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Phonon ray tracing calculations have been used to quantify phonon boundary scattering in nanomaterials and to
interpret thermal conductivity measurements. However, Landauer-based phonon ray tracing methods have not
been able to access the temperature or heat flux profiles within nanomaterials, meaning that computationally
intensive Boltzmann Transport Equation solvers are needed to gain insight into ballistic transport physics or
model nanoscale temperature mapping experiments. Here, we derive and apply phonon Monte Carlo ray tracing
methods to calculate the local temperature and local heat flux in semiconducting nanomaterials, with a focus on
the ballistic transport regime. The derivation provides a straightforward interpretation of the local temperature
in terms of a thermal conductance ratio, and the local heat flux in terms of the difference between forward- and
reverse-oriented phonon trajectories crossing a control surface. After validating the method for several common
transport regimes and geometries, we apply the method to optimize geometric parameters that lead to locally
inverted temperature gradients in porous nanomeshes, and to evaluate the heat focusing capabilities of geometric
ballistic phonon lenses. These applications illustrate how phonon ray tracing methods can be used to quantify
ballistic thermal profiles and to design nanostructures that exhibit atypical thermal behaviors in the ballistic

regime.

1. Introduction

The development of micro/nanoscale thermal metrologies and
nanofabrication capabilities has enabled researchers to explore
geometry-dependent heat conduction in semiconducting nanomaterials
[1-3]. When the characteristic lengthscale (Lc,) of the nanomaterial is
large compared to the phonon mean free path (A), continuum
finite-element methods or solutions to the macroscopic heat equation
using Fourier’s law are used to quantify the geometry-dependent heat
flux (q) and temperature (T) fields. These continuum methods fail to
capture the size-dependent thermal properties that arise due to phonon
interactions with the boundaries of the system (classical size effect) or
phonon dispersion modifications (quantum size effect) [4]. For systems
with single-digit nanometer L., atomistic techniques including mo-
lecular dynamics [5] or atomistic Green’s function [6] methods are
successfully used to find the geometry-dependent g and T, although
computational constraints limit the number of atoms that can be
considered.

Experiments probing nanostructures with L., ranging from tens to

* Corresponding author.
E-mail address: gpw1@rice.edu (G. Wehmeyer).

https://doi.org/10.1016/j.mtphys.2023.101040

hundreds of nanometers typically analyze results using numerical or
analytical solutions of the phonon Boltzmann Transport Equation (BTE)
[7,8]. The BTE is applicable in the mesoscopic regime when L, is large
compared to the dominant phonon wavelengths (1), and accurately
quantifies geometry-dependent heat conduction in both the ballistic
(Lehar<<A) and diffusive (Lepy >A) regimes. A typical steady-state BTE
approach solves a high-dimensional integrodifferential equation to find
the phonon modewise distribution function (f), and then uses f to
calculate ¢ and T in the device [9-14]. Researchers have developed
computational methods based on variance-reduced Monte Carlo ap-
proaches to perform these BTE calculations for realistic
three-dimensional experimental geometries [15-17], and have devel-
oped single-phonon trajectory tracking schemes to determine the local T
profile and total heat transfer [18,19]. Even after making simplifying
approximations such as the relaxation time approximation (RTA), BTE
solutions are challenging because the distribution function depends on
the time t, three real-space coordinates x,y, z, three components of the
phonon wavevector ky,ky,k;, and the phonon polarization index s.

As an alternate approach to the BTE, thermal researchers have also
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developed phonon ray tracing methodologies [20-29] to study heat
transfer in mesoscopic devices. These phonon ray tracing methods track
phonon trajectories through the device and use the trajectory informa-
tion to determine the phonon mean free path in the nanostructure via a
Landauer approach [20]. The ray tracing techniques are efficient in the
ballistic regime because all phonon trajectories can be calculated in
parallel, energy conservation is explicitly enforced without the need for
iteration or integration over modes, explicit time-stepping and meshing
issues can be avoided via direct trajectory calculation, and convergence
can be established statistically via Monte Carlo methods [22]. It is
typical to assume in the ray tracing that the material has an isotropic
phonon dispersion relation, though anisotropy can be included at
additional computational cost [21]. Rigorous descriptions of inelastic
phonon-phonon scattering are difficult to incorporate within ray
tracing, making the results from ray tracing calculations functionally
equivalent to BTE solutions under the RTA.

One major current advantage of the BTE compared to ray tracing is
that the local g and T profiles can be readily obtained from the BTE
solution and used to assist in the interpretation of geometry dependent
thermal transport. For example, the g and T outputs from BTE solutions
have been used to study ballistic transport phenomena in nanoporous
materials [12], locally inverted temperature gradients in nano-
composites [30,31], and heat focusing via ballistic phonon geometric
lensing [32]. In addition to the interest in interpreting transport phe-
nomena, recent developments in nanothermometry techniques using
scanning probes [33], luminescent nanoparticles [34], or electron mi-
croscopy signals [35,36] may open new opportunities for direct nano-
scale measurements of temperature profiles and comparison against
mesoscopic simulation. Unfortunately, existing Landauer ray tracing
methods are not able to predict these T and q profiles inside devices,
which makes it difficult to explore ballistic phonon transport in nano-
materials or validate nanothermal experiments.

Here, we describe and apply numerical methods to extract the local T
and q profiles in nanomaterials using phonon ray tracing simulations.
The T profile is found as a ratio of local reservoir-to-probe thermal
conductances obtained via a Landauer-Biittiker method, and the q pro-
file is calculated by tracking the phonon trajectories across a control
surface. Our validation studies for fully dense structures and nanowire
geometries show that method accurately calculates the T and q profiles
from the ballistic through diffusive regimes, though the method is most
computationally efficient in the ballistic regime. After establishing the
method, we then apply the ray tracing methods to establish the optimal
geometric parameters to observe locally inverted temperature gradients
in nanoporous materials [30,31]. Here, the phrase “locally inverted”
means that the polarity of the local T gradient in the ballistic regime is
inverted as compared to the familiar Fourier law diffusive prediction.
We also use the ray tracing simulations to study geometric ballistic
phonon focusing [32] in nanoporous materials; in these devices, the
local T and local q profiles can be spatially localized at the focal point of
a set of radially aligned pores. These demonstrations show that the
phonon ray tracing method can be used to design structures with unique
and optimized ballistic thermal phonon behaviors.

2. Methods and derivation

The derivations consider a thermal device of interest connected to
two thermalizing reservoirs, as shown in Fig. 1. The hot reservoir is at a
temperature T, and has a contact area Ay with the device, while the cold
reservoir is at a temperature T, with a contact area A.. Within a
Landauer-like picture of transport, phonons are injected into the device
from both reservoirs. Throughout our derivations, we assume that the
reservoirs are thermally isotropic and homogeneous materials; the de-
vice itself can be heterogeneous, as illustrated by the pores in Fig. 1.
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Fig. 1. Ray tracing illustration. Schematic of phonon ray tracing trajectories
used to determine the local temperature and heat flux profiles. Phonons with
initial location (x,y), initial propagation direction (¢, ¢), frequency », and
polarization index s are initialized at the hot (red) and cold (blue) thermalizing
reservoirs with device-reservoir contact areas A, and A, respectively. The
phonon trajectories are traced through the device until the phonon reaches
either thermalizing reservoir. The Landauer model considers a probe with
location index p. The phonon hot-probe and cold-probe transmission co-
efficients 74, and 7., respectively, are used to determine the local probe tem-
perature T,. The phonon forward-crossing index ny, . and reverse-crossing
index ny,  are used to calculate the local z-component of the probe heat
flux, q;p.

2.1. Local heat flux derivation

We begin by deriving an expression for the steady-state heat flux
inside the device. We focus here on the z-component of the heat flux g,
as it is straightforward to modify the approach to find the other two
components ¢, and g,. We consider a control surface (also referred to as
a “probe” in reference to the T derivation discussed below) with area A,
and a surface normal oriented in + z.

Consider a phonon labeled by the index j. This index is shorthand for
the phonon initial location (x, y) at the reservoir-device contact, the
initial polar and azimuthal propagation angle (6, ¢) upon entering the
device from the reservoir, the phonon frequency w, and the polarization
index s. This phonon is assumed to undergo elastic (i.e., frequency-
preserving) interactions within the device before exiting the device
after a residence time t;; the method does not consider any phonon
absorption/emission within the device. During this time in the device,
this phonon passes across the control surface area A, a total of nj;
times in the +z direction and n;, _ times in the —z direction ; both of
these integers are larger than unity in general. For example, phonons
may undergo multiple backscattering events due to the interactions with
other phonons or diffuse surfaces of pores [9,37,38], which results in
phonon trajectories with velocity components in the —z direction,
although the initial velocity component projection is in the +z direction.
The net energy transfer across the probe by this phonon during its transit
through the device is ~w(n;jp . — njp ). The time-averaged z-component
of the heat flux at the probe due to the j phonon g, is therefore

_ho(n, =)

pi = 1
Depj At @

Here, the heat flux contributed by this phonon is interpreted as the
net energy transfer divided by the residence time ¢; of this phonon and by
the probe surface area. t; is the time spent in the domain by the phonon
before it exits at a reservoir. As discussed below, t; appears as an inter-
mediate variable in the derivation and does not need to be determined to
find the heat flux.

During this phonon residence time t;, the number of similar phonons
injected into the device from the reservoir within a differential reservoir
area dA, differential solid angle dQ = sin d0dgp, and differential angular
frequency dw of phonon j described above is
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where fo(Tres) =1/ (exp (k;’;’> —1)) is the Bose-Einstein distribution at

the reservoir temperature Ty, D(w) is the density of states per unit
volume of the reservoir material, v cos § is the z component of the
phonon velocity in the reservoir, kg is Boltzmann’s constant, and # is
Planck’s reduced constant. For the isotropic reservoir materials
considered here, v depends on @ and s but is independent of 6.
Conceptually, the residence time t; appears in Eq. (2) to accurately ac-
count for the total number of phonons injected into the device, as the
injection occurs at a fixed rate given by N;/t;.

The differential contribution towards the average probe heat flux
dq;p = Njq,p; is therefore obtained using Egs. (1) and (2) as

"./'-,pf)

ho ("/ Pt D(w)
Tl’eﬁ
A, FolTres) 4n

dq., =Njq.p;j = v cos 0dQdwdA. 3)

Note that the phonon residence time t; does not appear in Eq. (3),
meaning that this quantity does not need to be recorded in order to
calculate the heat flux. Considering all initial locations and initial angles
of both reservoirs, the z-component of the heat flow at the probe is
obtained as

fl(D n/lx/7+ jhﬂ ) D(a))
T IA;,dQ
Z/ / / o $o(Ti) v cos 0dA,dQdw
» sio A @
o (1) p+ — Njgp, D(w
*Z/ / /Wfo(m iﬂ)vcos 0dA.dQdo.
5 P

o Q=21 A,

Thoughout this work the sum is taken over all polarizations s, and the
integrals over w are taken over all phonon frequencies supported by the
respective reservoirs. The subscripts hp and cp in Eq. (4) indicate that the
phonon trajectories are initiated at the hot and cold reservoirs,
respectively.

Eq. (4) can be simplified further using considerations of detailed
balance. If T, = T, the second law of thermodynamics requires that the
heat flux vanishes, meaning that the two terms on the right hand side of
Eq. (4) must cancel for T, = T¢. In the linear response regime in which
the only temperature dependence arises due to the T-dependent occu-
pation statistics, we insert a Taylor series expansion of the Bose-Einstein
statistics as fo(Th) = fo(T¢) + ‘sf—g(Th —T,) into Eq. (4), use the detailed
balance requirement, and obtain

2
n jhp A+ — THhp,— o D
Gp=(Ti—=T.)» / / oo (e~ i) % %v cos fdA,dQdo.

S w Q=0 A,

)

Lastly, introducing the modewise heat capacity C, = hwD(w) f,f—; used
to calculate the total volumetric heat capacity C = Y [C,dw, this final
S w

expression for the local z-component of the heat flux can be written as

(T —

qz_,p_T / / / Wi — i~ ) CuV cOS OdALdQdw. (6)

Q=0 A,

Eq. (6) shows a general expression for the heat flux, which is ob-
tained by integrating over each phonon frequency, initial location, and
initial angular distribution. The position dependence of the heat flux
within the device is captured entirely by the difference between for-
ward- and reverse-oriented crossings (nj, — Njpp.—), which in general
depends on the probe location index p. Below we present our results in
non-dimensional terms using the dimensionless z-component of the heat
flux
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where Cv = 3" [C,vdw is the frequency-averaged product of the mode-

S w
wise specific heat and modewise group velocity. The non-
dimensionalization is selected such that Q, =1 in the case of fully
ballistic heat transfer between hot and cold reservoirs, as verified in
Section 3.1 below.

2.2. Local temperature derivation

To find the local temperature, we leverage the multi-terminal Lan-
dauer-Biittiker theory describing phonon transport in nanomaterials
[22,29,39-41]. Here, we use the term “terminal” to refer both to the
thermalizing hot and cold reservoirs and to a thermal probe located
inside the device. Within the Landauer-Biittiker theory [22], the
two-terminal thermal conductance between terminal a and b is

A(l _
Ga :TZ / CoV Ty pdoo, ®)

where A, is the contact area of terminal a and the weighted modewise
area- and angle-averaged phonon transmissivity from a to b is

1
To.ab = //Tm‘ah cos 0dA,d<Q. (9)
A

Q A,

Here, 7,, o is the phonon transmissivity from a to b for a given choice
of w,s,Q, and initial location on terminal a. The normalization prefactor
(Agm)”! in Eq. (9) is selected such that 7,4 = 1 if 7,4 = 1 for all pho-
nons. The integral over solid angles spans all Q oriented such that
phonons are exiting reservoir a and propagating in the device (e.g., Q
would range from 0 to 27 steradians for the hot reservoir shown in Fig. 1
(a)). In a linear system that obeys time-reversal symmetry, the thermal
conductance from a to b (G4) and the thermal conductance from b to a
(Gpq) are identical. 7,4 is a primary output of the phonon ray tracing,
and is interpreted as the weighted probability of phonon energy trans-
mission between terminals a and b.

Here we consider a thermalizing blackbody probe inserted at an
arbitrary location inside the system indexed by p, and consider the de-
vice as a three-terminal system with a thermalizing hot reservoir, cold
reservoir, and probe. Phonons from each of the reservoirs can be
transmitted to and absorbed by the probe; similarly, the probe emits as a
blackbody at a temperature T,, which is the local temperature of in-
terest. According to multi-terminal Landauer-Biittiker theory [4,42], the
net heat flow from reservoirs to the probe is

Q]) = th (Th - Tp) + ch (Tc - T}))» (10)

where Gy, and G, are the thermal conductance from the hot and cold
reservoir to the probe, respectively, calculated using Egs. (8) and (9).
Local thermal equilibrium is set by dictating Q, = 0; physically, this
represents the case where a fully thermalizing, adiabatic probe is
inserted into the device. Solving for the dimensionless temperature 6, =

T":;ﬁ by setting Q, = 0 in Eq. (10), we obtain the final expression for the

dimensionless temperature as

th

6, =—m
! th + ch

an

This result is exactly analogous to the corresponding Landauer-Biit-
tiker expression for the voltage measured at a probe in a mesoscopic
electrical transport experiment [43], as expected. Eq. (11) shows that
the expression for the local dimensionless temperature can be obtained
by calculating the thermal conductance from both reservoirs to the
probe. Because both Gy, and G, always must be larger than unity to
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satisfy the second law of thermodynamics, the right hand side in Eq. (11)
is bounded between zero and unity, indicating that the temperature T, is
bounded between the temperatures of the hot and cold reservoirs at all
locations in the device.

Physically, the temperature calculated in Eq. (11) represents the
equilibrium temperature that would be reached by a thermalizing probe.
This maximally intrusive probe temperature is well defined from the
ballistic through diffusive regime, and we show below that the spatial
dependence of the T profile agrees with the T profiles obtained from
solutions of the BTE under the RTA for several traditional geometries. In
BTE simulations, the T rise is typically extracted using the instantaneous
internal phonon energy within a mesh volume and the local specific heat
[9]; in contrast, the internal energy is not explicitly calculated in the ray
tracing. We also note that in experiments, the probe used to measure T
may not behave as a blackbody phonon absorber and emitter (i.e., not all
phonons that are incident on the probe may be absorbed/re-emitted).
The ray tracing methodology could be extended to model these experi-
ments by selecting non-blackbody phonon transmission at the probes,
though this approach is not considered further here.

We now compare our methodology against existing BTE solution
procedures [7]. The traditional BTE numerical approach aims to solve
for the phonon modewise distribution function f as a function of position
and time; once f is known, it is straightforward to find the local tem-
perature profiles and heat flux profiles [9-13]. In many cases, f is found
by injecting many phonons (or bundles of phonons) into a domain,
tracking the positions on a mesh as a function of time as phonon drift
and scatter, and recording the phonon statistics at each mesh location
and time [7]. Some of these BTE methods use Monte Carlo approaches to
determine aspects of the phonon trajectory evolution or to model the
phonon scattering events [9,12,13,15,16,18,19]. Typically, simulations
are performed as a function of time and the locations of all phonons (or
bundles representing groups of phonons) must be considered simulta-
neously; however, researchers have also developed BTE numerical so-
lutions that use a series of single-phonon trajectory calculations to
determine the steady-state local energy and temperature within a
meshed cell [18,19].

In contrast, the ray tracing model described here fundamentally
determine the phonon transmission coefficients and forward/reverse
crossing indices rather than determining the local energy density or
local heat flux as a function of time in a volumetric mesh. The advantage
of this ray tracing method is that ballistic results are obtained in a
computationally efficient manner, and the phonon trajectory calcula-
tions are easily parallelizable. The theoretical framework is steady-state,
meaning that a timestep/final simulation time convergence is not
explicitly required; rather, convergence is established by increasing the
total number of simulated trajectories. The calculation of the global heat
flow in the previous single-phonon BTE calculation [18,19] has several
conceptual similarities to the ray tracing implementation described
here, though the current ray tracing formalism is also able to access the
local heat flux in addition to the global heat flow. The disadvantages of
the Landauer approach are that phonon-phonon scattering is not rigor-
ously incorporated, and that transient temperature or heat flux fields are
not accessible.

2.3. Ray tracing implementation

We calculated the temperature and heat flux using a ray tracing
technique implemented in MATLAB [20,22,23]. The geometry and co-
ordinate system is defined in Fig. 1, and considers a hot reservoir at z =0
and a cold reservoir at z = L, where L is the device length. To calculate T
and g, we apply a volumetric mesh to the device and consider each mesh
element as a probe. An advantage of the ray tracing method is that the
mesh selection can enforce the required symmetry of the T and q pro-
files. We perform mesh convergence studies in all cases to ensure
mesh-independent results; intentionally large probe volumes could be
used to simulate experiments with non-vanishing probe size, though we
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do not consider these large probes further in this work. The computa-
tional disadvantage in using smaller mesh sizes is that more phonon
trajectories need to be implemented to reduce the statistical error at the
probe associated with the Monte Carlo method, as discussed further in
Section 2.5 below. We now describe the implementation of the T and q
mapping before discussing simplified results for the case of fully ballistic
transport.

2.3.1. Local temperature mapping implementation

Egs. (8) and (11) show that the local probe temperature T, is
determined by the thermal conductance Gy and more explicitly, the
average transmissivity 7. We calculate 7, and 7, by a set of phonon
trajectory calculations. In each trajectory calculation, a single phonon is
emitted from a thermal reservoir at z = 0 or z = L in Fig. 1. To initialize
the phonons at the reservoir, we use four random numbers selected from
a uniform distribution bounded by 0-1 to determine the initial location
and direction. The initial location (x,y) is uniformly selected within the
cross-sectional area of the reservoir A, or A.. The initial propagation
direction is determined by the azimuthal angle (¢), which is uniformly
distributed from 0 to 2z, and the polar angle (6) which is selected by 6§ =
sin"'v/R; where R; is a random number selected from a uniform dis-
tribution bounded by 0 and 1. This initial direction (¢, §) obeys the
isotropic solid angle weighted distribution that is familiar from photon
black-body radiation [44]. The final area- and angle-averaged trans-
missivity 74 is calculated by implementing a large number of these
phonon trajectories with different initial conditions. We estimate the
statistical error in the transmission coefficients using a previously
described sub-sampling method [22].

We track the phonon trajectory through the device until the phonon
transmits to the far reservoir or is backscattered to the initial reservoir.
In the fully ballistic case, the phonon travels until it encounters a
boundary. In the scenario where bulk-like elastic volumetric scattering
inside the material is considered, we dictate this bulk mean free path A
as an input parameter to the calculation. After a phonon scattering event
(ether boundary or volumetric), we select a bulk free path from a
logarithmically weighted distribution as — A In(Rz), where Ry is a
random number selected from 0 to 1. The free path selection —A In(R3)
represents a distribution in which the probability of scattering after
travelling a distance [ is found to be 1 — exp( — [ /A). The term —In(Rz)
ensures that the probability of scattering follows the typical weighed
exponential distribution of free paths [45]. If the volumetric free path is
smaller than the distance to the next surface on the phonon’s trajectory,
the phonon is propagated to the location of volumetric scattering and
the outgoing direction after the scattering is uniformly weighted within
the 4z steradian solid angle. If the volumetric free path is larger than the
distance to next surface collision, the phonon is propagated to the
scattering surface and the outgoing phonon direction can be selected as
diffuse or specular. Here, we consider diffuse scattering unless otherwise
noted, which is appropriate when the boundaries have characteristic
surface roughness/disorder at scales comparable to or larger than the
phonon wavelengths [4].

The thermalizing probe is not explicitly included in the trajectory
calculations and is only considered after the trajectory has terminated at
areservoir. During the phonon’s transit in the device, we record a binary
variable indicating whether a phonon trajectory has intersected the
mesh volume representing a potential probe location. If the thermalizing
probe were present at that location, the phonon would have been
absorbed, and we record the reservoir-probe transmission as unity for
that trajectory and probe location. The advantage in this method is a
single set of phonon trajectories can be used for all probe locations,
dramatically improving the computational efficiency. For sufficiently
small mesh sizes, the temperature value calculated using the method
approaches the intrinsic (i.e., mesh-independent) T, limit reflecting the
thermalization temperature of an infinitesimally small blackbody probe
interacting only with the reservoirs and no other probes. The
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temperature calculation in Eq. (8) requires only the reservoir-to-probe
transmissivities to be calculated, meaning that the probe-to-reservoir
transmission due to phonons emitted from the probe is not required
and that phonon re-emission from the probe is not implemented.

2.3.2. Local heat flux implementation

Consider a number N,, of phonon trajectories for phonons with the
frequency range between w and w + dw near w. The integrals over po-
sition and angle in Eq. (6) are statistically approximated by selecting
random numbers from a weighted distribution to initialize the phonon
trajectories; this angular and position weighting to find q is identical to
the T calculation described in Section 2.3.1 above. After initializing the
phonon trajectories and tracing these phonons through the device, the
output from the calculation is the number of phonon trajectories passing
through the probe surface in the positive (negative) z direction N, pp,
(N, pp,—), which is determined by calculating the z-component velocity
of the phonon when its trajectory intersects the control surface. Each
phonon trajectory can pass through the same probe multiple times in the
algorithm. The numerical approximation to Eq. (6) therefore becomes

(T, —T.) A, / (Nw.h/7,+ - Nw.hp,—)
Gep="—"—"" " Cpyv—F"——""dw. 12)

Note that g,, denotes the total net heat flux in the z direction passing
through the probe; even though the phonons are only initialized from
the hot reservoir in the ray tracing calculations, the theory described
here accurately describes the interactions between both hot and cold
reservoirs.

2.4. Limiting case: Ballistic transport

The ray tracing is most computationally efficient in the ballistic
regime in which T and q are determined by boundary scattering. If all of
the phonons interact with each bounding surface similarly (e.g., in a
diffuse or specular manner), the transmissivities and the phonon surface
crossing outputs from the ray tracing are independent of w and s. As a
result, the dimensionless temperature expression in Eq. (11) simplifies to

Thp

0, “mtr 13)

Eq. (13) shows that the dimensionless temperature in the ballistic
regime is a purely geometric quantity determined the probe trans-
missivity ratio. Interestingly, this ballistic dimensionless temperature
profile is independent of the phonon dispersion relation for all
geometries.

Similarly, in the ballistic regime, the heat flux expression in Eq. (12)
simplifies to

qz.p:(Th 7T()Aip 4 N 3 (14)
and the dimensionless heat flux defined in Eq. (7) becomes

Ny, — Ny, _
o=An Mipe = Niy-) (15)

A, N

Here, N is the total number of phonon trajectories and Ny, , and Np, -
are the number of forward- and reverse-oriented trajectory crossings at
the probe control surface. The dimensionless heat flux is also a purely
geometric quantity in the ballistic regime, indicating that both 6, and Q
can be calculated once and for all for a given geometry and surface
specularity. As we show below, these ballistic spatial profiles can pro-
vide insight into phonon transport behavior in patterned nanomaterials
of experimental interest.

Lastly, we note that the ballistic results of Egs. (13)-(15) are also
appropriate to use for arbitrary bulk mean free paths if the material is
assumed to be “gray”, meaning that Ay, is independent of w and s.
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Realistic materials are not well-described by this gray model because
Apuk depends strongly on @ for phonon-impurity and phonon-phonon
scattering [14]. Despite this substantial shortcoming, the gray model
is a convenient assumption for modeling and is used as a first step to
understand the qualitative trends of heat conduction in materials as a
function of nanostructure size or geometry [46]. In the more realistic
non-gray and non-ballistic scenarios, Egs. (6) and (11) should be used to
quantify the heat flux and temperature profiles from phonon ray tracing
calculations. In addition, it should be noted that the ray tracing
approach is only strictly appropriate for the case of elastic scattering
within the volume of the computational domain, as investigated below.
Inelastic scattering mechanisms such as Umklapp scattering can only be
treated approximately, in a manner that reproduces results given by the
relaxation time approximation to the BTE. The phonon ray tracing
approach cannot capture effects such as hydrodynamic phonon trans-
port [47] that arise entirely due to interactions between phonons.

2.5. Heat flux error estimation

We evaluate the standard error in Q using a sub-sampling method
[48]. To reduce the intrinsic statistical variance associated with the
Monte Carlo method, we perform a large number of phonon trajectories
N > 5% 10°. To perform the sub-sampling, these phonons are arbitrarily
divided into J (here J = 40) groups. For each group we obtained the
averaged value of dimensionless heat flux Q; (i = 1,2, ..,J). When J is
large compared to unity (but small compared to N) and the results from
each group are uncorrelated with one another, the standard error ¢, of
the heat flux calculation can be readily determined as

(0 - 0), (16)

J
=1

1
COTNII—1) ¢

i

where Q = } ZiJ:IQi is the mean heat flux calculated using the total
number of simulated phonon trajectories. The 68% confidence interval
is selected for evaluating the statistical uncertainty, and the standard
error of the dimensionless heat flux is obtained from Eq. (16) as (Q — oq,
Q + O'Q).

3. Results

We first perform several validation studies to confirm that the ray
tracing implementation captures the expected T and g profiles in
benchmark geometries. Section 3.1 considers heat transfer in a fully
dense system of length L, while Section 3.2 considers phonon transport
along a square nanowire. Section 3.3 uses ray tracing to study the spatial
profiles near a sharp constriction in a nanoslot geometry, while Section
3.4 investigates and optimizes the locally inverted T gradients observed
in periodically etched nanomesh materials and Section 3.5 focuses on
ballistic phonon focusing.

3.1. Validation: Fully dense material of length L

We first consider a fully dense (i.e., non-porous) material of length L.
The material is implemented in our ray tracing calculations by sepa-
rating the thermalizing hot and cold reservoir by a distance L along the z
direction and applying specular boundary conditions along the x and y
directions of the computational domain. Classical size effects on phonon
transport in this geometry have been widely studied [45]. In the diffu-
sive regime, the temperature gradient is linear with respect to z. In the
ballistic regime, T is independent of position and there is a discontin-
uous temperature difference at the reservoir-device boundary.

Fig. 2(a) shows that our ray tracing simulations of the dimensionless
temperature 6, also display this expected behavior as a function of the
dimensionless position z/L for a range of dimensionless mean free paths
A/L. These calculations consider a gray phonon mean free path. Fig. 2(a)



Y. Song and G. Wehmeyer Materials Today Physics 33 (2023) 101040

(a) (b)
— A= S e g
_ M_=é’° Ballistic limit
QDQ 06 AL=25 |
© . :ML=1 25 ? & Simulation
% _ ﬁ:g; é 0.8 | |~ Analytical prediction -
5 0.6 A/L=0.16 |/ <
=] ! —— A/L=0.05 Q
£ < 06 AL=o00 |
8
2 A/L =0.05 3 AL=5
o 04 g
S 04 :
.5 2] AL=1
z L 2
S o2t Zz £ AJL =01
g o A 02 /L=01 |
a . 0.5 1
z/L
0 Y L 1 L 1 0 L . 4 /
0 0.2 0.4 0.6 0.8 1 107" 10° 10 102

Dimensionless position z/L Dimensionless bulk mean free path A/L

Fig. 2. Fully dense material validation. We validate the ray tracing mapping using a fully dense (i.e., non-porous) material of length L separating the hot and cold
reservoir. (a) The dimensionless temperature profile 6,(z) displays the expected behavior for eight values of the dimensionless gray mean free path A/ L. The
dimensionless temperature is 6, = 0.5 for all locations when A/L = oo, while 6, approaches the Fourier result of linear 6,(z) at £<1. 6, is independent of x, as
illustrated in the inset for A/L = 0.05. (b) Ray tracing results show that the dimensionless heat flux Q increases with increasing A/L and converge to the maximum
value of unity in the fully ballistic limit. The simulation results (red circles) agree with a simple theoretical prediction (black line) using Mattheissen’s rule. The inset
shows that the heat flux distribution is independent of z/L for four values of A/L, as required from energy conservation.

shows that ¢, = 0.5 for all positions in the ballistic regime (A/ L = oo,
red line), in agreement with the known ballistic limit [45]. As the
dimensionless mean free path decreases, the temperature drop at the
boundary also decreases in magnitude, and the temperature profile in
the fully diffusive regime (A/L<1) approaches the linear Fourier pre-
diction. The inset temperature profile in Fig. 2(a) for A/ L = 0.05 shows
that 6, is independent of the coordinate x, as expected.

Fig. 2(b) shows that the dimensionless heat flux Q calculated from
ray tracing (points) increases with increasing A/L and converges to
unity in the ballistic regime. In dimensional terms, this ballistic heat flux
limit is given as quuy = ?(Th — T.). Conservation of energy and sym-
metry arguments dictate that the heat flux is independent of z for all A/
L, as verified in Fig. 2(b) inset for four values of A/L. To obtain the value
of Q shown in the main plot of Fig. 2(b), we take the unweighted average
value of Q obtained from all probe locations. Fig. 2(b) also compares the

(a)

Dimensionless temperature 6,

0 0.2 0.4 0.6 0.8 1

Dimensionless position z/L

ray tracing calculations of Q with a Matthiessen’s rule prediction (line)

-1
using the effective phonon mean free path A = (A’1 + (%)71) .
Here, A is the bulk mean free path and 2L is the boundary scattering
mean free path for the fully dense material of length L. Once A is
known, Q, can be calculated using the standard heat flux expression q =
1CvA«(4Y) and the nondimensionalization in Eq. (7), enabling direct

L
comparison with the ray tracing results. The simulation results are in

good agreement with this theoretical prediction, as shown in Fig. 2(b).

3.2. Validation: Square nanowire
As a second validation scenario, we consider transport along the

axial direction of a square nanowire with side length w and length L. This
nanowire geometry is a common system used to explore phonon mean

(b)

0.8

% Simulation
— Analytical prediction

0.6

0.4

0.2

Dimensionless heat flow Q'

Dimensionless side length w/L

Fig. 3. Nanowire validation. (a) Fully ballistic 6,(2) in a square nanowire of length L and side-length w (inset) with diffusely scattering surfaces. In the short-
nanowire case where w/L>1, ray tracing results approach the ballistic scenario from Fig. 2(a), while in the long-nanowire case w/L<1, the ray tracing results
for ¢, approach the Fourier limit (black dashed line). (b) The dimensionless heat flow Q (found by averaging Q over the cross-sectional area) increases with
increasing w/L and converges to unity at large w/L. The simulation results (red circles) are in good agreement with a simple Matthiessen’s rule prediction (black line).
The inset shows that the dimensionless heat flux Q depends on x for the nanowire, particularly when w/L>1.
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free path and thermal conductivity reductions due to boundary scat-
tering [49]. In the case of fully diffuse scattering, BTE solutions show
that the boundary scattering phonon mean free path of a long nanowire
(w/L<1) approaches 1.12w in the ballistic regime [20]. Fig. 3(a) shows
the ray tracing calculation results for the diffuse surface nanowire
temperature profile in the ballistic regime (A/w = ) as a function of
the dimensionless axial position z/L for a dimensionless side lengths w/
L ranging from 0.05 to 10. The inset to Fig. 3(a) shows that the tem-
perature profile is independent of x, as expected. In the short nanowire
case where w/L>1, this nanowire geometry is identical to the scenario
discussed in Section 3.1, and a large temperature drop near the reservoir
is observed for w/L = 10 (pink line, Fig. 3(a)). In the long nanowire case
where w/L<1, the ray tracing 6, profile for w/L = 0.05 (red line) ap-
proaches the linear Fourier law prediction (black dashed line).

Fig. 3(b) shows the ray tracing calculations of the dimensionless heat
flow Q =% [ [, Qdxdy as a function of w/L. Though the temperature
profile only depends on the axial direction, the heat flux Q is indepen-
dent of z but depends on (x,y), as shown in Fig. 3(b) inset. The reduction
in Q(x) observed in Fig. 3(b) inset is most pronounced for large w/ L and
arises from the scattering off the diffuse surfaces of the nanowire. The
integrated heat flow Q shown in Fig. 3(b) increases with increasing w/ L
and converges to unity in the short nanowire limit of w/ L>> 1. The ray
tracing results are in good agreement with the simple Mattheissen’s rule
analytical approximation (black line) using the effective mean free path

-1 1\ !
Aar = (GL) 7+ (112w) )
implementation. Here, 3 is the boundary scattering mean free path of a

short nanowire, while 1.12w is the boundary scattering mean free path
of a long square nanowire with diffusely scattering boundaries [20]. Our

, again validating the ray tracing
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calculations here do not include any bulk scattering and focus on diffuse
nanowire surface scattering; if specular or partially specular surfaces are
present, Q, would be larger than in the diffuse scenario.

3.3. Nanoslot geometry

We now turn for the remainder of this manuscript to study transport
in nanoporous materials. Fig. 4 focuses on phonon transport in a recently
fabricated nanoslot geometry [50]. Prior work has shown that the total
thermal resistance through the neck between the pores is sensitive to the
ballistic transport, as commonly described using the Sharvin resistance
expression [51]. Similarly, the temperature and heat flux distribution in
the ballistic regime will also be affected by phonon backscattering at the
pores. We implement this nanoslot geometry in the ray tracing calcu-
lations by considering a small neck between two diffusely scattering
pores located between hot and cold reservoirs in the z direction,
applying periodic boundary conditions along the x direction, and
considering a specular scattering in the y direction. The dimensionless
neck width in the x direction is 0.25 and the dimensionless pore width in
the z direction is 0.1.

Fig. 4(a) shows 6, for the nanoslot geometry in the fully ballistic
regime (A/L = o0). Fig. 4(a) shows that the most obvious temperature
gradients in the system are localized near the slot region at the neck
between pores; this behavior is qualitatively similar to the diffusive
results discussed below. In this ballistic regime, however, 6, displays
subtle line-of-sight effects that arise from the ray-like transport near the
pore. Phonon trajectories passing through the neck region from hot to
cold cannot reach the region just above the pore (e.g., near ¥ = 0.6 and

§ =0.1). At these regions, 73, approaches 0 while 7, is finite, leading to
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Fig. 4. Nanoslot geometry. (a) The ballistic temperature ¢, and (b) ballistic heat flux Q from ray tracing show sharp gradients at the region between pores and
strong line-of-sight effects with shadowing near the pores. Heat flux trends in Regions (1)-(4) are discussed in the main text. (c) Diffusive 6, and (d) diffusive Q
profiles from ray tracing with a small dimensionless mean free path A/L = 0.06. In this diffusive regime, 6, does not display line-of-sight effects and Q is smaller in
magnitude due to the intrinsic scattering. (e) Bulk finite-element method (FEM) results for 6, and (f) Q the fully-diffusive regime are in good agreement with the ray

tracing results from (c,d), further validating the ray tracing method.
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6, ~ 0. Moving closer to the cold reservoir by increasing z/ L at fixed x/
L increases 6, because phonon trajectories from the hot reservoir have a
line of sight to the probe that is not blocked by the pores. A similar
argument shows why the temperature just below the pore (e.g. atZ = 0.4
and ¥ = 0.1) is larger than the temperature closer to the hot reservoir.

Fig. 4(b) shows the ray tracing ballistic heat flux profile in the
nanoslot geometry. This heat flux profile displays a heat flux concen-
tration in the neck between the pores along with heat flux shadowing
effects above and below the pores. Like all heat flux profiles shown in
this work, Fig. 4(b) represents the dimensionless z component of the
heat flux. The heat flux is symmetric about the midplane atz/ L = 0.5,
as expected. To gain further insight into the heat flux profiles and to
interpret the results using the ray tracing formula of Eq. (15), we
consider the boxes labeled Regions 1-4 in Fig. 4(b) and focus on phonon
trajectories initialized from the hot reservoir at z/L = 0. Region 1 is
located just below a pore at (%,%) = (0.9, 0.3), meaning that the phonon
trajectories crossing through the region in the +z direction are likely to
be backscattered by the pore and travel through the probe in the —z
direction. Referring to Eq. (15), this backscattering from the pore causes
Ny to be quite similar to Ny, .., leading to ultimate values of Q that are
relatively small compared to the ballistic value of Q = 1. Similarly,
Region 2 located above the pore at (%,%) = (0.9,0.7) also has a small
value of Q near zero; this result can be interpreted by noting that the
ballistic phonon trajectories from the hot reservoir are blocked by the
pores and very few of these hot-reservoir phonon trajectories can be
backscattering into Region 2, leading to both Ny, , and Ny, _ values that
are close to zero. Alternately, the Region 2 behavior could be justified by
focusing on the trajectories initialized at the cold reservoir and using
similar logic as applied to the hot-reservoir trajectories in Region 1, or
by appealing to geometric and thermal symmetry in this linear response
regime.

Region 3 located in between the pores at (%,%) = (0.5,0.5) shows a
local maximum value of Q that approaches unity; this local maximum
arises because the phonon trajectories with a direct line of sight from the
hot reservoir to the gap pass directly through the gap with no back-
scattering either before or after the gap, leading to Ny, _ near zero and
heat flow values that approach the scenario of Fig. 2. Lastly, Region 4
located at (%,%) = (0.4,0.9) close to the cold reservoir shows moderate
values of Q that are larger than in the shadowed Regions 1 and 2 but
smaller than in the mid-gap Region 3. At Region 4, the number of
backscattered phonons from the hot reservoir Ny, _ is still near zero,
while Ny, . is smaller than in Region 3 because fewer hot-reservoir
phonon trajectories have a direct line of sight to Region 4 than to Re-
gion 3. Overall, the ballistic temperature and heat flux mapping of Fig. 4
(a) and (b) provide further validation for the ray tracing results Egs. (13)
and (15), and shows that these ray tracing results can be interpreted in
terms of the transmissivities and forward/reverse trajectories,
respectively.

As noted above, the ray tracing calculations are most computation-
ally efficient in the ballistic regime, and the majority of our attention
therefore focuses on the ballistic behavior. However, it should be noted
that the ray tracing equations can be used to model diffusive transport.
To validate the ray tracing in the diffusive regime for the nanoslot ge-
ometry, Fig. 4(c) and (d) show 6, and Q, respectively, calculated using a
gray dimensionless mean free path A/L = 0.06. The temperature profile
in Fig. 4(c) displays the expected temperature gradient localization near
the pore; however, as compared to the ballistic result of Fig. 4(a) and (c)
displays no locally inverted temperature profile above or below the
pores and no line-of-sight shadowing effects near the sharp pore edges.
The diffusive heat flux profile in Fig. 4(d) displays a much smaller Q in
the neck between pores than in the ballistic regime of Fig. 4(b), and this
diffusive heat flux profile can be interpreted using the temperature
gradients observed in Fig. 4(c) (i.e., regions with strong % in Fig. 4(c)
also display large Q in Fig. 4(d)). To compare the ray tracing method
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with classical diffusive simulation of heat conduction, we also perform
steady-state finite-element method (FEM) simulations using COMSOL
Multiphysics on the same nanoslot geometry. To provide an analogous
calculation to compare with the ray tracing predictions at % =0.06, the
input FEM thermal conductivity is taken to be k = 1Cv(0.06L); the
particular value of Cv is irrelevant for the dimensionless heat flow cal-
culations shown here. Comparing Fig. 4(c) and (e), we see that the
dimensionless temperature mapping is in good agreement with the FEM
results, with an error of 5% in the temperature gradient along ¥ = 0.5
and within the region £ € (0.4, 0.6]. The dimensionless heat flux mapping
also has a <5% error between Fig. 4(d) and (f) when comparing the
average Q value at the mneck region (x/L € [0.45,0.55],
z/L € [0.375,0.625]), confirming that the ray tracing method provides
results that are consistent with Fourier heat conduction predictions
when the phonon mean free paths are sufficiently small.

3.4. Nanomesh geometry

Fig. 5 shows our calculations of ¢, and Q for nanomesh geometries
with different pore shapes (square, triangular, and circular) in the bal-
listic regime. These nanomesh structures are fabricated by etching holes
through thin suspended membranes, and these nanomeshes have been
used as model systems to explore phonon backscattering [12,22,52-55].
For all of the pore shapes shown in Fig. 5, we select periodic boundary
conditions along the in-plane x direction and apply specular boundary
conditions in the y direction to model a large-thickness nanomesh.

Fig. 5(a—c) showcases the unique features of the ballistic §, profiles in
nanomesh geometries. To quantitatively compare these scenarios, Fig. 5
(d) displays a linecut of 8,(z) at a x location that does not intersect a pore
(f=0.12, dashed triangles and lines) and at a x location that does
intersect a pore (§ = 0.5, solid triangles and lines). The dashed lines in
Fig. 5(d) show that the temperature at the non-pore intersecting location
Op(x/L=0.12,2) is continuous and monotonically decreases with
increasing z, with the asymmetric triangular geometry displaying the
smallest g, at all z. In contrast, the solid lines in Fig. 5(d) show that the
pore-intersecting linecut at ,(x /L = 0.5, z) displays a temperature that
locally increases with increasing z within each region. This phenomenon
has been previously observed and is referred to as a locally inverted
temperature gradient [9,30,31,54].

This inverted temperature gradient can be visualized in Fig. 5(a) by
contrasting the temperature gradients near surfaces 1 and 2 with the
more typical temperature gradients in the non-intersecting pore regions.
To compare the magnitude of the inverted temperature gradient effect
between different geometries, we introduce a dimensionless tempera-
ture gradient

AO

b=- Az/L’ a”n

where A@ is the dimensionless temperature difference between the
upper and lower pore at¥ = 0.5 and Az/L is the dimensionless pore-pore
distance at § = 0.5, as illustrated schematically in Fig. 5(d). Negative
values of D found from our ballistic calculations correspond to inverted
temperature gradients, while positive values of D found from diffusive
calculations are non-inverted and more traditionally observed in
macroscopic systems.

We can readily interpret the inverted temperature gradient using the
transmissivity ratio result of Eq. (13). In Fig. 5(a), the transmissivity
from the hot reservoir to surface 1 757 is larger than the transmissivity
from the hot reservoir to surface 2 73, because the regions near surface 2
are shadowed from hot-reservoir trajectories by the lower pore. There-
fore, even though surface 2 is in closer proximity to the hot reservoir
than surface 1, a thermalizing probe located near surface 1 would be
more strongly coupled to the hot reservoir than a probe near surface 2,
leading to the inverted temperature gradient phenomena. Similarly, if
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Fig. 5. Nanomesh mapping and inverted T gradient. Dimensionless ¢, mapping for (a) square, (b) triangular, and (c) circular pore nanomesh geometries in the
ballistic limit. (d) Plots of 6,(z) at two ¥ values (dashed and solid lines) show that all three pore shapes display an inverted temperature gradient [30,31], in which the
direction of the local T gradients between the pores is locally inverted compared to the direction of global T differences between hot and cold reservoir. Referring to
(a), this inverted gradient arises because phonon trajectories from the hot reservoir have a larger transmissivity to surface 1 than surface 2 (7p7 > 7pz) due to
shadowing of surface 1 by the lower pore. (e-g) The dimensionless heat flux Q(x, z) mapping and (h) Q(z) linceuts for two § values shows that the heat flux is larger at
¥=0.12 than at ¥ = 0.5 due to phonon backscattering and pore shadowing. The circular pore heat flux in (g) is more similar to the triangular flux in (f) than the

square pore scenario in (e).

we focused on the interactions with the cold reservoir, 7; > 7.,
meaning that a probe near surface 2 would be more closely coupled to
the cold reservoir temperature even though a probe located near surface
1 is physically closer to the cold reservoir.

The ray tracing simulations emphasize that the ballistic transport is
the essential physics leading to the inverted temperature gradient,
meaning that similar temperature profiles should also be observable in
measurements of photon or electron transport. For photon calculations,
this inverted T gradient can be calculated using geometric view factors
[44] that are somewhat similar in concept to the phonon reservoir-probe
transmissivities. The phonon transmissivity calculation directly includes
all re-reflections from surfaces and is appropriate when internal surfaces
are adiabatic, while the radiation view factors focus only on the direct
line-of-sight view between diffuse surfaces and can be incorporated with
both adiabatic and isothermal boundary conditions.

Fig. 5(e~g) compares the ballistic Q between the three pore geome-
tries. Fig. 5(e) shows that the dimensionless heat flux in the square-pore
nanomesh has values that are near zero at the inverted gradient regions
located between the pores, while Q is larger and independent of position
in the regions that are not blocked by pores. In the regions between
pores, the strong phonon backscattering due the pore interactions causes
Npp,+ to be similar to Ny, _, leading to small Q. The heat flux results for
the triangular nanomesh in Fig. 5(f) show small values of Q in the re-
gions directly beneath the pore surfaces that have surface normals in the
z-drection, which is indicative of phonon backscattering. This triangular

nanomesh also displays a strong local maximum in Q in the regions that
are adjacent to the pores without being shadowed by the pore. Lastly,
the circular nanomesh results in Fig. 5(g) are more similar to the
triangular pore as compared to the square pore, indicating that the
square pore geometry displays the most efficient heat flux shadowing
between pores in the ballistic regime. Fig. 5(h) quantifies this conclusion
by comparing Q(z) of three cases along two linecuts at ¥ = 0.12 (dashed)
and § = 0.5 (solid). In all cases Q is larger at f = 0.12 than at ¥ = 0.5, as
expected. The heat flow at both ¥ locations more strongly on z for the
triangle and circular pores than the square pores, because the square
pores effectively confine the phonon trajectories near ¥ = 0.12 for all z.
As was the case in the nanoslot scenario discussed Section 3.3, the re-
gions of the square pore with near-zero Q can be explained by the cases
of Region 1 or 2 in Fig. 4(b), in the sense that either Ny, , is close to Ny, _
due to backscattering or Ny, , and Ny, ;. are both near zero due to pore
shadowing.

3.5. Inverted temperature gradient optimization in nanomesh

Fig. 6 uses ballistic ray tracing calculations to explore and optimize
the inverted temperature gradient seen in Section 3.4. Section 3.4
focused on the case with two pores aligned in 2, periodic boundary
conditions in x, and infinite thickness in y. Fig. 6 expands this scope to
study D in square and rectangular pore nanomesh structures with
different geometric parameters and boundary conditions. We focus on
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Fig. 6. Inverted temperature gradient geometric optimization. (a) Square pores with small dimensionless pore sizes r = a/p display a large and negative D at
small r when the surrounding surfaces scatter phonon in a specular manner. Larger values of r ~ 0.3 lead to optimal D when one or both of the bounding surfaces
scatter diffusely. In all cases D approaches zero in the large-pore scenario with r near unity. (b) D typically increases in magnitude with an increasing number of pores
along the z-direction (i.e., increasing total length L /p. (c) Increasing the dimensionless pore width I/p decreases the magnitude of D due to reduction in the number of
line-of-sight trajectories between the hot reservoir and lower surface of the upper pore. (d) Small thickness ratios L, /p lead to undesirable positive D due to boundary
scattering, while large L, /p leads to negative D approaching the thick-film limit of (a) for L, /p>1.

square and rectangular pores in Fig. 6 because the square nanomesh in
Fig. 5(a) displayed larger D than the circular or triangular pores. In all
cases we consider diffuse phonon scattering from the pore, because the
fabrication procedures for manufacturing nanoporous geometries typi-
cally induce roughness or oxidation at the pore edge at scales compa-
rable to the phonon wavelengths [22].

Fig. 6(a) studies the effect of the dimensionless pore sizer =a/p on D
for four different boundary conditions in the x and y directions. Here, p is
the pitch between pore centers in the z direction and a is the side-length
of the square pore, as illustrated in Fig. 6(a) inset images for r = 0.5 and
r = 0.125. Values of D that are large and negative correspond to strong
deviations from typical diffusive behavior. For all boundary conditions,
D approaches zero at large r because the large pores prevent direct line-
of-sight phonon trajectories from the hot reservoir to the lower surface
of the upper pore. The behavior at small r depends on the choice of
boundary conditions. We first discuss the results for the “only diffuse
pore” condition (yellow circles), in which specular boundaries are

10

applied in the x and y direction in a manner similar to Section 3.4. In this
scenario, the largest magnitudes of D are observed at small r because
phonons from the hot reservoir have a line-of-sight view to the bottom
surface of the upper pore with minimal shadowing from the lower pore.
In contrast, D approaches zero at small r in the scenario in which the
bounding surfaces in the x and y directions (Ly/p=1 or L,/p = 1)
scatter diffusely (red squares), leading to a local optimum in D for r
ranging from 0.2 — 0.4. Here, L, is the width of the bounding surface in
the x direction and Ly is the thickness in the out-of-plane y direction.
This “diffuse pore and diffuse surfaces” scenario would be similar to a
previously fabricated “nanoladder” geometry [56]. In this nanoladder
case, D approaches zero at small r because phonons from the hot
reservoir preferentially scatter from the bounding surfaces in x and y
before reaching the pore surfaces. Because phonons from the cold
reservoir also scatter off of these bounding surfaces, both the hot
reservoir and cold reservoir phonon trajectories can reach both pore
surfaces, causing D to approach zero. The observed D(r) when only one
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of the bounding surfaces scatter diffusely (orange triangles and di-
amonds) are similar to each other and have smaller magnitude of D at
small r, as in the nanoladder scenario.

Fig. 6(b) considers the effects of increasing the number of pores along
the direction of transport while considering periodic boundary condi-
tions in the x direction and specular scattering in the y direction. These
results would be relevant for nanomesh experiments that utilize peri-
odically repeating pore structures in the x and 2z direction. We select an
even number of pores for the system and calculate D between the two
middle pores along the z direction, following the same procedure shown
in Fig. 5(d). Fig. 6(b) shows that D does not vary strongly with the
dimensionless length L/p for r = 0.5 (yellow circles) and r = 0.25 (or-
ange squares), indicating that the two-pore results from Fig. 6(a) are
appropriate even for large lengths. In contrast, the magnitude of D in-
creases with increasing L/p for r = 0.125 (red diamonds) and r = 0.0625
(magneta triangles) before saturating at lengths L/p > r~1. Ata given L/
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D, the magnitude of D increases with decreasing r, as seen for the diffuse
pore scenario in Fig. 6(a).

Fig. 6(c) considers the pore-shape effect by varying the dimension-
less pore width I/p of a two-rectangular pore system at fixed dimen-
sionless pore side length of 0.5. The boundaries along the x and y
directions are set to be specular. In agreement with the general trends
from Fig. 6(a), increasing the pore width reduces the magnitude of D.
This trend is due to the increased shadowing and reduction in the line-of-
sight interactions between the hot reservoir and the lower surface of the
upper pore at large I/p. For the parameters shown here, D scales linearly
with I/p for I/p ranging from O to 0.5, indicating that narrow pore widths
are desirable for enhanced D. Lastly, Fig. 6(d) considers the effect of
diffuse scattering at the finite y-thickness surface for four values of
square pore size ratio r and periodic boundary conditions in the x di-
rection. Experimental nanomeshes are typically fabricated using
lithography and etching of thin suspended silicon membranes [22,55],

(b)
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Fig. 7. Ballistic phonon focusing. (a) Temperature and (b) heat flux profiles in a recently demonstrated nanoporous phonon lens [12] display local maxima near
the focal point of the lens. The four rows of eight circular pores per row are aligned such that phonon trajectories are preferentially channeled to the focal point after
travelling between the necks separating the pores. The top panel in (a,b) shows the x-dependence of ¢, and Q along z/L = 0.9, while the middle and bottom panels
display the linear and logarithmic scaled colormaps to demonstrate the phonon trajectory focusing. (c,d) We used dual Gaussian equation to fit the simulation results
located between x/L € [0.38,0.62], and define the local maximum value as 6p . and Qnax and the full-width half-max diameter of the focal spot (dy,dg) .
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meaning that the thickness is not necessarily large compared to the
pitch. Fig. 6(d) shows that the inverted temperature gradients for a
two-pore system are only observed for thickness ratios L,/ p that are
large compared to unity. At thickness ratios that are small compared to
unity, the phonon scattering from the diffuse membrane surfaces in y
leads to positive D. At very small L, /p compared to unity, D approaches a
thickness-independent value for all r that matches the diffusive limit
prediction using Fourier’s law. At large L,/p, D is negative valued and
approaches the infinite-thickness case shown in Fig. 6(a) for all r values
shown here. The effect of introducing bulk scattering in the volume of
the membrane would have a qualitatively similar effect to the
film-thickness dependent study shown here, as both bulk scattering and
diffuse film-surface scattering force the temperature and heat flux pro-
files towards the diffusive limit. Overall, the analysis of Fig. 6 indicates
that the periodic nanomesh geometry with square pores,
small-to-moderate r, and large membrane thickness is a promising
experimental platform to investigate inverted temperature gradients.

3.6. Ballistic phonon focusing using geometric lensing

Fig. 7 shows our ray tracing calculations of a ballistic phonon lens.
This lens uses phonon line-of-sight trajectories through an array of pores
to generate locally concentrated heat fluxes and temperatures near the
focal point. This concept of ballistic phonon lensing in nanoporous sil-
icon membranes was introduced and experimentally fabricated by
Anufriev et al. in 2017 [32]. This work also performed Monte Carlo BTE
calculations to determine the steady-state temperature and heat flux
profiles for the experimental geometries. The goal of our study is to
demonstrate that the ray tracing also reproduces the known phonon
focusing effect, and to explore the geometry-dependent focusing capa-
bilities of the ballistic lens. Our nondimensional calculations also
emphasize that the lens behavior is a purely geometric quantity in the
ballistic regime, meaning that the results are not restricted to silicon
nanomaterials.

Fig. 7(a and b) show 6, and Q for a ballistic phonon lens with four
aligned rows, each row consisting of eight circular pores arranged at a
constant radial distance from the focal point at (£, £) = (0.5,0.9). In
these calculations, the surfaces of the pores are diffuse and the mem-
brane thickness is assumed to be infinite. The upper row shows a focal
plane line profile as a function of x/L through the focal point at z/ L =
0.9, while the middle and lower rows are colormaps that visualize the
results in linear and logarithmic scales, respectively. Both the ¢, and Q
mapping show a local maximum at the focal point, as seen in the linecuts
in the top row. For this geometry, the focal point in the Q profiles of
Fig. 7(b) is visible both in the linear and logarithmic scales, while the
local maximum in 6, is most apparent in the logarithmic scale of Fig. 7
(a). The local maxima in 6, seen in the top row of Fig. 7(a) occurs
because phonons have a direct line of sight from the hot reservoir to the
focal point through the neck regions between the pores, which enhances
,p at the focal point as compared to the other x locations in the focal
plane at z/L = 0.9. The temperature profile in Fig. 7(a) shows sharp
decreases in 6, at each concentric ring of pores because phonons from
hot reservoir are backscattered by the pores. Because the circular pores
in different rows of the lens are aligned, the phonons trajectories passing
through the necks between pores will converge near the focal point. If
the pores in different rows were staggered instead of aligned (not
shown), the focusing phenomena is not observed. Similarly, the heat flux
profiles in Fig. 7(b) show strong focusing effects at the focal plane due to
the imbalance between forward- and reverse-crossing phonon trajec-
tories. The line-cut profiles of 6, and Q in the top rows of Fig. 7(a) and
(b), respectively, show secondary maxima along either side of the pri-
mary focal peak. These secondary peaks do not arise from phonon
diffraction (which is not included in these ray tracing calculations) but
instead arise from phonons that scatter off of a pore surface and are
channeled in the continuous solid regions between the rows of pores.
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To quantify the peak temperature and heat flux values (6, max, Qmax)
and the focal diameters (dy,dq), we fit the ray tracing results at z/L = 0.9

5]

2
with the dual Gaussian equation f(x) =a; exp(f(ﬂ) ) + az exp

2
<7 (%) ) within the range of x/L € [0.38,0.62]; here a;, by c1, az, ba

and c, are fitting parameters. Fig. 7(c) and (d) show that this dual
Gaussian fit (red lines) accurately captures the ray tracing results (black
points) for the temperature and heat flux profiles, respectively. The focal
diameter in the x-direction (dy,dq) is defined as the full-width at half
maximum of the fitting function, as labeled in Fig, 7(c) and (d). In this
scenario, the dimensionless diameter dy = 0.054 and dq = 0.044 are not
identical. Here we only consider the diameter (dy, dg) along x direction
at z/L = 0.9, but note that the focal point is approximately circular,
meaning that similar z-direction focal point lengthscales are obtained.

Fig. 8 studies geometry-dependent focusing for 6, and Q as a function
of the dimensionless pore size ¢ = b/Q,, where b is the pore diameter
within a row and Q, is the arc length between the centers of two pores
within a row. To illustrate this definition, the Fig. 8(c) inset shows the
schematic of the first row of eight pores with a row radius R. The arc
length between pores is Q, = nR/8, and the pore diameter b must be
smaller than Q, to avoid pore intersection. This dimensionless pore
diameter ¢ is constant for all rows of pores; since each row has a different
R but still has eight pores, the pore diameters and minimum distances
between pores increase with increasing R. The geometry shown in Fig. 7
has ¢ = 0.4. Returning to Fig. 8, the colormaps in Fig. 8(a) and (b) show
that both the peak magnitude and the size of the focal spot decrease with
increasing ¢ for both the 6, and Q profiles, respectively. This result is
easily interpreted: in the limiting case of a vanishing pore diameter
(¢—0), the intensity is large but there is no focal spot. In the limiting case
of a small neck between pores (¢—1), strong phonon backscattering from
the pores decreases the phonon transmission and intensity, but phonons
that do transmit through the narrow line-of-sight lead to a small focal
diameter.

Fig. 8(c) quantifies the decrease in the peak values 6p o and Quax
(left, blue) and spot diameters dy and dg, (right, red), for the temperature
and heat flux as a function of ¢. The focal spot diameters are fairly
similar between the heat flux (asterisks) and temperature profile (circle)
results when ¢ > 0.7, while the dimensionless peak values differ by as
much as a factor of two between heat flux and temperature at fixed €. In
all cases, the peak values and spot diameters are most sensitive to ¢ for ¢
larger than 0.2 and depend less strongly on ¢ for ¢ very small compared
to unity. One possible figure of merit summarizing both the peak value
and the spot size effects would be the peak value normalized by a
representative focal diameter. Fig. 8(d) shows that this dimensionless
spot ratio for the temperature profile 6 . /dg (purple square) and for
the heat flux profile Quax/dq (yellow triangle) decrease weakly with
increasing e. This result indicates that changing ¢ causes both the peak
values 6 ma and Qmax and the focal diameters dy and d,, to decrease in a
fairly similar manner (see Fig. 8(c) also). The overall dimensionless spot
ratio for heat flux is approximately a factor of two larger than the
temperature spot ratio, which agrees with the magnitude of peak values
shown in Fig. 8(c). Though outside the scope of this work, future
research exploring geometric heat focusing to optimize the pore shape,
pore distribution, or number of focal points of could be useful in the
future experimental exploration of ballistic phonon focusing. This cur-
rent work emphasizes that modifications to the geometry which
decrease the focal diameter will also act to decrease the magnitude of
the temperature or heat flux at the spot.

Lastly, Fig. 9 investigates the effect of bulk scattering on the phonon
focusing. We performed ray tracing calculations for the lens geometry
with dimensionless pore size ¢ = 0.6 and dimensionless mean free paths
A/L ranging from 107! to 103. Here, L is the full width of the lens-
focusing array in the x direction, as defined in Fig. 7(a). The color-
maps in Fig. 9(a) and (b) show the temperature and heat flux profiles,
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Fig. 8. Pore-size dependent ballistic focusing. (a) Temperature and (b) heat flux mapping as a function of the dimensionless pore diameter ¢ = b/ Q, shows the
evolution in the focal point for different pore sizes. Here, the pore diameter b and arc-length Q, are illustrated in the (c) inset for the first row of pores. (c) As ¢
increases, the peak values 6 n.x Or Qma, (left) and the focal spot diameters dy or d (right) decrease monotonically due to the smaller neck size between pores. (d) The
spot ratio 6 max /dg and Qmax/dq do not show a strong dependence on ¢, indicating the change of ¢ impacts the peak values 6, .« and Qnax and the focal spot diameters

dy and dq in a similar manner.

respectively, for A/L =10 (left), A/L=1 (center), and A/ L= 0.1
(right). As expected, the ray tracing results for A/L =10 display
focusing results that are qualitatively similar to the ballistic results
shown in the third column of Fig. 8(a) and (b). As the dimensionless
mean free path decreases, the diffusive scattering in the material de-
creases the magnitude of the temperature rise and heat flux near the
focal spot, as seen most clearly in the ray tracing results for A/ L = 0.1.
Within the ray tracing methodology, this reduction in the focal spot
intensity arises due to the reduction in the phonon transmission coeffi-
cient from the hot reservoir to the focal spot. Fig. 9(c) further quantifies
this reduction by showing that the peak temperature value 6 . (cir-
cles) and peak heat flux Q. (stars) decrease with decreasing A/ L.
These peak values saturate at the ballistic limit of 6, . = 0.09 and
Qumax = 0.22 for all A/L > 10, but are reduced to 6, m. = 0.03 and
Qmax = 0.05 for A/L = 0.1. Similarly, Fig. 9(d) shows that introducing
bulk scattering increases the focal spot diameters for the temperature
profile dy (circles) and the heat flux profile d, (stars). This increase in the
focal spot size arises because bulk scattering leads to diffusion,
dispersing the phonon trajectories away from the focal spot. Further
calculations that properly consider the phonon frequency-dependent
scattering rates would be required to quantify the phonon focusing
observed in realistic phonon lenses. However, these results show that the
strongest phonon focusing effects will be observed when the mean free
path is substantially larger than the dimensions of the pore array, but
that mild focusing effects can be observed even when mean free paths
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are comparable to or slightly smaller than the pore array dimensions.
4. Summary

We describe a phonon Monte Carlo ray tracing method to calculate
the local temperature and heat flux, with a particular focus on ballistic
phonon transport in nanostructures. The advantage of the ray tracing
technique compared to the traditional BTE approach is that the full
phonon distribution function does not need to be evaluated at each
location, and the phonon trajectories can be computed in parallel. The
derivation also provides a simple interpretation of the temperature
profile in terms of a weighted transmissivity ratio between reservoirs
and thermalizing probes, and an interpretation of the heat flux in terms
of the imbalance between forward and reverse phonon trajectory
crossings at a control surface. We validated the ray tracing method for
benchmark dense material, nanowire, and nanoslot geometries. Our
study of the dimensionless inverted temperature gradient D in nanomesh
structures found that smaller pores, thick films, and multiple pores along
the direction of transport lead to large and negative values of D in the
ballistic regime. Our application of the ray tracing method to study
ballistic phonon lensing in porous structures found that increasing the
dimensionless pore size decreases the spot size and the peak amplitudes
of the temperature and heat flux profiles in the focal spot. In summary,
our ray tracing method can be used to probe ballistic phonon transport
physics and design nanostructures with unusual temperature and heat



Y. Song and G. Wehmeyer

Materials Today Physics 33 (2023) 101040

(a) 10°
107t
02 o
<
103
10~*
(b) 1
0.8
0.6
0.4
0.2
0
(0 ’
g 0.25 T T T T T <> 0.25 T T T T T
(=g =
E T | *
* * % <
S, oa2f * ¥ & 1 < o2f -
g Heat flux Qpax = o
s &3]
S 0
o 015F * {1 € oas5f .
= 8
E * 2
< 0df 1 & oa}
é 5O oo 0©| = @ Temi)erature dg
A emperature 0 = o)
2 005f % = Boax § o005} * % ¥ f@ ® ¥
= o) & \
z 2 Heat flux d,
= 0 Lo . : : = 0 b : . : !
a 107 10° 10 102 10?0 R 107 10° 10 102 10°

Dimensionless bulk mean free path A/L

Dimensionless bulk mean free path A/L
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flux gradients in the ballistic regime.
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