Volumes
associated with the straight, reference, thermally expanded, and
current configurations are denoted, respectively, as V, Vo, VH, and
v. A line element dr in current configuration can be written as

dr ¼ @r

@X
dX ¼ JdX ¼ @r

@XH

� �
@XH

@X

� �" #
@X

@x

� �
dx

¼ JrHJHXJodx (11)

If thermal load is applied at initial configuration only, one
can, alternatively, in case of constant temperature, consider
thermally expanded configuration as reference configuration
and write dr ¼ ð@r=@XHÞdXH ¼ JrH; dXH ¼ JrHð@XH=@xÞdx
¼ JrHJoþHdx, where JrH ¼ @r=@XH; JHX ¼ @XH=@X,
JoþH ¼ @XH=@x, and Jo ¼ JXx ¼ @X=@x. In this special case of
constant temperature, the matrix of position-gradient vectors J
used in the definition of the elastic Green–Lagrange strain tensor
is defined as J ¼ @r=@XH ¼ JrH. That is, if u is displacement
vector, two different representations can be used for the vector
r; one is based on reference configuration X as
rðX; tÞ ¼ Xþ uðX; tÞ, and the other is based on thermally
expanded configuration XH as rðXH; tÞ ¼ XHðX; tÞ þ uðXH; tÞ. If
there is no thermal load, the two configurations coincide and
XH ¼ X. In this case, JrH ¼ @r=@X; JHX ¼ @XH=@X ¼ I. If the
temperature changes with time, XH is not fixed, that is,
XH ¼ XHðX; tÞ; and in this case, a displacement formulation must
be developed for articulated mechanical systems (AMS) thermo-
elasticity problem. This case of general thermal expansion will be
considered in future investigations. If, on the other hand, the tem-
perature is constant, XH can be considered as the reference config-
uration and one can write

dr ¼ @r

@XH
dXH ¼ JdX ¼ @r

@XH

� �
@XH

@X

� �
@X

@x

� �� �
dx

¼ JJHXJodx ¼ JJoþHdx

(12)

where in this case, the matrix of position-gradient vectors J used
to define Green–Lagrange strain tensor is J ¼ @r=@XH,
JoþH ¼ JHXJo, and dv ¼ jJJoþHjdV ¼ jJjjJoþHjdV. Effect of con-
stant temperature can be accounted for at a preprocessing stage to
reduce number of mathematical operations during numerical solu-
tion of system equations.

The four-configuration approach discussed in this section
allows for systematically accounting for time- and space-
dependent temperatures. The position-gradient matrix J ¼
@r=@X ¼ JrHJHX can be iteratively updated during computer sim-
ulations depending on changes in the temperature value.
The method also allows fluctuations in temperatures and for

Fig. 5 Thermal expansion configurations
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treatment of nonlinear constraints on ANCF gradients using
Lagrange–D’Alembert principle.

5.3 Comparison with Previous Investigations. Kinematic
equations developed in this section based on the four-
configuration multiplicative decomposition demonstrate unique
geometric interpretation of position gradients as tangent to coordi-
nate lines (parameters) [40,63–65]. Displacement gradients do not
have the same geometric meaning [23]. Matrix of displacement-
gradient vectors can be singular or even null matrix, while matrix
of position-gradient vectors is always nonsingular.

Three configurations are used in existing multiplicative-
decomposition thermal-stress-analysis approaches: (1) Initial
stress-free configuration at uniform reference temperature; (2)
Deformed current configuration characterized by nonuniform
stress and temperature fields; and (3) Intermediated material con-
figuration determined by release of isothermal stresses of the cur-
rent configuration to allow thermal stress-free deformation to
occur. The significance of intermediate material configuration was
emphasized in the literature [66–68]. Using this approach, the
total deformation gradient is decomposed into product of purely
elastic and thermal parts. To characterize material behavior in
thermo-elasticity context, the constitutive equations are developed
using this decomposition. Multiplicative decomposition of
deformation-gradient matrix was introduced in thermo-elasticity
literatures several decades ago [69–72]. Several researchers used
multiplicative decomposition of deformation gradients for model-
ing thermo-elastic continua [20,22,73–79]. Recently, the multipli-
cative decomposition of deformation gradients was used with
finite–discrete element method for thermal fracturing analysis of
rocks [80]. Nonetheless, when FE method is used in thermo-
elastic large-displacement analysis, an incremental-rotation
approach is often used when structural beam, plate, and shell FE
meshes are used. This approach is fundamentally different from
the nonincremental approach used in this investigation. Further-
more, in a previous investigation, the stress-free thermally loaded
configuration is defined by JH ¼ ð1þ

ÐH
Ho

aðHÞdHÞI, where aðHÞ
is temperature-dependent thermal-expansion coefficient, and Ho

is the initial temperature [21]. However, in the ANCF four-
configuration multiplicative-decomposition approach, the stress-
free thermally loaded configuration is defined by the matrix JHX

when the temperature remains constant or varies with time, dem-
onstrating generality of the ANCF multiplicative-decomposition
approach in accounting for the reference-configuration geometry.

6 Thermal-Analysis Formulation

The thermal-analysis approach described in this section is
applicable to both unconstrained and constrained thermal expan-
sions. The difference between the two cases is boundary condi-
tions and motion constraints used in determining the
displacements as the result of thermal-load application. Using the
multiplicative decomposition with ANCF finite elements, which
impose no restrictions on the amount of FE deformation or rota-
tion, general nonincremental thermal-analysis formulations and
computational algorithms can be developed to accurately account
for the reference-configuration geometry.

In case of complex geometry, position-gradient vectors in the
reference configuration may not be unit vectors. In this more gen-
eral case, dimensionless thermal expansions aHkDH; k ¼ 1; 2; 3,
can be related directly to stretch of corresponding dimensionless
nonunit position-gradient vectors rXk

; k ¼ 1; 2; 3, as

ðrXk
ÞoþH ¼ dokðr̂Xk

Þo þ ðaHkDHÞdokðr̂Xk
Þo

¼ dokð1þ aHkDHÞðr̂Xk
Þo; k ¼ 1; 2; 3

(13)

where dok is the length of the gradient vector rXk
before thermal-

load application, and r̂Xk
is unit vector along the position-gradient

vector rXk
. Using the preceding equation, stretch of position-

gradient vectors, which accounts for combined effects of
reference-configuration geometry and thermal expansion, can be
defined as

vgk ¼ jðrXk
ÞoþHj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrTXk

rXk
ÞoþH

q
¼ dokð1þ aHkDHÞ;

k ¼ 1; 2; 3
(14)

To ensure that thermal expansion does not enter into elastic-stress
formulation, one can write dr ¼ ð@r=@XHÞdXH ¼ JJoþHdx,
where J ¼ @r=XH and JoþH ¼ JHXJo. Because dr can be written
in an alternate form as dr ¼ ð@r=@xÞdx ¼ Jedx ¼ JJoþHdx, one
has J ¼ JeJ

�1
oþH. Substituting J in Green–Lagrange strain tensor e

and assuming that thermal expansion is completed before load
application and motion start, reference-configuration geometry
can be updated due to thermal expansion and Green–Lagrange
elastic strain tensor can be written as

e ¼ ðJTJ� IÞ=2 ¼ ðJ�1T

oþHðJTe JeÞJ�1
oþH � IÞ=2 (15)

This strain equation ensures that the reference-configuration
geometry and stress-free thermal expansion do not enter into the
elastic-stress formulation. Nonsingular thermal-gradient matrix
JHX can be defined as JHX ¼ aHDHþ I, where aH is diagonal
matrix with thermal-expansion coefficients aHk; k ¼ 1; 2; 3, as its
diagonal elements. The approach used in this study allows using
temperature- and space-dependent thermal-expansion and mate-
rial coefficients, that is, one can write aHk ¼ aHkðH; xÞ;
k ¼ 1; 2; 3. Figure 6 compares magnitude of two gradient vectors
rx1 and rx2 as function of spatial coordinate x1 at x2 ¼ 0 in cases
of unconstrained and constrained thermal expansions. The results
show that, in case of constrained expansion, norm of rx1 is quad-
ratic due to boundary restrictions, and minimum gradient stretch
occurs at n ¼ 0:5.

Matrix JoþH ¼ JHXJo, which accounts for combined effects of
reference-configuration geometry and thermal volumetric change,
can be formulated in straightforward manner using ANCF finite
elements. To this end, the equation roþHðxÞ ¼ SðxÞeoþH is used,
where the vector of element coordinates eoþH has position-
gradient vectors that properly account for the reference-
configuration geometry and thermal-load effect by using stretch
coefficients vgk ¼ jðrXk

ÞoþHj ¼ dokð1þaHkDHÞ; k¼ 1;2;3. These
stretch coefficients ensure that gradient-vector orientations are not
affected by the thermal expansion in absence of boundary and
motion constraints. In case of constant temperature, the matrix

Fig. 6 Norm of the gradient vector (rx1 : Unconstrained
expansion, Constrained expansion; rx2 : – – � – – Uncon-
strained expansion, Constrained expansion)

021002-6 / Vol. 18, FEBRUARY 2023 Transactions of the ASME



JoþH ¼ JHXJo can be evaluated at a preprocessing stage since
such a matrix remains constant. In case of time-varying tempera-
ture, DH¼DHðx; tÞ; one can write J¼ JrH ¼ @r=@XH and
dr¼ JJoþHdx, where JHX ¼ @XH=@X and JHX ¼ aHDHþ I. By
providing time-dependent temperature profile, properly updating
matrix JHX at integration points, and following a procedure simi-
lar to the one previously discussed; one can show that thermal
expansion does not contribute to elastic stresses.

The Green–Lagrange strain tensor defined in this section can be
used with the constitutive material model to define virtual work of
elastic or viscous forces. Inertia forces can be defined using virtual
work or kinetic energy. The details of formulating ANCF elastic
and inertia forces and of MBS equations of motion are presented
in the literature [40].

7 Numerical Results

In this section, the procedure proposed in this paper for the con-
strained thermal expansion is first applied to case of unconstrained
thermal expansion for verification purpose and to obtain a solution
that serves as a reference to measure the effect of the thermal load
in case of constrained thermal expansion. To this end, two exam-
ples are considered; the first is structural problem of cantilever
beam, while the second is simple MBS slider crank mechanism
with flexible connecting rod. To focus on demonstrating the main
concepts introduced in this study, case of constant and uniform
temperature and constant thermal-expansion coefficients is con-
sidered. In all simulations performed, the Poisson ratio is assumed
to be 0.3.

7.1 Unconstrained Thermal Expansion. The first example
used to obtain unconstrained thermal expansion results is a beam
with fixed-free boundary conditions, as shown in Fig. 7. The beam
is assumed made of soft material with modulus of elasticity
E ¼ 1:2� 108 Pa, mass density q ¼ 1500 kg=m3, and coefficient
of thermal expansion a ¼ 1� 10�4 ð1=�CÞ. The beam length
l ¼ 1m, and cross section area A ¼ 0:3� 0:3m2. The beam is
modeled using 10 two-dimensional ANCF fully parameterized
planar beam elements. Elastic forces are formulated using the gen-
eral continuum-mechanics approach using plane stress assump-
tions and neglecting damping effect. The beam is subjected to two
types of loads; namely, constant axial load of 1000N applied at
the beam-free end, and uniform thermal load. Three simulations
are performed with thermal loads DH ¼ 0 �C; 100 �C; and 200 �C.
Results due to application of these three different thermal loads
are recorded. Figure 8 shows axial deformation at the beam-free
end. The results shown demonstrate that, in case of unconstrained
thermal expansion, thermal-load effect on the deformation is not
significant.

The second example shown in Fig. 9 and used to study effect of
unconstrained thermal expansion is a slider crank mechanism with
a flexible connecting rod subjected to a uniform thermal load. The
point, connecting the slider block with the connecting rod, is per-
mitted to extend when the thermal load is applied. This is a typical
unconstrained thermal expansion problem. The crankshaft,
assumed rigid, rotates with a constant angular velocity
x ¼ p rad=s. At the initial configuration, the connecting rod and
the crankshaft are assumed to be in horizontal position. A linear
elastic model is used for the connecting rod which is assumed
to be made of soft material with modulus of elasticity

E ¼ 2� 108 Pa, mass density q ¼ 7200 kg=m3, and coefficient of
thermal expansion a ¼ 80� 10�6 ð1=�CÞ. The rod undeformed
length is l ¼ 3:048� 10�1m and cross-sectional area is A ¼
ð5:5� 10�3Þ �ð5:76� 10�3Þm2. Temperature changes are
assumed DH ¼ 50 �C; 100 �C; and 200 �C. General continuum-
mechanics approach is used to formulate the elastic forces using
plane-stress assumptions. Strain split method (SSM) is used to
alleviate locking problems [81]. Gravity effect is not considered
in this example to focus on temperature effect, and total simula-
tion time is assumed 2 s. The connecting rod is modeled using six
ANCF fully parameterized planar beam elements, and the slider
block is assumed massless. To verify the model results, the

Fig. 7 Cantilever beam under axial load

Fig. 8 Axial-deformation of the beam free end for different
thermal loads ( DH50 �C, DH5 100 �C, and
DH5 200 �C)

Fig. 9 Slider-crank mechanism

Fig. 10 Mid-point transverse deformation of the connecting
rod for different thermal loads ( ANCF DH5 0 �C, ANCF
DH5 50 �C, ANCF DH5 100 �C, and FFR)
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connecting-rod midpoint transverse deformation is compared with
results obtained using the floating frame of reference (FFR) for-
mulation. FFR connecting-rod model consists of four planar ele-
ments and FFR simply supported reference conditions are used.
The FFR deformation is obtained using first four mode shapes.
Figure 10 shows that thermal-load effect is negligible. The results
presented also demonstrate that temperature effect is not signifi-
cant in case of unconstrained thermal expansion when MBS joint
constraints do not restrict the thermal expansion.

7.2 Constrained Thermal Expansion. To examine case of
constrained thermal expansion, a beam with fixed-fixed boundary
conditions, shown in Fig. 11, is used as an example. The beam
is assumed made of soft material with modulus of
elasticity E ¼ 2� 108 Pa, mass density q ¼ 7200 kg=m3, and
coefficient of thermal expansion a ¼ 80� 10�6 ð1= �CÞ. The
beam length is l ¼ 1m, and cross section area is
A ¼ 0:05� 0:05m2. The beam is modeled using 10 two-
dimensional ANCF fully parameterized planar beam elements.
Elastic forces are formulated using general continuum mechanics
approach using plane-stress assumptions and neglecting effect of
damping and gravity. SSM approach is used to alleviate locking
problem. The beam is subjected to two types of loads; namely,
constant vertical load of 20N applied at beam midpoint, and uni-
form thermal load. Three simulation scenarios that correspond to
thermal loads DH ¼ 0 �C; 50 �C; and 100 �C are considered. To
verify ANCF results, an ansys workbench model was developed
to solve the same problem using transient structural solver where
thermal and mechanical loads are applied simultaneously. To cap-
ture accurately thermal-load effect on beam cross section, the
beam is modeled in ANSYS using three-dimensional solid ele-
ments (SOLID 186) as recommended in the literature [82]. The
results, presented in Figs. 12–14 for midpoint vertical deformation

Fig. 11 Fixed-fixed beam subjected to transverse midpoint
load

Fig. 12 Midpoint transverse deformation DH50 �C (– – � – –
ANCF/Plane stress, ANSYS/Solid186)

Fig. 14 Midpoint transverse deformation DH5100 �C (–– � ––
ANCF/Plane stress, ANSYS/Solid186)

Fig. 13 Midpoint transverse deformation DH5 50 �C (–– � ––
ANCF/Plane stress, ANSYS/Solid186)

Fig. 15 Normal strains at the midpoint for DH5 0 �C ( ANCF
axial direction, ANSYS/Solid186 axial direction, –– � ––
ANCF transverse direction, ANSYS/Solid186 transverse
direction)
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for the two models, show that as the thermal load increases, defor-
mation amplitude increases. Deformation increase is due to
increase in the restoring forces required to prevent beam axial
expansion. Consequently, these forces increase as thermal load
increases [83–88]. Furthermore, the results show that ANCF fully
parameterized two-dimensional elements can model large defor-
mations and changes in cross section dimensions, which cannot be
accurately modeled using conventional beam elements. Figures
15–17 show normal strain components for the two models at dif-
ferent thermal loads. It is shown that the initial axial compressive
stresses lead to initial jump in axial normal stresses. Furthermore,
transverse strain initially increases as result of the stretching due
to Poisson effect.

In the analysis of the thermal-load effect, distinction is made
between two scenarios. In the first scenario, stress-free expansion
is allowed by assuming that space is adjusted to accommodate for
the stress-free thermal expansion [89–95]. In this case of uncon-
strained thermal expansion, there is no initial stress due to thermal
loads because the expansion in some directions is not prevented
by joints or boundary conditions. The second problem is the

constrained expansion considered in this study, where boundary
constraints are enforced during thermal expansion. This case leads
to initial stresses as previously mentioned.

7.3 Application to Multibody System Example. In order to
examine the effect of constrained thermal expansion on the solu-
tion of MBS problems, the same slider crank mechanism example
used in Sec. 7.1 is considered. In case of constrained thermal
expansion, the connecting-rod endpoints are not allowed to move
when the thermal load is applied before the motion starts.
Figure 18 shows the deviation in the slider position at different
thermal loads from its position in case of no thermal load. Figures
19–21 show the connecting rod midpoint transverse deformation
for different temperature values, while Figs. 22–25 shows the
effect of thermal loads on normal strain components. The results
presented in these figures demonstrate that the thermal-load effect
on the dynamic response increases as the temperature increases.
These results also show significant effect of the initial deformation
in case of constrained thermal expansion.

High frequencies in the displacement solutions presented in this
section are attributed to the thermal expansion considered at pre-
processing stage in this study. When assembling the mechanism

Fig. 16 Normal strains at the midpoint for DH5 50 �C (
ANCF axial direction, ANSYS/Solid186 axial direction,

ANCF transverse direction, ANSYS/Solid186 trans-
verse direction)

Fig. 17 Normal strains at the midpoint for DH5100 �C (
ANCF axial direction, ANSYS/Solid186 axial direction,

ANCF transverse direction, ANSYS/Solid186 trans-
verse direction)

Fig. 18 Deviation in the slider position at different thermal
loads ( DH550 �C, and – –� – – ANCF DH5 200 �C)

Fig. 19 ANCF midpoint transverse deformation of the connect-
ing rod ( DH5 0 �C DH5 50 �C)

Journal of Computational and Nonlinear Dynamics FEBRUARY 2023, Vol. 18 / 021002-9



Fig. 21 ANCF midpoint transverse deformation of the connect-
ing rod ( DH5 0 �C DH5 200 �C)

Fig. 22 ANCF midpoint axial normal strain of the connecting
rod ( DH5 0 �C DH550 �C)

Fig. 23 ANCF midpoint axial normal strain of the connecting
rod ( DH5 0 �C DH5 100 �C)

Fig. 20 ANCF midpoint transverse deformation of the connect-
ing rod ( DH5 0 �C DH5 100 �C)

Fig. 24 ANCF midpoint transverse normal strain of the con-
necting rod ( DH5 0 �C DH550 �C)

Fig. 25 ANCF midpoint transverse normal strain of the
connecting rod ( DH5 0 �C DH5 100 �C)
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based on the original dimensions before thermal expansion, the
thermally expanded connecting rod has initial deformation that
produces initial stresses and high frequencies in the solution.
Future investigations will consider gradual increase in the
temperature.

7.4 Discussion. The approach presented in this paper and
used to solve the examples and obtain results presented in this sec-
tion is based on using the multiplicative decomposition of the
matrix of position-gradient vectors and four different configura-
tions previously described to account for the thermal-load effect.
Using the position-gradient vectors as nodal coordinates for
ANCF finite elements allows for systematic treatment of con-
straints imposed on the boundary of the deformable bodies. It also
allows for systematic implementation of the proposed multiplica-
tive decomposition approach in general large displacement MBS
algorithms. When position gradients are used as nodal coordi-
nates, different joints can be defined. For example, in the planar
analysis, the use of the conventional finite elements that employ
two translation coordinates and one rotation coordinate for a node
imposes restrictions on the joint type and deformation modes that
can be used. Fixing these three coordinates defines conventional
clamped joint, which eliminates translation and rotation at nodal
point. However, such a conventional clamped joint does not
impose any constraints on the position gradients and does not
describe properly the geometry in case of thermal expansion.
ANCF finite elements, on the other hand, allow imposing different
clamped joints, including partially clamped joint, which elimi-
nates translations and rotations at a point without imposing any
constraints on the position gradients. For such partially clamped
joint, thermal expansion is the same in all direction. Another joint
type is fully clamped joint, which imposes constraints on transla-
tion, rotation, and position gradients. Figure 26 shows the effect
of thermal load on the geometry when both types of joints are
used. In case of fully clamped joint at first beam end, which is
fixed, cross section does not stretch while the free end stretches,
producing tapered geometry. In case of partially clamped joint, on
the hand, cross section stretches with the same amount at both
ends of the beam since no constraints are imposed on position
gradients.

8 Summary and Conclusions

In the thermal analysis, two different situations can be encoun-
tered. In the first case, continuum boundary is not constrained and
all material points experience same displacement-gradient change

as result of thermal-load application. This case, referred to in this
paper as unconstrained thermal expansion, produces uniform
motion within the continuum. In the second case, referred to as
constrained thermal expansion, motion of boundary points is
restricted, and therefore, such points are not allowed to move
freely when the thermal load is applied. In this second case, dis-
placements of material points are not the same, regardless of
whether temperature is constant throughout the homogeneous
continuum. In this study, a comparison between two scenarios is
made using ANCF finite elements. ANCF position-gradient vec-
tors, which have a unique geometric meaning as tangent to coordi-
nate lines, allow for systematically describing two different
unconstrained and constrained thermal expansions using multipli-
cative decomposition of matrix of position-gradient vectors.
Numerical results are presented to demonstrate using the approach
proposed in this study and compare between the two different
expansion patterns. The approach proposed in this study can be
used in future investigations for different reference geometries
and practical applications [96,97].
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Appendix

Constrained Expansion. The displacement field of the planar
shear-deformable ANCF beam element can be written as r ¼ Se,
where as previously shown in this paper.

S ¼ ½ s1I s2I s3I s4I s5I s6I �
e ¼ ½ ðe1ÞT ðe2ÞT �T ¼ ½ r1T r1

T

x1
r1

T

x2
r2

T

r2
T

x1
r2

T

x2
�T

)

(A1)

The FE displacement field can be written as r ¼ Se ¼ Sðeo þ edÞ,
where eo is the vector of nodal coordinates in the reference config-
uration, and ed is the vector of nodal displacements. In case of
constrained expansion, one can write the vector of nodal displace-
ments ed in terms of a new set of independent coordinates edi as

ed ¼ Bdiedi (A2)

where Bdi is a velocity transformation matrix that depend on the
constraints enforced during expansion process. Using the preced-
ing equation, one can redefine displacement field in terms of inde-
pendent coordinates edi as

r ¼ Se ¼ Sðeo þ BdiediÞ ¼ ro þ SBdiedi (A3)

In this equation, ro ¼ Seo. Using the preceding equation, one can
write

rx1
rx2

� �
¼ ðroÞx1

ðroÞx2

� �
þ ð@S=@x1ÞBdiedi

ð@S=@x2ÞBdiedi

� �
(A4)

This equation shows that, in case of one element, the position-
gradient vectors can be written in terms of independent coordi-
nates, which can freely vary for different loading conditions.

The procedure described in this appendix can be generalized to
the case of FE mesh that consists of arbitrary number of elements.
In this case, the vector e represents vector of mesh nodal

Fig. 26 Element shape under different boundary conditions (
Initial configuration, Fully clamped beam element under thermal
load, Partially clamped beam element under thermal load)
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coordinates which can have dimension n. Matrix Bdi in this case is
an n� nc matrix, where nc is number of constraint conditions
imposed on the coordinates e. In this case, the vector of independ-
ent coordinates edi has dimension ndi ¼ n� nc.

If constraints are imposed on position coordinates and no con-
straints are imposed on position gradients, one can identify inde-
pendent gradients, which define the expansion. For example, in
the case of a single element mesh, if two FE endpoints are not
allowed to move, vector edi can be written as
edi ¼ ½ ðr1x1Þ

T
di ðr1x2Þ

T
di ðr2x1Þ

T
di ðr2x2Þ

T
di �

T
. These independent gra-

dient vectors can be written in terms of product of thermal-
expansion coefficient and temperature change, aHDH. The origi-
nal gradients can be obtained using the velocity transformation as
ed ¼ Bdiedi.
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