
1

funcX: Federated Function as a Service for
Science

Zhuozhao Li, Ryan Chard, Yadu Babuji, Ben Galewsky, Tyler Skluzacek, Kirill Nagaitsev, Anna Woodard,
Ben Blaiszik, Josh Bryan, Daniel S. Katz, Senior Member, IEEE, Ian Foster, Fellow, IEEE, and Kyle Chard

Abstract—funcX is a distributed function as a service (FaaS) platform that enables flexible, scalable, and high performance remote
function execution. Unlike centralized FaaS systems, funcX decouples the cloud-hosted management functionality from the
edge-hosted execution functionality. funcX’s endpoint software can be deployed, by users or administrators, on arbitrary laptops,
clouds, clusters, and supercomputers, in effect turning them into function serving systems. funcX’s cloud-hosted service provides a
single location for registering, sharing, and managing both functions and endpoints. It allows for transparent, secure, and reliable
function execution across the federated ecosystem of endpoints—enabling users to route functions to endpoints based on specific
needs. funcX uses containers (e.g., Docker, Singularity, and Shifter) to provide common execution environments across endpoints.
funcX implements various container management strategies to execute functions with high performance and efficiency on diverse
funcX endpoints. funcX also integrates with an in-memory data store and Globus for managing data that may span endpoints. We
motivate the need for funcX, present our prototype design and implementation, and demonstrate, via experiments on two
supercomputers, that funcX can scale to more than 130 000 concurrent workers. We show that funcX’s container warming-aware
routing algorithm can reduce the completion time for 3000 functions by up to 61% compared to a randomized algorithm and the
in-memory data store can speed up data transfers by up to 3x compared to a shared file system.

Index Terms—Function-as-a-Service, cyberinfrastructure, distributed computing

F

1 INTRODUCTION

THE exponential growth of data and increasing hardware
diversity is driving the need for computation to occur

wherever it makes the most sense, for example, on a suitable
computer, where particular software is available, or near
data. Prior research, in grid [39] and peer-to-peer [60] com-
puting, has studied and explored the foundations for remote
computing. However, with the exception of cloud platforms,
general-purpose remote computation has remained elusive
due to, for example, slow and unreliable network commu-
nications, security challenges, and dependencies between
software and heterogeneous computer architectures.

Commercial cloud providers have been at the forefront
of recent advances in networks, hardware, and distributed
computing, leveraging widespread virtualization, universal
trust fabrics, and high-speed networks to deliver serverless
computing services such as function-as-a-service (FaaS) [27],
[40], [77]. FaaS enables developers to register a high-level
programming function and to then invoke that function

• Z. Li is with Department of Computer Science and Engineering
and Research Institute of Trustworthy Autonomous Systems, South-
ern University of Science and Technology, Shenzhen, China. Email:
lizz@sustech.edu.cn

• Y. Babuji, T. J. Skluzacek, A. Woodard, B. Blaiszik, J. Bryan, I. Foster,
and K. Chard are with the University of Chicago, Chicago, IL, 60637.
E-mail: {yadunand, skluzacek, annawoodard, blaiszik, jbryan, foster,
chard}@uchicago.edu

• R. Chard and I. Foster are with Argonne National Laboratory, Lemont, IL
60439. E-mail: {rchard, foster}@anl.gov

• D. S. Katz is with NCSA, CS, ECE, and the iSchool, University of Illinois,
Urbana, IL, 61801. E-mail: d.katz@ieee.org

• B. Galewsky is with NCSA, University of Illinois, Urbana, IL, 61801.
E-mail: bengal1@illinois.edu

• K. Nagaitsev is with Northwestern University, Evanston, IL, 60208. E-
mail: knagaitsev@u.northwestern.edu

many times by passing input arguments. The user needs
not concern themselves with provisioning infrastructure
or configuring execution environments. FaaS systems have
quickly become integral to a wide range of applications,
particularly for event-based and dev-ops applications.

The FaaS model is particularly attractive in science
as a way of decomposing monolithic science applications
into a collection of modular, performant, and extensible
functions [38], [41], [48], [58], [72]. However, existing FaaS
systems are typically centralized and specific to a particular
cloud, rather than being designed to be deployed on hetero-
geneous research cyberinfrastructure (CI) or to use feder-
ated resources. Typically research CI uses batch scheduling
interfaces and inflexible authentication and authorization
models, which does not lend itself to the fine-grain and
sporadic function workloads. In response, we propose a fed-
erated FaaS model for general-purpose remote computing at
scale across diverse CIs, both centrally and at the edge.

In this paper, we present funcX, a federated, scalable, and
high-performance function execution platform. funcX lever-
ages a distributed endpoint model to support remote function
execution across distributed and heterogeneous research CI.
Users can transform many computing resources, such as
laptops, clouds, clusters, supercomputers, or Raspberry Pis
they are authorized to access, into function serving systems
by deploying funcX’s endpoint software. Users then use the
cloud-hosted funcX service to register Python functions and
invoke those functions on their deployed endpoints. funcX
manages the reliable and secure execution of functions,
staging function code and inputs, provisioning resources,
managing safe and secure execution (optionally in contain-
ers), monitoring execution, and returning outputs to users.

ar
X

iv
:2

20
9.

11
63

1v
1

 [c
s.D

C
]

23
 S

ep
 2

02
2

2

Thus, users benefit from the convenience and reliability of
a cloud-hosted service combined with the flexibility and
performance of a federated ecosystem of endpoints.

We extend our previous work [32] to support complex
data dependencies between scientific functions. Specifically,
we focus on enabling data transfer between functions that
are executing on the same (intra-endpoint) or different (inter-
endpoint) endpoints. For intra-endpoint communication we
use an in-memory data store, for inter-endpoint communi-
cation we use Globus [37]. We also present new heuristic-
based container management and function routing schemes
that reduce container warming overhead and efficiently
route functions to appropriately configured containers.

The primary novelty of our work is in the adaptation
of the FaaS paradigm to a federated research ecosystem,
combining a distributed endpoint model with a hosted
FaaS platform to support remote function execution across
distributed and heterogeneous research CI. We demonstrate
the viability of our approach with a highly modularized
and extensible design as well as a scalable and performant
implementation. We also show that it is beneficial to de-
compose scientific applications into monolithic functions
that may be executed on different remote resources. The
contributions of our work are as follows:

• funcX, a distributed and federated FaaS platform that
can: be deployed on research CI, dynamically provision
and manage resources, leverage various container tech-
nologies, and facilitate secure, scalable, and distributed
function execution.

• Automated data movement between functions us-
ing widely-used in-memory data stores and high-
performance data transfer technology to transparently
support data dependencies between functions.

• Design and evaluation of performance enhancements
for function serving on distributed research CI, includ-
ing function warming, batching, and function routing.

• Experimental studies showing that funcX delivers ex-
ecution latencies comparable to those of commercial
FaaS platforms and scales to 1M+ functions across 130K
active workers on supercomputers.

The rest of this paper is as follows. §2 describes an
example use case and presents general requirements for
FaaS in science. §3 presents a conceptual model of funcX. §4
describes the funcX system architecture. §5 discusses how
data is managed in funcX. §6 presents funcX’s container
management model. §7 evaluates funcX performance. §8
reviews funcX’s use in scientific case studies. §9 discusses
related work. Finally, §10 summarizes our contributions.

2 MOTIVATIONS AND REQUIREMENTS

Over the last two years the scientific community has been
working to understand SARS-CoV-2 and develop effective
tests, therapeutics, and vaccines. However, progress in these
areas is dependent on our ability to understand SARS-
CoV-2 protein structures. At Argonne’s Advanced Photon
Source [49], scientists use an emerging method called fixed-
target serial synchrotron crystallography (SSX) to collect
physiological temperature data from thousands of protein
crystals.

Listing 1: Three functions used in the SSX pipeline and
an example of how the funcX SDK is used to register and
invoke the process_stills function.
def process_stills(data):

inputs = data['inputs']
phil = data['phil']
cmd = f'dials.stills_process {phil} {inputs}'
res = subprocess.run(cmd)
return res.stdout

def solve(data):
from gladier.tools import template_prime
pdata = template_prime.substitute(data['template'])
cmd = f"prime.run {pdata} > prime.log"
res = subprocess.run(cmd)
return res.stdout

def extract_metadata(data):
from gladier.tools import (get_dims,

get_lattice_counts, plot_lattice_counts)
lc = get_lattice_counts(xdim, ydim, int_files)
plot_name = f'1int-sinc.png'
plot_lattice_counts(xdim, ydim, lc, plot_name)
return plot_name

fc = FuncXClient()
func_id = fc.register_function(process_stills)
endpoint_id = '863d-...-d820d'

input_data = {'inputs': '...', 'phil': '...'}
task_id = fc.run(func_id, endpoint_id,

data=input_data)
res = fc.get_result(task_id)

Data are generated at unprecedented rates with tens
of thousands of images captured each hour. Keeping pace
with the experiment requires rapid data processing across
multiple, heterogeneous computing resources to efficiently
analyze, refine, solve, and curate structures.

To meet these data processing and publication needs,
SSX scientists have adopted an automated data manage-
ment framework [81] that can manage data acquisition,
analysis, curation, and visualization. Throughout this work-
flow, there are needs for computation both at the edge to
detect and pre-process data rapidly, as well as on HPC
resources to perform computationally expensive analysis
tasks and produce structures. Each of these steps relies on dif-
ferent packages and functions, has different processing durations,
occurs at different times, and requires different types and amounts
of computing resources. Thus, it is essential that the scientists be
able to decompose the entire processing pipeline into a series of
individual functions to perform on data as they are moved and
transformed. These functions, shown in Listing 1, analyze
individual images, refine and solve the crystal structure, and
extract metadata and create plots before publishing results.

This typical science use case, with parallels in many
other domains described in our previous work [32], high-
lights the benefits of FaaS approaches (e.g., decomposition,
abstraction, flexibility, scalability, reliability), and also eluci-
dates several requirements for FaaS approaches.

• Research CI: functions may require HPC-scale and/or
specialized and heterogeneous resources. Many re-
sources expose batch scheduler interfaces (with long
delays, periodic downtimes, proprietary interfaces)
and specialized container technology (e.g., Singularity,

3

Shifter) that make it challenging to provide common
execution interfaces, on-demand and elastic capacity,
and fault tolerance.

• Distribution: different parts of an application may be
most efficiently executed on different, often distributed,
resources (e.g., near data, on a specialized computer).

• Data: functions analyze both small and large data,
stored in various locations and formats, and accessible
via different methods (e.g., Globus [31]).

• Authentication: institutional identities and specialized
security models are used to access data, compute re-
sources, and other cyberinfrastructure.

• State: functions may be connected and share state (e.g.,
files or database connections) to decrease overheads.

Existing FaaS solutions may satisfy these requirements
partially, but not completely. For example, some FaaS sys-
tems (e.g., OpenWhisk [4], KNIX [14]) support on-premise
deployments on specialized hardware (e.g, GPU), but not on
distributed and federated computing resources. Some FaaS
systems (e.g., DFaaS [34], ChainFaaS [42]) support function
execution in distributed environments, but not on research
CI. Here we present funcX, a federated and scalable FaaS
platform that enables researchers to decompose applications
into functions and execute them on arbitrary remote com-
puters via the FaaS paradigm.

3 CONCEPTUAL MODEL

We first describe the conceptual model behind funcX to pro-
vide context to the implementation architecture. funcX al-
lows users to register and then execute functions on arbitrary
endpoints. All user interactions with funcX are performed via
a REST API implemented by a cloud-hosted funcX service.

Functions: funcX is designed to execute functions: snip-
pets of Python code that perform some activity. A funcX
function explicitly defines a Python function and input sig-
nature. The function body must specify all imported mod-
ules. While funcX supports only Python functions, users
can easily write Python functions to invoke tools written
in other languages. Listing 1 shows several functions used
in the SSX pipeline mentioned in §2. The process_stills
function takes a single input dictionary as input, which in-
cludes the locations of the images and the phil file describing
the analysis configuration. The function then makes use of
the DIALS [82] tool to analyze the image.

Function registration: A function must be registered
with funcX before it can be executed. The registration in-
cludes a name and the serialized function body. Optionally,
it may also specify users, or groups of users, who may be
authorized to invoke the function, and a container image
to be used for execution. Containers allow the construction
of environments with the dependencies (system packages
and Python libraries) required to execute the function. funcX
assigns a universally unique identifier (UUID) for manage-
ment and invocation. Users may update functions they own.

Endpoints: A funcX endpoint is a logical entity that
represents a compute resource. The corresponding funcX
agent allows the funcX service to dispatch functions to that
resource for execution. The agent handles authentication
and authorization, provisioning of nodes on the compute
resource, and monitoring and management. Administrators

or users can deploy a funcX agent and register an endpoint
for themselves and others, providing descriptive (e.g., name,
description) metadata. Each endpoint is assigned a UUID
for subsequent use.

Function execution: Authorized users may invoke a
registered function on a selected endpoint. To do so, they
issue a request via funcX that identifies the function and
endpoint to be used as well as inputs to be passed to
the function. Functions are executed asynchronously: each
invocation returns an identifier via which progress may be
monitored and results retrieved. In this paper, we refer to an
invocation of a function as a “task.” Importantly, following the
FaaS model, while users must specify the specific endpoint
for use, they do not manage the resources on which the
function is executed (e.g., nodes, containers, or modules)

funcX service: Users interact with funcX via a cloud-
hosted service that exposes a REST API for registering
functions and endpoints, and for executing functions, mon-
itoring their execution, and retrieving results. The REST
API provides a uniform interface via which users can make
asynchronous and stateless calls to manage endpoints and
function executions. REST APIs are the the most common
interface for FaaS platforms (e.g., AWS Lambda [1] and
Google Cloud Functions [11]). The service is connected to
accessible endpoints via the endpoint registration process.

User interface: funcX provides a Python SDK that wraps
the REST API. Listing 1 shows an example of how the
SDK can be used to register and invoke a function on a
specific endpoint. The example first constructs a client and
registers the process_stills function. It then invokes
the registered function using the run command, passing
the unique function identifier, the endpoint id on which to
execute the function, and inputs (in this case data). Finally,
the example shows that the results can be asynchronously
retrieved using get_result.

4 ARCHITECTURE AND IMPLEMENTATION

funcX combines a cloud-hosted management service with
software agents deployed on remote resources: see Fig. 1.

4.1 The funcX Service
The funcX service maintains a registry of funcX end-
points, functions, and users in a persistent AWS Relational
Database Service (RDS) database. To facilitate rapid function
dispatch, funcX stores serialized function codes and tasks
(including inputs and task metadata) in an AWS Elasti-
Cache Redis hashset. The service also manages a Redis
queue for each endpoint that stores task IDs for tasks to
be dispatched to that endpoint. The service exposes a REST
API to register and manage endpoints, register functions,
execute and monitor functions, and retrieve the output from
tasks. The funcX service is secured using Globus Auth [75],
which allows users, programs and applications, and funcX
endpoints to securely make API calls. When an endpoint
registers with the funcX service, a unique forwarder process
is created for each endpoint. Endpoints establish secured
ZeroMQ connections with their forwarder to receive tasks,
return results, and perform heartbeats.

funcX implements a hierarchical task queuing architec-
ture consisting of queues at the funcX service, endpoint,

4

Fig. 1: funcX architecture, showing the funcX service (top)
consisting of a REST interface, Redis store, and Forwarders.
funcX endpoints (bottom) provision resources and coordi-
nate the execution of functions.

and worker. These queues support reliable fire-and-forget
function execution that is resilient to failure and intermittent
endpoint connectivity. At the first level, each registered
endpoint is allocated a unique Redis task queue and result
queue to store and track tasks, which are implemented using
Redis Lists structure. We use Redis as it provides a simple
yet performant system for brokering tasks. Redis is offered
as a hosted Amazon service and can be elastically scaled as
workload increases. funcX serves primarily as a broker to
manage and distribute tasks. Redis provides high through-
put queuing via an in-memory store with little overhead
on the tasks and results passed through the queue—an
important requirement for providing low latency execution.
One limitation of this approach is that we must implement
message acknowledgments to ensure that tasks and results
are communicated reliably between clients, endpoints, and
the funcX service. We note that as use cases expand, we may
need to consider other message queues, such as Kafka [3],
Pulsar [5], or AMQP-based systems (e.g., RabbitMQ [20]).

Fig. 2 shows the funcX task lifecycle. At function sub-
mission, the funcX service routes the task to the specified
endpoint’s task queue. The forwarder listens to the queue
for tasks and then dispatches the task to the corresponding
agent. funcX agents internally queue tasks at both the man-
ager and worker. These queues ensure that tasks are not lost
once they have been delivered to the endpoint. Results are
returned to the funcX service and stored in the endpoint’s
result queue until they are retrieved by the user.

funcX relies on AWS-hosted databases, caches, and Web
serving infrastructure to reduce operational overhead, elas-
tically scale resources, and provide high availability. While
these services provide significant benefits to funcX, they
have associated costs. To minimize these costs we apply
several techniques, such as using small cloud instances with
responsive scaling to minimize the steady state cost and
restricting the size of input and output data passed through
the funcX service to reduce storage (e.g., in Redis store)
and data egress costs. Further, we periodically purge results

Fig. 2: funcX task execution path. A task submitted to funcX
(1) is stored in Redis (2), queued for execution (3), and
dispatched via a Forwarder to an endpoint (4); results are
returned (5), then stored in Redis for users to retrieve (6).

from the Redis store once they have been retrieved by the
client or after a period of time.

The funcX service is designed to provide robustness and
fault tolerance using several techniques. First, the funcX ser-
vice implements health checks, including a liveness check,
CPU utilization, and response time monitoring, etc. The
service is automatically restarted when these health checks
indicate failures. Second, the RDS database and Redis task
queue are replicated to ensure that any data (e.g., users,
functions, endpoints, and tasks) are not lost. Third, the
forwarder uses configurable periodic heartbeats (30 seconds
by default) to detect if an agent is disconnected. A task is
sent to an agent only when it is connected. When an agent
is disconnected, all the tasks dispatched to the agent are re-
turned back into the task queue and the tasks are forwarded
to that agent when it reconnects. Fourth, tasks are cached
at each layer and only removed when downstream layers
have acknowledged receipt. Finally, to serve the distributed
endpoints in funcX, the funcX service is deployed on cloud-
hosted services, which internally provide high reliability
and robustness.

4.2 Function Containers
funcX uses containers to package function code and de-
pendencies that are to be deployed on a compute re-
source. Our review of container technologies, including
Docker [59], LXC [17], Singularity [54], Shifter [46], and
CharlieCloud [63], led us to adopt Docker, Singularity, and
Shifter. Docker works well for local and cloud deployments,
whereas Singularity and Shifter are designed for use in HPC
environments and are supported at large-scale computing
facilities (e.g., Singularity at ALCF and Shifter at NERSC).
Singularity and Shifter implement similar models and thus
it is easy to convert from a common representation (e.g., a
Dockerfile) to both formats.

funcX requires that each container includes a base set
of software, including Python 3 and funcX worker soft-
ware. Other system libraries or Python modules needed for
function execution must also be included. When registering
a function, users may optionally specify a container to
be used for execution; if no container is specified, funcX
executes functions using the worker’s Python environment.

5

In future work, we intend to make this process dynamic,
using repo2docker [36] to build Docker images and convert
them to site-specific container formats as needed.

4.3 The funcX Endpoint

The funcX endpoint represents a remote resource and de-
livers high-performance remote execution of functions in a
secure, scalable, and reliable manner.

The endpoint architecture, depicted in the lower portion
of Fig. 1, is comprised of three components, which are
discussed below:

• funcX agent: a persistent process that queues and for-
wards tasks and results, interacts with resource sched-
ulers, and load balances tasks.

• Manager: manages the resources for a single compute
node on an endpoint by deploying and managing a set
of workers.

• Worker: executes tasks (optionally within a container).
The funcX agent is a software agent that is deployed by
a user on a compute resource (e.g., an HPC login node,
cloud instance, or a laptop). It registers with the funcX
service and acts as a conduit for routing tasks and results
between the service and workers. The funcX agent manages
resources on its system by working with the local scheduler
or cloud API to deploy managers on compute nodes. The
funcX agent uses a pilot job model [76] to provision and
communicate with resources in a uniform manner, irrespec-
tive of the resource type (cloud or cluster) or local resource
manager (e.g., Slurm, PBS, Cobalt). As each manager is
launched on a compute node, it connects to and registers
with the funcX agent. The funcX agent then uses ZeroMQ
sockets to communicate with its managers. To minimize
blocking, all communication is performed by threads using
asynchronous communication patterns. The funcX agent
uses a randomized scheduling algorithm to allocate tasks to
suitable managers with available capacity. The funcX agent
can be configured to provide access to specialized hardware
or accelerators. When deploying the agent, users can specify
how worker containers should be launched, enabling them
to mount specialized hardware and execute functions on
that hardware. In future work, we will extend the agent
configuration to specify custom hardware and software
capabilities and report this information to the funcX agent
and service for scheduling.

To provide fault tolerance and robustness, for example
with respect to node failures, the funcX agent relies on
periodic heartbeat messages and a process to detect lost
managers. The funcX agent tracks tasks that have been
distributed to managers so that when failures do occur,
lost tasks can be re-executed (if permitted). funcX agents
communicate with the funcX service’s forwarder via a Ze-
roMQ channel. Loss of a funcX agent is detected by the
forwarder and when the funcX agent recovers, it repeats
the registration process to acquire a new forwarder and
continue receiving tasks. To reduce overheads, the funcX
agent can shut down managers to release resources when
they are not needed, suspend managers to prevent further
tasks from being scheduled to them, and monitor resource
capacity to aid scaling decisions.

Managers represent, and communicate on behalf of, the
collective capacity of the workers on a single node, using just
two sockets per node. Managers determine the available
CPU and memory resources on a node, and partition the
node among the workers. Managers advertise deployed
container types and available capacity to the endpoint.

Workers persist on a node (optionally within containers)
and each executes one task at a time. Since workers have
a single responsibility, they use blocking communication to
wait for tasks from the manager. Once a task is received,
it is deserialized, executed, and the serialized results are
returned via the manager.

4.4 Managing Compute Infrastructure

funcX is designed to support a range of computational
resources, from embedded computers to clusters, clouds,
and supercomputers, each with distinct access modes. As
funcX workloads are often sporadic, resources must be pro-
visioned and deprovisioned as needed to reduce costs due
to idle resources. funcX uses Parsl’s provider interface [26]
to interact with various resources, specify resource-specific
requirements (e.g., allocations, queues, limits, cloud instance
types), and define rules for automatic scaling (i.e., limits and
scaling aggressiveness). This interface allows funcX to be
deployed on batch schedulers such as Slurm, PBS, Cobalt,
SGE, and Condor; major cloud systems such as AWS, Azure,
and Google Cloud; and Kubernetes.

4.5 Serialization

funcX supports the registration of arbitrary Python func-
tions and the passing of data (e.g., primitive types and
complex objects) to/from those functions. funcX uses a Fa-
cade interface with several serialization libraries (including
pickle, dill, and JSON) as some Python object types cannot
be serialized with some serialization libraries, and no single
serialization library can serialize all objects. The funcX seri-
alizer sorts the serialization libraries by speed and applies
them in order successively until the object is successfully
serialized. This approach combines the strengths of vari-
ous libraries, including support for complex objects (e.g.,
machine learning models) and traceback objects in a fast
and transparent fashion. Once objects are serialized, they
are packed into buffers with headers that include routing
tags and the serialization method, such that only the buffers
need to be unpacked and deserialized at the destination.

4.6 Batching

funcX supports two batching to amortize costs across many
function requests: internal batching enables managers to
request many tasks on behalf of their workers, minimizing
network communication costs; and, user-facing batching that
enables users to define batches of function inputs, allowing
users to trade off efficient execution and increased per-
function latency by creating fewer, larger requests. The SDK
includes a matching batch interface for retrieving the results
of many tasks concurrently.

6

4.7 Security Model
funcX requires a security model to ensure that functions
are executed on endpoints by authenticated and authorized
users and that one function cannot interfere with another.

Authentication and authorization: Since funcX end-
points may be deployed across arbitrary resources, we first
summarize authentication and authorization requirements.

• Different research CI may rely on diverse identity man-
agement systems and authentication models (e.g., two-
factor authentication). To ease the deployment of funcX
agent on any resources, funcX needs a general model
that provides a uniform API, rather than maintaining a
set of APIs for the diverse identity providers.

• Users may have to use different accounts (e.g., insti-
tution accounts, national CI credentials, or national
laboratory accounts) to access different resources. Users
would like to use one account to authenticate funcX
endpoints infrequently.

• One frequent use case in scientific computing is that re-
sources are shared among a group of scientists. Ideally,
the authorization model should enable users to grant
access to others while enforcing secure delegation.
funcX uses Globus Auth [75] for identity and access

management (IAM), and protection of all APIs. We use
Globus Auth as it satisfies the above requirements, is widely
adopted in scientific community, implements standard pro-
tocols (e.g., OAuth 2), enables simple delegation (e.g., such
that a user may allow the funcX service or another user to
access their endpoint), and offers a flexible OAuth client
model for developing the funcX SDK. Although Globus
Auth is used as the primary implementation, other IAM ser-
vices that provide similar capabilities and interfaces could
be integrated with funcX.

The funcX service is registered as a Globus Auth
resource server, allowing users to authenticate using
a supported identity (e.g., institution, Google, OR-
CID) and enabling various OAuth-based authentica-
tion flows (e.g., native client) for different scenar-
ios. funcX has associated Globus Auth scopes (e.g.,
“urn:globus:auth:scope:funcx:register function”) via which
other clients (e.g., applications and services) may obtain
authorizations for programmatic access. funcX endpoints
are themselves Globus Auth native clients, each dependent
on the funcX scopes, which are used to securely connect to
the funcX service. Endpoints require the administrator to
authenticate prior to registration in order to acquire access
tokens used for constructing API requests. The connection
between the funcX service and endpoints is established
using ZeroMQ. Communication addresses are sent as part
of the registration process. Inbound traffic from endpoints to
the cloud-hosted service is limited to known IP addresses.

Isolation: funcX function execution can be isolated in
containers to ensure that functions cannot access data or
devices outside their context. To enable fine-grained track-
ing of execution, we store execution request histories in the
funcX service and in logs on funcX endpoints.

5 DATA MANAGEMENT
Data management is essential for many applications: func-
tions may interact with large and/or remote datasets,

Listing 2: Inter-endpoint data transfer with Globus.
from funcx import GlobusFile

data = GlobusFile(globus_endpoint_id='65e...',
file_path='/˜/file.txt')

task_id = fc.run(func_id, endpoint_id,
remote_data=data)

and tasks may use the outputs of other tasks as inputs.
This section describes how data can be staged and man-
aged between different funcX endpoints (inter-endpoint)
and between different functions within an endpoint (intra-
endpoint).

5.1 Inter-endpoint Data Transfers
To minimize operational costs and performance overheads
we limit the size of data that can be passed through the
funcX service to 10 MB. To enable functions to be seamlessly
invoked with large data that may be located on remote com-
puters, we require an out-of-band data transfer mechanism.
We summarize the primary requirements as follows.

• Transfers can be managed programmatically by funcX.
• The transfer mechanism should be natively supported

and approved by the administrations of research CI.
• Transfers should be optimized and provide high perfor-

mance, endpoint-to-endpoint movement.
• The transfer mechanism should be interoperable with
funcX’s authentication and authorization model (i.e.,
Globus Auth) to secure data transfers on behalf of users.

• The transfer mechanism should allow a user’s functions
to fetch data that is shared among a group.

We focus on wide area data management, rather than
cloud storage, as data may be stored or generated in
different locations (e.g., instruments, campus clusters, su-
percomputers) in many scientific use cases. Based on the
requirements above, we integrate Globus transfer [31] to
streamline inter-endpoint data transfers. Globus has several
advantages that lead us to this choice: i) it is a research
data management service that provides high-performance
data transfers between arbitrary storage resources, such
as supercomputers, laptops, and clouds; ii) it is widely
deployed on research CI and used in scientific research;
iii) data are transferred directly between the source and
destination systems via the GridFTP [24] protocol; iv) it
provides a Python SDK that allows a user’s functions to
fetch shared data.

To use Globus, the Globus Connect software must be
installed on the storage system, this is often done by
administrators installing Globus Connect Server on large
clusters or it can be done individually in user-space using
Globus Connect Personal. Storage systems are registered as
a Globus endpoint with associated authentication mecha-
nism in the Globus service. Each endpoint is given a unique
endpoint identifier that is used when transferring data.

In this paper, we extend funcX to allow for references
to Globus-accessible files to be passed as input/output
to/from a function. Specifically, users must specify the
Globus endpoint and the path to the file on that endpoint.
When Globus-accessible files are passed to/from a funcX

7

function, funcX can automatically stage data either prior to,
or after invocation of the function. An example of using
Globus for inter-endpoint data transfer is shown in Listing 2.

We have found that Globus is well suited for our current
use cases; however, other mechanisms (e.g., HTTP, FTP, and
rsync) could also be used for inter-endpoint data transfers
by augmenting functions to make direct data downloads or
uploads. In future work we will extend the inter-endpoint
transfer model in funcX to transparently support these
mechanisms as we have done in Parsl.

5.2 Intra-endpoint Data Transfers
Modern applications may involve frequent fine-grained
communications among functions executed on an individ-
ual endpoint (i.e., intra-endpoint data transfers). For exam-
ple, distributed machine learning (ML) training may require
that state be coordinated among all worker nodes; and
MapReduce-style applications often involve a shuffle phase
where every map task sends data to every reduce task.

Here we describe the advantages and disadvantages of
potential intra-endpoint data management approaches.

• A shared file system that can be accessed by every
worker on an endpoint. The effort to attach such storage
to a funcX endpoint is minimal, as many clusters,
clouds, and supercomputers provide built-in shared
file system (sharedFS) or object storage. However, they
often have high access cost, limited IO performance,
and high latency when writing and reading many files.

• MPI is a message passing fabric that is highly scalable
and optimized for data communications on supercom-
puters with specialized interconnects; however, MPI
libraries are not natively available or optimized for
many computers (e.g., clouds and private clusters).
More importantly, the synchronous nature of MPI’s
collective communication is not well-suited for the
asynchronous task-based model in funcX, as it blocks
tasks from making progress even when partial results
are ready, which is important for many performance-
driven asynchronous applications (e.g., distributed ma-
chine learning training); HPC containers often must be
adapted to make use of local MPI libraries; and a failure
of one MPI process may cause other MPI processes to
block, which stops other tasks from continuing. We note
that fault tolerance has improved in the recent release
of MPI 4.0; however, this is not commonly deployed at
the time of writing.

• Socket and socket-like connections (e.g., ZeroMQ)
between workers can provide high throughput and low
latency direct data transfers. However, creating pair-
wise connections between workers is expensive and in
some cases workers (e.g., in containers) may not be
network addressable or may not have sufficient open
ports to support connections between all workers.

• In-memory data stores (e.g., MemCache [61] and Re-
dis [21]) provide higher IOPS and lower latency than
shared file systems and support more data types than
socket connections (e.g., serialized data). However, they
require that storage be provisioned explicitly, that addi-
tional services be hosted, and they cannot match the
raw throughput or latency of direct socket connec-
tion [55].

Listing 3: Intra-endpoint data transfer with Redis.
def example(key, data):

from funcx_endpoint import get_redis_client
rc = get_redis_client()
rc.set(key, data)
rc.get(key)

The aforementioned advantages and disadvantages lead
us to select the shared file system and in-memory data
store (Redis) approaches to support intra-endpoint data
transfers in funcX, as these approaches are both general
and are readily available (or can be deployed with minimal
effort) on most target resources. We present a preliminary
performance study of these four approaches in §7.3 and the
results show that the performance of shared file system and
Redis is similar to the other approaches, especially when
transferring large volumes of data. We have extended the
funcX agent such that users may specify a requirement for a
Redis cluster to be deployed alongside their endpoint. The
funcX SDK provides a general interface to retrieve the Redis
client which users can interact with, as shown in Listing 3.

6 CONTAINER MANAGEMENT

funcX uses containers to provide customized execution en-
vironments for functions irrespective of the endpoint’s host
environment. In this section, we discuss how the funcX
agent spawns containers to serve functions, retains warm
containers, routes functions to containers, and scales re-
sources based on function requirements.

6.1 Container Warming
Commercial FaaS platforms [79] keep function containers
warm by leaving them running for a short period of time
(e.g., 5-15 minutes) following the execution of a function.
Warm containers remove the need to instantiate a new con-
tainer to execute a function, significantly reducing latency.

We argue that this need is especially important in HPC
environments for several reasons. First, containers and
Python environments (e.g., conda) are generally stored on
shared file systems of HPC systems. Therefore, starting
many containers and Python environments concurrently
for the workers at the HPC scale may impose significant
stress on the shared file systems. Second, many HPC centers
implement their own methods for instantiating containers
that place limitations on the number of concurrent requests.
Third, individual cores are often slower in many-core ar-
chitectures like Xeon Phis. As a result, the start time for
containers can be much larger than what would be seen on
a PC, as shown in TABLE 3 in §7.4.

In funcX, container warming is implemented by the
funcX agent. To reduce the number of container cold starts,
the funcX agent keeps a container warm until there are in-
sufficient resources available to process pending workloads
or the container has been idle for a configurable period of
time (e.g., 10 minutes). The funcX agent is extensible to sup-
port other container-warming strategies, such as releasing
the least recently used container and application-agnostic
container warming [68] if necessary.

8

6.2 Warming-aware Function Routing

Ideally we aim to minimize the number of container cold
starts due to the cost of starting a container in HPC envi-
ronments. To do so, the funcX agent needs to know which
computing nodes have warm containers and what types of
warm containers, so that it can route the function tasks to
the appropriate warm containers.

The funcX agent employs a hierarchical, warming-aware
scheduling algorithm to route function tasks to workers to
optimize throughput. The funcX agent determines which
functions to route to a given manager, and each manager
determines how to launch and spawn containers to sat-
isfy the arriving workload. Thus, warming-aware routing
involves coordination between managers and funcX agent.
Each manager advertises its deployed container types and
its available resources to the funcX agent. Based on the
advertised information of each manager, the funcX agent
implements a warming-aware scheduling algorithm to route
tasks to managers. Specifically, when receiving a task with
requirement for a specific container type, the scheduler
attempts to send the task to a manager that has a suitable
warm container. When there are multiple available man-
agers with the required container type warm, priority is
given to the one with the most available container work-
ers to balance load across managers. If there are not any
warmed containers on any connected managers, the funcX
agent chooses one manager at random to execute the task.
While we use random scheduling in our implementation,
other scheduling policies, such as bin-packing and round-
robin, could also be used. To amortize network latency
during manager advertising and task dispatching, the funcX
agent also supports prefetching, which allows a manager to
prefetch a configurable number of additional tasks beyond
its current availability.

Upon receiving a set of tasks, the manager determines
the required container types and dynamically starts (and
stops) containers to serve tasks in a fair manner: we set the
number of deployed containers for a function type to be
proportional to the number of received tasks of this function
type. For instance, if 30% of the tasks a manager receives are
of type A and the manager can spawn at most 10 containers,
the manager will spawn 3 containers of type A.

It is worth mentioning that the function routing is differ-
ent when an endpoint is deployed on a Kubernetes cluster.
Both the manager and its workers are deployed within a
container pod that can only serve one type of function.
Hence, in this case, each manager is deployed with a specific
container image and the agent simply needs to route tasks
to corresponding managers.

We apply relatively simple scheduling algorithms here
to demonstrate the benefits of warming aware routing;
however, the funcX agent implements modular scheduling
interfaces for function routing (at funcX agents) and con-
tainer deployment (by managers) which enabling different
algorithms (e.g., priority-aware or deadline-driven schedul-
ing) to be implemented by users. We note that when task
duration is much larger than the container cold start time,
the benefits of warming-aware routing are limited.

6.3 Elastic Resource Provisioning
One of the main benefits of the FaaS computing model is
elasticity. To provide elasticity on a funcX endpoint, a funcX
agent dynamically provisions resources via an extensible
provisioning strategy interface.

The strategy interface consists of a monitoring and a
scaling component within the funcX agent. The monitoring
component interacts periodically (e.g., every second) with
the provider interface (introduced in §4.4) and the funcX
agent to fetch the current endpoint load, including the active
and idle resources (i.e., the number of container workers)
and the number of pending function requests. Based on the
monitoring information, the scaling component automati-
cally provisions more resources when the number of func-
tion requests is greater than the number of idle resources,
and releases resources that have been idle for some period
of time, via the provider interface. The maximum idle time
is set to two minutes by default, but is user-configurable for
each endpoint.

Similar to commercial FaaS platforms such as AWS
Lambda and Azure Functions, the funcX strategy allows
users to configure the minimum and maximum resources
to be used, as well as how aggressively a funcX agent scales
those resources (e.g., request one more resource when there
are ten waiting requests). However, elasticity may be subject
to resource request delays, such as the time to request a new
instance on a cloud or to provision a resource via an HPC
scheduler.

7 EVALUATION

We evaluate the performance of funcX in terms of latency,
scalability, and throughput. We also study the effects of
batching, function routing, and data transfer approaches.

7.1 Latency
We explore funcX latency by instrumenting the system.
Figure 3 shows latencies for a warm container as follows:
ts: Web service latency to authenticate, store the task in
Redis, and append the task to an endpoint’s queue; tf :
forwarder latency to read task from the Redis store, for-
ward the task to an endpoint, and write the result to the
Redis store; te: endpoint latency to receive tasks and send
results to the forwarder, and to send tasks and receive
results from the worker; and tw: function execution time.
The endpoint was deployed on ANL’s Cooley cluster for
this test and had an 18 ms latency on average to the
forwarder. We observe that tw is fast relative to the overall
system latency. The network latency between service and
forwarder includes minimal communication time due to
internal AWS networks (measured at <1 ms). Most funcX
overhead is found in ts due to authentication, and in te due
to internal queuing and dispatching. We note here that the
aim of funcX is not to build yet another low-latency FaaS
platform, but instead to provide a new federated model
in which functions can be executed on arbitrary remote
machines. Nevertheless, in our previous work we showed
that the latency of funcX is comparable to commercial FaaS
platforms, such as AWS Lambda, Google Cloud Functions,
and Azure Functions [32].

9

Fig. 3: funcX latency breakdown for a container.

7.2 Scalability and Throughput
We study the strong and weak scaling of the funcX agent
on ANL’s Theta and NERSC’s Cori supercomputers. Theta
is a 11.69-petaflop system based on the second-generation
Intel Xeon Phi “Knights Landing” (KNL) processor. Its 4392
nodes each have a 64-core processor with 16 GB MCDRAM,
192 GB of DDR4 RAM, and are interconnected with high
speed InfiniBand. Cori is a 30-petaflop system with an
Intel Xeon “Haswell” partition and an Intel Xeon Phi KNL
partition. We ran our tests on the KNL partition, which
has 9688 nodes, each with a 68-core processor (with 272
hardware threads) with six 16-GB DIMMs, 96 GB DDR4
RAM, interconnected in a Dragonfly topology. We perform
experiments using 64 Singularity containers on each Theta
node and 256 Shifter containers on each Cori node. Due to a
limited allocation on Cori we use the four hardware threads
per core to deploy more containers than cores.

Strong scaling evaluates performance when the total
number of function invocations is fixed; weak scaling eval-
uates performance when the average number of functions
executed on each container is fixed. To measure scalability
we created functions of various durations: a 0-second “no-
op” function that exits immediately, a 1-second “sleep”
function, and a 1-minute CPU “stress” function that keeps
a CPU core at 100% utilization. For each case, we measured
completion time of a batch of functions as we increased the
total number of containers. Notice that the completion time
of running M “no-op” functions on N workers indicates
the overhead of funcX to distribute the M functions to N
containers. Due to limited allocations we did not execute
sleep or stress functions on Cori, nor did we execute stress
functions for strong scaling on Theta. We pre-warmed all
containers in these experiments.

7.2.1 Strong scaling
Figure 4(a) shows the completion time of 100 000 concurrent
function requests with an increasing number of containers.
On both Theta and Cori, the completion time decreases as
the number of containers increases, until we reach 256 con-
tainers for “no-op” and 2048 containers for “sleep” on Theta.
As reported by Wang et al. [79] and Microsoft [19], Amazon
Lambda achieves good scalability for a single function to
more than 200 containers, Microsoft Azure Functions can
scale up to 200 containers, and Google Cloud Functions does
not scale well beyond 100 containers. While these results do
not indicate the maximum number of containers that can be
used for a single function, and likely include per-user limits
imposed by the platform, our results show that funcX scales
similarly to commercial platforms.

7.2.2 Weak scaling
We performed concurrent function requests such that each
container receives, on average, 10 requests. Figure 4(b)
shows weak scaling for “no-op,” “sleep,” and “stress.” For

“no-op,” the completion time increases with more contain-
ers on both Theta and Cori. This reflects the time required
to distribute requests to all of the containers. On Cori, funcX
scales to 131 072 concurrent containers and executes more
than 1.3 million “no-op” functions. Again, we see that the
completion time for “sleep” remains close to constant up
to 2048 containers, and the completion time for “stress”
remains close to constant up to 16 384 containers. Thus,
we expect a function with a several-minute duration would
scale well to many more containers.

7.2.3 Throughput
We observe a maximum throughput for a funcX agent
(computed as number of function requests divided by com-
pletion time) of 1694 and 1466 requests per second on Theta
and Cori, respectively.

7.2.4 Summary
Our results show that funcX agents i) scale to 130 000+ con-
tainers for a single function; ii) exhibit good scaling perfor-
mance up to approximately 2048 containers for a 1-second
function and 16 384 containers for a 1-minute function; and
iii) provide similar scalability and throughput using both
Singularity and Shifter containers on Theta and Cori. It is
important to note that these experiments study the funcX
agent, and not the end-to-end throughput of funcX. While
the funcX web service can elastically scale to meet demand,
communication overhead may limit throughput. To address
this challenge and amortize communication overheads, we
enable batch submission of tasks. These optimizations are
discussed in §7.5.

7.3 Data Management

We evaluate four potential approaches for intra-endpoint
data transfers (described in §5.2) on Theta. We use mpi4py
for MPI, ZeroMQ for direct socket connections, Redis for the
in-memory store, and Theta’s Lustre shared file system. We
note that we use mpi4py because it supports direct Python
object transfers and previous work [65] has shown that
mpi4py does not add significant overhead when compared
with OpenMPI in terms of throughput and latency for
data transfers. We emulate different communication pat-
terns (i.e., point-to-point, broadcast, and all-to-all) and vary
data transfer size. Fig. 5 shows the performance of these
four approaches with different communication patterns. As
expected, MPI performs the best, and sharedFS the worst.
However, ZeroMQ and Redis achieve similar performance
to MPI. As data volume increases, the performance differ-
ence between the four approaches diminishes, as transfer
time is mainly determined by available network bandwidth
(which is the same for all approaches).

While sharedFS and Redis perform slightly worse than
MPI for small data sizes, we adopt them in funcX because
of their generality, ease-of-use, and the challenges of using
mpi4py (as well as MPI compiled in C) and ZeroMQ de-
scribed in §5.2.

We now evaluate intra-endpoint data management in the
context of MapReduce applications and a real-world science
application deployed on funcX.

10

Fig. 4: Strong and weak scaling of the funcX agent.

Fig. 5: Performance of the four intra-endpoint transfer
approaches. Top: point-to-point; middle: broadcast to 20
nodes; bottom: all-to-all on 20 nodes.

7.3.1 MapReduce

To demonstrate how Redis and sharedFS can facilitate intra-
endpoint data transfers for real applications, we deployed
a funcX endpoint with a three-node Redis cluster. We also
used the shared Lustre file system on Theta. We deployed
two MapReduce applications: WordCount and Sort. These
applications involve an all-to-all communication pattern
between map and reduce tasks (i.e., data shuffling).

Each application processes 30 GB of Wikipedia text data,
and has 300 map and 300 reduce tasks, requiring commu-
nication of 90000 data chunks in total. TABLE 1 shows the
average completion time of each task spent in each phase
of the MapReduce application: input read, map process, in-
termediate write, intermediate read, reduce process, output
write, when using Redis and sharedFS approaches for data
shuffling. WordCount benefits less from Redis than Sort as
WordCount shuffles just one tenth of the data. The table
shows that Redis can speed up the data shuffling phase of
the workload (i.e., intermediate write and read) by up to 3x.

Note that TABLE 1 shows the average task completion
time. The benefits of Redis over sharedFS on the total
completion time of a MapReduce application may depend

TABLE 1: Average completion time of the transfer phases
in WordCount and Sort when using Redis and shared file
system for intra-endpoint data management.

WordCount (s) Sort (s)
Redis SharedFS Redis SharedFS

Intermediate write 3.55 8.15 3.27 5.32
Intermediate read 33.39 43.40 11.37 41.77

on the amount of parallelism and the portion of the shuffle
phase over the other phases. For example, the total com-
pletion time of Sort with Redis and sharedFS are 220 and
520 seconds, respectively, yielding a 55.7% improvement.
The WordCount application runs in 1800 seconds and 2200
seconds, respectively, yielding a 18.2% improvement. This is
because Sort has a heavier shuffle phase than WordCount.

7.3.2 Colmena

Finally, we evaluate intra-endpoint data management in the
context of a real-world scientific application to demonstrate
the benefits of Redis over sharedFS. Colmena [80] is a
framework that manages large-scale, AI-directed steering of
computational campaigns (e.g., to efficiently explore large
molecular spaces when designing new materials). A Col-
mena application consists of a Thinker that implements the
decision-making policy to generate new tasks (e.g., new
simulation, new model training, or model inference), a Task
Server that dispatches task requests to resources and man-
ages task results, and Workers that are deployed on compute
resources to execute tasks. These components exchange data
(e.g., task requests and results) with Redis used to facilitate
transfers. We implement a Colmena benchmark with 1000
tasks, each with 1 MB input and 1 MB output data. Table 2
shows the average completion time of the communication
stages in Colmena. Redis yields a lower completion time
for all communication stages compared to sharedFS. Such a
benefit has been demonstrated to be particularly important
when running Colmena at scale with thousands of tasks.

TABLE 2: Average completion time of the transfer phases in
the Colmena benchmark when using Redis and shared file
system for intra-endpoint data management.

Stage Redis (ms) SharedFS (ms)
Input data write from Thinker 7.15 32.31

Input read on Workers 0.70 11.36
Result write from Workers 18.04 244.72

Result read from Task Server 0.11 3.50

11

Fig. 6: Completion time of warming-aware and non-warming-aware routing.

Fig. 7: Number of container cold starts of warming-aware and non-warming-aware routing.

7.4 Function Routing
Before exploring function routing performance, we first
quantify the instantiation cost of various container technolo-
gies on different resources. Specifically, we measure the time
taken to start a container and execute a Python command
to import funcX’s worker module—a requirement prior to
executing a funcX function. We deploy the containers on
an AWS EC2 m5.large instance and on compute nodes
on Theta and Cori following the facility’s documented best
practices. TABLE 3 shows the results. We speculate that the
significant performance deterioration of container instantia-
tion on HPC systems can be attributed to a combination of
slower clock speed on KNL nodes and shared file system
contention when fetching images. These results highlight
the need to apply function warming approaches to reduce
overheads on HPC systems.

TABLE 3: Cold container instantiation time for different
container technologies on different resources.

System Container Min (s) Max (s) Mean (s)
Theta Singularity 9.83 14.06 10.40
Cori Shifter 7.25 31.26 8.49
EC2 Docker 1.74 1.88 1.79
EC2 Singularity 1.19 1.26 1.22

We evaluate funcX’s function routing strategy and show
that it improves overall throughput as well as reducing the
number of container cold starts. We deployed an endpoint
on Theta and compared the performance of warming-aware
routing and randomized (non-warming-aware) routing. The
endpoint is allocated 10 nodes and each node can host
10 workers, each with its own container. We registered 10
functions, where each function requires a specific container
(i.e., 10 different containers.) We submitted a batch of re-
quests, each of which is chosen from one of the ten functions
uniformly at random. Fig. 6 and Fig. 7 show the overall
function completion time and the number of container cold
starts for different batch sizes and for different function
durations (0, 1, 5, and 20 seconds). We note that the number
of requests in a batch is much higher than the available re-
sources (100 container workers) in this experiment, and thus
a container worker is more likely to be killed to serve other
request when using non-warming-aware routing. Thus, the

warming-aware routing reduces completion time by up to
61% for a batch of requests (i.e., higher throughput) and
reduces the number of container cold starts significantly
(e.g., 22 cold starts for 3000 functions), compared to the
randomized routing strategy. This is because the warming-
aware algorithm attempts to reuse the warm containers as
much as possible to reduce the overhead of container instan-
tiation. As expected, the benefit of warming-aware routing
gradually diminishes as the function duration increases,
because the function runtime, rather than the cold container
instantiation time, becomes dominant.

7.5 Batching
To evaluate the effect of executor-side batching, we submit
10 000 concurrent “no-op” function requests and measure
the completion time when executors can request one func-
tion at a time (batching disabled) vs when they can request
many functions at a time based on the number of idle
containers (batching enabled). We use 4 nodes (64 containers
each) on Theta. We observe that the completion time with
batching enabled is 6.7 s (compared to 118s when disabled).

8 EXPERIENCES WITH funcX
As of August, 2022 funcX has been used by 413 users
to perform over 19.8 million function invocations, 338 105
functions have been registered, and 4027 endpoints have
been created. Here we describe our experiences applying
funcX to various scientific case studies.

AI-enabled steering of computational campaigns: Col-
mena [80] is an open-source library that enables researchers
to build complex, AI-directed HPC campaigns. Researchers
can implement flexible decision-making policies to steer
different tasks (e.g., simulation, model update, and model
inferences) of computational campaigns. When tasks are
generated, funcX serves as an execution backend to dis-
tribute and execute tasks. The FaaS model of funcX and the
implementation of container management allows Colmena
to flexibly dispatch tasks to arbitrary computing resources,
enabling ML-enhanced tasks to be sent to GPU-accelerated
devices and high throughput simulations to HPC clusters.
The integration of data management mechanisms (e.g.,

12

Globus and Redis) in funcX enables data to move between
Colmena entities transparently without requiring the user
to manage movement; further, it can improve performance
and simplify distributed, data-intensive campaigns.

Linking instruments and HPC: funcX has been used
to combine several experimental instruments with HPC
infrastructure [78]. This approach allows scientists to offload
computationally-intensive analysis tasks to HPC resources,
simplifies large-scale parallel processing for large data rates,
and enables online analysis. Such experimental techniques,
including serial synchrotron crystallography [70], X-ray
photon correlation spectroscopy [62], ptychography [30],
and scientific machine learning [57], depend on orchestra-
tion of various activities in various locations. For this pur-
pose, these examples use Globus flows [33] to create com-
plex sequences of actions. For example, when data are ac-
quired from an experiment, run quality control at the edge,
move data to an HPC center, run analysis and reconstruction
algorithms, and index resulting images in a data catalog.
funcX provides the compute substrate enabling many of
these actions to be executed in various locations. Integration
of Globus for data management simplifies dispatching tasks
to different resources without requiring changes to broader
workflows to transfer and retrieve inputs and results. Fur-
ther, scientific analysis toolkits are often containerized to
promote portability and exploit available resources. The
container warming features presented in this paper enable
these workloads to reduce cold starts, which can be costly on
large, shared file systems and facilitate rapid computation—
a necessary feature to support real-time computation and
experiment steering. We report function execution and data
transfer characteristics in prior work [78].

AlphaFold as a Service: AlphaFold [47] is a cutting
edge machine learning model that can predict a protein’s
3D structure from its amino acid sequence. AlphaFold has
garnered significant interest in the bioinformatics commu-
nity, with applications in the development of therapeutics
and accelerating the practice of deriving crystal structures
at light sources. However, AlphaFold relies on powerful
GPUs and large reference datasets, restricting access for
many researchers. To address these challenges, the Argonne
Leadership Computing Facility deployed AlphaFold as a
service using funcX to dynamically provision GPU resources
on-demand. In this work, containers are dispatched to GPU
nodes and managed by the funcX endpoint to serve infer-
ence requests. As AlphaFold tasks can take over an hour
to process, the Globus integration with funcX provides the
ability to asynchronously transfer results to users.

Distributed ML: Flox [51] is a federated learning (FL)
framework that decouples model training and inference
from infrastructure management. Flox uses funcX to enable
users to train and deploy FL models on one or more remote
computers, and in particular on edge devices. We are ap-
plying these techniques to Rural AI applications [25], using
funcX to facilitate training and deployment of models in
remote locations. Rural AI requires reliable task and result
transmission as devices are deployed in rural settings where
device and network outages are common, and the quality
of wireless networks varies depending on location. funcX’s
hierarchically designed queues support the necessary ro-
bustness to dispatch (and queue) tasks across rural devices.

Containers enable execution of tasks on heterogeneous edge
devices for training and on centralized cloud instances for
model aggregation.

9 RELATED WORK

Both commercial and open-source FaaS platforms have
proved extremely successful in industry as a way to reduce
costs and remove the need to manage infrastructure.

Hosted FaaS platforms: Amazon Lambda [1], Google Cloud
Functions [11], and Azure Functions [8] are the most well-
known FaaS platforms. They support various function lan-
guages and trigger sources, connect directly to other cloud
services, and apply fine-grain billing models. Lambda uses
Firecracker [22], a custom virtualization technology built on
KVM, to create lightweight micro-virtual machines. To meet
the needs of IoT use cases, some cloud-hosted platforms
support local deployment (e.g., AWS Greengrass [7]); how-
ever, they support only single machines and require that
functions be exported from the cloud platform.

Open source platforms: Open FaaS platforms resolve
two of the key challenges to using FaaS for scientific work-
loads: they can be deployed on-premise and can be cus-
tomized to meet the requirements of data-intensive work-
loads without set pricing models.

Apache OpenWhisk [4], the basis of IBM Cloud Func-
tions [12], defines an event-based programming model,
consisting of Actions which are stateless, runnable functions,
Triggers which are the types of events OpenWhisk may
track, and Rules which associate one trigger with one action.
OpenWhisk can be deployed locally as a service using a
Kubernetes cluster.

Fn [10] is an event-driven FaaS system that executes
functions in Docker containers. Fn allows users to logically
group functions into applications. Fn can be deployed lo-
cally (on Windows, MacOS, or Linux) or on Kubernetes.

The Kubeless [15] FaaS platform builds upon Kuber-
netes. It uses Apache Kafka for messaging, provides a CLI
that mirrors Amazon Lambda, and supports comprehensive
monitoring. Like Fn, Kubeless allows users to define func-
tion groups that share resources.

SAND [23], which has been recently open-sourced
as KNIX MicroFunctions [14], is a lightweight, low-
latency FaaS platform from Nokia Bell Labs that provides
application-level sandboxing and a light-weight process-
based execution model. KNIX provides support for func-
tion chaining via user-submitted workflows. Recently, KNIX
has been further extended to support GPU sharing among
functions [64]. However, KNIX requires privileged access to
nodes, which is generally not possible in research CI.

Abaco [74] implements the Actor model, where an actor
is an Abaco runtime mapped to a specific Docker image.
Each actor executes in response to messages posted to its
inbox. It supports functions written in several programming
languages and automatic scaling. Abaco also provides fine-
grained monitoring of container, state, and execution events
and statistics. Abaco is deployable via Docker Compose.

ChainFaaS [42] is a blockchain-based FaaS platform that
makes use of idle personal computers. The platform allows
users to submit functions that utilize contributed computing

13

power, or to be a provider who contributes the idle comput-
ing resources for potential profits. While ChainFaaS shares
some similar goals with funcX, it focuses on deployment on
personal computers, rather than large-scale research CI.

DFaaS [34] is a federated and decentralized FaaS plat-
form for edge computing. It relies on a peer-to-peer network
to share the states of edge nodes to balance loads among all
the nodes.

Comparison with funcX: Hosted cloud providers imple-
ment high performance and reliable FaaS models that are
used by an enormous number of users. However, they often
have vendor lock-in, are not designed to support heteroge-
neous resources or research CI (e.g., schedulers, containers),
do not integrate with the science ecosystem (e.g., in terms of
data and authentication models), and can be costly.

Open source and academic frameworks support on-
premise deployments and can be configured to address a
range of use cases. However, most systems we surveyed are
Docker-based and rely on Kubernetes (or other container or-
chestration platforms) for deployment. Some systems such
as ChainFaaS and DFaaS support distributed function exe-
cution on personal computers and edge nodes. However, to
the best of our knowledge, there are no systems that support
remote execution over a federated ecosystem of endpoints
on diverse research CI (from edge to HPC environments).

Other Related Approaches: FaaS has many predeces-
sors, notably grid and cloud computing, container orches-
tration, and analysis systems. Grid computing [39] laid
the foundation for remote, federated computations, often
through federated batch submission [52]. GridRPC [66]
defines an API for executing functions on remote servers
requiring that developers implement the client and the
server code. funcX extends these ideas to allow interpreted
functions to be registered and then executed within sand-
boxed containers via standard cloud and endpoint APIs.

Container orchestration systems, such as Mesos [44],
Kubernetes [43], KubeFed [16], MicroK8s [18], and K3s [13],
allow users to scale deployment of containers while manag-
ing scheduling, fault tolerance, resource provisioning, and
addressing other user requirements. Mesos and Kubernetes
primarily rely on dedicated, cloud-native infrastructure.
KubeFed extends Kubernetes to support multi-cluster de-
ployments. MicroK8s and K3s are lightweight versions of
Kubernetes and are designed for Edge and IoT use cases.
These systems cannot be directly used with diverse research
CI (e.g., HPC resources); however, these container orchestra-
tion systems serve as a basis for developing serverless plat-
forms, such as Kubeless, and indeed play an increasingly
important role in research CI. funcX focuses at the level
of scheduling and managing functions, that are deployed
across a pool of containers. We leverage both container or-
chestration systems (e.g., Kubernetes) as well as techniques
from orchestration systems (e.g., warming) in funcX.

Data-parallel systems such as Hadoop [2] and Spark [6]
enable map-reduce style analyses. Unlike funcX, these sys-
tems dictate a particular programming model on dedicated
clusters. Python parallel computing libraries such as Parsl
and Dask [9] support development of parallel programs,
and parallel execution of selected functions within those
scripts, on clusters and clouds. These systems could be
extended to use funcX for remote execution of tasks.

LFM [67] provides advanced dependency management
for Python functions by using transparent dependency de-
tection and distribution, and dynamic provisioning and re-
source management at the granularity of a Python function.
Azure Functions [68] proposed a policy that dynamically
controls the pre-warming window for application contain-
ers to reduce the number of container cold starts, based on
the characterization of applications. Researchers have pro-
posed various methods to mitigate container cold start la-
tency by leveraging various workflow-specific information,
such as cascading starts and dependency graphs [29], [35],
[69]. Anna [73] is an autoscaling key-value store that can
be used to support stateful serverless computing. Delta [53]
adds a shim layer on top of funcX that profiles the func-
tion performance on different endpoints and automatically
schedules functions to appropriate endpoints. Several recent
papers have aimed to model application performance and
optimize performance on FaaS platforms [28], [45], [50], [56].
While funcX implements its own function routing, container
management, data management schemes, and performance
metrics, these systems are orthogonal to this paper and
could be integrated with funcX.

Several frameworks have been implemented on top of
funcX to create workflows for different scientific use cases.
For instance, Xtract [71] uses funcX to enable workflow com-
positions for distributed bulk metadata extraction. Globus
Automate [78] uses funcX to run arbitrary computations
as part of automated and event-based workflows, it uses
funcX’s APIs to automatically monitor the status of a funcX
function and trigger the next step when it completes.

10 CONCLUSION

funcX is a distributed FaaS platform that is designed to
support the unique needs of research computing. Unlike ex-
isting centralized FaaS platforms, funcX combines a reliable
and easy-to-use cloud-hosted interface with the ability to se-
curely execute functions on user-deployed funcX endpoints
deployed on various remote computing resources. funcX
supports many HPC systems and cloud platforms, can
use three container technologies, and can expose access to
heterogeneous and specialized computing resources. In this
paper we extend funcX to support inter-endpoint and intra-
endpoint data transfers between functions, and optimize
function execution performance with advanced container
management and warming-aware function routing mecha-
nisms. We showed that funcX agents can scale to execute 1M
tasks over 130 000 concurrent workers when deployed on
the Cori supercomputer. We also showed that funcX’s data
transfer mechanisms are comparable to alternative methods,
and that they can significantly improve application perfor-
mance. Finally, we showed that funcX can dynamically route
functions to workers to reduce container warming overhead
and that batching can significantly reduce overheads.

funcX demonstrates the advantages of adapting the FaaS
model to create a federated computing ecosystem. Based on
early experiences using funcX in scientific case studies [32],
we have found that the approach provides several advan-
tages, including abstraction, code simplification, portability,
scalability, and sharing; however, we also identified several

14

limitations including suitability for some applications, con-
flict with current allocation models, and challenges decom-
posing applications into functions. We hope that funcX will
serve as a flexible platform for research computing while
also enabling new studies in function scheduling, dynamic
container management, and data management.

In future work, we will continue our work to explore
new scheduling approaches that can select appropriate end-
points for function execution and manage data dependen-
cies between functions. We also plan to provide APIs that al-
low users to manage and discover functions and endpoints.
We will extend funcX’s container management capabilities
to create containers dynamically based on function require-
ments, and to stage containers to endpoints on-demand. We
will also explore techniques for optimizing performance, for
example by sharing containers among functions with sim-
ilar dependencies and developing resource-aware schedul-
ing algorithms.

ACKNOWLEDGMENT

This work was supported in part by NSF 2004894/2004932
and Laboratory Directed Research and Development fund-
ing from Argonne National Laboratory under U.S. De-
partment of Energy under Contract DE-AC02-06CH11357.
This work also used resources of the Argonne Leadership
Computing Facility and Center for Computational Science
and Engineering at Southern University of Science and
Technology.

REFERENCES

[1] Amazon Lambda. https://aws.amazon.com/lambda. Accessed
May 1, 2022.

[2] Apache Hadoop. https://hadoop.apache.org/. Accessed May 1,
2022.

[3] Apache Kafka. https://kafka.apache.org/. Accessed May 1, 2022.
[4] Apache OpenWhisk. http://openwhisk.apache.org/. Accessed

May 1, 2022.
[5] Apache Pulsar. https://pulsar.apache.org/. Accessed May 1, 2022.
[6] Apache Spark. https://spark.apache.org/. Accessed May 1, 2022.
[7] AWS Greengrass. https://aws.amazon.com/greengrass/. Ac-

cessed May 1, 2022.
[8] Azure Functions. https://azure.microsoft.com/en-us/services/

functions/. Accessed May 1, 2022.
[9] Dask. http://docs.dask.org/en/latest/. Accessed May 1, 2022.
[10] Fn project. https://fnproject.io. Accessed May 1, 2022.
[11] Google Cloud Functions. https://cloud.google.com/functions/.

Accessed May 1, 2022.
[12] IBM Cloud Functions. https://www.ibm.com/cloud/functions.

Accessed May 1, 2022.
[13] K3s. https://k3s.io/. Accessed May 1, 2022.
[14] KNIX MicroFunctions. https://github.com/knix-microfunctions/

knix. Accessed May 1, 2022.
[15] Kubeless. https://kubeless.io. Accessed May 1, 2022.
[16] Kubernetes Cluster Federation. https://github.com/

kubernetes-sigs/kubefed. Accessed May 1, 2022.
[17] Linux containers. https://linuxcontainers.org. Accessed May 1,

2022.
[18] MicroK8s. https://microk8s.io/. Accessed May 1, 2022.
[19] Microsoft Azure Functions Documentation. https://docs.

microsoft.com/en-us/azure/azure-functions/functions-scale.
Accessed May 1, 2022.

[20] Rabbitmq. https://www.rabbitmq.com/. Accessed May 1, 2022.
[21] Redis. https://redis.io/. Accessed May 1, 2022.
[22] A. Agache, M. Brooker, A. Iordache, A. Liguori, R. Neugebauer,

P. Piwonka, and D.-M. Popa. Firecracker: Lightweight virtual-
ization for serverless applications. In 17th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 20), pages
419–434, 2020.

[23] I. E. Akkus, R. Chen, I. Rimac, M. Stein, K. Satzke, A. Beck,
P. Aditya, and V. Hilt. SAND: Towards high-performance server-
less computing. In USENIX Annual Technical Conference, pages
923–935, 2018.

[24] W. Allcock, J. Bresnahan, R. Kettimuthu, M. Link, C. Dumitrescu,
I. Raicu, and I. Foster. The globus striped gridftp framework
and server. In Proceedings of the 2005 ACM/IEEE Conference on
Supercomputing, page 54, USA, 2005. IEEE Computer Society.

[25] O. Almurshed, P. Patros, V. Huang, M. Mayo, M. Ooi, R. Chard,
K. Chard, O. Rana, H. Nagra, M. Baughman, and I. Foster.
Adaptive edge-cloud environments for rural ai. In 2022 IEEE
International Conference on Services Computing (SCC), pages 74–83,
Los Alamitos, CA, USA, jul 2022. IEEE Computer Society.

[26] Y. Babuji, A. Woodard, Z. Li, D. S. Katz, B. Clifford, R. Kumar,
L. Lacinski, R. Chard, J. M. Wozniak, I. Foster, and et al. Parsl:
Pervasive parallel programming in python. In 28th International
Symposium on High-Performance Parallel and Distributed Computing,
HPDC’19, pages 25–36. ACM, 2019.

[27] I. Baldini, P. Castro, K. Chang, P. Cheng, S. Fink, V. Ishakian,
N. Mitchell, V. Muthusamy, R. Rabbah, A. Slominski, and P. Suter.
Serverless computing: Current trends and open problems. In
Research Advances in Cloud Computing, pages 1–20. Springer, 2017.

[28] L. Bao, C. Wu, X. Bu, N. Ren, and M. Shen. Performance model-
ing and workflow scheduling of microservice-based applications
in clouds. IEEE Transactions on Parallel and Distributed Systems,
30(9):2114–2129, 2019.

[29] D. Bermbach, A.-S. Karakaya, and S. Buchholz. Using application
knowledge to reduce cold starts in faas services. In Proceedings of
the 35th annual ACM symposium on applied computing, pages 134–
143, 2020.

[30] T. Bicer, X. Yu, D. J. Ching, R. Chard, M. J. Cherukara, B. Nicolae,
R. Kettimuthu, and I. T. Foster. High-performance ptychographic
reconstruction with federated facilities. In Smoky Mountains
Computational Sciences and Engineering Conference, pages 173–189.
Springer, 2021.

[31] K. Chard, S. Tuecke, and I. Foster. Efficient and secure transfer,
synchronization, and sharing of big data. IEEE Cloud Computing,
1(3):46–55, 2014.

[32] R. Chard, Y. Babuji, Z. Li, T. Skluzacek, A. Woodard, B. Blaiszik,
I. Foster, and K. Chard. Funcx: A federated function serving fabric
for science. In Proceedings of the 29th International Symposium on
High-Performance Parallel and Distributed Computing, page 65–76,
2020.

[33] R. Chard, J. Pruyne, K. McKee, J. Bryan, B. Raumann, R. Anan-
thakrishnan, K. Chard, and I. Foster. Globus automation services:
Research process automation across the space-time continuum.
arXiv preprint arXiv:2208.09513, 2022.

[34] M. Ciavotta, D. Motterlini, M. Savi, and A. Tundo. Dfaas: Decen-
tralized function-as-a-service for federated edge computing. In
IEEE 10th International Conference on Cloud Networking (CloudNet),
pages 1–4. IEEE, 2021.

[35] N. Daw, U. Bellur, and P. Kulkarni. Xanadu: Mitigating cascading
cold starts in serverless function chain deployments. In Proceedings
of the 21st International Middleware Conference, pages 356–370, 2020.

[36] J. Forde, T. Head, C. Holdgraf, Y. Panda, G. Nalvarete, B. Ragan-
Kelley, and E. Sundell. Reproducible research environments with
repo2docker. In Workshop on Reproducibility in Machine Learning,
2018.

[37] I. Foster. Globus Online: Accelerating and democratizing science
through cloud-based services. IEEE Internet Computing, 15(3):70,
2011.

[38] I. Foster and D. B. Gannon. Cloud Computing for Science and
Engineering. MIT Press, 2017.

[39] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the grid:
Enabling scalable virtual organizations. Intl Journal of Supercom-
puter Applications, 15(3):200–222, 2001.

[40] G. Fox, V. Ishakian, V. Muthusamy, and A. Slominski. Status of
serverless computing and function-as-a-service (FaaS) in industry
and research. arXiv preprint arXiv:1708.08028, 2017.

[41] G. Fox and S. Jha. Conceptualizing a computing platform for
science beyond 2020. In IEEE 10th International Conference on Cloud
Computing, pages 808–810, 2017.

[42] S. Ghaemi, H. Khazaei, and P. Musilek. Chainfaas: An open
blockchain-based serverless platform. IEEE Access, 8:131760–
131778, 2020.

[43] K. Hightower, B. Burns, and J. Beda. Kubernetes: Up and running

https://aws.amazon.com/lambda
https://hadoop.apache.org/
https://kafka.apache.org/
http://openwhisk.apache.org/
https://pulsar.apache.org/
https://spark.apache.org/
https://aws.amazon.com/greengrass/
https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/functions/
http://docs.dask.org/en/latest/
https://fnproject.io
https://cloud.google.com/functions/
https://www.ibm.com/cloud/functions
https://k3s.io/
https://github.com/knix-microfunctions/knix
https://github.com/knix-microfunctions/knix
https://kubeless.io
https://github.com/kubernetes-sigs/kubefed
https://github.com/kubernetes-sigs/kubefed
https://linuxcontainers.org
https://microk8s.io/
https://docs.microsoft.com/en-us/azure/azure-functions/functions-scale
https://docs.microsoft.com/en-us/azure/azure-functions/functions-scale
https://redis.io/

15

dive into the future of infrastructure. O’Reilly Media, Inc., 1st edition,
2017.

[44] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph,
R. Katz, S. Shenker, and I. Stoica. Mesos: A platform for fine-
grained resource sharing in the data center. In 8th USENIX Conf.
on Networked Sys. Design and Impl., pages 295–308, 2011.

[45] M. R. HoseinyFarahabady, A. Y. Zomaya, and Z. Tari. A
model predictive controller for managing qos enforcements and
microarchitecture-level interferences in a lambda platform. IEEE
Transactions on Parallel and Distributed Systems, 29(7):1442–1455,
2018.

[46] D. M. Jacobsen and R. S. Canon. Contain this, unleashing Docker
for HPC. Cray User Group, 2015.

[47] J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ron-
neberger, K. Tunyasuvunakool, R. Bates, A. Žı́dek, A. Potapenko,
et al. Highly accurate protein structure prediction with alphafold.
Nature, 596(7873):583–589, 2021.

[48] G. Kiar, S. T. Brown, T. Glatard, and A. C. Evans. A serverless tool
for platform agnostic computational experiment management.
Frontiers in Neuroinformatics, 13:12, 2019.

[49] Y. Kim, R. Jedrzejczak, N. I. Maltseva, M. Wilamowski, M. Endres,
A. Godzik, K. Michalska, and A. Joachimiak. Crystal structure
of Nsp15 endoribonuclease NendoU from SARS-CoV-2. Protein
Science, 2020.

[50] Y. K. Kim, M. R. HoseinyFarahabady, Y. C. Lee, and A. Y. Zomaya.
Automated fine-grained cpu cap control in serverless computing
platform. IEEE Transactions on Parallel and Distributed Systems,
31(10):2289–2301, 2020.

[51] N. Kotsehub, M. Baughman, R. Chard, N. Hudson, P. Patros,
O. Rana, I. Foster, and K. Chard. Flox: Federated learning with
faas at the edge. In IEEE International conference on eScience, 2022.

[52] K. Krauter, R. Buyya, and M. Maheswaran. A taxonomy and
survey of grid resource management systems for distributed com-
puting. Software: Practice and Experience, 32(2):135–164, 2002.

[53] R. Kumar, M. Baughman, R. Chard, Z. Li, Y. Babuji, I. Foster,
and K. Chard. Coding the computing continuum: Fluid function
execution in heterogeneous computing environments. In The
Proceedings of Heterogeneity in Computing Workshop, in conjunction
with IPDPS, 2021.

[54] G. M. Kurtzer, V. Sochat, and M. W. Bauer. Singularity: Scientific
containers for mobility of compute. PloS one, 12(5):e0177459, 2017.

[55] B. Li, T. Cui, Z. Wang, W. Bai, and L. Zhang. Socksdirect:
Datacenter sockets can be fast and compatible. In Proceedings of
the ACM Special Interest Group on Data Communication, SIGCOMM
’19, page 90–103, 2019.

[56] C. Lin and H. Khazaei. Modeling and optimization of performance
and cost of serverless applications. IEEE Transactions on Parallel and
Distributed Systems, 32(3):615–632, 2021.

[57] Z. Liu, H. Sharma, J.-S. Park, P. Kenesei, A. Miceli, J. Almer,
R. Kettimuthu, and I. Foster. Braggnn: fast x-ray bragg peak
analysis using deep learning. IUCrJ, 9(1), 2022.

[58] M. Malawski. Towards serverless execution of scientific
workflows–HyperFlow case ssudy. In Workshop on Workflows in
Support of Large-Scale Science, pages 25–33, 2016.

[59] D. Merkel. Docker: Lightweight Linux containers for consistent
development and deployment. Linux Journal, (239):2, 2014.

[60] D. S. Milojicic, V. Kalogeraki, R. Lukose, K. Nagaraja, J. Pruyne,
B. Richard, S. Rollins, and Z. Xu. Peer-to-peer computing. Techni-
cal report, 2002.

[61] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C. Li,
R. McElroy, M. Paleczny, D. Peek, P. Saab, et al. Scaling memcache
at facebook. In 10th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 13), pages 385–398, 2013.

[62] F. Perakis and C. Gutt. Towards molecular movies with x-
ray photon correlation spectroscopy. Physical Chemistry Chemical
Physics, 22(35):19443–19453, 2020.

[63] R. Priedhorsky and T. Randles. CharlieCloud: Unprivileged con-
tainers for user-defined software stacks in HPC. In International
Conference for High Performance Computing, Networking, Storage and
Analysis, page 36. ACM, 2017.

[64] K. Satzke, I. E. Akkus, R. Chen, I. Rimac, M. Stein, A. Beck,
P. Aditya, M. Vanga, and V. Hilt. Efficient gpu sharing for
serverless workflows. In Proceedings of the 1st Workshop on High
Performance Serverless Computing, pages 17–24, 2021.

[65] M. Saxena. Evaluation of mpi4py for natural language processing
scenarios. Master’s thesis, 2018.

[66] K. Seymour, H. Nakada, S. Matsuoka, J. Dongarra, C. Lee, and
H. Casanova. Overview of gridrpc: A remote procedure call api
for grid computing. In Grid Computing, pages 274–278, 2002.

[67] T. Shaffer, Z. Li, B. Tovar, Y. Babuji, T. Dasso, Z. Surma, K. Chard,
I. Foster, and D. Thain. Lightweight function monitors for fine-
grained management in large scale python applications. In 35th
IEEE International Parallel and Distributed Processing Symposium,
2021.

[68] M. Shahrad, R. Fonseca, I. Goiri, G. Chaudhry, P. Batum, J. Cooke,
E. Laureano, C. Tresness, M. Russinovich, and R. Bianchini. Server-
less in the wild: Characterizing and optimizing the serverless
workload at a large cloud provider. In USENIX Annual Technical
Conference (ATC 20), 2020.

[69] J. Shen, T. Yang, Y. Su, Y. Zhou, and M. R. Lyu. Defuse: A
dependency-guided function scheduler to mitigate cold starts on
faas platforms. In IEEE 41st International Conference on Distributed
Computing Systems (ICDCS), pages 194–204. IEEE, 2021.

[70] D. A. Sherrell, A. Lavens, M. Wilamowski, Y. Kim, R. Chard,
K. Lazarski, G. Rosenbaum, R. Vescovi, J. L. Johnson, C. Akins,
C. Chang, K. Michalska, G. Babnigg, I. Foster, and A. Joachimiak.
Fixed-target serial crystallography at the Structural Biology Cen-
ter. Journal of Synchrotron Radiation, 29(5), Sep 2022.

[71] T. J. Skluzacek, R. Wong, Z. Li, R. Chard, K. Chard, and I. Foster. A
serverless framework for distributed bulk metadata extraction. In
Proceedings of the 30th International Symposium on High-Performance
Parallel and Distributed Computing, pages 7–18, 2021.

[72] J. Spillner, C. Mateos, and D. A. Monge. Faaster, better, cheaper:
The prospect of serverless scientific computing and HPC. In Latin
American High Performance Computing Conference, pages 154–168,
2017.

[73] V. Sreekanti, C. Wu, X. C. Lin, J. Schleier-Smith, J. E. Gonzalez,
J. M. Hellerstein, and A. Tumanov. Cloudburst: Stateful functions-
as-a-service. 13(12):2438–2452, 2020.

[74] J. Stubbs, R. Dooley, and M. Vaughn. Containers-as-a-service
via the actor model. In 11th Gateway Computing Environments
Conference, 2017.

[75] S. Tuecke, R. Ananthakrishnan, K. Chard, M. Lidman, B. McCol-
lam, S. Rosen, and I. Foster. Globus Auth: A research identity and
access management platform. In 12th IEEE International Conference
on e-Science, pages 203–212, Oct 2016.

[76] M. Turilli, M. Santcroos, and S. Jha. A comprehensive perspective
on pilot-job systems. ACM Computing Surveys, 51(2):43, 2018.

[77] B. Varghese, P. Leitner, S. Ray, K. Chard, A. Barker, Y. Elkhatib,
H. Herry, C. Hong, J. Singer, F. P. Tso, E. Yoneki, and M. F. Zhani.
Cloud futurology. Computer, 52(9):68–77, 2019.

[78] R. Vescovi, R. Chard, N. Saint, B. Blaiszik, J. Pruyne, T. Bicer,
A. Lavens, Z. Liu, M. E. Papka, S. Narayanan, et al. Linking
scientific instruments and hpc: Patterns, technologies, experiences.
arXiv preprint arXiv:2204.05128, 2022.

[79] L. Wang, M. Li, Y. Zhang, T. Ristenpart, and M. Swift. Peeking
behind the curtains of serverless platforms. In USENIX Annual
Technical Conference, pages 133–146, 2018.

[80] L. Ward, G. Sivaraman, J. G. Pauloski, Y. Babuji, R. Chard,
N. Dandu, P. C. Redfern, R. S. Assary, K. Chard, L. A. Curtiss, et al.
Colmena: Scalable machine-learning-based steering of ensemble
simulations for high performance computing. In IEEE/ACM Work-
shop on Machine Learning in High Performance Computing Environ-
ments (MLHPC), pages 9–20. IEEE, 2021.

[81] M. Wilamowski, D. Sherrell, G. Minasov, Y. Kim, L. Shuvalova,
A. Lavens, R. Chard, N. Maltseva, R. Jedrzejczak, M. Rosas-Lemus,
N. Saint, I. Foster, K. Michalska, K. Satchell, and A. Joachimiak.
Methylation of rna cap in sars-cov-2 captured by serial crystallog-
raphy. bioRxiv, 2020.

[82] G. Winter, D. G. Waterman, J. M. Parkhurst, A. S. Brewster, R. J.
Gildea, M. Gerstel, L. Fuentes-Montero, M. Vollmar, T. Michels-
Clark, I. D. Young, et al. Dials: Implementation and evaluation
of a new integration package. Acta Crystallographica Section D,
74(2):85–97, 2018.

	1 Introduction
	2 Motivations and Requirements
	3 Conceptual Model
	4 Architecture and Implementation
	4.1 The funcX Service
	4.2 Function Containers
	4.3 The funcX Endpoint
	4.4 Managing Compute Infrastructure
	4.5 Serialization
	4.6 Batching
	4.7 Security Model

	5 Data Management
	5.1 Inter-endpoint Data Transfers
	5.2 Intra-endpoint Data Transfers

	6 Container Management
	6.1 Container Warming
	6.2 Warming-aware Function Routing
	6.3 Elastic Resource Provisioning

	7 Evaluation
	7.1 Latency
	7.2 Scalability and Throughput
	7.2.1 Strong scaling
	7.2.2 Weak scaling
	7.2.3 Throughput
	7.2.4 Summary

	7.3 Data Management
	7.3.1 MapReduce
	7.3.2 Colmena

	7.4 Function Routing
	7.5 Batching

	8 Experiences with funcX
	9 Related Work
	10 Conclusion
	References

