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1. Introduction

1.1. Motivation

In this paper, we present and study two algorithms that allow a machine to detect an unusual occurrence 
in an otherwise smooth environment. We will refer to these unusual occurrences as bursts. In reality, a burst 
can be an earthquake, a jumping fish, an explosion, a lie on a polygraph test, or an omission or insertion in a 
deep fake video. The algorithms are designed for continuous monitoring of the environment and will detect 
bursts one-by-one, assuming that there is a known (possibly very small) gap between any two consecutive 
bursts. (If more than one burst occurs within a small time interval, the algorithms will treat them as a 
single burst with a shape determined, roughly, as a superposition of the shapes of the real bursts.)

The first of the two algorithms utilizes discrete time samples of the environment and declares the time 
of the detected burst to be the mid-point between the times of the corresponding samples. The second 
algorithm uses specific weighted averages (Fourier coefficients) of continuous time samples and establishes 
the time of the burst more accurately. As for the shape of the burst, both algorithms recover it with an 
error controlled by a measure of smoothness of the environment, measurement acquisition error, and the 
time step of the algorithm chosen by the user.

The key feature of both presented algorithms is the predictive nature of the design of the samples. 
We assume that the monitored environment evolves under the action of a known physical process. This 
allows us to use the generator of the process or the operator semigroup describing it in modeling the 
sampling devices. Then the measurements made at a previous time step can be used to estimate the current 
measurements under the assumption that no burst occurred between them. Thus, comparing the estimated 
current measurements with the actual current measurements, one can reasonably accurately determine if a 
burst occurred or not.

This work is motivated by the problem of isolating localized source terms considered in [17,18]. Related 
research can also be found in [8,16,19]. Some real world inspiration was provided to us by the problems 
of identifying jumping fish from a video recording of the surface of a pond and transcribing the score of a 
musical piece from the spectrogram of its performance.

1.2. Problem setting

We consider the problem of recovering the “burst-like” portion f = f(x, t) of an unknown source term 
F = f + η from space-time samples of a function u = u(x, t) that evolves in time due to the action of 
a known evolution operator A and the forcing function F . The variable x ∈ Rd is the “spatial” variable, 
while t ∈ R+ represents time. For each fixed t, u(·, t) can be viewed as a vector u(t) in a Hilbert space H
of functions on a subset of Rd. With this identification we get the following abstract initial value problem:

{
u̇(t) = Au(t) + F (t)
u(0) = u0,

t ∈ R+, u0 ∈ H. (1)

Above u̇ : R+ → H is the time derivative of u, F : R+ → H is a forcing (or source) term, and A : D(A) ⊆
H → H is a generator of a strongly continuous semigroup T .

A prototypical example arises when A = Δ is the Laplacian operator on Euclidean space. For this case, 
F represents the unknown “heat source” a portion of which we seek to recover from the space-time samples 
of the temperature u.

In this paper, we only consider sources of the form F = f +η, where η : R+ → H is a Lipschitz continuous 
background source and f is a “burst-like” forcing term given by
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f(t) =
N∑

j=1
fjδ(t − tj), (2)

for some unknown N ∈ N, with 0 < t1 . . . < tN and fj ∈ V . Here, the set V is a subset of H and δ is the 
Dirac delta-function. We call each tj the time of burst j and fj the shape of the burst.

With the notation given above, the problem studied in this paper can be stated as follows.

Problem 1. Design a (finite or countable) set of samplers G ⊆ H and an algorithm that allow one to stably 
and accurately approximate any f of the form (2) from the samples obtained from values of the measurement 
function m given by

m(t, g) = 〈u(t), g〉 + ν(t, g), t ≥ 0, g ∈ G, (3)

where ν is the measurement acquisition noise.

In our recent papers (see, e.g., [1–3,5,6] and the references therein) we considered the problem of recovering 
a vector f ∈ H from the samples {〈Anf, g〉 : g ∈ G, n = 0, 1, . . . , L} and its continuous time analog [7]. We 
wish to utilize some of those ideas for Problem 1, thus putting it into the general framework of dynamical 
sampling. But first, we would like to make a few observations and assumptions that will let us explain the 
contributions of this paper more clearly.

The algorithms we design find the burst times tj and shapes fj one at a time from a stream of measure-
ments. These algorithms rely on a known fixed minimal separation γ between the time of each burst. The 
value γ provides us with an upper bound on the time step β between samples in the data stream of the 
algorithms.

Assumption 1. There is a known γ > 0 such that tj+1 − tj > γ for all j = 1, . . . , N − 1. The time step β is 
assumed to satisfy β < γ

3 for Algorithm 1 and β < γ
6 for Algorithm 2.

Hereinafter, we denote by T the semigroup generated by the operator A in (1). The first part of Problem 1
is the design of the set of samplers G. The following example illustrates some difficulties one could face with 
G. The example uses properties of semigroups found in Section 1.4.

Example 1. It may happen that one cannot uniquely determine a source term of the form (2). In this 
example, let T be the semigroup of translations acting on H = L2(R), i.e. [T (t)f ](x) = f(x − t).

Let f1 = χ[0,1] − 1
2χ[2,3] and f̃1 = χ[2,3] in L2(R). We will consider the two burst-like source terms 

f = f1δ(·) and f̃ = f̃1δ(· −2). We create initial value problems in the form of (1) in the simplest case, where 
u0 = 0 and there is no background source. Looking ahead to Equation (5), these problems have solutions u
and ũ, respectively, where

u(t) = u(·, t) = T (t)f1 and ũ(t) = ũ(·, t) = χ[2,∞)(t)T (t − 2)f̃1, t ≥ 0.

Let g = χ[1,2] + 2χ[3,4] be a single measurement function. The measurements of the u and ũ against g
are, respectively, 〈u(t), g〉 and 〈ũ(t), g〉, for all t ≥ 0. We see, however, that these measurements of u and ũ
match for all t ≥ 0:

〈u(t), g〉 = 〈ũ(t), g〉 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, t ≤ 2;
2t − 4, 2 < t ≤ 3;
8 − 2t, 3 < t < 4;
0, t ≥ 4.



A. Aldroubi et al. / Appl. Comput. Harmon. Anal. 65 (2023) 322–347 325
t = 0

g

u

x

t = 0.5

g

u

x

t = 2

g

u

x

t = 2.5

g

u

x

t = 0

g

x

t = 0.5

g

x

t = 2

g

ũ
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Fig. 1. In the figures shown here, the measurement function g is shown in red. In the first row of images, we see in blue u(t)
respectively at t = 0, 0.5, 2, 2.5. In the second row, we see ũ(t) shown at the same times. Recall that ũ(t) = 0 for all t < 2, so we 
don’t see the function pop up until t = 2. (For interpretation of the colors in the figure(s), the reader is referred to the web version 
of this article.)

Thus, we cannot distinguish between solutions coming from the distinct forcing terms f1 and f̃1 using g
alone for the measurements. Fig. 1 illustrates u(t), ̃u(t), and g for selected values of t.

We break the question of sampler design into two parts. The first part is at the core of this paper and 
concerns the structure of the set G. We express our choice of the structure in the following assumption.

Assumption 2. For Algorithm 1, we assume that G = G̃ ∪ T ∗(β)G̃ for some countable (possibly, finite) set 
G̃ ⊆ H. For Algorithm 2, we assume that G is of the form G = G̃ ∪ A∗G̃ for some countable (possibly, finite) 
set G̃ ⊆ D(A∗).

The second part of the sampler design question covers the need to reconstruct the shapes fj from their 
samples 〈fj , g〉, g ∈ G. In this paper, we address this part only superficially in the form of the following 
assumption.

Assumption 3. Assumption 2 holds and the analysis map RG : V → �∞(G̃) given by (RGh)(g) = 〈h, g〉, 
h ∈ V , g ∈ G̃, has a left inverse SG : RGV ⊆ �∞(G̃) → V ⊆ H, which is Lipschitz with a Lipschitz constant 
S ≥ 0. We also let R = supg∈G̃ ‖g‖.

More specific design of the set G̃ can be included, based on the application at hand. Standard methods 
of frame theory and compressed sensing can be used for the applications we have in mind.

The next assumption is used to separate the burst-like term from the background source.

Assumption 4. The background source η is Lipschitz with a Lipschitz constant L ≥ 0.

Our next assumption deals with the error in acquisition of the measurements 〈u(t), g〉, t > 0, g ∈ G.

Assumption 5. The additive noise ν in the measurements (3) satisfies

sup
t>0, g∈G

|ν(t, g)| ≤ σ.

In view of Assumptions 1 – 5, we say that an algorithm can stably and accurately approximate any f of 
the form (2) if the recovery error in the time and shape of a single burst produced by the algorithm can be 
bounded above in terms of the constants β, γ, L, R, S, and σ.
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For Algorithm 2, we will use another assumption on the step size β.

Assumption 6. The time step β is assumed to satisfy Lβ < 1 for Algorithm 2.

Remark 1.1. If some of the above assumptions are violated, the algorithms in this paper may still produce 
fairly accurate results. The theoretical error guarantees we provide, however, will no longer hold. Obtain-
ing new guarantees with certain weaker assumptions is possible, but it would make already cumbersome 
computations even harder to follow.

1.3. Main results

The main contribution of this paper is the idea of the structured sampler design expressed in Assump-
tion 2. By choosing the structure of the set G as described, we acquire the measurements in pairs at each 
sampling time nβ, n = 0, 1, · · · . The second measurement in a pair predicts a value of the first measurement 
in the corresponding pair at the next sampling time (n + 1)β if no burst happens between nβ and (n + 1)β. 
This allows us to determine if a burst had occurred in the interval [nβ, (n + 1)β). Based on this idea and 
depending on the nature of available measurements, we designed two predictive algorithms. Algorithm 1
utilizes discrete samples of the measurement function (3), whereas Algorithm 2 uses a small number of its 
Fourier coefficients over successive time intervals. Both algorithms stably and accurately approximate any 
f of the form (2) in the presence of non-trivial Lipschitz background source and measurement acquisition 
error. The performance analysis of the two algorithms is presented, respectively, in Theorems 2.1 and 2.5, 
and their corollaries. In particular, for each of the two algorithms, we establish guaranteed upper bounds on 
the recovery errors of the burst times tj and shapes fj in terms of the constants β, γ, L, R, S, and σ. We 
emphasize that the second algorithm can detect the bursts exactly if there is no noise and the background 
source is constant. These results are described in the main part of the paper, Section 2.

In Section 3, we illustrate the performance of the algorithms from Section 2 on simple synthetic examples. 
We see that Algorithm 2 typically performs much better than guaranteed by Theorem 2.5. The guarantees 
of Theorem 2.1 for Algorithm 1, however, are usually sharper.

1.4. IVP toolkit

We conclude the introduction section with a reminder of basic facts from the theory of one-parameter 
operator semigroups and their application to solving IVPs of the form (1). We refer to [14] for more 
information.

A strongly continuous operator semigroup is a map T : R+ → B(H) (where B(H) is the space of all 
bounded linear operators on H), which satisfies

(i) T (0) = I,
(ii) T (t + s) = T (t)T (s) for all t, s ≥ 0, and
(iii) ‖T (t)h − h‖ → 0 as t → 0 for all h ∈ H.

The operator A is said to be a generator of the semigroup T if, given

D(A) =
{

h ∈ H : lim
t→0+

1
t
(T (t)h − h) exists

}
,

A satisfies

Ah = lim 1(T (t)h − h), h ∈ D(A).

t→0+ t
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The semigroup T is said to be uniformly continuous if ‖T (t) − I‖ → 0 as t → 0. In this case, D(A) = H.
Recall [14, p. 436] that the (mild) solution of (1) can be represented as

u(t) = T (t)u0 +
t∫

0

T (t − τ)F (τ)dτ. (4)

Substituting F = f + η with f of the form (2), yields

u(t) = T (t)u0 +
∑
tj≤t

T (t − tj)fj +
t∫

0

T (t − τ)η(τ)dτ, t ≥ 0. (5)

2. Predictive algorithms

In this section of the paper, we derive two algorithms for recovering the burst-like forcing term and then 
we perform error analyses for each.

2.1. Discrete sampling algorithm

In the first method, we acquire the following set of measurements:

mn(g) = 〈u(nβ), g〉 + ν(nβ, g),

mn(T ∗(β)g) = 〈u(nβ), T ∗(β)g〉 + ν(nβ, T ∗(β)g), g ∈ G̃, n ∈ N,
(6)

where β is a time sampling step, and ν(nβ, g), ν(nβ, T ∗(β)g) represent additive noise that is assumed to 
be bounded according to Assumption 5:

sup
n,g

|ν(nβ, g)| ≤ σ, sup
n,g

|ν(nβ, T ∗(β)g)| ≤ σ,

for some σ ≥ 0.
Thus, the totality of samplers consists of the set G = G̃ ∪ T ∗(β)G̃. The measurement mn(T ∗(β)g) can 

be thought of as a predictor of the value 〈u((n + 1)β), g〉 if no burst occurred in [nβ, (n + 1)β), i.e., up to 
noise in the measurements and the influence of the “slowly varying” background source, mn+1(g) should 
approximately equal to mn(T ∗(β)g) if no burst happened in the time interval [nβ, (n + 1)β).

Algorithm 1 The pseudo-code for approximating the time t∗ and the shape f∗, of a burst in the time interval 
[nβ, (n + 1)β), n ≥ 1.
1: Goal: Find a possible burst for the given measurements.
2: Input: The measurements: m�(g) and m�(T ∗(β)g), for g ∈ G̃, � ∈ {n, n + 1, n + 2, n + 3}; a parameter K > 1.
3: Compute Γ�(g) = m�+1(g) − m�(T ∗(β)g) for � = n, n + 1, n + 2.
4: Compute Γ−

� (g) = Γ�+1(g) − Γ�(g) for � = n, n + 1.
5: while g ∈ G̃ do
6: t∗ := nβ + β/2
7: if |Γ−

n (g)| ≥ KCLβ2‖g‖ and |Γ−
n+1(g)| < CLβ2‖g‖ then

8: f(g) := −Γ−
n (g)

9: else
10: f(g) := 0.
11: Output: t∗ and f(g) for all g ∈ G̃.
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Theorem 2.1. Let Assumptions 1, 2, 4, and 5 hold. Then for every g ∈ G̃, the term 
∑N

j=1〈fj , g〉δ(t − tj)
is well approximated by 

∑N
j=1 fj(g)δ(t − t̃j) that is obtained via successive applications of Algorithm 1. In 

particular, for the shape of a burst, we have

|fj(g) − 〈fj , g〉| ≤ (K + 1)CLβ2‖g‖ + h(fj , g, β) + 4(K + 1)σ, g ∈ G̃, (7)

where K is some constant bigger than 1 serving as the parameter in Algorithm 1, C = sup
t∈[0,β]

‖T (t)‖, 

σ = sup
t,g

ν(t, g), and h(fj , g, β) → 0 as β → 0; and, for the time of the burst, we have |tj − t̃j | ≤ β/2 as long 

as fj(g) �= 0 for some g ∈ G̃.

Using Assumption 3, and an extra condition on the semigroup T , we get the following corollary.

Corollary 2.2. Let Assumptions 1 – 5 hold and assume also that

sup
0≤α≤β

‖(T ∗(α) − I)g‖ ≤ D(β)‖g‖, for all g ∈ G̃, (8)

and some D : R+ → R+ such that D(β) → 0 as β → 0. Then for any sufficiently small β > 0, the burst 
term f of the form (2) is well approximated by f̃(t) =

∑N
j=1 f̃jδ(t − t̃j) that is obtained via Algorithm 1

from the samples (3) (with f̃j = SGfj). In particular, we have |tj − t̃j | ≤ β
2 as long as f̃j �= 0 and

‖f̃j − fj‖ ≤ S
(
(K + 1)CLRβ2 + 4(K + 1)σ + D(β)R‖fj‖

)
, (9)

where R = sup
g∈G̃

‖g‖.

Remark 2.3. If T is uniformly continuous, one may let D in Corollary 2.2 be defined by D(β) = kβ where 
k is some (sufficiently large) constant. The same can be done if the samplers in G span a subspace of H
that is invariant for T and such that the restriction of T to this subspace is uniformly continuous. This 
would happen, for example, if T is the translation semigroup and G is a subset of a Paley-Wiener space. 
More information on the Bernstein-type inequality (8), such as an explicit estimate of the constant k, can 
be found in [10, Theorem 3.7] and references therein.

Proof of Theorem 2.1. We will assume that the initial condition u0 = 0 since we will only consider bursts 
for times t > 0. The expressions of mn(g) and mn(T ∗(β)g) defined in (6) are given by

mn(g) =
∑

tj<nβ

〈T (nβ − tj)fj , g〉

+
nβ∫
0

〈T (nβ − τ)η(τ), g〉 dτ + ν(nβ, g)
(10)

and

mn(T ∗(β)g) =
∑

tj<nβ

〈T (nβ − tj)fj , T ∗(β)g〉

+
nβ∫

〈T (nβ − τ)η(τ), T ∗(β)g〉 dτ + ν(nβ, T ∗(β)g).
(11)
0
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Let Γn = mn+1(g) − mn(T ∗(β)g) be the difference between the measurement mn+1(g) at time (n + 1)β
and its predicted value mn(T ∗(β)g) from the measurement at time nβ if no burst occurs in the interval 
[nβ, (n + 1)β). Defining the function vn on [nβ, (n + 1)β) for each n as

vn(t) =

⎧⎪⎪⎨⎪⎪⎩
fjδ(t − tj), if tj ∈ [nβ, (n + 1)β)

0, otherwise,
(12)

we obtain

Γn =mn+1(g) − mn(T ∗(β)g)

=
∑

tj<(n+1)β

〈T ((n + 1)β − tj)fj , g〉 +
(n+1)β∫

0

〈T ((n + 1)β − τ)η(τ), g〉 dτ + ν((n + 1)β, g)

−
∑

tj<nβ

〈T (nβ − tj)fj , T ∗(β)g〉 −
nβ∫
0

〈T (nβ − τ)η(τ), T ∗(β)g〉 dτ − ν(nβ, T ∗(β)g))

= 〈T ((n + 1)β − tn)vn, g〉 +
(n+1)β∫
nβ

〈T ((n + 1)β − τ)η(τ), g〉 dτ

+ ν ((n + 1)β, g) − ν (nβ, T ∗(β)g)

= 〈T ((n + 1)β − tn)vn, g〉 +
β∫

0

〈T (β − τ)η(nβ + τ), g〉 dτ + ν ((n + 1)β, g) − ν (nβ, T ∗(β)g) .

In order to minimize the effect of the background source on our prediction, we compare our predictions 
in two consecutive time samples and compute Γn+1 − Γn. Using the calculation above, we get

Γn+1 − Γn

= 〈T ((n + 2)β − tn+1)vn+1, g〉 +
β∫

0

〈T (β − τ)η((n + 1)β + τ), g〉 dτ

−

⎛⎝〈T ((n + 1)β − tn)vn, g〉 +
β∫

0

〈T (β − τ)η(nβ + τ), g〉 dτ

⎞⎠ + ξn

= 〈T ((n + 2)β − tn+1)vn+1, g〉 − 〈T ((n + 1)β − tn)vn, g〉

+
β∫

0

〈T (β − τ)(η((n + 1)β + τ) − η(nβ + τ)), g〉 dτ + ξn,

(13)

where ξn = ν ((n + 2)β, g) − ν ((n + 1)β, T ∗(β)g) − ν ((n + 1)β, g) + ν (nβ, T ∗(β)g).
If there is no burst in [nβ, (n +2)β) (i.e., vn = vn+1 = 0), then the difference |Γn+1 −Γn| should be small, 

and should only depend on the sampling time β, the samplers g, the Lipschitz constant L of the background 
source, and the noise level σ. Estimating |Γn+1 − Γn| from above, we get
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|Γn+1 − Γn| ≤

∣∣∣∣∣∣
β∫

0

〈T (β − τ)(η((n + 1)β + τ) − η(nβ + τ)), g〉 dτ

∣∣∣∣∣∣ + |ξn|

≤
β∫

0

|〈T (β − τ)(η((n + 1)β + τ) − η(nβ + τ)), g〉| dτ + 4σ

=
β∫

0

|〈(η((n + 1)β + τ) − η(nβ + τ)), T ∗(β − τ)g〉| dτ + 4σ

≤
β∫

0

‖η((n + 1)β + τ) − η(nβ + τ))‖‖T ∗(β − τ)g‖dτ + 4σ

≤CLβ2‖g‖ + 4σ.

(14)

Using the last inequality, we will declare that a burst occurred in [nβ, (n + 2)β) if the value of |Γn+1 − Γn|
is above the threshold Q(g) = K

(
CLβ2‖g‖ + 4σ

)
where K is some chosen number larger than 1, i.e.

|Γn+1 − Γn| ≥ K
(
CLβ2‖g‖ + 4σ

)
.

To decide if the burst occurred in the interval [nβ, (n + 1)β) or in [(n + 1)β, (n + 2)β), we take into account 
the estimate |Γn+2 − Γn+1| between the times (n + 1)β and (n + 2)β, and use the fact that the minimal 
time between two bursts is γ > 3β (see Assumption 1). To do this, we define the burst detector function 
f(g) on [(n + 1)β, (n + 2)β) as follows

f(g) =

⎧⎪⎪⎨⎪⎪⎩
Γn+1 − Γn, if |Γn+1 − Γn| ≥ Q(g) and |Γn+2 − Γn+1| ≥ Q(g);

0, Otherwise.
.

To see how the function f(g) behaves, we compute the difference

f(g) − 〈T ((n + 2)β − tn+1)vn+1, g〉 ,

where vn+1 �= 0 when a burst occurs in the interval [(n + 1)β, (n + 2)β) and vn+1 = 0 otherwise as in (12). 
Using (13), we get

f(g) − 〈T ((n + 2)β − tn+1)vn+1, g〉 =⎧⎪⎪⎨⎪⎪⎩
− 〈T ((n + 1)β − tn)vn, g〉 +

∫ β

0 〈T (β − τ)(η((n + 1)β + τ) − η(nβ + τ)), g〉 dτ + ξ,

if |Γn+1 − Γn| ≥ Q(g) and |Γn+2 − Γn+1| ≥ Q(g);
− 〈T ((n + 2)β − tn+1)vn+1, g〉 , Otherwise.

We must consider two cases: 1) when |Γn+1 − Γn| ≥ Q(g) and |Γn+2 − Γn+1| ≥ Q(g); 2) |Γn+1 − Γn| < Q(g)
or |Γn+2 − Γn+1| < Q(g).

For the case where |Γn+1 − Γn| ≥ Q(g) and |Γn+2 − Γn+1| ≥ Q(g), we detect a burst in [nβ, (n + 2)β)
and [(n + 1)β, (n + 3)β). But since tj+1 − tj > 3β by assumption, there must be a single burst that occurred 
in [(n + 1)β, (n + 2)β) and there is no burst in [nβ, (n + 1)β). Therefore, 〈T ((n + 1)β − tn)vn, g〉 = 0 since 
vn = 0. In addition, by (14), when |Γn+1 − Γn| ≥ Q(g) and |Γn+2 − Γn+1| ≥ Q(g), from (15), we get that
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|f(g) − 〈T ((n + 2)β − tn+1)vn+1, g〉| ≤ CLβ2‖g‖ + 4σ.

For the second case when |Γn+1 − Γn| < Q(g) or |Γn+2 − Γn+1| < Q(g), we can assume, without loss of 
generality, that |Γn+2 − Γn+1| < Q(g). Computing the error for this case we get

|f(g) − 〈T ((n + 2)β − tn+1)vn+1, g〉 |
=| 〈T ((n + 2)β − tn+1)vn+1, g〉 + (Γn+2 − Γn+1) − (Γn+2 − Γn+1)|
≤| 〈T ((n + 2)β − tn+1)vn+1, g〉 + (Γn+2 − Γn+1)| + |Γn+2 − Γn+1|

=

∣∣∣∣∣∣
β∫

0

〈T (β − τ)(η((n + 2)β + τ) − η((n + 1)β + τ)), g〉 dτ+ξn+1

∣∣∣∣∣∣ + |Γn+2 − Γn+1|

≤CLβ2‖g‖ + 4σ + Q(g) = (K + 1)
(

CLβ2‖g‖ + 4σ
)

.

(15)

Using the last inequality, we can now estimate |f(g) − 〈vn+1, g〉| by

|f(g) − 〈vn+1, g〉|
≤|f(g) − 〈T ((n + 2)β − tn+1)vn+1, g〉 |

+ | 〈T ((n + 2)β − tn+1)vn+1, g〉 − 〈vn+1, g〉|
≤(K + 1)

(
CLβ2‖g‖ + 4σ

)
+ h(vn+1, g, β),

(16)

where h(vn+1, g, β) = | 〈T ((n + 2)β − tn+1)vn+1, g〉−〈vn+1, g〉|. Using Property (3) of Section 1.4, it follows 
that h(vn+1, g, β) → 0 as β → 0. �
Proof of Corollary 2.2. For tj ∈ [nβ, (n + 1)β), using the expression of h(vn, g, β) derived in the proof of 
Theorem 2.1, Definition (12) of vn, and the assumptions of the corollary we get

h(fj , g, β) =| 〈T ((n + 1)β − tn)fj , g〉 − 〈fj , g〉|
=|

〈
fj ,

(
T ∗((n + 1)β) − tn) − I

)
g
〉

| ≤ D(β)‖g‖‖fj‖ ≤ D(β)R‖fj‖.
(17)

Thus, using (7) and Assumption 3 we obtain

‖f̃j − fj‖ ≤ S
(
(K + 1)CLRβ2 + D(β)R‖fj‖

)
and the result is proved. �
Remark 2.4. The difference Γn+1 − Γn defined in (13) implicitly annihilates the continuous background 
source allowing us to extract the burst-like portion. A similar idea was used in [15] and it has been found 
that the resulting estimates can be improved using higher-order differences or more general filters. We intend 
to pursue this idea in the future. We also remark that higher-order differences were implicitly used in [4].

2.2. The Prony-Laplace algorithm

In this section, we describe the second predictive algorithm for approximating the burst-like portion f
of the forcing term F in the IVP (1). In contrast with the case of the first algorithm, here we use average 
samples of the measurement function (3), which can be thought of as discrete samples of its short-time 
Fourier transform. The idea of the algorithm is based on the Laplace transform [9] and Prony’s methods 
[20].
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Similar to the first algorithm, the predictive nature of this one is also manifested in a specific choice of the 
sampling set G. However, this time, we use the generator A rather than the semigroup T (see Assumption 2).

Under Assumptions 1 – 6, we will utilize the measurements of the form

m̂k�(g) =
(�+1)β∫

(�−1)β

e− πik
β t

〈
u(t),

(
−πik

β
I − A∗

)
g

〉
dt + νk�(g) (18)

for k ∈ {0, 1, 2}, � ∈ N, g ∈ G̃.
Our goal is to provide a good approximation of the signal f of the form (2) given the measurements (18). 

Clearly, these samples can be easily obtained from the measurements (3) if those are given; in this case,

νk�(g) =
(�+1)β∫

(�−1)β

e− πik
β t

[
πik

β
ν(t, g) − ν(t, A∗g)

]
dt, k ∈ {0, 1, 2}, � ∈ N, g ∈ G̃. (19)

Observe that from (19) and Assumption 5 we get

|νk�(g)| ≤ 2(πk + β)σ ≤ 2(2π + β)σ =: σ̃, k ∈ {0, 1, 2}, � ∈ N, g ∈ G̃. (20)

Our goal will be achieved once the following theorem is proved.

Algorithm 2 The pseudo-code for approximating the time t∗ and the shape f∗, of a burst in the time interval 
[(� − 2

3)β, (� + 17
3 )β].

1: Goal: Find a possible burst given two triples of measurements per g ∈ G̃.
2: Input: m̂kj(g), k ∈ {0, 1, 2}, j = {�} + {0, 1, 2, 3, 4, 5}, g ∈ G̃.
3: Let t∗ = � − 1.
4: for g ∈ G̃ do
5: Let t(g) = � − 1 and f(g) = 0.
6: Let Γkj = m̂kj(g) + (−1)j

m̂(k+1)j(g), k ∈ {0, 1}, j ∈ {�} + {0, 1, 2, 3, 4, 5}.
7: Let Δkj = Γkj − Γk(j+2), k ∈ {0, 1, 2}, j ∈ {�} + {0, 1, 2, 3}.
8: for j ∈ {�} + {0, 1, 2, 3, 4, 5} do
9: Set χj = 1.

10: for j ∈ {�} + {0, 1, 2, 3, 4, 5} do
11: if min{|Δ0j |, |Δ1j |, |Δ0j + (−1)jΔ1j |} ≤ 64

π β‖g‖ + 16 max
{

σ̃,
√

σ̃
}

then
12: χj := 0, χj+2 := 0.
13: for j ∈ {�} + {0, 1, 2, 3} do
14: if χjχj+2 = 1 then
15: χj := 0.
16: for j ∈ {�} + {0, 1, 2, 3, 4, 5} do
17: if χj = 1 then
18: t(g) = �β − β

π arg Δ1j

Δ0j
,

19: if |t(g) − �β| < 2
3 β then

20: f(g) := Δ2
0j

Δ0j +(−1)j Δ1j
.

21: Compute t∗ by averaging all t(g) that are bigger than � − 1.
22: Let f∗ = SGf.
23: Output: t∗ and f∗.

Theorem 2.5. Suppose Assumptions 1 – 6 hold. Then any burst term f of the form (2) is well approximated 
by f̃(t) =

∑N
j=1 f̃jδ(t − t̃j) that is obtained via Algorithm 2 from the samples (18). In particular, we have

|tj − t̃j | ≤ 1
3

(
Lβ2 + β · min

{
1,

√
σ̃
})

as long as f̃j �= 0,

and
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‖fj − f̃j‖ ≤ SR · max
{

5
3‖fj‖(Lβ + min{1,

√
σ̃}), 48

π
Lβ2 + 12σ̃

R

}
, (21)

where σ̃ is defined in (20) and S, R are defined in Assumption 3.

From (21), the following result on exact reconstruction is immediate.

Corollary 2.6. If L = σ = 0, then we have f̃ = f .

From the proofs below it will be clear that a simpler algorithm can be used in the case when L = σ = 0
(see Algorithm 3). For numerical purposes and to avoid missing a burst at times equal to even integer 
multiples of β, this algorithm should be applied over intervals of length 2β with a time step β.

Algorithm 3 The pseudo-code for finding the time t∗ and the shape f∗ of a burst in the time interval (0, 2β), 
when L = σ = 0.
1: Goal: Find a possible burst given a triple of measurements for each g ∈ G̃.
2: Input: m̂k1(g), k ∈ {0, 1, 2}, g ∈ G̃.
3: for g ∈ G̃ do
4: Let Γ01 = m̂01(g) − m̂11(g) and Γ11 = m̂11(g) − m̂21(g).
5: if min{|Γ01 − Γ11|, |Γ11|} = 0 then
6: f(g) := 0.
7: else
8: t∗ := β

π arg Γ01
Γ11

,

9: f(g) := Γ2
01

Γ01−Γ11
.

10: Set f∗ = SGf.
11: if f∗ = 0 then
12: t∗ := 0.
13: Output: t∗ and f∗.

The remainder of this section constitutes the proof of Theorem 2.5.

2.2.1. Reduction to a Prony-type problem
Let us compute the coefficients of the (distributional) Fourier transforms F� of the (generalized) functions 

in the equation of the IVP (1) on the intervals J� = [(� − 1)β, (� + 1)β], � ∈ N. Integrating by parts in the 
left-hand-side of the equation in (1), we have (for k ∈ Z and � ∈ N)

(F�{〈u̇(·), g〉})(k) = e−πik(�−1) 〈h�, g〉 +
(

F�

{〈
u(·), −πik

β
g

〉})
(k), g ∈ H, (22)

where h� ∈ H depends on u, �, and β, but not on k ∈ Z. More precisely, if no burst happens at the end 
points of the interval J�, we have

h� = u((� + 1)β) − u((� − 1)β) −
∑

j: tj∈J�

[u(tj) − lim
t→t−

j

u(t)];

a similar formula holds when a burst does happen at an end point of J�.
The right-hand-side of the equation in (1) yields

(F�{〈Au(·) + f(·) + η(·), g〉})(k) = (F� {〈u(·), A∗g〉}) (k)

+
∑

j: tj∈J�

〈fj , g〉e− πik
β tj +

(�+1)β∫
e− πik

β t 〈η(t), g〉 dt, g ∈ H.
(23)
(�−1)β
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Equating the right-hand-sides of (22) and (23) yields(
F�

{〈
u(·), −πik

β
g

〉})
(k) − (F� {〈u(·), A∗g〉}) (k) =

− (−1)k(�−1) 〈h�, g〉 +
∑

j: tj∈J�

〈fj , g〉e− πik
β tj

+
(�+1)β∫

(�−1)β

e− πik
β t 〈η(t), g〉 dt, g ∈ G̃, � ∈ N, k ∈ Z,

and in view of (18), we get the following result.

Lemma 2.7. The measurements (18) satisfy

m̂k�(g) = νk�(g) − (−1)k(�−1) 〈h�, g〉 +
∑

j: tj∈J�

〈fj , g〉e− πik
β tj

+
(�+1)β∫

(�−1)β

e− πik
β t 〈η(t), g〉 dt, g ∈ G̃, � ∈ N, k ∈ Z,

(24)

for some h� ∈ H that depend on u and β, but not on k ∈ Z.

A rigorous proof of Lemma 2.7 that does not involve distributions can be found in Appendix A. It uses 
the Laplace (rather than Fourier) transform thus explaining half of the name of the algorithm.

Summing equalities in (24) over � ∈ N, we would get a noisy version of an irregular Prony (or super-
resolution) problem studied, for example, in [11,20] or [12,13]. Our problem is, on one hand, simpler than 
those in the literature precisely because we do not need to sum over � ∈ N. On the other hand, our problem 
is harder because we need to take care of the extra unknown terms that come from the background source 
and the values of the function u that were not measured.

2.2.2. Derivation of Algorithm 2
We need to determine the time t∗ and the shape f∗ of a possible burst in the time interval [(� − 2

3 )β, (� +
17
3 )β]. Due to Assumption 1 there are at most two bursts in this interval. Our measurements utilize the values 

of the function u in the interval [(� −1)β, (� +6)β] of length 7β. We will treat them as two interlacing tuples 
of measurements, each of which covers the length of 6β: {(m̂k�(g), m̂k(�+2)(g), m̂k(�+4)(g)): k ∈ {0, 1, 2}, 
g ∈ G̃} and {(m̂k(�+1)(g), m̂k(�+3)(g), m̂k(�+5)(g)): k ∈ {0, 1, 2}, g ∈ G̃}. At least one of these two tuples will 
detect a burst if it is sufficiently large and every such burst will be detected by our algorithm when it is run 
consecutively.

We will use (24) as the starting point for the derivation of the algorithm rewriting it via a change of 
variables in the integral as

m̂k�(g) = χ�e
− πki

β t∗ 〈f∗, g〉 + νk�(g)+

(−1)k(�−1)

⎛⎝ 2β∫
0

e− πki
β τ 〈η(τ + (� − 1)β), g〉 dτ − 〈h�, g〉

⎞⎠ , g ∈ G̃, � ∈ N, k ∈ Z,

where χ� equals 1 if t∗ ∈ [(� − 1)β, (� + 1)β) and 0 otherwise. The observation that h� ∈ H does not depend 
on k ∈ Z allows us to get rid of it by introducing
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Γk�(g) = m̂k�(g) + (−1)�m̂(k+1)�(g)

= χ�e
− πki

β t∗
(

1 + (−1)�e− πi
β t∗

)
〈f∗, g〉 + (−1)k(�−1)η̃k�(g)

−
(

(−1)k(�−1) 〈h�, g〉 + (−1)(k+1)(�−1)(−1)� 〈h�, g〉
)

+ (νk�(g) − (−1)�ν(k+1)�(g))

= χ�e
− πki

β t∗
(

1 + (−1)�e− πi
β t∗

)
〈f∗, g〉

+ (−1)k(�−1)η̃k�(g) + (νk�(g) − (−1)�ν(k+1)�(g)),

(25)

where

η̃k�(g) =
2β∫

0

e− πki
β τ

(
1 + (−1)�e− πi

β τ
)

〈η(τ + (� − 1)β), g〉 dτ.

If there were no measurement acquisition errors or background source, we could use (25) to determine t∗
and f∗ under the condition that χ� = 1 and

1 + (−1)�e− πi
β t∗ �= 0. (26)

(This last requirement is the reason for having to interlace two tuples of measurements; we will elaborate 
further below.) Indeed, considering (25) for k = 0 and k = 1 we get two equations with two unknowns which 
can be solved explicitly as long as it does not involve division by 0, i.e. Γ1� �= 0, Γ0� �= Γ1�, and (26) holds. 
The result for � = 1 is summarized as Algorithm 3.

Essentially the same idea works once the background source and the measurement acquisition errors have 
been accounted for. To do so, we use the same trick as in the derivation of Algorithm 1. In particular, we 
let

Δk�(g) = Γk�(g) − Γk(�+2)(g)

= (χ� − χ�+2)e− πki
β t∗

(
1 + (−1)�e− πi

β t∗
)

〈f∗, g〉 + εk�(g) + μk�(g),
(27)

where

μk�(g) = (νk�(g) − νk(�+2)(g)) − (−1)�(ν(k+1)�(g) − ν(k+1)(�+2)(g)), (28)

and

εk�(g) = (−1)k(�−1) (η̃k�(g) − η̃k(�+2)(g)
)

= (−1)k(�−1)
2β∫

0

e− πki
β τ

(
1 + (−1)�e− πi

β τ
)

〈η(τ + (� − 1)β) − η(τ + (� + 1)β), g〉 dτ

is controlled by the Lipschitz constant L of the background source η:

|εk�(g)| ≤ 2Lβ‖g‖
2β∫ ∣∣∣1 + (−1)�e− πi

β τ
∣∣∣ dτ = 16

π
Lβ2‖g‖. (29)
0
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Assumption 5 allows us to control the error due to measurement acquisition, since (20) and (28) imply

|μk�(g)| ≤ 4σ̃. (30)

The equations (27) (with k = 0 and k = 1) can now be used in place of equations (25) to approximate 
t∗ and f∗. For numerical purposes, we must not just avoid dividing by 0 but also avoid dividing by a very 
small number. To this end, we introduce the following threshold. We will write that Δ·� detects a burst if 
there is g ∈ G̃ such that

min
{

|Δ0�(g)|, |Δ1�(g)|, |Δ0�(g) + (−1)�Δ1�(g)|
}

≥ Q(g), (31)

where Q(g) ≥ 64
π β‖g‖ + 16σ̃ is some constant that depends on g; the lower bound for Q(g) is chosen in view 

of (29), (30), and Assumption 6.
Observe that due to Assumptions 1 and 6 at least one of Δ·�, Δ·(�+2), Δ·(�+4) does not detect a burst. 

Therefore, if Δ·� does detect a burst, we can unambiguously determine whether χ� = 1 or χ�+2 = 1, 
i.e. which of the two possible intervals [(� − 1)β, (� + 1)β) or [(� + 1)β, (� + 3)β) contains t∗. More precisely, 
if Δ·� and Δ·(�+2) both detect a burst, then χ�+2 = 1; if Δ·� detects a burst and Δ·(�+2) does not, then 
χ� = 1.

Once a burst is detected, say, by Δ·�, we find an approximation t(g) of t∗ from the equality

e− πi
β t(g) = Δ1�(g)

Δ0�(g) ·
∣∣∣∣Δ0�(g)
Δ1�(g)

∣∣∣∣ . (32)

Observe that due to (27) for k = 0 and k = 1 we would have t∗ = t(g) in the case when σ = L = 0 and (26)
holds. In any case, we let

t(g) =

⎧⎨⎩(� + 2χ�+2)β − β
π arg Δ1�(g)

Δ0�(g) − β · sign
(

− β
π arg Δ1�(g)

Δ0�(g)

)
, � is odd

(� + 2χ�+2)β − β
π arg Δ1�(g)

Δ0�(g) , � is even
(33)

where arg(x) ∈ (−π, π], x ∈ C, and sign(x) =

⎧⎪⎪⎨⎪⎪⎩
1, x > 0;
0, x = 0;
−1, x < 0.

Using the same reasoning, we also let

f(g) = (−1)χ�+2
Δ2

0�(g)
Δ0�(g) + (−1)�Δ1�(g) ; (34)

the denominator in (34) explains a seemingly odd term in the threshold (31). To reiterate, t(g) and f(g)
defined by (33) and (34), respectively, solve equations (27) with k = 0 and k = 1 in the case when σ = L = 0.

We now approximate t∗ by t̃ – a (weighted) average of t(g) and f∗ by f̃ = SGf. We use a weighted average 
to determine t̃ in order to account for a strengthened version of (26). More precisely, we average only the 
values t(g) for which ∣∣∣∣1 −

∣∣∣∣Δ0�(g)
Δ1�(g)

∣∣∣∣ · Δ1�(g)
Δ0�(g)

∣∣∣∣ =
∣∣∣1 − e− πi

β t(g)
∣∣∣ = 2

∣∣∣∣sin( π

2β
t(g)

)∣∣∣∣ ≥ 1,

i.e. when |t(g) − (� + 2χ�+2)β| ≤ 2β
3 ; otherwise, the burst will be detected by Δ·(�−1), Δ·(�+1) or Δ·(�+3)

(this explains how interlacing the tuples of measurements works).
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The result is summarized in Algorithm 2 and its derivation is now complete. It is clear that applying it 
for � ∈ N gives an approximation for all observed bursts. Thus, the proof of Theorem 2.5 will be complete 
once we provide estimates for the approximation errors.

2.2.3. Estimating the approximation error
In this section, we assume that Δ·� detected a burst (for some � ∈ N) and estimate the errors of the 

recovery of the time t∗ and shape f∗ of the burst.
First, let us note that if the background source η is a constant and there are no measurement acquisition 

errors, we have εk�(g) = 0 and μk�(g) = 0 in (27), and thus the reconstruction is exact.
Secondly, let us estimate the error |t̃−t∗|. According to the idea of interlacing the tuples of measurements 

described above, we assume that

|t∗ − (� + 2χ�+2)β| ≤ 2β

3 . (35)

From (27), (29), (30) and (31), we have

∣∣∣∣Δ1�(g)
Δ0�(g) − e− πi

β t∗

∣∣∣∣ ≤
∣∣∣∣∣e− πi

β t∗ε0�(g) − ε1�(g)
Δ0�(g)

∣∣∣∣∣ +

∣∣∣∣∣e− πi
β t∗μ0�(g) − μ1�(g)

Δ0�(g)

∣∣∣∣∣
≤ 32Lβ2‖g‖ + 8πσ̃

πQ(g)

(36)

and

1 − 32Lβ2‖g‖ + 8πσ̃

πQ(g) ≤
∣∣∣∣Δ1�(g)
Δ0�(g)

∣∣∣∣
≤1 +

∣∣∣∣∣e
πi
β t∗ε1�(g) − ε0�(g)

Δ0�(g)

∣∣∣∣∣ +

∣∣∣∣∣e
πi
β t∗μ1�(g) − μ0�(g)

Δ0�(g)

∣∣∣∣∣
≤1 + 32Lβ2‖g‖ + 8πσ̃

πQ(g) .

(37)

It then follows from (32) that

2
∣∣∣∣sin( π

2β
(t(g) − t∗)

)∣∣∣∣ =
∣∣∣e− πi

β t(g) − e− πi
β t∗

∣∣∣
=
∣∣∣∣Δ1�(g)
Δ0�(g) ·

∣∣∣∣Δ0�(g)
Δ1�(g)

∣∣∣∣ − e− πi
β t∗

∣∣∣∣
≤
∣∣∣∣Δ1�(g)
Δ0�(g) − e− πi

β t∗

∣∣∣∣ +
∣∣∣∣1 −

∣∣∣∣Δ0�(g)
Δ1�(g)

∣∣∣∣∣∣∣∣ ·
∣∣∣∣Δ1�(g)
Δ0�(g)

∣∣∣∣
≤32Lβ2‖g‖ + 8πσ̃

πQ(g) +
∣∣∣∣1 −

∣∣∣∣Δ1�(g)
Δ0�(g)

∣∣∣∣∣∣∣∣
≤2 · 32Lβ2‖g‖ + 8πσ̃

πQ(g) .

(38)

Since Q(g) ≥ 64
π Lβ2‖g‖ + 16σ̃ (due to Assumption 6), we have

0 ≤ 32Lβ2‖g‖ + 8πσ̃ ≤ 1
. (39)
πQ(g) 2
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Thus, we get

|t(g) − t∗| ≤2β

π
· arcsin

(
32Lβ2‖g‖ + 8πσ̃

πQ(g)

)
≤2β

3 · 32Lβ2‖g‖ + 8πσ̃

πQ(g)

=2
3 · 32Lβ3‖g‖ + 8πβσ̃

πQ(g) .

Averaging over g may only improve the result, which yields the inequality

|t̃ − t∗| ≤ 2
3 · 32Lβ3‖g‖ + 8πβσ̃

πQ(g) .

Next, let us estimate the relative error of approximation of 〈f∗, g〉 when f(g) �= 0. From (27) and (34), 
we get (since χ� − χ�+2 = (−1)χ�+2)

f(g)
Δ0�(g) = (−1)χ�+2

Δ0�(g) + (−1)�Δ1�(g)

[
(−1)χ�+2

(
1 + (−1)�e− πi

β t∗
)

〈f∗, g〉 + ε0�(g) + μ0�(g)
]

,

which implies(
(−1)� + Δ1�(g)

Δ0�(g)

)
(f(g) − 〈f∗, g〉) +

(
Δ1�(g)
Δ0�(g) − e− πi

β t∗

)
〈f∗, g〉 = (−1)χ�+2+�(ε0�(g) + μ0�(g)).

In view of (29) and (30), it follows that∣∣∣∣((−1)� + Δ1�(g)
Δ0�(g)

)
(f(g) − 〈f∗, g〉) +

(
Δ1�(g)
Δ0�(g) − e− πi

β t∗

)
〈f∗, g〉

∣∣∣∣
=|(−1)χ�+2+�(ε0�(g) + μ0�(g))| ≤ 16

π
Lβ2‖g‖ + 4σ̃.

Using (36) and ∣∣∣∣(−1)� + Δ1�(g)
Δ0�(g)

∣∣∣∣ =
∣∣∣∣(−1)� + e− πi

β t∗ − e− πi
β t∗ + Δ1�(g)

Δ0�(g)

∣∣∣∣
≥
∣∣∣(−1)� + e− πi

β t∗
∣∣∣ −

∣∣∣∣−e− πi
β t∗ + Δ1�(g)

Δ0�(g)

∣∣∣∣
≥1 − 32Lβ2‖g‖ + 8πσ̃

πQ(g) ,

(40)

which holds due to (35), we get(
1 − 32Lβ2‖g‖ + 8πσ̃

πQ(g)

)
|f(g) − 〈f∗, g〉| − 32Lβ2‖g‖ + 8πσ̃

πQ(g) |〈f∗, g〉|

≤16
π

Lβ2‖g‖ + 4σ̃.

(41)

From (27), (35) and (39), we get

|〈f∗, g〉| ≥ |Δ0�| − (|ν0�| + |μ0�(g)|) ≥ Q(g) −
(

16
Lβ2‖g‖+4σ̃

)
≥ 3 ·

(
16

Lβ2‖g‖+4σ̃

)
> 0.
π π
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It follows from the above inequalities and (41) that∣∣∣∣ f(g) − 〈f∗, g〉
〈f∗, g〉

∣∣∣∣
≤2 · 32Lβ2‖g‖ + 8πσ̃

πQ(g) +
(

16
π

Lβ2‖g‖+4σ̃

)
2π

πQ(g) − (16Lβ2‖g‖ + 4πσ̃)

=4(16Lβ2‖g‖ + 4πσ̃)
πQ(g) + 2(16Lβ2‖g‖ + 4πσ̃)

πQ(g) − (16Lβ2‖g‖ + 4πσ̃) .

Using (39) once again, we thus have∣∣∣∣ f(g) − 〈f∗, g〉
〈f∗, g〉

∣∣∣∣ ≤ 20(16Lβ2‖g‖ + 4πσ̃)
3πQ(g) .

Let Q(g) = 64
π β‖g‖ + 16 max{σ̃, 

√
σ̃}. Then if f(g) �= 0,

|t̃ − t∗| ≤ 2
3 · 32Lβ3‖g‖ + 8πβσ̃

πQ(g) ≤ 1
3Lβ2 + β

3 · min{1,
√

σ̃}

and ∣∣∣∣ f(g) − 〈f∗, g〉
〈f∗, g〉

∣∣∣∣ ≤ 20(16Lβ2‖g‖ + 4πσ̃)
3πQ(g) ≤ 5

3(Lβ + min{1,
√

σ̃}).

Finally, Assumption 3 yields (21) and Theorem 2.5 follows.

3. Simulation

In order to evaluate our theoretical analysis for the algorithms, we compare the estimates of the bursts 
and the ground truth for a specific dynamical system. More specifically, we consider the burst function f
of the form

f(x, t) =f1(x)δ(t − 0.25) + f2(x)δ(t − 1.5) + f3(x)δ(t − 2.75)

with f1(x) = 0.35 sin(x), f2(x) = cos(x), f3(x) = 1 + sin(x), t ∈ [0, 4], x ∈ [0, 1] and the dynamical system

du

dt
= Au + f + η with Au(x, t) = −x2u(x, t).

The choice of the operator A is motivated by its connection (via the Fourier transform) with the second 
derivative operator on a Paley-Wiener space.

Let g1(x) = 1, g2(x) = x, g3(x) = x2 be the sensor functions. The measurements are generated according 
to (6) for Algorithm 1 and (18) for Algorithm 2 for some specific β. The goal is to estimate the coefficients 
〈fj , g〉 for j ∈ {1, 2, 3}, g(x) ∈ {g1(x), g2(x), g3(x)} and burst time slots {0.25, 1.5, 2.75}. In this simulation, 
we test on two types of background source η:

η(x, t) = cos(Ltx) + C and η(x, t) = x exp(−Lt) + C.

First of all, we choose some specific parameters and plot estimates and ground truth in the same figure. 
The estimates for Algorithm 1 for some specific parameters are shown in Fig. 2. As the estimates for 



Fig. 2. Plot of the bursts (time vs. frame coefficients) with parameters L = 10−2 and σ = 10−4. The background sources are 
η(x, t) = cos(Ltx) + C for the left figure and η = x exp(−Lt) + C for the right figure.

Algorithm 2 are visually indistinguishable from the ground truth for the same parameters as the ones for 
Algorithm 1, we leave out the figure for Algorithm 2. From Fig. 2, we could see that the red points are 
overlapping with the black points and the blue points are pretty close to the black points which demonstrates 
the accuracy of our algorithms.

To further understand the influences of the parameters β, L, σ or σ̃ and the noise categories on our 
algorithms, we have done some simulations for one varying parameter and fixed others. In our simulation, 
we measured the error on the estimates of time by computing√√√√ 3∑

j=1
|tj − t̃j |2

and the error on the estimates of 〈fj , g〉 by√√√√ 3∑
j=1

|〈fj , g〉 − fj(g)|2

for different L, β and σ or σ̃.
In Figs. 3, and 4, we plot the relation between the errors on 〈fj, g〉 for g(x) = x vs the sampling time step 

β by fixing the Lipschitz constant of the background source L = 0.01 for different measurement variances 
σ or σ̃ = 0, 10−4. Additionally, In Fig. 5, we do the same for the errors on time recovery in Algorithm 2; 
the corresponding figure for Algorithm 1 would be uninformative as the algorithm always returns the 
mid-point of the sampling interval as the time estimate. The three figures show that our theoretical error 
bounds on the time and 〈fj, g〉 are accurate which is close to the numerical error bound. Additionally, the 
performance of the estimates of the time is independent of the variance of the measurements when the 
burst can be detected. Meanwhile, as the variances of measurements increase, the theoretical error bounds 
become worse. Additionally, one can see that Figs. 4 and 5 demonstrate that even when β does not satisfy 
our theoretical condition, our method may still provide accurate estimations for the bursts numerically. 
However, it is important to note that the theoretical error bounds may not necessarily serve as the upper 
bound of the numerical errors for large β.

For Figs. 6 and 7, we fix β = 0.1 and vary the Lipschitz constant L of the background source η(x, t). 
These figures verify our theoretical bounds. We notice that the theoretical bound for Algorithm 2 provides 
a very accurate estimation for the time and 〈fj , g〉 when the Lipschitz constant L is small.

Data availability

No data was used for the research described in the article.
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Fig. 3. The estimates of 〈fj , g〉 vs. β for Algorithm 1: L = 0.01. First column: η(x, t) = cos(Ltx) + C. Second column: η(x, t) =
x exp(−Lt) + C. The noise variances σ on the measurements are σ = 0, 10−4 for the 1st, 2nd row, respectively.

Fig. 4. The estimates of 〈fj , g〉 vs. β for Algorithm 2: L = 0.01. First column: η(x, t) = cos(Ltx) + C. Second column: η(x, t) =
x exp(−Lt) + C. The noise variances σ̃ on the measurements are σ̃ = 0, 10−4 for the 1st, 2nd row, respectively. The black vertical 
line represents the theoretical restrictions on β (see Assumption 1).
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Fig. 5. The estimates of tj vs. β for Algorithm 2: L = 0.01. First column: η(x, t) = cos(Ltx) +C. Second column: η(x, t) = x exp(−Lt) +
C. The noise variances σ on the measurements are σ̃ = 0, 10−4 for the 1st, 2nd row, respectively. NE and TE stand for the numerical 
error and the theoretical error respectively. The black vertical line represents the theoretical restrictions on β see Assumption 1.

Fig. 6. The estimates of tj vs. Lipschitz constant L for Algorithm 2: β = 0.1. First column: η(x, t) = cos(Ltx) + C. Second column:
η(x, t) = x exp(−Lt) + C. The noise variances σ̃ on the measurements are σ̃ = 0, 10−4 for the 1st, 2nd row, respectively. NE and 
TE stand for the numerical error and the theoretical error respectively.
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Fig. 7. The estimates of 〈fj , g〉 vs. Lipschitz constant L for Algorithm 2: β = 0.1. First column: η(x, t) = cos(Ltx) + C. Second column:
η(x, t) = x exp(−Lt) + C. The noise variances σ on the measurements are σ̃ = 0, 10−4 for the 1st, 2nd row, respectively.
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Appendix A. The proof of Lemma 2.7

Proof. In this proof we shall establish a more general formula

(�+1)β∫
(�−1)β

e−zt 〈u(t), (z̄I − A∗)g〉 dt = e−zβ(�−1) 〈h̃�−1, g
〉

− e−zβ(�+1) 〈h̃�+1, g
〉

+
∑

j: tj∈J�

〈fj , g〉e−ztj +
(�+1)β∫

(�−1)β

e−zt 〈η(t), g〉 dt, g ∈ G̃, � ∈ N, z ∈ C,

(42)

which implies (24) when z = πik
β .

Observe that both sides of the above equation are entire functions of z. It is, therefore, sufficient to 
establish (42) only for z = s ∈ R with s > ω, where ω is the growth bound of the semigroup T [14, Ch. I, 
Def. 5.6]. We then have that
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(�+1)β∫
(�−1)β

e−st 〈u(t), (sI − A∗) g〉 dt =

(�+1)β∫
(�−1)β

e−st

〈
T (t)u0 +

∑
tj≤t

T (t − tj)fj +
t∫

0

T (t − τ)η(τ)dτ, (sI − A∗) g

〉
dt

=

⎛⎜⎝ ∞∫
(�−1)β

−
∞∫

(�+1)β

⎞⎟⎠ e−st

〈
T (t)u0 +

∑
tj≤t

T (t − tj)fj+

t∫
0

T (t − τ)η(τ)dτ, (sI − A∗) g

〉
dt

(43)

is a difference of two Laplace transforms which converge due to our assumption s > ω.
We now notice that for any p ∈ Z we have

∞∫
pβ

e−st

〈∑
tj≤t

T (t − tj)fj , (sI − A∗) g

〉
dt

=
N∑

j=0

∞∫
max{pβ,tj}

e−st 〈T (t − tj)fj , (sI − A∗) g〉 dt

=
∑

tj<pβ

∞∫
pβ

e−st 〈T (t − tj)fj , (sI − A∗) g〉 dt+

∑
tj≥pβ

∞∫
tj

e−st 〈T (t − tj)fj , (sI − A∗) g〉 dt

=
∑

tj<pβ

∞∫
0

e−s(t+pβ) 〈T (t + pβ − tj)fj , (sI − A∗) g〉 dt+

∑
tj≥pβ

∞∫
0

e−s(t+tj) 〈T (t)fj , (sI − A∗) g〉 dt

=
∑

tj<pβ

e−spβ

∞∫
0

e−st 〈T (t)T (pβ − tj)fj , (sI − A∗) g〉 dt+

∑
tj≥pβ

e−stj

∞∫
0

e−st 〈T (t)fj , (sI − A∗) g〉 dt

①=
∑

tj<pβ

e−spβ 〈R(s, A)T (pβ − tj)fj , (sI − A∗) g〉 +

∑
e−stj 〈R(s, A)fj , (sI − A∗) g〉 ,
tj≥pβ
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②=
∑

tj<pβ

e−spβ 〈T (pβ − tj)fj , g〉 +
∑

tj≥pβ

e−stj 〈fj , g〉 ,

where ① uses the resolvent operator R given by [14, Ch.II, Theorem 1.10]

R(s, A)x = (sI − A)−1x =
∞∫

0

e−stT (t)xdt

for s > ω and ② comes from the fact that (sI − A∗)∗R(s, A) = (sI − A)(sI − A)−1 is identity operator.
Therefore, for s > ω,

(�+1)β∫
(�−1)β

e−st

〈∑
tj≤t

T (t − tj)fj , (sI − A∗) g

〉
dt

=

⎛⎜⎝ ∞∫
(�−1)β

−
∞∫

(�+1)β

⎞⎟⎠ e−st

〈∑
tj≤t

T (t − tj)fj , (sI − A∗) g

〉
dt

=
∑

tj<(�−1)β

e−s(�−1)β 〈T ((� − 1)β − tj)fj , g〉 +
∑

tj≥(�−1)β

e−stj 〈fj , g〉 −

⎛⎝ ∑
tj<(�+1)β

e−s(�+1)β 〈T ((� + 1)β − tj)fj , g〉 +
∑

tj≥(�+1)β

e−stj 〈fj , g〉

⎞⎠
=e−s(�−1)β

∑
tj<(�−1)β

〈T ((� − 1)β − tj)fj , g〉

− e−s(�+1)β
∑

tj<(�+1)β

〈T ((� + 1)β − tj)fj , g〉 +
∑

(�−1)β≤tj<(�+1)β

e−stj 〈fj , g〉 .

(44)

Similarly, for any s ∈ R, we have

(�+1)β∫
(�−1)β

e−st 〈T (t)u0, (sI − A∗) g〉 dt =

e−s(�−1)β〈(T ((� − 1)β)u0, g〉 − e−s(�+1)β〈T ((� + 1)β))u0, g〉.

(45)

We now compute that

∞∫
pβ

e−st

〈 t∫
0

T (t − τ)η(τ)dτ, (sI − A∗) g

〉
dt

③=
pβ∫
0

∞∫
pβ

e−st 〈T (t − τ)η(τ), (sI − A∗) g〉 dtdτ+

∞∫ ∞∫
e−st 〈T (t − τ)η(τ), (sI − A∗) g〉 dtdτ
pβ τ
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=
pβ∫
0

∞∫
0

e−s(t+pβ) 〈T (t + pβ − τ)η(τ), (sI − A∗) g〉 dtdτ+

∞∫
pβ

∞∫
0

e−s(t+τ) 〈T (t)η(τ), (sI − A∗) g〉 dtdτ

=
pβ∫
0

e−spβ

∞∫
0

e−st 〈T (t)T (pβ − τ)η(τ), (sI − A∗) g〉 dtdτ+

∞∫
pβ

e−sτ

∞∫
0

e−st 〈T (t)η(τ), (sI − A∗) g〉 dtdτ

=
pβ∫
0

e−spβ 〈T (pβ − τ)η(τ), g〉 dτ +
∞∫

pβ

e−sτ 〈η(τ), g〉 dτ,

where ③ comes from changing the integration order of t and τ .
Therefore, for s > ω, the background source term in (43) becomes

(�+1)β∫
(�−1)β

e−st

〈 t∫
0

T (t − τ)η(τ)dτ, (sI − A∗) g

〉
dt

=

⎛⎜⎝ ∞∫
(�−1)β

−
∞∫

(�+1)β

⎞⎟⎠ e−st

〈 t∫
0

T (t − τ)η(τ)dτ, (sI − A∗) g

〉
dt

=
(�−1)β∫

0

e−s(�−1)β 〈T ((� − 1)β − τ)η(τ), g〉 dτ +
∞∫

(�−1)β

e−sτ 〈η(τ), g〉 dτ−

⎛⎜⎝ (�+1)β∫
0

e−s(�+1)β 〈T ((� + 1)β − τ)η(τ), g〉 dτ +
∞∫

(�+1)β

e−sτ 〈η(τ), g〉 dτ

⎞⎟⎠
=

(�−1)β∫
0

e−s(�−1)β 〈T ((� − 1)β − τ)η(τ), g〉 dτ +
(�+1)β∫

(�−1)β

e−sτ 〈η(τ), g〉 dτ

−
(�+1)β∫

0

e−s(�+1)β 〈T ((� + 1)β − τ)η(τ), g〉 dτ.

(46)

Substituting (44), (45), and (46) into (43) yields (42) for z = s ∈ R with s > ω and the proof is complete 
via invocation of the aforementioned entirety of the functions. �
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