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A B S T R A C T   

Phonon ray tracing calculations have been used to quantify phonon boundary scattering in nanomaterials and to 
interpret thermal conductivity measurements. However, Landauer-based phonon ray tracing methods have not 
been able to access the temperature or heat flux profiles within nanomaterials, meaning that computationally 
intensive Boltzmann Transport Equation solvers are needed to gain insight into ballistic transport physics or 
model nanoscale temperature mapping experiments. Here, we derive and apply phonon Monte Carlo ray tracing 
methods to calculate the local temperature and local heat flux in semiconducting nanomaterials, with a focus on 
the ballistic transport regime. The derivation provides a straightforward interpretation of the local temperature 
in terms of a thermal conductance ratio, and the local heat flux in terms of the difference between forward- and 
reverse-oriented phonon trajectories crossing a control surface. After validating the method for several common 
transport regimes and geometries, we apply the method to optimize geometric parameters that lead to locally 
inverted temperature gradients in porous nanomeshes, and to evaluate the heat focusing capabilities of geometric 
ballistic phonon lenses. These applications illustrate how phonon ray tracing methods can be used to quantify 
ballistic thermal profiles and to design nanostructures that exhibit atypical thermal behaviors in the ballistic 
regime.   

1. Introduction 

The development of micro/nanoscale thermal metrologies and 
nanofabrication capabilities has enabled researchers to explore 
geometry-dependent heat conduction in semiconducting nanomaterials 
[1–3]. When the characteristic lengthscale (Lchar) of the nanomaterial is 
large compared to the phonon mean free path (Λ), continuum 
finite-element methods or solutions to the macroscopic heat equation 
using Fourier’s law are used to quantify the geometry-dependent heat 
flux (q) and temperature (T) fields. These continuum methods fail to 
capture the size-dependent thermal properties that arise due to phonon 
interactions with the boundaries of the system (classical size effect) or 
phonon dispersion modifications (quantum size effect) [4]. For systems 
with single-digit nanometer Lchar, atomistic techniques including mo
lecular dynamics [5] or atomistic Green’s function [6] methods are 
successfully used to find the geometry-dependent q and T, although 
computational constraints limit the number of atoms that can be 
considered. 

Experiments probing nanostructures with Lchar ranging from tens to 

hundreds of nanometers typically analyze results using numerical or 
analytical solutions of the phonon Boltzmann Transport Equation (BTE) 
[7,8]. The BTE is applicable in the mesoscopic regime when Lchar is large 
compared to the dominant phonon wavelengths (λ), and accurately 
quantifies geometry-dependent heat conduction in both the ballistic 
(Lchar≪Λ) and diffusive (Lchar ≫Λ) regimes. A typical steady-state BTE 
approach solves a high-dimensional integrodifferential equation to find 
the phonon modewise distribution function (f), and then uses f to 
calculate q and T in the device [9–14]. Researchers have developed 
computational methods based on variance-reduced Monte Carlo ap
proaches to perform these BTE calculations for realistic 
three-dimensional experimental geometries [15–17], and have devel
oped single-phonon trajectory tracking schemes to determine the local T 
profile and total heat transfer [18,19]. Even after making simplifying 
approximations such as the relaxation time approximation (RTA), BTE 
solutions are challenging because the distribution function depends on 
the time t, three real-space coordinates x, y, z, three components of the 
phonon wavevector kx,ky,kz, and the phonon polarization index s. 

As an alternate approach to the BTE, thermal researchers have also 
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developed phonon ray tracing methodologies [20–29] to study heat 
transfer in mesoscopic devices. These phonon ray tracing methods track 
phonon trajectories through the device and use the trajectory informa
tion to determine the phonon mean free path in the nanostructure via a 
Landauer approach [20]. The ray tracing techniques are efficient in the 
ballistic regime because all phonon trajectories can be calculated in 
parallel, energy conservation is explicitly enforced without the need for 
iteration or integration over modes, explicit time-stepping and meshing 
issues can be avoided via direct trajectory calculation, and convergence 
can be established statistically via Monte Carlo methods [22]. It is 
typical to assume in the ray tracing that the material has an isotropic 
phonon dispersion relation, though anisotropy can be included at 
additional computational cost [21]. Rigorous descriptions of inelastic 
phonon-phonon scattering are difficult to incorporate within ray 
tracing, making the results from ray tracing calculations functionally 
equivalent to BTE solutions under the RTA. 

One major current advantage of the BTE compared to ray tracing is 
that the local q and T profiles can be readily obtained from the BTE 
solution and used to assist in the interpretation of geometry dependent 
thermal transport. For example, the q and T outputs from BTE solutions 
have been used to study ballistic transport phenomena in nanoporous 
materials [12], locally inverted temperature gradients in nano
composites [30,31], and heat focusing via ballistic phonon geometric 
lensing [32]. In addition to the interest in interpreting transport phe
nomena, recent developments in nanothermometry techniques using 
scanning probes [33], luminescent nanoparticles [34], or electron mi
croscopy signals [35,36] may open new opportunities for direct nano
scale measurements of temperature profiles and comparison against 
mesoscopic simulation. Unfortunately, existing Landauer ray tracing 
methods are not able to predict these T and q profiles inside devices, 
which makes it difficult to explore ballistic phonon transport in nano
materials or validate nanothermal experiments. 

Here, we describe and apply numerical methods to extract the local T 
and q profiles in nanomaterials using phonon ray tracing simulations. 
The T profile is found as a ratio of local reservoir-to-probe thermal 
conductances obtained via a Landauer-Büttiker method, and the q pro
file is calculated by tracking the phonon trajectories across a control 
surface. Our validation studies for fully dense structures and nanowire 
geometries show that method accurately calculates the T and q profiles 
from the ballistic through diffusive regimes, though the method is most 
computationally efficient in the ballistic regime. After establishing the 
method, we then apply the ray tracing methods to establish the optimal 
geometric parameters to observe locally inverted temperature gradients 
in nanoporous materials [30,31]. Here, the phrase “locally inverted” 
means that the polarity of the local T gradient in the ballistic regime is 
inverted as compared to the familiar Fourier law diffusive prediction. 
We also use the ray tracing simulations to study geometric ballistic 
phonon focusing [32] in nanoporous materials; in these devices, the 
local T and local q profiles can be spatially localized at the focal point of 
a set of radially aligned pores. These demonstrations show that the 
phonon ray tracing method can be used to design structures with unique 
and optimized ballistic thermal phonon behaviors. 

2. Methods and derivation 

The derivations consider a thermal device of interest connected to 
two thermalizing reservoirs, as shown in Fig. 1. The hot reservoir is at a 
temperature Th and has a contact area Ah with the device, while the cold 
reservoir is at a temperature Tc with a contact area Ac. Within a 
Landauer-like picture of transport, phonons are injected into the device 
from both reservoirs. Throughout our derivations, we assume that the 
reservoirs are thermally isotropic and homogeneous materials; the de
vice itself can be heterogeneous, as illustrated by the pores in Fig. 1. 

2.1. Local heat flux derivation 

We begin by deriving an expression for the steady-state heat flux 
inside the device. We focus here on the z-component of the heat flux qz, 
as it is straightforward to modify the approach to find the other two 
components qx and qy. We consider a control surface (also referred to as 
a “probe” in reference to the T derivation discussed below) with area Ap 

and a surface normal oriented in + z. 
Consider a phonon labeled by the index j. This index is shorthand for 

the phonon initial location (x, y) at the reservoir-device contact, the 
initial polar and azimuthal propagation angle (θ, φ) upon entering the 
device from the reservoir, the phonon frequency ω, and the polarization 
index s. This phonon is assumed to undergo elastic (i.e., frequency- 
preserving) interactions within the device before exiting the device 
after a residence time tj; the method does not consider any phonon 
absorption/emission within the device. During this time in the device, 
this phonon passes across the control surface area Ap a total of nj,p,+

times in the +z direction and nj,p,− times in the −z direction ; both of 
these integers are larger than unity in general. For example, phonons 
may undergo multiple backscattering events due to the interactions with 
other phonons or diffuse surfaces of pores [9,37,38], which results in 
phonon trajectories with velocity components in the −z direction, 
although the initial velocity component projection is in the +z direction. 
The net energy transfer across the probe by this phonon during its transit 
through the device is ℏω(nj,p,+ − nj,p,−). The time-averaged z-component 
of the heat flux at the probe due to the jth phonon qz,p,j is therefore 

qz,p,j =
ℏω

(
nj,+ − nj,−

)

Aptj
. (1) 

Here, the heat flux contributed by this phonon is interpreted as the 
net energy transfer divided by the residence time tj of this phonon and by 
the probe surface area. tj is the time spent in the domain by the phonon 
before it exits at a reservoir. As discussed below, tj appears as an inter
mediate variable in the derivation and does not need to be determined to 
find the heat flux. 

During this phonon residence time tj, the number of similar phonons 
injected into the device from the reservoir within a differential reservoir 
area dA, differential solid angle dΩ ≡ sin θdθdφ, and differential angular 
frequency dω of phonon j described above is 

Fig. 1. Ray tracing illustration. Schematic of phonon ray tracing trajectories 
used to determine the local temperature and heat flux profiles. Phonons with 
initial location (x, y), initial propagation direction (θ, φ), frequency ω, and 
polarization index s are initialized at the hot (red) and cold (blue) thermalizing 
reservoirs with device-reservoir contact areas Ah and Ac, respectively. The 
phonon trajectories are traced through the device until the phonon reaches 
either thermalizing reservoir. The Landauer model considers a probe with 
location index p. The phonon hot-probe and cold-probe transmission co
efficients τhp and τcp, respectively, are used to determine the local probe tem
perature Tp. The phonon forward-crossing index nhp,+ and reverse-crossing 
index nhp,− are used to calculate the local z-component of the probe heat 
flux, qz,p. 
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Nj = f0(Tres)
D(ω)

4π tjv cos θdΩdωdA, (2)  

where f0(Tres) = 1/
(

exp
(

ℏω
kBTres

)
−1

))
is the Bose-Einstein distribution at 

the reservoir temperature Tres, D(ω) is the density of states per unit 
volume of the reservoir material, v cos θ is the z component of the 
phonon velocity in the reservoir, kB is Boltzmann’s constant, and ℏ is 
Planck’s reduced constant. For the isotropic reservoir materials 
considered here, v depends on ω and s but is independent of θ. 
Conceptually, the residence time tj appears in Eq. (2) to accurately ac
count for the total number of phonons injected into the device, as the 
injection occurs at a fixed rate given by Nj/tj. 

The differential contribution towards the average probe heat flux 
dqz,p = Njqz,p,j is therefore obtained using Eqs. (1) and (2) as 

dqz,p = Njqz,p,j =
ℏω

(
nj,p,+ − nj,p,−

)

Ap
f0(Tres)

D(ω)

4π v cos θdΩdωdA. (3) 

Note that the phonon residence time tj does not appear in Eq. (3), 
meaning that this quantity does not need to be recorded in order to 
calculate the heat flux. Considering all initial locations and initial angles 
of both reservoirs, the z-component of the heat flow at the probe is 
obtained as 

qz,p =
∑

s

∫

ω

∫2π

Ω=0

∫

Ah

ℏω
(
nj,hp,+, − nj,hp,−

)

Ap
f0(Th)

D(ω)

4π v cos θdAhdΩdω

+
∑

s

∫

ω

∫4π

Ω=2π

∫

Ac

ℏω
(
nj,cp,+ − nj,cp,−

)

Ap
f0(Tc)

D(ω)

4π v cos θdAcdΩdω.

(4)  

Thoughout this work the sum is taken over all polarizations s, and the 
integrals over ω are taken over all phonon frequencies supported by the 
respective reservoirs. The subscripts hp and cp in Eq. (4) indicate that the 
phonon trajectories are initiated at the hot and cold reservoirs, 
respectively. 

Eq. (4) can be simplified further using considerations of detailed 
balance. If Th = Tc, the second law of thermodynamics requires that the 
heat flux vanishes, meaning that the two terms on the right hand side of 
Eq. (4) must cancel for Th = Tc. In the linear response regime in which 
the only temperature dependence arises due to the T-dependent occu
pation statistics, we insert a Taylor series expansion of the Bose-Einstein 
statistics as f0(Th) = f0(Tc) +

∂f0
∂T (Th −Tc) into Eq. (4), use the detailed 

balance requirement, and obtain 

qz,p = (Th − Tc)
∑

s

∫

ω

∫2π

Ω=0

∫

Ah

ℏω
(
nj,hp,+ − nj,hp,−

)

Ap

∂f0

∂T
D(ω)

4π v cos θdAhdΩdω.

(5) 

Lastly, introducing the modewise heat capacity Cω ≡ ℏωD(ω)
∂f0
∂T used 

to calculate the total volumetric heat capacity C ≡
∑

s

∫

ω
Cωdω, this final 

expression for the local z-component of the heat flux can be written as 

qz,p =
(Th − Tc)

4πAp

∑

s

∫

ω

∫2π

Ω=0

∫

Ah

(
nj,hp,+ − nj,hp,−

)
Cωv cos θdAhdΩdω. (6) 

Eq. (6) shows a general expression for the heat flux, which is ob
tained by integrating over each phonon frequency, initial location, and 
initial angular distribution. The position dependence of the heat flux 
within the device is captured entirely by the difference between for
ward- and reverse-oriented crossings (nj,hp,+ − nj,hp,−), which in general 
depends on the probe location index p. Below we present our results in 
non-dimensional terms using the dimensionless z-component of the heat 
flux 

Qp ≡
qz,p

1
4Cv(Th − Tc)

, (7)  

where Cv ≡
∑

s

∫

ω
Cωvdω is the frequency-averaged product of the mode

wise specific heat and modewise group velocity. The non
dimensionalization is selected such that Qp = 1 in the case of fully 
ballistic heat transfer between hot and cold reservoirs, as verified in 
Section 3.1 below. 

2.2. Local temperature derivation 

To find the local temperature, we leverage the multi-terminal Lan
dauer-Büttiker theory describing phonon transport in nanomaterials 
[22,29,39–41]. Here, we use the term “terminal” to refer both to the 
thermalizing hot and cold reservoirs and to a thermal probe located 
inside the device. Within the Landauer-Büttiker theory [22], the 
two-terminal thermal conductance between terminal a and b is 

Gab =
Aa

4
∑

s

∫

ω
Cωv τω,abdω, (8)  

where Aa is the contact area of terminal a and the weighted modewise 
area- and angle-averaged phonon transmissivity from a to b is 

τω,ab =
1

Aaπ

∫

Ω

∫

Aa

τω,ab cos θdAadΩ. (9) 

Here, τω,ab is the phonon transmissivity from a to b for a given choice 
of ω, s, Ω, and initial location on terminal a. The normalization prefactor 
(Aaπ)

−1 in Eq. (9) is selected such that τω,ab = 1 if τω,ab = 1 for all pho
nons. The integral over solid angles spans all Ω oriented such that 
phonons are exiting reservoir a and propagating in the device (e.g., Ω 
would range from 0 to 2π steradians for the hot reservoir shown in Fig. 1 
(a)). In a linear system that obeys time-reversal symmetry, the thermal 
conductance from a to b (Gab) and the thermal conductance from b to a 
(Gba) are identical. τω,ab is a primary output of the phonon ray tracing, 
and is interpreted as the weighted probability of phonon energy trans
mission between terminals a and b. 

Here we consider a thermalizing blackbody probe inserted at an 
arbitrary location inside the system indexed by p, and consider the de
vice as a three-terminal system with a thermalizing hot reservoir, cold 
reservoir, and probe. Phonons from each of the reservoirs can be 
transmitted to and absorbed by the probe; similarly, the probe emits as a 
blackbody at a temperature Tp, which is the local temperature of in
terest. According to multi-terminal Landauer-Büttiker theory [4,42], the 
net heat flow from reservoirs to the probe is 

Qp = Ghp
(
Th − Tp

)
+ Gcp

(
Tc − Tp

)
, (10)  

where Ghp and Gcp are the thermal conductance from the hot and cold 
reservoir to the probe, respectively, calculated using Eqs. (8) and (9). 
Local thermal equilibrium is set by dictating Qp = 0; physically, this 
represents the case where a fully thermalizing, adiabatic probe is 
inserted into the device. Solving for the dimensionless temperature θp ≡

Tp−Tc
Th−Tc 

by setting Qp = 0 in Eq. (10), we obtain the final expression for the 
dimensionless temperature as 

θp =
Ghp

Ghp + Gcp
. (11) 

This result is exactly analogous to the corresponding Landauer-Büt
tiker expression for the voltage measured at a probe in a mesoscopic 
electrical transport experiment [43], as expected. Eq. (11) shows that 
the expression for the local dimensionless temperature can be obtained 
by calculating the thermal conductance from both reservoirs to the 
probe. Because both Ghp and Gcp always must be larger than unity to 
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satisfy the second law of thermodynamics, the right hand side in Eq. (11) 
is bounded between zero and unity, indicating that the temperature Tp is 
bounded between the temperatures of the hot and cold reservoirs at all 
locations in the device. 

Physically, the temperature calculated in Eq. (11) represents the 
equilibrium temperature that would be reached by a thermalizing probe. 
This maximally intrusive probe temperature is well defined from the 
ballistic through diffusive regime, and we show below that the spatial 
dependence of the T profile agrees with the T profiles obtained from 
solutions of the BTE under the RTA for several traditional geometries. In 
BTE simulations, the T rise is typically extracted using the instantaneous 
internal phonon energy within a mesh volume and the local specific heat 
[9]; in contrast, the internal energy is not explicitly calculated in the ray 
tracing. We also note that in experiments, the probe used to measure T 
may not behave as a blackbody phonon absorber and emitter (i.e., not all 
phonons that are incident on the probe may be absorbed/re-emitted). 
The ray tracing methodology could be extended to model these experi
ments by selecting non-blackbody phonon transmission at the probes, 
though this approach is not considered further here. 

We now compare our methodology against existing BTE solution 
procedures [7]. The traditional BTE numerical approach aims to solve 
for the phonon modewise distribution function f as a function of position 
and time; once f is known, it is straightforward to find the local tem
perature profiles and heat flux profiles [9–13]. In many cases, f is found 
by injecting many phonons (or bundles of phonons) into a domain, 
tracking the positions on a mesh as a function of time as phonon drift 
and scatter, and recording the phonon statistics at each mesh location 
and time [7]. Some of these BTE methods use Monte Carlo approaches to 
determine aspects of the phonon trajectory evolution or to model the 
phonon scattering events [9,12,13,15,16,18,19]. Typically, simulations 
are performed as a function of time and the locations of all phonons (or 
bundles representing groups of phonons) must be considered simulta
neously; however, researchers have also developed BTE numerical so
lutions that use a series of single-phonon trajectory calculations to 
determine the steady-state local energy and temperature within a 
meshed cell [18,19]. 

In contrast, the ray tracing model described here fundamentally 
determine the phonon transmission coefficients and forward/reverse 
crossing indices rather than determining the local energy density or 
local heat flux as a function of time in a volumetric mesh. The advantage 
of this ray tracing method is that ballistic results are obtained in a 
computationally efficient manner, and the phonon trajectory calcula
tions are easily parallelizable. The theoretical framework is steady-state, 
meaning that a timestep/final simulation time convergence is not 
explicitly required; rather, convergence is established by increasing the 
total number of simulated trajectories. The calculation of the global heat 
flow in the previous single-phonon BTE calculation [18,19] has several 
conceptual similarities to the ray tracing implementation described 
here, though the current ray tracing formalism is also able to access the 
local heat flux in addition to the global heat flow. The disadvantages of 
the Landauer approach are that phonon-phonon scattering is not rigor
ously incorporated, and that transient temperature or heat flux fields are 
not accessible. 

2.3. Ray tracing implementation 

We calculated the temperature and heat flux using a ray tracing 
technique implemented in MATLAB [20,22,23]. The geometry and co
ordinate system is defined in Fig. 1, and considers a hot reservoir at z = 0 
and a cold reservoir at z = L, where L is the device length. To calculate T 
and q, we apply a volumetric mesh to the device and consider each mesh 
element as a probe. An advantage of the ray tracing method is that the 
mesh selection can enforce the required symmetry of the T and q pro
files. We perform mesh convergence studies in all cases to ensure 
mesh-independent results; intentionally large probe volumes could be 
used to simulate experiments with non-vanishing probe size, though we 

do not consider these large probes further in this work. The computa
tional disadvantage in using smaller mesh sizes is that more phonon 
trajectories need to be implemented to reduce the statistical error at the 
probe associated with the Monte Carlo method, as discussed further in 
Section 2.5 below. We now describe the implementation of the T and q 
mapping before discussing simplified results for the case of fully ballistic 
transport. 

2.3.1. Local temperature mapping implementation 
Eqs. (8) and (11) show that the local probe temperature Tp is 

determined by the thermal conductance Gab and more explicitly, the 
average transmissivity τab. We calculate τhp and τcp by a set of phonon 
trajectory calculations. In each trajectory calculation, a single phonon is 
emitted from a thermal reservoir at z = 0 or z = L in Fig. 1. To initialize 
the phonons at the reservoir, we use four random numbers selected from 
a uniform distribution bounded by 0–1 to determine the initial location 
and direction. The initial location (x, y) is uniformly selected within the 
cross-sectional area of the reservoir Ah or Ac. The initial propagation 
direction is determined by the azimuthal angle (φ), which is uniformly 
distributed from 0 to 2π, and the polar angle (θ) which is selected by θ =

sin−1 ̅̅̅̅
R

√
1 where R1 is a random number selected from a uniform dis

tribution bounded by 0 and 1. This initial direction (φ, θ) obeys the 
isotropic solid angle weighted distribution that is familiar from photon 
black-body radiation [44]. The final area- and angle-averaged trans
missivity τab is calculated by implementing a large number of these 
phonon trajectories with different initial conditions. We estimate the 
statistical error in the transmission coefficients using a previously 
described sub-sampling method [22]. 

We track the phonon trajectory through the device until the phonon 
transmits to the far reservoir or is backscattered to the initial reservoir. 
In the fully ballistic case, the phonon travels until it encounters a 
boundary. In the scenario where bulk-like elastic volumetric scattering 
inside the material is considered, we dictate this bulk mean free path Λ 
as an input parameter to the calculation. After a phonon scattering event 
(ether boundary or volumetric), we select a bulk free path from a 
logarithmically weighted distribution as − Λ ln(R2), where R2 is a 
random number selected from 0 to 1. The free path selection −Λ ln(R2)

represents a distribution in which the probability of scattering after 
travelling a distance l is found to be 1 − exp( − l /Λ). The term −ln(R2)

ensures that the probability of scattering follows the typical weighed 
exponential distribution of free paths [45]. If the volumetric free path is 
smaller than the distance to the next surface on the phonon’s trajectory, 
the phonon is propagated to the location of volumetric scattering and 
the outgoing direction after the scattering is uniformly weighted within 
the 4π steradian solid angle. If the volumetric free path is larger than the 
distance to next surface collision, the phonon is propagated to the 
scattering surface and the outgoing phonon direction can be selected as 
diffuse or specular. Here, we consider diffuse scattering unless otherwise 
noted, which is appropriate when the boundaries have characteristic 
surface roughness/disorder at scales comparable to or larger than the 
phonon wavelengths [4]. 

The thermalizing probe is not explicitly included in the trajectory 
calculations and is only considered after the trajectory has terminated at 
a reservoir. During the phonon’s transit in the device, we record a binary 
variable indicating whether a phonon trajectory has intersected the 
mesh volume representing a potential probe location. If the thermalizing 
probe were present at that location, the phonon would have been 
absorbed, and we record the reservoir-probe transmission as unity for 
that trajectory and probe location. The advantage in this method is a 
single set of phonon trajectories can be used for all probe locations, 
dramatically improving the computational efficiency. For sufficiently 
small mesh sizes, the temperature value calculated using the method 
approaches the intrinsic (i.e., mesh-independent) Tp limit reflecting the 
thermalization temperature of an infinitesimally small blackbody probe 
interacting only with the reservoirs and no other probes. The 
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temperature calculation in Eq. (8) requires only the reservoir-to-probe 
transmissivities to be calculated, meaning that the probe-to-reservoir 
transmission due to phonons emitted from the probe is not required 
and that phonon re-emission from the probe is not implemented. 

2.3.2. Local heat flux implementation 
Consider a number Nω of phonon trajectories for phonons with the 

frequency range between ω and ω + dω near ω. The integrals over po
sition and angle in Eq. (6) are statistically approximated by selecting 
random numbers from a weighted distribution to initialize the phonon 
trajectories; this angular and position weighting to find q is identical to 
the T calculation described in Section 2.3.1 above. After initializing the 
phonon trajectories and tracing these phonons through the device, the 
output from the calculation is the number of phonon trajectories passing 
through the probe surface in the positive (negative) z direction Nω,hp,+

(Nω,hp,−), which is determined by calculating the z-component velocity 
of the phonon when its trajectory intersects the control surface. Each 
phonon trajectory can pass through the same probe multiple times in the 
algorithm. The numerical approximation to Eq. (6) therefore becomes 

qz,p =
(Th − Tc)

4
Ah

Ap

∑

s

∫

ω

Cωv
(
Nω,hp,+ − Nω,hp,−

)

Nω
dω. (12) 

Note that qz,p denotes the total net heat flux in the z direction passing 
through the probe; even though the phonons are only initialized from 
the hot reservoir in the ray tracing calculations, the theory described 
here accurately describes the interactions between both hot and cold 
reservoirs. 

2.4. Limiting case: Ballistic transport 

The ray tracing is most computationally efficient in the ballistic 
regime in which T and q are determined by boundary scattering. If all of 
the phonons interact with each bounding surface similarly (e.g., in a 
diffuse or specular manner), the transmissivities and the phonon surface 
crossing outputs from the ray tracing are independent of ω and s. As a 
result, the dimensionless temperature expression in Eq. (11) simplifies to 

θp =
τhp

τhp + τcp
. (13) 

Eq. (13) shows that the dimensionless temperature in the ballistic 
regime is a purely geometric quantity determined the probe trans
missivity ratio. Interestingly, this ballistic dimensionless temperature 
profile is independent of the phonon dispersion relation for all 
geometries. 

Similarly, in the ballistic regime, the heat flux expression in Eq. (12) 
simplifies to 

qz,p = (Th − Tc)
Ah

Ap

Cv
4

(
Nhp,+ − Nhp,−

)

N
, (14)  

and the dimensionless heat flux defined in Eq. (7) becomes 

Q =
Ah

Ap

(
Nhp,+ − Nhp,−

)

N
. (15) 

Here, N is the total number of phonon trajectories and Nhp,+ and Nhp,−

are the number of forward- and reverse-oriented trajectory crossings at 
the probe control surface. The dimensionless heat flux is also a purely 
geometric quantity in the ballistic regime, indicating that both θp and Q 
can be calculated once and for all for a given geometry and surface 
specularity. As we show below, these ballistic spatial profiles can pro
vide insight into phonon transport behavior in patterned nanomaterials 
of experimental interest. 

Lastly, we note that the ballistic results of Eqs. (13)–(15) are also 
appropriate to use for arbitrary bulk mean free paths if the material is 
assumed to be “gray”, meaning that Λbulk is independent of ω and s. 

Realistic materials are not well-described by this gray model because 
Λbulk depends strongly on ω for phonon-impurity and phonon-phonon 
scattering [14]. Despite this substantial shortcoming, the gray model 
is a convenient assumption for modeling and is used as a first step to 
understand the qualitative trends of heat conduction in materials as a 
function of nanostructure size or geometry [46]. In the more realistic 
non-gray and non-ballistic scenarios, Eqs. (6) and (11) should be used to 
quantify the heat flux and temperature profiles from phonon ray tracing 
calculations. In addition, it should be noted that the ray tracing 
approach is only strictly appropriate for the case of elastic scattering 
within the volume of the computational domain, as investigated below. 
Inelastic scattering mechanisms such as Umklapp scattering can only be 
treated approximately, in a manner that reproduces results given by the 
relaxation time approximation to the BTE. The phonon ray tracing 
approach cannot capture effects such as hydrodynamic phonon trans
port [47] that arise entirely due to interactions between phonons. 

2.5. Heat flux error estimation 

We evaluate the standard error in Q using a sub-sampling method 
[48]. To reduce the intrinsic statistical variance associated with the 
Monte Carlo method, we perform a large number of phonon trajectories 
N ≥ 5 ∗ 105. To perform the sub-sampling, these phonons are arbitrarily 
divided into J (here J = 40) groups. For each group we obtained the 
averaged value of dimensionless heat flux Qi (i = 1, 2, .., J). When J is 
large compared to unity (but small compared to N) and the results from 
each group are uncorrelated with one another, the standard error σQ of 
the heat flux calculation can be readily determined as 

σQ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
J(J − 1)

∑J

i=1
(Qi − Q)

2

√
√
√
√ , (16)  

where Q = 1
J

∑J
i=1Qi is the mean heat flux calculated using the total 

number of simulated phonon trajectories. The 68% confidence interval 
is selected for evaluating the statistical uncertainty, and the standard 
error of the dimensionless heat flux is obtained from Eq. (16) as (Q − σQ,

Q + σQ). 

3. Results 

We first perform several validation studies to confirm that the ray 
tracing implementation captures the expected T and q profiles in 
benchmark geometries. Section 3.1 considers heat transfer in a fully 
dense system of length L, while Section 3.2 considers phonon transport 
along a square nanowire. Section 3.3 uses ray tracing to study the spatial 
profiles near a sharp constriction in a nanoslot geometry, while Section 
3.4 investigates and optimizes the locally inverted T gradients observed 
in periodically etched nanomesh materials and Section 3.5 focuses on 
ballistic phonon focusing. 

3.1. Validation: Fully dense material of length L 

We first consider a fully dense (i.e., non-porous) material of length L. 
The material is implemented in our ray tracing calculations by sepa
rating the thermalizing hot and cold reservoir by a distance L along the z 
direction and applying specular boundary conditions along the x and y 
directions of the computational domain. Classical size effects on phonon 
transport in this geometry have been widely studied [45]. In the diffu
sive regime, the temperature gradient is linear with respect to z. In the 
ballistic regime, T is independent of position and there is a discontin
uous temperature difference at the reservoir-device boundary. 

Fig. 2(a) shows that our ray tracing simulations of the dimensionless 
temperature θp also display this expected behavior as a function of the 
dimensionless position z/L for a range of dimensionless mean free paths 
Λ/L. These calculations consider a gray phonon mean free path. Fig. 2(a) 
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shows that θp = 0.5 for all positions in the ballistic regime (Λ/ L = ∞, 
red line), in agreement with the known ballistic limit [45]. As the 
dimensionless mean free path decreases, the temperature drop at the 
boundary also decreases in magnitude, and the temperature profile in 
the fully diffusive regime (Λ/L≪1) approaches the linear Fourier pre
diction. The inset temperature profile in Fig. 2(a) for Λ/ L = 0.05 shows 
that θp is independent of the coordinate x, as expected. 

Fig. 2(b) shows that the dimensionless heat flux Q calculated from 
ray tracing (points) increases with increasing Λ/L and converges to 
unity in the ballistic regime. In dimensional terms, this ballistic heat flux 
limit is given as qball = Cv

4 (Th − Tc). Conservation of energy and sym
metry arguments dictate that the heat flux is independent of z for all Λ/

L, as verified in Fig. 2(b) inset for four values of Λ/L. To obtain the value 
of Q shown in the main plot of Fig. 2(b), we take the unweighted average 
value of Q obtained from all probe locations. Fig. 2(b) also compares the 

ray tracing calculations of Q with a Matthiessen’s rule prediction (line) 

using the effective phonon mean free path Λeff =
(

Λ−1 +
(3L

4
)−1

)−1
. 

Here, Λ is the bulk mean free path and 3L
4 is the boundary scattering 

mean free path for the fully dense material of length L. Once Λeff is 
known, Qp can be calculated using the standard heat flux expression q =

1
3 CvΛeff

(ΔT
L

)
and the nondimensionalization in Eq. (7), enabling direct 

comparison with the ray tracing results. The simulation results are in 
good agreement with this theoretical prediction, as shown in Fig. 2(b). 

3.2. Validation: Square nanowire 

As a second validation scenario, we consider transport along the 
axial direction of a square nanowire with side length w and length L. This 
nanowire geometry is a common system used to explore phonon mean 

Fig. 2. Fully dense material validation. We validate the ray tracing mapping using a fully dense (i.e., non-porous) material of length L separating the hot and cold 
reservoir. (a) The dimensionless temperature profile θp(z) displays the expected behavior for eight values of the dimensionless gray mean free path Λ/ L. The 
dimensionless temperature is θp = 0.5 for all locations when Λ/L = ∞, while θp approaches the Fourier result of linear θp(z) at Λ

L≪1. θp is independent of x, as 
illustrated in the inset for Λ/L = 0.05. (b) Ray tracing results show that the dimensionless heat flux Q increases with increasing Λ/L and converge to the maximum 
value of unity in the fully ballistic limit. The simulation results (red circles) agree with a simple theoretical prediction (black line) using Mattheissen’s rule. The inset 
shows that the heat flux distribution is independent of z/L for four values of Λ/L, as required from energy conservation. 

Fig. 3. Nanowire validation. (a) Fully ballistic θp(z) in a square nanowire of length L and side-length w (inset) with diffusely scattering surfaces. In the short- 
nanowire case where w/L≫1, ray tracing results approach the ballistic scenario from Fig. 2(a), while in the long-nanowire case w/L≪1, the ray tracing results 
for θp approach the Fourier limit (black dashed line). (b) The dimensionless heat flow Q′ (found by averaging Q over the cross-sectional area) increases with 
increasing w/L and converges to unity at large w/L. The simulation results (red circles) are in good agreement with a simple Matthiessen’s rule prediction (black line). 
The inset shows that the dimensionless heat flux Q depends on x for the nanowire, particularly when w/L≫1. 
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free path and thermal conductivity reductions due to boundary scat
tering [49]. In the case of fully diffuse scattering, BTE solutions show 
that the boundary scattering phonon mean free path of a long nanowire 
(w/L≪1) approaches 1.12w in the ballistic regime [20]. Fig. 3(a) shows 
the ray tracing calculation results for the diffuse surface nanowire 
temperature profile in the ballistic regime (Λ/w = ∞) as a function of 
the dimensionless axial position z/L for a dimensionless side lengths w/

L ranging from 0.05 to 10. The inset to Fig. 3(a) shows that the tem
perature profile is independent of x, as expected. In the short nanowire 
case where w/L≫1, this nanowire geometry is identical to the scenario 
discussed in Section 3.1, and a large temperature drop near the reservoir 
is observed for w/L = 10 (pink line, Fig. 3(a)). In the long nanowire case 
where w/L≪1, the ray tracing θp profile for w/L = 0.05 (red line) ap
proaches the linear Fourier law prediction (black dashed line). 

Fig. 3(b) shows the ray tracing calculations of the dimensionless heat 
flow Q′

≡ 1
w2

∫ w
0

∫ w
0 Qdxdy as a function of w/L. Though the temperature 

profile only depends on the axial direction, the heat flux Q is indepen
dent of z but depends on (x,y), as shown in Fig. 3(b) inset. The reduction 
in Q(x) observed in Fig. 3(b) inset is most pronounced for large w/ L and 
arises from the scattering off the diffuse surfaces of the nanowire. The 
integrated heat flow Q′ shown in Fig. 3(b) increases with increasing w/ L 
and converges to unity in the short nanowire limit of w/ L≫ 1. The ray 
tracing results are in good agreement with the simple Mattheissen’s rule 
analytical approximation (black line) using the effective mean free path 

Λeff =
((3

4 L
)−1

+ (1.12w)
−1

)−1 
, again validating the ray tracing 

implementation. Here, 3L
4 is the boundary scattering mean free path of a 

short nanowire, while 1.12w is the boundary scattering mean free path 
of a long square nanowire with diffusely scattering boundaries [20]. Our 

calculations here do not include any bulk scattering and focus on diffuse 
nanowire surface scattering; if specular or partially specular surfaces are 
present, Qp would be larger than in the diffuse scenario. 

3.3. Nanoslot geometry 

We now turn for the remainder of this manuscript to study transport 
in nanoporous materials. Fig. 4 focuses on phonon transport in a recently 
fabricated nanoslot geometry [50]. Prior work has shown that the total 
thermal resistance through the neck between the pores is sensitive to the 
ballistic transport, as commonly described using the Sharvin resistance 
expression [51]. Similarly, the temperature and heat flux distribution in 
the ballistic regime will also be affected by phonon backscattering at the 
pores. We implement this nanoslot geometry in the ray tracing calcu
lations by considering a small neck between two diffusely scattering 
pores located between hot and cold reservoirs in the z direction, 
applying periodic boundary conditions along the x direction, and 
considering a specular scattering in the y direction. The dimensionless 
neck width in the x direction is 0.25 and the dimensionless pore width in 
the z direction is 0.1. 

Fig. 4(a) shows θp for the nanoslot geometry in the fully ballistic 
regime (Λ/L = ∞). Fig. 4(a) shows that the most obvious temperature 
gradients in the system are localized near the slot region at the neck 
between pores; this behavior is qualitatively similar to the diffusive 
results discussed below. In this ballistic regime, however, θp displays 
subtle line-of-sight effects that arise from the ray-like transport near the 
pore. Phonon trajectories passing through the neck region from hot to 
cold cannot reach the region just above the pore (e.g., near zL = 0.6 and 
x
L = 0.1). At these regions, τhp approaches 0 while τcp is finite, leading to 

Fig. 4. Nanoslot geometry. (a) The ballistic temperature θp and (b) ballistic heat flux Q from ray tracing show sharp gradients at the region between pores and 
strong line-of-sight effects with shadowing near the pores. Heat flux trends in Regions (1)–(4) are discussed in the main text. (c) Diffusive θp and (d) diffusive Q 
profiles from ray tracing with a small dimensionless mean free path Λ/L = 0.06. In this diffusive regime, θp does not display line-of-sight effects and Q is smaller in 
magnitude due to the intrinsic scattering. (e) Bulk finite-element method (FEM) results for θp and (f) Q the fully-diffusive regime are in good agreement with the ray 
tracing results from (c,d), further validating the ray tracing method. 
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θp ≈ 0. Moving closer to the cold reservoir by increasing z/ L at fixed x/

L increases θp because phonon trajectories from the hot reservoir have a 
line of sight to the probe that is not blocked by the pores. A similar 
argument shows why the temperature just below the pore (e.g. at zL = 0.4 
and xL = 0.1) is larger than the temperature closer to the hot reservoir. 

Fig. 4(b) shows the ray tracing ballistic heat flux profile in the 
nanoslot geometry. This heat flux profile displays a heat flux concen
tration in the neck between the pores along with heat flux shadowing 
effects above and below the pores. Like all heat flux profiles shown in 
this work, Fig. 4(b) represents the dimensionless z component of the 
heat flux. The heat flux is symmetric about the midplane at z/ L = 0.5, 
as expected. To gain further insight into the heat flux profiles and to 
interpret the results using the ray tracing formula of Eq. (15), we 
consider the boxes labeled Regions 1–4 in Fig. 4(b) and focus on phonon 
trajectories initialized from the hot reservoir at z/L = 0. Region 1 is 
located just below a pore at (x

L,
z
L
)

= (0.9, 0.3
)
, meaning that the phonon 

trajectories crossing through the region in the +z direction are likely to 
be backscattered by the pore and travel through the probe in the –z 
direction. Referring to Eq. (15), this backscattering from the pore causes 
Nhp,− to be quite similar to Nhp,+, leading to ultimate values of Q that are 
relatively small compared to the ballistic value of Q = 1. Similarly, 
Region 2 located above the pore at (x

L,
z
L
)

= (0.9, 0.7
)

also has a small 
value of Q near zero; this result can be interpreted by noting that the 
ballistic phonon trajectories from the hot reservoir are blocked by the 
pores and very few of these hot-reservoir phonon trajectories can be 
backscattering into Region 2, leading to both Nhp,+ and Nhp,− values that 
are close to zero. Alternately, the Region 2 behavior could be justified by 
focusing on the trajectories initialized at the cold reservoir and using 
similar logic as applied to the hot-reservoir trajectories in Region 1, or 
by appealing to geometric and thermal symmetry in this linear response 
regime. 

Region 3 located in between the pores at (x
L,

z
L
)

= (0.5, 0.5
)

shows a 
local maximum value of Q that approaches unity; this local maximum 
arises because the phonon trajectories with a direct line of sight from the 
hot reservoir to the gap pass directly through the gap with no back
scattering either before or after the gap, leading to Nhp,− near zero and 
heat flow values that approach the scenario of Fig. 2. Lastly, Region 4 
located at (x

L,
z
L
)

= (0.4, 0.9
)

close to the cold reservoir shows moderate 
values of Q that are larger than in the shadowed Regions 1 and 2 but 
smaller than in the mid-gap Region 3. At Region 4, the number of 
backscattered phonons from the hot reservoir Nhp,− is still near zero, 
while Nhp,+ is smaller than in Region 3 because fewer hot-reservoir 
phonon trajectories have a direct line of sight to Region 4 than to Re
gion 3. Overall, the ballistic temperature and heat flux mapping of Fig. 4 
(a) and (b) provide further validation for the ray tracing results Eqs. (13) 
and (15), and shows that these ray tracing results can be interpreted in 
terms of the transmissivities and forward/reverse trajectories, 
respectively. 

As noted above, the ray tracing calculations are most computation
ally efficient in the ballistic regime, and the majority of our attention 
therefore focuses on the ballistic behavior. However, it should be noted 
that the ray tracing equations can be used to model diffusive transport. 
To validate the ray tracing in the diffusive regime for the nanoslot ge
ometry, Fig. 4(c) and (d) show θp and Q, respectively, calculated using a 
gray dimensionless mean free path Λ/L = 0.06. The temperature profile 
in Fig. 4(c) displays the expected temperature gradient localization near 
the pore; however, as compared to the ballistic result of Fig. 4(a) and (c) 
displays no locally inverted temperature profile above or below the 
pores and no line-of-sight shadowing effects near the sharp pore edges. 
The diffusive heat flux profile in Fig. 4(d) displays a much smaller Q in 
the neck between pores than in the ballistic regime of Fig. 4(b), and this 
diffusive heat flux profile can be interpreted using the temperature 
gradients observed in Fig. 4(c) (i.e., regions with strong dθp

dz in Fig. 4(c) 
also display large Q in Fig. 4(d)). To compare the ray tracing method 

with classical diffusive simulation of heat conduction, we also perform 
steady-state finite-element method (FEM) simulations using COMSOL 
Multiphysics on the same nanoslot geometry. To provide an analogous 
calculation to compare with the ray tracing predictions at ΛL = 0.06, the 
input FEM thermal conductivity is taken to be k = 1

3Cv(0.06L); the 
particular value of Cv is irrelevant for the dimensionless heat flow cal
culations shown here. Comparing Fig. 4(c) and (e), we see that the 
dimensionless temperature mapping is in good agreement with the FEM 
results, with an error of 5% in the temperature gradient along x

L = 0.5 
and within the region zL ∈ [0.4, 0.6]. The dimensionless heat flux mapping 
also has a <5% error between Fig. 4(d) and (f) when comparing the 
average Q value at the neck region (x/L ∈ [0.45, 0.55], 
z/L ∈ [0.375, 0.625]), confirming that the ray tracing method provides 
results that are consistent with Fourier heat conduction predictions 
when the phonon mean free paths are sufficiently small. 

3.4. Nanomesh geometry 

Fig. 5 shows our calculations of θp and Q for nanomesh geometries 
with different pore shapes (square, triangular, and circular) in the bal
listic regime. These nanomesh structures are fabricated by etching holes 
through thin suspended membranes, and these nanomeshes have been 
used as model systems to explore phonon backscattering [12,22,52–55]. 
For all of the pore shapes shown in Fig. 5, we select periodic boundary 
conditions along the in-plane x direction and apply specular boundary 
conditions in the y direction to model a large-thickness nanomesh. 

Fig. 5(a–c) showcases the unique features of the ballistic θp profiles in 
nanomesh geometries. To quantitatively compare these scenarios, Fig. 5 
(d) displays a linecut of θp(z) at a x location that does not intersect a pore 
(x
L = 0.12, dashed triangles and lines) and at a x location that does 

intersect a pore (x
L = 0.5, solid triangles and lines). The dashed lines in 

Fig. 5(d) show that the temperature at the non-pore intersecting location 
θp(x /L = 0.12, z) is continuous and monotonically decreases with 
increasing z, with the asymmetric triangular geometry displaying the 
smallest θp at all z. In contrast, the solid lines in Fig. 5(d) show that the 
pore-intersecting linecut at θp(x /L = 0.5, z) displays a temperature that 
locally increases with increasing z within each region. This phenomenon 
has been previously observed and is referred to as a locally inverted 
temperature gradient [9,30,31,54]. 

This inverted temperature gradient can be visualized in Fig. 5(a) by 
contrasting the temperature gradients near surfaces 1 and 2 with the 
more typical temperature gradients in the non-intersecting pore regions. 
To compare the magnitude of the inverted temperature gradient effect 
between different geometries, we introduce a dimensionless tempera
ture gradient 

D = −
Δθ

Δz/L
, (17)  

where Δθ is the dimensionless temperature difference between the 
upper and lower pore at xL = 0.5 and Δz/L is the dimensionless pore-pore 
distance at x

L = 0.5, as illustrated schematically in Fig. 5(d). Negative 
values of D found from our ballistic calculations correspond to inverted 
temperature gradients, while positive values of D found from diffusive 
calculations are non-inverted and more traditionally observed in 
macroscopic systems. 

We can readily interpret the inverted temperature gradient using the 
transmissivity ratio result of Eq. (13). In Fig. 5(a), the transmissivity 
from the hot reservoir to surface 1 τh1 is larger than the transmissivity 
from the hot reservoir to surface 2 τh2 because the regions near surface 2 
are shadowed from hot-reservoir trajectories by the lower pore. There
fore, even though surface 2 is in closer proximity to the hot reservoir 
than surface 1, a thermalizing probe located near surface 1 would be 
more strongly coupled to the hot reservoir than a probe near surface 2, 
leading to the inverted temperature gradient phenomena. Similarly, if 
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we focused on the interactions with the cold reservoir, τc2 > τc1, 
meaning that a probe near surface 2 would be more closely coupled to 
the cold reservoir temperature even though a probe located near surface 
1 is physically closer to the cold reservoir. 

The ray tracing simulations emphasize that the ballistic transport is 
the essential physics leading to the inverted temperature gradient, 
meaning that similar temperature profiles should also be observable in 
measurements of photon or electron transport. For photon calculations, 
this inverted T gradient can be calculated using geometric view factors 
[44] that are somewhat similar in concept to the phonon reservoir-probe 
transmissivities. The phonon transmissivity calculation directly includes 
all re-reflections from surfaces and is appropriate when internal surfaces 
are adiabatic, while the radiation view factors focus only on the direct 
line-of-sight view between diffuse surfaces and can be incorporated with 
both adiabatic and isothermal boundary conditions. 

Fig. 5(e–g) compares the ballistic Q between the three pore geome
tries. Fig. 5(e) shows that the dimensionless heat flux in the square-pore 
nanomesh has values that are near zero at the inverted gradient regions 
located between the pores, while Q is larger and independent of position 
in the regions that are not blocked by pores. In the regions between 
pores, the strong phonon backscattering due the pore interactions causes 
Nhp,+ to be similar to Nhp,−, leading to small Q. The heat flux results for 
the triangular nanomesh in Fig. 5(f) show small values of Q in the re
gions directly beneath the pore surfaces that have surface normals in the 
z-drection, which is indicative of phonon backscattering. This triangular 

nanomesh also displays a strong local maximum in Q in the regions that 
are adjacent to the pores without being shadowed by the pore. Lastly, 
the circular nanomesh results in Fig. 5(g) are more similar to the 
triangular pore as compared to the square pore, indicating that the 
square pore geometry displays the most efficient heat flux shadowing 
between pores in the ballistic regime. Fig. 5(h) quantifies this conclusion 
by comparing Q(z) of three cases along two linecuts at xL = 0.12 (dashed) 
and xL = 0.5 (solid). In all cases Q is larger at xL = 0.12 than at xL = 0.5, as 
expected. The heat flow at both x

L locations more strongly on z for the 
triangle and circular pores than the square pores, because the square 
pores effectively confine the phonon trajectories near xL = 0.12 for all z. 
As was the case in the nanoslot scenario discussed Section 3.3, the re
gions of the square pore with near-zero Q can be explained by the cases 
of Region 1 or 2 in Fig. 4(b), in the sense that either Nhp,+ is close to Nhp,−

due to backscattering or Nhp,+ and Nhp,+ are both near zero due to pore 
shadowing. 

3.5. Inverted temperature gradient optimization in nanomesh 

Fig. 6 uses ballistic ray tracing calculations to explore and optimize 
the inverted temperature gradient seen in Section 3.4. Section 3.4 
focused on the case with two pores aligned in z, periodic boundary 
conditions in x, and infinite thickness in y. Fig. 6 expands this scope to 
study D in square and rectangular pore nanomesh structures with 
different geometric parameters and boundary conditions. We focus on 

Fig. 5. Nanomesh mapping and inverted T gradient. Dimensionless θp mapping for (a) square, (b) triangular, and (c) circular pore nanomesh geometries in the 
ballistic limit. (d) Plots of θp(z) at two xL values (dashed and solid lines) show that all three pore shapes display an inverted temperature gradient [30,31], in which the 
direction of the local T gradients between the pores is locally inverted compared to the direction of global T differences between hot and cold reservoir. Referring to 
(a), this inverted gradient arises because phonon trajectories from the hot reservoir have a larger transmissivity to surface 1 than surface 2 (τh1 > τh2) due to 
shadowing of surface 1 by the lower pore. (e–g) The dimensionless heat flux Q(x, z) mapping and (h) Q(z) linceuts for two xL values shows that the heat flux is larger at 
x
L = 0.12 than at xL = 0.5 due to phonon backscattering and pore shadowing. The circular pore heat flux in (g) is more similar to the triangular flux in (f) than the 
square pore scenario in (e). 
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square and rectangular pores in Fig. 6 because the square nanomesh in 
Fig. 5(a) displayed larger D than the circular or triangular pores. In all 
cases we consider diffuse phonon scattering from the pore, because the 
fabrication procedures for manufacturing nanoporous geometries typi
cally induce roughness or oxidation at the pore edge at scales compa
rable to the phonon wavelengths [22]. 

Fig. 6(a) studies the effect of the dimensionless pore size r = a/ p on D 
for four different boundary conditions in the x and y directions. Here, p is 
the pitch between pore centers in the z direction and a is the side-length 
of the square pore, as illustrated in Fig. 6(a) inset images for r = 0.5 and 
r = 0.125. Values of D that are large and negative correspond to strong 
deviations from typical diffusive behavior. For all boundary conditions, 
D approaches zero at large r because the large pores prevent direct line- 
of-sight phonon trajectories from the hot reservoir to the lower surface 
of the upper pore. The behavior at small r depends on the choice of 
boundary conditions. We first discuss the results for the “only diffuse 
pore” condition (yellow circles), in which specular boundaries are 

applied in the x and y direction in a manner similar to Section 3.4. In this 
scenario, the largest magnitudes of D are observed at small r because 
phonons from the hot reservoir have a line-of-sight view to the bottom 
surface of the upper pore with minimal shadowing from the lower pore. 
In contrast, D approaches zero at small r in the scenario in which the 
bounding surfaces in the x and y directions (Lx/p = 1 or Ly/p = 1) 
scatter diffusely (red squares), leading to a local optimum in D for r 
ranging from 0.2 − 0.4. Here, Lx is the width of the bounding surface in 
the x direction and Ly is the thickness in the out-of-plane y direction. 
This “diffuse pore and diffuse surfaces” scenario would be similar to a 
previously fabricated “nanoladder” geometry [56]. In this nanoladder 
case, D approaches zero at small r because phonons from the hot 
reservoir preferentially scatter from the bounding surfaces in x and y 
before reaching the pore surfaces. Because phonons from the cold 
reservoir also scatter off of these bounding surfaces, both the hot 
reservoir and cold reservoir phonon trajectories can reach both pore 
surfaces, causing D to approach zero. The observed D(r) when only one 

Fig. 6. Inverted temperature gradient geometric optimization. (a) Square pores with small dimensionless pore sizes r = a/p display a large and negative D at 
small r when the surrounding surfaces scatter phonon in a specular manner. Larger values of r ∼ 0.3 lead to optimal D when one or both of the bounding surfaces 
scatter diffusely. In all cases D approaches zero in the large-pore scenario with r near unity. (b) D typically increases in magnitude with an increasing number of pores 
along the z-direction (i.e., increasing total length L/p. (c) Increasing the dimensionless pore width l/p decreases the magnitude of D due to reduction in the number of 
line-of-sight trajectories between the hot reservoir and lower surface of the upper pore. (d) Small thickness ratios Ly/p lead to undesirable positive D due to boundary 
scattering, while large Ly/p leads to negative D approaching the thick-film limit of (a) for Ly/p≫1. 
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of the bounding surfaces scatter diffusely (orange triangles and di
amonds) are similar to each other and have smaller magnitude of D at 
small r, as in the nanoladder scenario. 

Fig. 6(b) considers the effects of increasing the number of pores along 
the direction of transport while considering periodic boundary condi
tions in the x direction and specular scattering in the y direction. These 
results would be relevant for nanomesh experiments that utilize peri
odically repeating pore structures in the x and z direction. We select an 
even number of pores for the system and calculate D between the two 
middle pores along the z direction, following the same procedure shown 
in Fig. 5(d). Fig. 6(b) shows that D does not vary strongly with the 
dimensionless length L/p for r = 0.5 (yellow circles) and r = 0.25 (or
ange squares), indicating that the two-pore results from Fig. 6(a) are 
appropriate even for large lengths. In contrast, the magnitude of D in
creases with increasing L/p for r = 0.125 (red diamonds) and r = 0.0625 
(magneta triangles) before saturating at lengths L/p > r−1. At a given L/

p, the magnitude of D increases with decreasing r, as seen for the diffuse 
pore scenario in Fig. 6(a). 

Fig. 6(c) considers the pore-shape effect by varying the dimension
less pore width l/p of a two-rectangular pore system at fixed dimen
sionless pore side length of 0.5. The boundaries along the x and y 
directions are set to be specular. In agreement with the general trends 
from Fig. 6(a), increasing the pore width reduces the magnitude of D. 
This trend is due to the increased shadowing and reduction in the line-of- 
sight interactions between the hot reservoir and the lower surface of the 
upper pore at large l/p. For the parameters shown here, D scales linearly 
with l/p for l/p ranging from 0 to 0.5, indicating that narrow pore widths 
are desirable for enhanced D. Lastly, Fig. 6(d) considers the effect of 
diffuse scattering at the finite y-thickness surface for four values of 
square pore size ratio r and periodic boundary conditions in the x di
rection. Experimental nanomeshes are typically fabricated using 
lithography and etching of thin suspended silicon membranes [22,55], 

Fig. 7. Ballistic phonon focusing. (a) Temperature and (b) heat flux profiles in a recently demonstrated nanoporous phonon lens [12] display local maxima near 
the focal point of the lens. The four rows of eight circular pores per row are aligned such that phonon trajectories are preferentially channeled to the focal point after 
travelling between the necks separating the pores. The top panel in (a,b) shows the x-dependence of θp and Q along z/L = 0.9, while the middle and bottom panels 
display the linear and logarithmic scaled colormaps to demonstrate the phonon trajectory focusing. (c,d) We used dual Gaussian equation to fit the simulation results 
located between x/L ∈ [0.38, 0.62], and define the local maximum value as θp,max and Qmax and the full-width half-max diameter of the focal spot (dθ, dQ) . 
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meaning that the thickness is not necessarily large compared to the 
pitch. Fig. 6(d) shows that the inverted temperature gradients for a 
two-pore system are only observed for thickness ratios Ly/ p that are 
large compared to unity. At thickness ratios that are small compared to 
unity, the phonon scattering from the diffuse membrane surfaces in y 
leads to positive D. At very small Ly/p compared to unity, D approaches a 
thickness-independent value for all r that matches the diffusive limit 
prediction using Fourier’s law. At large Ly/p, D is negative valued and 
approaches the infinite-thickness case shown in Fig. 6(a) for all r values 
shown here. The effect of introducing bulk scattering in the volume of 
the membrane would have a qualitatively similar effect to the 
film-thickness dependent study shown here, as both bulk scattering and 
diffuse film-surface scattering force the temperature and heat flux pro
files towards the diffusive limit. Overall, the analysis of Fig. 6 indicates 
that the periodic nanomesh geometry with square pores, 
small-to-moderate r, and large membrane thickness is a promising 
experimental platform to investigate inverted temperature gradients. 

3.6. Ballistic phonon focusing using geometric lensing 

Fig. 7 shows our ray tracing calculations of a ballistic phonon lens. 
This lens uses phonon line-of-sight trajectories through an array of pores 
to generate locally concentrated heat fluxes and temperatures near the 
focal point. This concept of ballistic phonon lensing in nanoporous sil
icon membranes was introduced and experimentally fabricated by 
Anufriev et al. in 2017 [32]. This work also performed Monte Carlo BTE 
calculations to determine the steady-state temperature and heat flux 
profiles for the experimental geometries. The goal of our study is to 
demonstrate that the ray tracing also reproduces the known phonon 
focusing effect, and to explore the geometry-dependent focusing capa
bilities of the ballistic lens. Our nondimensional calculations also 
emphasize that the lens behavior is a purely geometric quantity in the 
ballistic regime, meaning that the results are not restricted to silicon 
nanomaterials. 

Fig. 7(a and b) show θp and Q for a ballistic phonon lens with four 
aligned rows, each row consisting of eight circular pores arranged at a 
constant radial distance from the focal point at 

(x
L, z

L
)

= (0.5, 0.9
)
. In 

these calculations, the surfaces of the pores are diffuse and the mem
brane thickness is assumed to be infinite. The upper row shows a focal 
plane line profile as a function of x/L through the focal point at z/ L =

0.9, while the middle and lower rows are colormaps that visualize the 
results in linear and logarithmic scales, respectively. Both the θp and Q 
mapping show a local maximum at the focal point, as seen in the linecuts 
in the top row. For this geometry, the focal point in the Q profiles of 
Fig. 7(b) is visible both in the linear and logarithmic scales, while the 
local maximum in θp is most apparent in the logarithmic scale of Fig. 7 
(a). The local maxima in θp seen in the top row of Fig. 7(a) occurs 
because phonons have a direct line of sight from the hot reservoir to the 
focal point through the neck regions between the pores, which enhances 
τhp at the focal point as compared to the other x locations in the focal 
plane at z/L = 0.9. The temperature profile in Fig. 7(a) shows sharp 
decreases in θp at each concentric ring of pores because phonons from 
hot reservoir are backscattered by the pores. Because the circular pores 
in different rows of the lens are aligned, the phonons trajectories passing 
through the necks between pores will converge near the focal point. If 
the pores in different rows were staggered instead of aligned (not 
shown), the focusing phenomena is not observed. Similarly, the heat flux 
profiles in Fig. 7(b) show strong focusing effects at the focal plane due to 
the imbalance between forward- and reverse-crossing phonon trajec
tories. The line-cut profiles of θp and Q in the top rows of Fig. 7(a) and 
(b), respectively, show secondary maxima along either side of the pri
mary focal peak. These secondary peaks do not arise from phonon 
diffraction (which is not included in these ray tracing calculations) but 
instead arise from phonons that scatter off of a pore surface and are 
channeled in the continuous solid regions between the rows of pores. 

To quantify the peak temperature and heat flux values (θp,max, Qmax)

and the focal diameters (dθ,dQ), we fit the ray tracing results at z/L = 0.9 

with the dual Gaussian equation f(x) = a1 exp
(

−
(

x−b1
c1

)2
)

+ a2 exp 
(

−
(

x−b2
c2

)2
)

within the range of x/L ∈ [0.38, 0.62]; here a1, b1 c1, a2, b2 

and c2 are fitting parameters. Fig. 7(c) and (d) show that this dual 
Gaussian fit (red lines) accurately captures the ray tracing results (black 
points) for the temperature and heat flux profiles, respectively. The focal 
diameter in the x-direction (dθ, dQ) is defined as the full-width at half 
maximum of the fitting function, as labeled in Fig, 7(c) and (d). In this 
scenario, the dimensionless diameter dθ = 0.054 and dQ = 0.044 are not 
identical. Here we only consider the diameter (dθ, dQ) along x direction 
at z/L = 0.9, but note that the focal point is approximately circular, 
meaning that similar z-direction focal point lengthscales are obtained. 

Fig. 8 studies geometry-dependent focusing for θp and Q as a function 
of the dimensionless pore size ε = b/Ωa, where b is the pore diameter 
within a row and Ωa is the arc length between the centers of two pores 
within a row. To illustrate this definition, the Fig. 8(c) inset shows the 
schematic of the first row of eight pores with a row radius R. The arc 
length between pores is Ωa = πR/8, and the pore diameter b must be 
smaller than Ωa to avoid pore intersection. This dimensionless pore 
diameter ε is constant for all rows of pores; since each row has a different 
R but still has eight pores, the pore diameters and minimum distances 
between pores increase with increasing R. The geometry shown in Fig. 7 
has ε = 0.4. Returning to Fig. 8, the colormaps in Fig. 8(a) and (b) show 
that both the peak magnitude and the size of the focal spot decrease with 
increasing ε for both the θp and Q profiles, respectively. This result is 
easily interpreted: in the limiting case of a vanishing pore diameter 
(ε→0), the intensity is large but there is no focal spot. In the limiting case 
of a small neck between pores (ε→1), strong phonon backscattering from 
the pores decreases the phonon transmission and intensity, but phonons 
that do transmit through the narrow line-of-sight lead to a small focal 
diameter. 

Fig. 8(c) quantifies the decrease in the peak values θp,max and Qmax 

(left, blue) and spot diameters dθ and dQ (right, red), for the temperature 
and heat flux as a function of ε. The focal spot diameters are fairly 
similar between the heat flux (asterisks) and temperature profile (circle) 
results when ε ≥ 0.7, while the dimensionless peak values differ by as 
much as a factor of two between heat flux and temperature at fixed ε. In 
all cases, the peak values and spot diameters are most sensitive to ε for ε 
larger than 0.2 and depend less strongly on ε for ε very small compared 
to unity. One possible figure of merit summarizing both the peak value 
and the spot size effects would be the peak value normalized by a 
representative focal diameter. Fig. 8(d) shows that this dimensionless 
spot ratio for the temperature profile θp,max/dθ (purple square) and for 
the heat flux profile Qmax/dQ (yellow triangle) decrease weakly with 
increasing ε. This result indicates that changing ε causes both the peak 
values θp,max and Qmax and the focal diameters dθ and dQ to decrease in a 
fairly similar manner (see Fig. 8(c) also). The overall dimensionless spot 
ratio for heat flux is approximately a factor of two larger than the 
temperature spot ratio, which agrees with the magnitude of peak values 
shown in Fig. 8(c). Though outside the scope of this work, future 
research exploring geometric heat focusing to optimize the pore shape, 
pore distribution, or number of focal points of could be useful in the 
future experimental exploration of ballistic phonon focusing. This cur
rent work emphasizes that modifications to the geometry which 
decrease the focal diameter will also act to decrease the magnitude of 
the temperature or heat flux at the spot. 

Lastly, Fig. 9 investigates the effect of bulk scattering on the phonon 
focusing. We performed ray tracing calculations for the lens geometry 
with dimensionless pore size ε = 0.6 and dimensionless mean free paths 
Λ/L ranging from 10−1 to 103. Here, L is the full width of the lens- 
focusing array in the x direction, as defined in Fig. 7(a). The color
maps in Fig. 9(a) and (b) show the temperature and heat flux profiles, 
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respectively, for Λ/L = 10 (left), Λ/L = 1 (center), and Λ/ L = 0.1 
(right). As expected, the ray tracing results for Λ/L = 10 display 
focusing results that are qualitatively similar to the ballistic results 
shown in the third column of Fig. 8(a) and (b). As the dimensionless 
mean free path decreases, the diffusive scattering in the material de
creases the magnitude of the temperature rise and heat flux near the 
focal spot, as seen most clearly in the ray tracing results for Λ/ L = 0.1. 
Within the ray tracing methodology, this reduction in the focal spot 
intensity arises due to the reduction in the phonon transmission coeffi
cient from the hot reservoir to the focal spot. Fig. 9(c) further quantifies 
this reduction by showing that the peak temperature value θp,max (cir
cles) and peak heat flux Qmax (stars) decrease with decreasing Λ/ L. 
These peak values saturate at the ballistic limit of θp,max = 0.09 and 
Qmax = 0.22 for all Λ/L > 10, but are reduced to θp,max = 0.03 and 
Qmax = 0.05 for Λ/L = 0.1. Similarly, Fig. 9(d) shows that introducing 
bulk scattering increases the focal spot diameters for the temperature 
profile dθ (circles) and the heat flux profile dQ (stars). This increase in the 
focal spot size arises because bulk scattering leads to diffusion, 
dispersing the phonon trajectories away from the focal spot. Further 
calculations that properly consider the phonon frequency-dependent 
scattering rates would be required to quantify the phonon focusing 
observed in realistic phonon lenses. However, these results show that the 
strongest phonon focusing effects will be observed when the mean free 
path is substantially larger than the dimensions of the pore array, but 
that mild focusing effects can be observed even when mean free paths 

are comparable to or slightly smaller than the pore array dimensions. 

4. Summary 

We describe a phonon Monte Carlo ray tracing method to calculate 
the local temperature and heat flux, with a particular focus on ballistic 
phonon transport in nanostructures. The advantage of the ray tracing 
technique compared to the traditional BTE approach is that the full 
phonon distribution function does not need to be evaluated at each 
location, and the phonon trajectories can be computed in parallel. The 
derivation also provides a simple interpretation of the temperature 
profile in terms of a weighted transmissivity ratio between reservoirs 
and thermalizing probes, and an interpretation of the heat flux in terms 
of the imbalance between forward and reverse phonon trajectory 
crossings at a control surface. We validated the ray tracing method for 
benchmark dense material, nanowire, and nanoslot geometries. Our 
study of the dimensionless inverted temperature gradient D in nanomesh 
structures found that smaller pores, thick films, and multiple pores along 
the direction of transport lead to large and negative values of D in the 
ballistic regime. Our application of the ray tracing method to study 
ballistic phonon lensing in porous structures found that increasing the 
dimensionless pore size decreases the spot size and the peak amplitudes 
of the temperature and heat flux profiles in the focal spot. In summary, 
our ray tracing method can be used to probe ballistic phonon transport 
physics and design nanostructures with unusual temperature and heat 

Fig. 8. Pore-size dependent ballistic focusing. (a) Temperature and (b) heat flux mapping as a function of the dimensionless pore diameter ε = b/ Ωa shows the 
evolution in the focal point for different pore sizes. Here, the pore diameter b and arc-length Ωa are illustrated in the (c) inset for the first row of pores. (c) As ε 
increases, the peak values θp,max or Qmax (left) and the focal spot diameters dθ or dQ (right) decrease monotonically due to the smaller neck size between pores. (d) The 
spot ratio θp,max/dθ and Qmax/dQ do not show a strong dependence on ε, indicating the change of ε impacts the peak values θp,max and Qmax and the focal spot diameters 
dθ and dQ in a similar manner. 
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flux gradients in the ballistic regime. 
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