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Abstract

We present a 3D shape reconstruction method that lever-
ages both photometric and polarimetric cues. Unlike many
active methods that require controlled lighting condition,
our method can be used under unknown and uncontrolled
natural illumination (both indoor and outdoor). We use
two circularly polarized spotlights to boost the polarization
cues corrupted by the environment lighting, as well as to
provide photometric cues. We solve surface normals with
two polarization images by combining the polarimetric and
photometric constraints. To mitigate the effect of uncon-
trolled environment light in photometric constraints, we es-
timate a lighting proxy map and iteratively refine the nor-
mal and lighting estimation. We perform experiments under
various natural illumination conditions and compare our
results with state-of-the-arts photometric stereo and shape
from polarization methods. Our method achieves good ac-
curacy and can be used in flexible environment.

1. Introduction

Both photometric stereo and shape from polarization are

vulnerable to environment lighting. Photometric stereo es-

timates surface normal from images captured under dif-

ferent lighting conditions. As lighting directions need to

be known, photometric stereo is usually performed in dark

room with calibrated and controlled illumination. Much ef-

fort has been made to generalize photometric stereo under

uncontrolled environment light [46, 19, 28]. To perform

photometric stereo in the wild, the environment light needs

to be altered at least three times to provide sufficient photo-

metric constraints. The environment maps of various light-

ing conditions are usually captured with a light probe for

lighting estimation. It’s very challenging to perform pho-

tometric stereo without knowing the environment light, or

with less than three images.

Shape from polarization [27, 7, 37] estimates surface

normal with shape-dependent polarimetric cue (e.g., the an-

gle or degree of polarization). One fundamental assumption

is that the object is illuminated by completely unpolarized

light [7]. That is to say the measured polarization is purely
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Figure 1. We introduce a method for normal estimation under nat-

ural illumination that combines polarimetric and photometric cues.

down to reflection from the object. As result, the AoLP is

highly relevant to the surface geometry. Although direct il-

lumination from many light sources (such as the sun, light

bulb, etc.) is unpolarized, light becomes partially linearly

polarized after scattering, reflection and refraction. There-

fore, environment lighting usually has linearly polarized

components, for instance, indirect illumination from a re-

flector (such as wall, floor, table top, etc.). The linearly po-

larized light will affect AoLP measurements from the object

surface (see examples in Fig. 4), making them unreliable for

normal estimation.

In this paper, we present method for estimating nor-

mal under unknown and uncontrolled natural illumination

that combines the photometric and polarimetric cues (see

Fig. 1). To to boost the polarization cues corrupted by lin-

early polarized environment light, we illuminate the object

with two controlled light sources (one at a time). We use a

snap-shot polarization camera for acquisition. By analyzing

the polarimetric reflectance, we show that using circularly

polarized source not only restores the normal-dependent

AoLP, but also allows the removal of specularity caused by

the light source itself.

The two controlled sources also provide photomet-

ric constraints. To perform photometric stereo, we pre-

calibrate the camera and light sources geometrically. The
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Method Category Min Input # Surface Type Lighting condition Calibration Accuracy

Woodham et al. [43] PS 3 Lambertian controlled light sources fully calibrated High

Hung et al. [19] PS 3 Lambertian natural fully calibrated Moderate

Mo et al. [28] PS 10 Lambertian natural uncalibrated Moderate

Smith et al. [38] SfP 1 Dielectric natural uncalibrated Low

Tozza et al. [41] PS + SfP 2 Dielectric controlled light sources uncalibrated Moderate

Ours PS + SfP 2 Dielectric natural + two known sources semi-calibrated High

Table 1. Comparisons between our method and state-of-the-art photometric stereo (PS) and shape from polarization (SfP) methods.

calibration only needs to be performed once as the cam-

era and light sources are rigidly mounted. The environment

lighting does not need to be known. Our method thus can

be considered as semi-calibrated. By combining with the

polarimetric cue, we only need two photometric constraints

for normal estimation, which brings down the number of

input images to two. To mitigate the effect of uncontrolled

environment light in photometric constraints, we estimate a

lighting proxy map that emulates the complex environment

light in an imaginary dark room. We iteratively refine the

normal and lighting estimation until convergence. We per-

form experiments under various natural lighting conditions

(both indoor and outdoor). By comparing our normal esti-

mation results with state-of-the-arts photometric stereo and

shape from polarization methods, we show that our method

achieves good accuracy that is comparable to photometric

stereo with three or more light sources. In addition, our

method can be used in flexible environment.

Our technical contributions are summarized as below:

• We present a normal estimation method that com-

bines photometric stereo and shape from polarization,

while being applicable under unknown and uncon-

trolled lighting environment.

• We restore reliable normal-dependent angle of linear

polarization by fusing the measurements under two cir-

cularly polarized light sources.

• We utilize photometric constraints under unknown en-

vironment light by introducing a lighting proxy map.

2. Related Work
Shape from polarization (SfP). This class of methods

use shape-dependent polarimetric cues, such as the angle

of polarization [7] and degree of polarization [27], for 3D

surface reconstruction. One basic assumption is that the

surface is illuminated by unpolarized light, such that the

polarized light purely comes from surface reflection. Po-

larimetric features thus can be used for normal estimation.

As polarimetric cues are subjective to angular ambiguities,

many SfP methods assume additional priors, such as con-

vexity prior [27, 29], smooth prior [32], boundary normal

prior [7], shading cues [8], and multi-spectral measure-

ments [20], for robust normal estimation. Polarimetric cues

are often integrated with other classes of methods to im-

prove the reconstruction accuracy, for instance, multi-view

stereo [6, 5, 12, 47], Helmholtz stereopsis [16], space carv-

ing [26], structure-from-motion [13], and commodity depth

sensors [24, 25]. Notably, Smith et al. [37, 38] propose

a single-image method for shape reconstruction under un-

known lighting using polarimetric constraints. However,

the method suffers from strong “flattening” artifact (i.e., the

recovered surface appears to be flattened) and cannot gen-

eralize well to arbitrary environment lighting with high de-

gree of polarization. On the same vein as our approach,

a few prior works combine SfP with photometric stereo

[17, 31, 40, 5, 41]. However, all these methods require con-

trolled lighting conditions (e.g., in a dark room). In con-

trast, our approach can be used under natural illumination.

Although recent learning-based SfP methods [9, 15] claim

to extend SfP to natural environment, these methods require

large number of training data and may not be robust to un-

seen data. Ichikawa et al. [21] leverage the polarized sky

for SfP, but the polarization pattern of sky needs to be cal-

ibrated. In this work, we use controlled light to boost reli-

able polarimetric features and do not need to calibrate the

environment light.

Photometric stereo (PS) in the wild. PS methods use the

shading variations under different lighting conditions for

normal estimation. Recovering surface normal is the tra-

ditional 3D reconstruction method that has been applied in

various applications. A fundamental assumption is that the

surface reflectance follows the Lambertian model. Classi-

cal PS uses controlled, calibrated (both geometrically and

photometrically) directional light sources and is usually per-

formed in a dark room [43, 30, 45, 39, 44, 22]. Much ef-

forts has been made to extend PS to uncontrolled natural

environment. Some works leverage the natural outdoor il-

lumination change during a day to perform PS [34, 23, 18].

These methods usually take very long acquisition time (e.g.,

more than a few hours). Some manually alter the environ-

ment lighting to create shading variations and use a light

probe (e.g., a chrome ball) to calibrate the environment

light [46, 19]. Some directly perform PS under uncali-
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Figure 2. Processing pipeline of our proposed method.

brated natural lighting condition, but these methods need

to use parametric lighting model [11, 35], coarse shape

prior [35, 4, 36], or more number of images (e.g., over 10)

[4, 3, 2, 36] for lighting estimation. In this work, we reduce

the number of shading variations to two by incorporating

polarimetric cues and we do not require knowing the envi-

ronment light.

Table 1 compares our method with notable state-of-the-

art methods in PS and SfP.

3. In-The-Wild Polar-Photometric Stereo
In this section, we present our method for estimating nor-

mal under natural illumination. We first give an overview on

our acquisition system and polarization image representa-

tion (Sec. 3.1). We then show how to obtain reliable polari-

metric and photometric constraints under natural lighting

conditions (Sec. 3.2 and 3.3). Finally, we iteratively refine

the surface normal via a constrained optimization (Sec. 3.4).

3.1. Method Overview

The overall processing pipeline of method is shown in

Fig. 2. Our acquisition setup consists of a polarization

camera and two circularly polarized light sources (see

Fig. 3). The setup needs a one-time geometrical calibration.

The inputs to our method are two polarization images,

taken with the controlled lights turned on one at a time

under natural environment. By using the extra light

sources, we are able obtain normal-dependent angle of

linear polarization (or AoLP) map that was downgraded

by linearly polarized environment light. As our controlled

lights provide photometric parallax, we can formulate two

photometric constraints using the Lambertian reflection

model. As the overall reflection is a combinatory effect of

environment lighting and controlled source, we estimate

a lighting proxy map that emulates the complex environ-

ment light in the dark to reduce the reflection caused by

environment light. We iteratively refine the normal and

lighting proxy estimation with a constrained optimization.

Natural Environment

on

L1

off

L1

off

L2

on

L2

Polarization
Camera

Polarization
Camera

Figure 3. Our setup consists of a polarization camera and two light

sources (L1 & L2). We take two images under natural environment

by turning on the light sources one at a time.

In sum, our method can estimate surface normal under

natural lighting condition with two polarization images.

Our method doesn’t require calibrating the environment

light.

Polarization Images. The inputs to our method are polar-

ization images represented in form of full-Stokes vectors:

S = [S0, S1, S2, S3]
�. S0 is essentially the intensity image.

S1 to S3 are parameters with range [−1, 1] (assuming that

the intensity value S0 is normalized). They indicate the state

of polarization. Specifically, S1 specifies the preference of

horizontal to vertical linear polarization; S2 specifies the

preference of 45◦ to −45◦ linear polarization; and S3 spec-

ifies the preference of right to left circular polarization. The

Stokes parameters follow the constraint: S2
0 ≥ S2

1+S2
2+S2

3

(the equal sign is taken when the light is fully polarized).

For linearly polarized light, S3 = 0, while for circularly po-

larized light, S1 = S2 = 0. We’ll later use these constraints

for decomposing the overall image into various polarized

components.

3.2. Polarimetric Constraint

Under unpolarized illumination, the polarized reflec-

tion, being solely determined by the reflector’s surface, is

highly relevant to the surface geometry. Specifically, we
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use the angle of linear polarization (AoLP) to regularize

surface normal. AoLP φ ∈ [0, π] can be computed as

φ = (tan−1(S2/S1))/2. By projecting both the surface

normal and AoLP onto the image plane, Smith et al. [37]

formulate the polarimetric constraint as linear equation. For

diffuse reflection, the two projected vectors are collinear.

Thus we have

[sin(φ),−cos(φ), 0]n = 0, (1)

where n = [nx, ny, nz]
� is surface normal.

For specular reflection, as the AoLP is shifted by 90◦,

we use φ+ π/2 in place of φ and have

[sin(φ+ π/2),−cos(φ+ π/2), 0]n = 0. (2)

As specular reflection is usually brighter and have higher

degree of polarization, we use thresholding to separate the

diffuse and specular pixels in order to apply their specific

polarimetric constraint.

Although direct illumination from natural light sources

(such as the sun, light bulb, etc.) is unpolarized, light be-

comes partially linearly polarized after interacting with ob-

jects in the scene. Therefore, the environment light usually

has linearly polarized components, for instance, indirect il-

lumination from some object (such as wall, floor, table top,

etc.). As shown in Fig. 4, the linearly polarized environment

light largely affect the geometry-dependent AoLP, making

the AoLP measurement unreliable for normal estimation.

In order to overcome the effect of linearly polarized

environment light, we shine controlled lighting on the

object to obtain reliable AoLP. As our two controlled light

sources are close to the target object, their reflections are

dominant over that of the environment light.

Choice of Light Source. A straight-forward choice of

light source would be an unpolarized one, as polarized

reflection of unpolarized light is determined by surface

geometry. Although being a viable option, we find a

better choice is to use circularly polarized light. Same as

unpolarized light, circularly polarized light wouldn’t affect

the geometry-dependent AoLP, as its Stokes parameters

on linear polarization are zero (i.e., S1 = S2 = 0). It has

another advantage of being able to remove the specular

highlight caused by the light source itself (see details

in Polarimetric Image Decomposition). It therefore also

benefit the use of photometric constraint. The downside

is that circular polarization cannot be directly measured

by commercial polarization cameras as they only linear

polarization filters. One needs to rotate a retarder in front

of the polarization camera to measure the Stokes parameter

on circular polarization (i.e., S3). But with full-Stokes

polarization camera being developed [33], single-shot

circular polarization measurement can be made possible.

LL1 ON L2 ON

Environment Light Environment Light + Controlled Light

Measured AoLP AoLP (GT) Fused AoLP

Enhanced Enhanced

Figure 4. We compare the directly measured AoLP under environ-

ment lighting vs. the fused AoLP with our controlled light sources.

We show the normal-dependent AoLP (ground truth) in the middle

as reference.

AoLP Fusion. As we turn on the controlled light one at a

time, we can only boost the AoLP on one side of surface

facing towards the light source in the direct measurement.

We therefore fuse the two AoLP maps to combine the

reliable measurements. The fusion is done by comparing

the intensity of the two polarization images and adopt the

AoLP of the one with higher intensity value. Fig. 4 com-

pares AoLP map of a sphere obtained in different lighting

conditions. We can see AoLP map under environment light

(without our controlled light) is downgraded, especially by

the ground reflection, which is linearly polarized. By using

external lighting, we can boost the AoLP on one side of

the surface. Our fused AoLP map apparently combines the

reliable AoLPs for the two direct measurements. There are

regions inconsistent with the ground truth diffuse AoLP

map (calculated by Eq. 1). These are caused by specu-

lar reflection of direct light sources. We consider these

pixels as specular and use Eq. 2 for polarimetric constraints.

Polarimetric Image Decomposition. We decompose the

polarization image into three components according to the

polarization state: circularly polarized, linearly polarized,

and unpolarized.

S = Sc + Sl + Su, (3)

where S = [S0, S1, S2, S3]
� is the overall polarization im-

age; Sc = [Sc
0, 0, 0, S

c
3]

� is the circularly polarized compo-

nent; Sl = [Sl
0, S

l
1, S

l
2, 0]

� is the linearly polarized compo-

nent; and Su = [Su
0 , 0, 0, 0]

� is the unpolarized component.

It’s easy to see that

S1 = Sl
1, S2 = Sl

2, andS3 = Sc
3. (4)

By applying the intensity constraint of the Stokes parame-

ters, we have

Sc
0 = |Sc

3| and Sl
0 =

√
(Sl

1)
2 + (Sl

2)
2. (5)
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Figure 5. We compare the image decomposition results under cir-

cularly polarized lighting and unpolarized lighting. We can see

that the unpolarized component under circularly polarized light-

ing has its own specular reflection removed.

Finally, we compute the unpolarized component as

Su
0 = S0 − Sc

0 − Sl
0. (6)

As only our controlled light source is circularly polar-

ized, Sc separates the specular reflection from the con-

trolled source. We use the linearly polarized component

Sl to compute AoLP and DoLP. The unpolarized compo-

nent Su is used for applying the photometric constraints,

since the specular reflection is largely reduced by separat-

ing Sc and Sl. Fig. 5 compares the image decomposition re-

sults under circularly polarized source vs. unpolarized one.

We can see that both unpolarized components have reduced

specularity from the environment light. But circularly po-

larized source also has its own specular reflection removed

by separating Sc.

3.3. Photometric Constraint

As the two controlled sources provide photometric par-

allax, we can also use photometric constraint derived from

the Lambertian reflection model:

I = ρE(n · l), (7)

where I is the intensity of reflection; ρ is the surface albedo;

E is the light intensity; n is the surface normal; and l is the

lighting direction.

Given a single calibrated light source, Eq. 7 can be di-

rectly applied to regularize the surface normal. Classical

photometric stereo solves surface normal with three such

equations established under three different lighting direc-

tions. In our problem, although our controlled light sources

provide lighting variations, their intensities are mixed the

environment light. Specifically, we use the unpolarized

component as the image intensity: Su
0 = I . The overall

intensity I can be considered as a combination from two

types of sources: our controlled light source and the envi-

ronment light.

I = Ic + Ie = ρEc(n · lc) + Ie, (8)

where Ic is the reflection intensity from the known con-

trolled light source (which can be directly modeled using

Eq. 7 with lighting direction lc and intensity Ec); Ie is the

reflection intensity from the unknown environment light.

Then our goal is to deduct Ie from I , such that we can use

the photometric constraint for normal estimation. As we

also have the polarimetric constraint, the two photometric

constraints provided by our controlled light sources are

sufficient for solving normal. In the following, we describe

how to estimate and reduce Ie.

Lighting Proxy Map. We model the environment light on

a half hemi-sphere (we only consider the environment that

is towards the front face of the object). Our lighting proxy

map contains the light intensity uniformly sampled on the

half hemi-sphere. Given the azimuth angle ψ ∈ [0, π] and

elevation angle ϕ ∈ [0, π], we convert the spherical coor-

dinate (ψi, ϕi) to lighting direction in Cartesian coordinate

as lei = [cos(ϕi) cos(ψi), sin(ϕi), cos(ϕi) sin(ψi)]
�. For

each surface point, we compute the reflection of environ-

ment light by integrating the light intensity from all direc-

tions. Therefor we have

Ie = ρ

M∑
i=1

Ee
i (n · lei ), (9)

where Ee
i is sampled light intensity in the lighting proxy

map with i being the pixel index in the map and M the total

number of pixels (we use M = 1296 in our experiments).

By combining Eq. 8 and Eq. 9, we can formulate the

following linear equation to solve the lighting proxy map

{Ee
i |i = 1, ...M}.

ρ
[
n · le1 n · le2 ... n · leM

]
⎡
⎢⎢⎣
Ee

1

Ee
2

...
Ee

M

⎤
⎥⎥⎦ = I − ρEc(n · lc).

(10)

We first estimate a coarse normal map and albedo

directly using the mixed intensity I and them plug them

into Eq. 10. We formulate such equation for each pixel

and stack them together to solve {Ee
i |i = 1, ...M}.

However, it’s undesirable to use all pixels, as the coarse

normal map is highly inaccurate. We therefore only using

those pixels with good normal estimations for solving

{Ee
i |i = 1, ...M}. Next, we show how to use the degree of

linear polarization (DoLP) to guide the selection.

DoLP as Confidence Map. According to [38], the DoLP d
of diffuse polarization can be modeled as

d =
(n− 1/n)2 sin2 θr

2 + 2n2 − (n+ 1/n)2 sin2 θr + 4 cos θr
√

n2 − sin2 θr
,

(11)
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where n is the refractive index (we use n = 1.5) and θr is

the angle of reflection. Given surface normal n and view-

ing direction v, θr = arccos(n · v). DoLP is, therefore,

modeled as a function of surface normal. As the DoLP

measurement is less affected by various lighting conditions,

it provides us guidance to select good normal estimations.

Specifically, we compute a binary confidence map by com-

paring the DoLP computed with Eq. 11 (given the coarse

normal estimation) with the DoLP computed from the po-

larization image (d =
√

S2
1 + S2

2/S0). The value of the

confidence map is computed as

C =

{
1, |d− d̃| < ε,
0, otherwise.

(12)

Here d is the DoLP directly computed from the polar-

ization image; d̃ is the DoLP computed with Eq. 11 given

surface normal; and ε is a similarity threshold. We then only

use those normals whose confidence values are 1 for solving

the lighting proxy map. By eliminating inaccurate normals,

we can have better lighting estimation.

3.4. Optimization

We solve normal by combining the polarimetric and pho-

tometric cues. For polarimetric cue, we use Eq. 1 or Eq. 2

depending on type of reflection. For photometric cues, we

reduce the effect of environment light using the estimated

lighting proxy map. Specifically, we rewrite Eq. 9 as

Ie = ρEe(n · le),

with Eele = [
M∑
i=1

Ee
i l

e
i x,

M∑
i=1

Ee
i l

e
i y,

M∑
i=1

Ee
i l

e
i z]

�.
(13)

Ee = ‖Eele‖ can be considered as a weighted sum of en-

vironment light according to the lighting directions. le is a

unit vector and can be considered as the lighting direction

with the environment light being mapped to a single source.

By substituting Eq. 13 into Eq. 8, we have

I = ρEc(n · lc) + ρEe(n · le),
= ρEc(n · lc + βn · le). (14)

β = Ee/Ec is the intensity ratio between the overall envi-

ronment light and our controlled light source. By combin-

ing two photometric constraints and polarimetric constraint

(here we use the diffuse case), we can formulate the follow-

ing linear system Ax = b:⎡
⎣lc1x + βlex lc1y + βley lc1z + βlez
lc2x + βlex lc2y + βley lc2z + βlez
sin(φ) − cos(φ) 0

⎤
⎦
⎡
⎣γnx

γny

γnz

⎤
⎦ =

⎡
⎣I1I2
0

⎤
⎦ ,

(15)

where I1 and I2 are the unpolarized component of the two

input polarization images (each captured under one con-

trolled light source); lc1 and lc2 are the directions of the
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Figure 6. Normal estimation results on synthetic data.

controlled sources; γ = ρEc combines the lighting inten-

sity and surface albedo. Note that γ is estimated along with

the normal n. Once x is solved, we have γ = ‖x‖ and

n = x/‖x‖. We formulate the linear system for each sur-

face point and solve them together via the following objec-

tive function:

argmin
{xj},β

N∑
j=1

|Ajxj − bj |+ λ
N∑
j=1

|1− xj · N (xj)|, (16)

where | · | is the L1 norm; j is the surface point index; N
is the total number of surface points; λ is a term-balancing

factor (we use λ = 0.04); and N (·) takes the four nearest

neighbors of its input. The first term is the data term and the

second is a smoothing term.

4. Experiments
We perform experiments on both synthetic and real data

to evaluate our method. For synthetic experiments, we fo-

cus on ablation study of various influencing factors. For

real experiments, we demonstrate that our method works in

various indoor and outdoor environment.

4.1. Synthetic Experiments

Data Simulation. We use the Mitsuba 2 renderer [1] to

simulate polarization images. Specially, we render im-

ages with the polarized rendering mode. We the KAIST

pBRDF dataset [10] to model the polarimetric surface re-

flectance. We directly render images in form of Stokes vec-

tors. Each Stokes component has resolution 500 × 500.

The camera center is at origin. Directions of the two con-

trolled light sources are lc1 = [−0.18, 0.03, 0.98]� and

lc2 = [0.16, 0.03, 0.98]�. We use environment maps from

[14] and [42] to simulate the natural environment.

Fig. 6 shows our normal estimation results under various

environment maps. We use two different materials for the
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Figure 7. Results on environment light estimation. Left: Rendered

image and environment map. Middle: Environment Light Distri-

bution (ground truth vs. our estimated). Right: Normal estimation

and its error.

Method

β
10 5 1 0.67 0.5 0

Smith et al. [38] 36.89 29.63 28.56 28.16 27.81 16.98

Tozza et al. [41] 41.37 38.68 37.86 31.59 24.55 21.59

Ours 16.25 11.53 7.51 5.42 4.26 3.59

Table 2. Mean angular error (in degree) w.r.t. intensity ratio β.

object: “white billiard” (column 1 & 2) and “spectralon”

(column 3 & 4). We set the ratio between overall environ-

ment light and our controlled light β = 0.5. The normal is

estimated using two polarization images as input (with the

controlled light source turned on one at a time). We com-

pare the estimated normal with the ground truth normal and

show the per-pixel normal error (in degree) and the mean

angular error (MAE). Results on more environment maps

and objects can be found in the supplementary material.

Fig. 7 shows our environment light estimation result.

Note that our lighting proxy map is only an approximation

of the environment map. We cannot recover a high fidelity

environment, but our estimated lighting proxy map has

consistent lighting directions as the ground truth environ-

ment map at least in the regions with high lighting intensity.

Such environment light approximation is sufficient for

reliable normal estimation.

Ablation on β. As the ratio between overall environment

light and our controlled light β is important to the perfor-

mance of our method, we perform ablation study on this

parameter. Specifically, we test on 5 β values between 0.5

to 10. The higher the β value, the stronger the environ-

ment light. β = 0 indicates no environment light (i.e., in a

dark room). We test on the Bunny model with “white bil-

liard” material. Normal estimation error (MAE) is shown

in Table 2. We can see that the performance of our method

downgrades as environment light gets stronger. We can ob-

tain reasonable normal estimation under environment light

10 times of the controlled light source.

We compare the results with two SfP methods. Smith

et al. [38] is purely polarization-based. It takes in one po-
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Figure 8. Real results under different environment.

larization as input. The method is claimed to be applicable

under natural illumination. Tozza et al. [41] combines PS

and SfP. Similar to our method, it takes in two polarization

images. But the method requires controlled lighting con-

dition. Note that we did not compare with PS methods,

as they need three or more images. We can see that both

methods have much larger errors than ours, even without

environment light (since these methods are uncalibrated).

4.2. Real Experiments

Real Setup. We build a portable acquisition setup to per-

form real experiments (see Fig.1). Specifically, we use a

monochrome polarization camera and two 36V LED lights.

The luminous flux of our light source is around 1300 lu-

men. We mount right-handed circular polarization filter in

front of each light source to generate circularly polarized

light. We need to rotate a quarter wave retarder in front of

the camera to capture the full-Stokes vectors. More details

on data acquisition can be found in the supplementary mate-

rials. Our setup needs to be calibrated once, so we know the

relative position between the camera and light sources. The

object is around 50 cm away from the camera. We perform

experiments under various indoor and outdoor environment.

Fig. 8 shows our normal estimation results of a same ob-

ject (“Gnome”) under different environment. The indoor

environment is a bright hallway. The outdoor scenes are

captured in the afternoon (around 5pm). We can see that

our method works well under various natural illumination.

We can see that the environment light is highly polarized,

which affects the normal dependent AoLP (see the supple-

mentary material for AoLP directly measured under envi-

ronment light). Our fused AoLP map largely boost the po-

larimetric cue to allow reliable normal estimation.
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Figure 9. Real results in comparison with state-of-the-art SfP methods.
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Figure 10. Surface reconstruction results.

Fig. 9 shows normal estimation results of different ob-

jects under various environment. We also compare our re-

sults with the two SfP methods ([38] and [41]). We can see

that the results of [38] have strong “flattening” artifact, al-

though estimations at boundary regions are reasonable. Re-

sults of [41] are highly inaccurate due to environment light-

ing. Their method assumes single directional light for pho-

tometric constraints. We have also compared our method

against different versions of photometric stereo. More com-

parison results on real data can be found in the supplemen-

tary material.

We also perform surface integration on our estimated

normal maps. Fig. 10 shows the recovered surfaces with

the real objects as reference.

5. Conclusions & Discussions
We have presented a normal estimation method by com-

bining polarimetric and photometric cues. Our method can

be used under natural illumination. We setup circularly po-

larized light to provide photometric constraints, as well as

enhance the polarimetric features corrupted by linearly po-

larized environment light. To mitigate the effect of environ-

ment light in photometric constraints, we estimate a lighting

proxy map using a coarse normal map. We then iteratively

refine the normal and lighting estimation. We have demon-

strated that our method can be used in various indoor and

outdoor environment for reliable normal estimation.

Limitations. As the ratio between the overall environment

light and our controlled light is an influencing factor, our

method can work in most indoor environment, but it does

not work well in some outdoor scenes when the environ-

ment light is too bright (e.g., noon time on a sunny day).

We can integrate our method with [21] that directly use the

polarization state of sky light as constraint. Another limita-

tion is that we need to use a retarder in front of the camera

in order to measure the circular polarization. As result, our

method actually takes in four images, instead of two. This

issue can be resolved with novel polarization sensor that al-

lows single-shot full-Stokes measurement [33].
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