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BACKGROUND: Optical sensing devices mea-
sure the rich physical properties of an incident
light beam, such as its power, polarization
state, spectrum, and intensity distribution.Most
conventional sensors, such as power meters,
polarimeters, spectrometers, and cameras, are
monofunctional and bulky. For example, clas-
sical Fourier-transform infrared spectrometers
and polarimeters, which characterize the opti-
cal spectrum in the infrared and the polariza-
tion state of light, respectively, can occupy a
considerable portion of an optical table. Over
the past decade, the development of integrated
sensing solutions by usingminiaturized devices
together with advancedmachine-learning algo-
rithms has accelerated rapidly, and optical
sensing research has evolved into a highly
interdisciplinary field that encompasses de-
vices and materials engineering, condensed
matter physics, and machine learning. To
this end, future optical sensing technologies
will benefit from innovations in device archi-
tecture, discoveries of new quantummaterials,
demonstrations of previously uncharacterized
optical and optoelectronic phenomena, and
rapid advances in the development of tailored
machine-learning algorithms.

ADVANCES: Recently, a number of sensing and
imaging demonstrations have emerged that

differ substantially from conventional sensing
schemes in the way that optical information is
detected. A typical example is computational
spectroscopy. In this new paradigm, a compact
spectrometer first collectively captures the com-
prehensive spectral information of an incident
light beam using multiple elements or a single
element under different operational states and
generates a high-dimensional photoresponse
vector. An advanced algorithm then interprets
the vector to achieve reconstruction of the spec-
trum. This scheme shifts the physical complex-
ity of conventional grating- or interference-based
spectrometers to computation. Moreover, many
of the recent developments go well beyond
optical spectroscopy, and we discuss them
within a common framework, dubbed “geo-
metric deep optical sensing.” The term “geo-
metric” is intended to emphasize that in this
sensing scheme, the physical properties of an
unknown light beam and the corresponding
photoresponses can be regarded as points in
two respective high-dimensional vector spaces
and that the sensing process can be consid-
ered to be a mapping from one vector space
to the other. The mapping can be linear, non-
linear, or highly entangled; for the latter two
cases, deep artificial neural networks repre-
sent a natural choice for the encoding and/or
decodingprocesses, fromwhich the term “deep”

is derived. In addition to this classical geometric
view, the quantum geometry of Bloch electrons
in Hilbert space, such as Berry curvature and
quantum metrics, is essential for the determi-
nation of the polarization-dependent photo-
responses in someoptical sensors. In thisReview,
we first present a general perspective of this
sensing scheme from the viewpoint of infor-
mation theory, in which the photoresponse
measurement and the extraction of light prop-
erties are deemed as information-encoding
and -decoding processes, respectively.We then
discuss demonstrations in which a reconfig-
urable sensor (or an array thereof), enabled by
device reconfigurability and the implementa-
tion of neural networks, can detect the power,
polarization state, wavelength, and spatial fea-
tures of an incident light beam.

OUTLOOK: As increasingly more computing re-
sources become available, optical sensing is
becoming more computational, with device
reconfigurability playing a key role. On the
one hand, advanced algorithms, including deep
neural networks, will enable effective decod-
ing of high-dimensional photoresponse vec-
tors, which reduces the physical complexity
of sensors. Therefore, it will be important to
integrate memory cells near or within sensors
to enable efficient processing and interpre-
tation of a large amount of photoresponse
data. On the other hand, analog computation
based on neural networks can be performed
with an array of reconfigurable devices, which
enables direct multiplexing of sensing and
computing functions. We anticipate that these
two directions will become the engineering
frontier of future deep sensing research. On
the scientific frontier, exploring quantum
geometric and topological properties of new
quantum materials in both linear and non-
linear light-matter interactions will enrich
the information-encoding pathways for deep
optical sensing. In addition, deep sensing
schemes will continue to benefit from the
latest developments in machine learning.
Future highly compact, multifunctional,
reconfigurable, and intelligent sensors and
imagers will find applications in medical im-
aging, environmental monitoring, infrared
astronomy, and many other areas of our daily
lives, especially in the mobile domain and the
internet of things.▪
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Schematic of deep optical sensing. The n-dimensional unknown information (w) is encoded into an
m-dimensional photoresponse vector (x) by a reconfigurable sensor (or an array thereof), from which w'
is reconstructed by a trained neural network (n′ = n and w' ≈ w). Alternatively, x may be directly deciphered
to capture certain properties of w. Here, w, x, and w' can be regarded as points in their respective high-
dimensional vector spaces Rn, Rm, and Rn′.
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Geometry, an ancient yet vibrant branch of mathematics, has important and far-reaching impacts
on various disciplines such as art, science, and engineering. Here, we introduce an emerging concept
dubbed “geometric deep optical sensing” that is based on a number of recent demonstrations
in advanced optical sensing and imaging, in which a reconfigurable sensor (or an array thereof)
can directly decipher the rich information of an unknown incident light beam, including its intensity,
spectrum, polarization, spatial features, and possibly angular momentum. We present the
physical, mathematical, and engineering foundations of this concept, with particular emphases
on the roles of classical and quantum geometry and deep neural networks. Furthermore, we discuss
the new opportunities that this emerging scheme can enable and the challenges associated with
future developments.

L
ight sensors are ubiquitous and essen-
tial in many aspects of our lives. In hu-
mans, it is believed that more than 80%
of the total information captured by the
five senses is perceived by the eyes (1)—

light sensors in the visible spectral range—as
a result of evolution and natural selection over
millions of years. There are also many differ-
ent types of human-made light sensors, and
such a sensor is usually built to probe a speci-
fic physical property of light. For example, an
imager generates a two-dimensional (2D)map
of light intensity, a spectrometer determines
the spectral composition of light, and a polar-
imetermeasures the polarization state of light.
Many conventional light sensors are bulky, ex-
pensive, and monofunctional. In the past
decade, as sensing tasks have become more
demanding and as more computational re-
sources have become available, two trends
have emerged in optical sensing. First, it has
become critical to build miniaturized, inex-
pensive sensors that can be integrated on-chip
to enable pervasive applications, especially in
mobile domains such as mobile phones, smart
watches, autonomous vehicles, robots, and
drones. This trend is evidenced by the dem-
onstrations of ultracompact spectrometers in
various spectral ranges (2, 3) that use mini-
aturized dispersive optical components (4–8),
on-chip interferometers (9–12), arrays of sen-

sors with different spectral responses (13–24),
or spectrally reconfigurable sensors (25–28).
Moreover, on-chip polarization detectors
(29–31) and compact spectral imagers (32–34)
have also been extensively investigated. Sec-
ond, algorithms are playing increasingly im-
portant roles in sensing, and many recent
developments have leveragedmachine-learning
algorithms such as regression techniques and
neural networks in sensor design and opera-
tion (2, 3, 35, 36).
Here, in addition to covering some mini-

aturized spectral sensors, we review several
innovative optical sensing schemes in which
the functions of a miniaturized sensor go
beyond those of traditional concepts (37–47).
The recent progress in this field has been en-
abled by innovations in device physics and
the implementation of advanced machine-
learning algorithms. We approach these
schemes within a common framework that
we call “geometric deep optical sensing” [not
to be confused with “geometric deep learn-
ing,” a field that seeks to understand neural
networks in non-Euclidean domains (48)].
The term “geometric” is intended to emphasize
that the physical properties of the unknown
light and the corresponding photoresponse
can be regarded as points in two respective
high-dimensional vector spaces and that the
sensing process can be regarded as a map-
ping from one vector space to the other. The
mapping can be linear, nonlinear, or highly
entangled; for the latter two cases, deep arti-
ficial neural networks represent a natural
choice for the encoding and/or decoding
processes (49), from which the term “deep” is
derived. In addition to the geometric per-
spective discussed above, the quantum geom-
etry of Bloch electrons in Hilbert space, such
as Berry curvature and quantum metrics,
plays an important role in generating the

polarization-dependent photoresponse vectors
in some of the demonstrations (47, 50–60).

An information theory view

In general, from an information theory (61)
perspective, an (optical) sensing process can
be understood as follows (Fig. 1A): A sensor
acts as an encoder that converts unknown,
high-dimensional physical quantities into sen-
sor outputs; a channel corresponding to a
noisy measurement process reads the sensor
outputs; and a decoder deciphers the en-
coded high-dimensional information. Here,
the high-dimensional physical quantities can
be characterized by a vector w, which repre-
sents the intrinsic physical properties of a light
beam, such as power, spectrum, polarization
state, spatial or temporal properties, or the
combination of several of these. The vector
w can be treated as a point in a vector space
of dimension n (w ∈ Rn) (Fig. 1B). In tradi-
tional sensing schemes, direct determination
of such a vector requires a series of measure-
ments that use different types of optical com-
ponents such as beam splitters, waveplates,
filters, dispersive gratings, and power meters,
followed by data processing steps. In the
sensing scheme introduced here,w is first en-
coded into a response vector x by a single sen-
sor or an array thereof, which is engineered to
capture spatial, spectral, polarization, and/or
temporal information. Vector x can be treated
as a point in a vector space of dimension m
(x ∈ Rm) (Fig. 1B). It may be interpreted di-
rectly to capture certain properties of w or
decoded into a vector w′ to reconstruct the
desired physical quantities of w.
In contrast to traditional sensing schemes,

in the geometric deep optical sensing scheme,
both the encoding and decoding processes can
be implicit. Moreover, different kinds of in-
formation can be encoded concurrently into
the sensor outputs. As a result, this sensing
scheme allows for the detection of multiple
physical properties of light and functionality
multiplexing. Depending on the dimension-
ality of the two vector spaces Rn and Rm, we
distinguish between three cases. The casem=
n is the most common and corresponds, for
example, to the case of computational spec-
trometers (13, 18, 20, 25). The casem < n cor-
responds to compressed sensing (62–65). By
using prior knowledge or proper assumptions,
high-dimensional information can be recon-
structed froma low-dimensional photoresponse.
Finally, the case m > n may have the advan-
tage of being more robust to noise because
of redundancy introduced in the information-
encoding process (61).

Information-encoding mechanisms

As shown in Fig. 1B, the encoder’s role is tomap
the physical information in Rn to a photo-
response in Rm. In the following sections, we
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discuss examples of how this can be accom-
plished for different properties of incident light.

Tuning device geometric features and quantum
geometry for polarization encoding

Geometry plays a critical role in light-matter
interactions. For example, optical devices with
different geometric features can exhibit dis-
tinct polarization-dependent responses to light.
Previously, polarization imaging has been
demonstrated by using a 2D grating matrix
(66) consisting of optical elements with dif-
ferent geometries (Fig. 2A), in which different
polarization components of an incident light
beamare separated spatially for the subsequent
polarization information–encoding process.
Other than the geometric features of the sen-

sor, the quantum geometry of Bloch electrons,
that is, Berry curvature andquantummetric, can
also be tuned for the encoding of polarization
information. Quantum geometry represents the
geometry of thequantumstates inHilbert space,
and it is critical for nonlinear photoresponses
such as the second-harmonic generationand the
bulk photovoltaic effect (BPVE). One notable
feature of the BPVE is its strong polarization
and wavelength dependencies. In the device re-
ported by Ma et al. (47), the active material is
twisted double-bilayer graphene (TDBG) sand-

wiched between two hexagonal boron nitride
(hBN) thin films. The graphene (top) and silicon
(bottom) gate electrodes are used to produce
two electric potentials throughhBN tomodulate
the quantum geometric properties of TDBG for
polarization encoding.
Under excitationwith linearly polarized light,

the BPVE (shift current) is determined by two
independent conductivity elements sxxx and
syyy that can be directly calculated by inte-
grating Sxxx(yyy), which is the contribution
from an electron-hole pair that participates
in the resonant optical transition (51–54). Here,
Sxxx(yyy) depends on the Fermi distribution
difference between the electron and hole Bloch
bands, the interband non-Abelian Berry con-
nections, and the excitation light frequency.
The integrand Sxxx in the moiré Brillouin zone
is shown in Fig. 2B for Fermi energy EF = 0 and
interlayer potential difference DV = 100 meV
under excitation with 7.7-mm light in TDBG
(47). Hotspots in Fig. 2B indicate the positions in
momentum space at which the quantum geo-
metric properties relevant to sxxx are pro-
nounced, which allows for the resonant optical
transition. Under circularly polarized light
excitation, the BPVE (injection current) is gov-
erned by the interband Berry curvature di-
poles or the Hermitian metrics (54).

Importantly, not only does the nonlinear
response depend on the polarization of the
light, but this dependence is also tunable. The
tunability originates from the fact that the two
gate voltages can independently control the
Fermi energy (or carrier density) and the out-
of-plane displacement field of the 2D material
in the device. The displacement field canmod-
ulate the band structure that specifically deter-
mines the quantum geometric properties of
Bloch states. The Fermi energy determines
the electron-hole pairs of Bloch states that are
available for the resonant optical transition.
Together, they determine the nonlinear con-
ductivity tensor and hence tune the BPVE.
As a result, the polarization information of
the incident light can be encoded into the non-
linear photoresponse map that is generated
under different pairs of biasing gate voltages
(47). Such an encoding process is implicit be-
cause of the complexity of the device, includ-
ing strain, disorder, inhomogeneity, and so on
(67). However, the decoding can still be suc-
cessfully performed by using a trained neural
network, as discussed below.

Engineering the spectral response for
optical spectroscopy

Optical elements with different geometric fea-
tures can also be directly integrated with com-
plementary metal-oxide semiconductor (CMOS)
sensors to encode the spectral information
(Fig. 2C) (19). In such a spectrometer, each
element captures certain spectral character-
istics by leveraging the rationally designed
geometric features. Indeed, this approach has
been extensively used for information en-
coding in spectral and polarization imaging
(17, 19, 68–70). However, despite the effec-
tiveness of such a geometric approach, the
physical layout of optical elements can hardly
be reconfigured after fabrication, which limits
their potential in advanced applications. For
example, to achieve high resolution in spec-
troscopy, a large number of elements with
different geometric features are required, yet
their scaling is limited by optical diffraction,
which results in a large overall device foot-
print. Moreover, because of the lack of recon-
figurability, it is difficult to fully leverage the
capacities of machine-learning algorithms for
deciphering nontrivial high-dimensional data.
In addition to using elements with differ-

ent geometric features, there are a number of
other approaches for encoding spectral infor-
mation for optical spectroscopy. A prime ex-
ample is the engineering of the bandgap of
semiconductors; bandgap determines the
photon energies at which transitions between
bands can occur. Consequently, the tuning of
the bandgap can enable the encoding of spec-
tral information into a photoresponse vector.
Miniaturized spectrometers have been dem-
onstrated based on bandgap tuning by varying
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Fig. 1. An information theory view of deep optical sensing. (A) An encoder (an optical sensor or sensor
array) converts the unknown n-dimensional physical information w ∈ Rn into electrical outputs, the
channel corresponds to a noisy measurement process that reads the m-dimensional output x ∈ Rm, and a
decoder reconstructs the information w′ ∈ Rn. (B) The vectors w and x can be regarded as points in
n- and m-dimensional vector spaces Rn and Rm, respectively. A mathematical tool, for example, a trained
neural network, maps x to w′ from Rm back to Rn. A high-performance sensor captures the unknown
information accurately such that the reconstructed w′ is close to w in Rn. w and w′ are represented by the
red hollow dots with solid and dotted edges, respectively, in Rn. x is represented by the blue hollow dot
in Rm. Alternatively, x can be evaluated directly to capture certain features of w.
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the chemical compositions of materials or the
electrical displacement fields (13, 20, 25). In one
case, different chemical compositions were in-
troduced within a single cadmium sulfide sele-
nide (CdSxSe1−x) nanowire to encode the spectral
information of the incident light (20). The top
panel of Fig. 2D shows the photoluminescence

spectra taken at different locations along such
a single nanowire, and the bottom panel illus-
trates a fabricated single-nanowire spectrom-
eter. The spectral information of the light is
encoded into the photoresponse vector that is
measured along the wire. Moreover, the chem-
ical composition and the dimension of quan-

tum dots can be tuned together to cover a
broad spectral range, as demonstrated in a
quantum dot spectrometer (13).
An electric field can tune the absorption

edge of a bulk semiconductor, which is well
known as the Franz-Keldysh effect (71). In semi-
conductor quantum wells, such absorption
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Fig. 2. Information encoding mechanisms. (A) Encoding the polarization
information of light using a grating matrix with different physical geometries.
[Adapted with permission from (66)] (B) Calculated distribution of the integrand
for computing shift current of TDBG in the moiré Brillouin zone. Its tunability
enables the encoding of the polarization, wavelength, and power information of
mid-infrared light using the moiré quantum geometry of TDBG. [Adapted by
permission from Springer Nature Customer Service Center GmbH, Springer
Nature (47), copyright (2022)] (C) Encoding the spectral information of light
using an array of photonic crystals (PCs) with different geometric features.
[Adapted by permission from Springer Nature Customer Service Center GmbH,
Springer Nature (19), copyright 2019)] (D) Bandgap tuning by varying the
chemical composition for encoding spectral information. The photoluminescence
(PL) spectra taken in different locations of a CdSxSe1−x nanowire with a graded

composition are shown at the top. The shift in peak wavelength indicates the
varying bandgap along the wire. A fabricated single-nanowire spectrometer is
shown at the bottom. [Adapted with permission from (20)] (E) Spectral
responsivity of a reconfigurable black phosphorus sensor under different biasing
displacement fields. [Adapted by permission from Springer Nature Customer
Service Center GmbH, Springer Nature (25), copyright (2021)] (F) Photodetector
array for encoding optical images with n pixels into m electrical outputs. Each
subpixel is reconfigurable by two split gates, which are biased with voltages
of opposite polarities. [Adapted by permission from Springer Nature Customer
Service Center GmbH, Springer Nature (37), copyright (2020)] (G) Photo-
responsivity distributions of a reconfigurable pixel array for simultaneous image
capture and processing (image stylization, edge enhancement, and contrast
reduction). [Adapted with permission from (39)]
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tuning is more pronounced and is referred to
as the “quantum confinement Stark effect”
(72–75). Recently, a single on-chip black phos-
phorus device has been shown to function as
a mid-infrared spectrometer within the 2- to
9-mmwavelength range (25). The bandgap of
~10-nm-thick black phosphorus was tuned
by an external electric field, by using the Stark
effect for the encoding of spectral information.
Figure 2E shows the spectral responsivity of a
reconfigurable black phosphorus sensor (25)
in which the cutoff wavelength has been
extended to around 9 mm under a biasing
displacement field of 0.8 V/nm. This dem-
onstration has inspired further demonstrations
of spectrometers based on single, reconfigur-
able photodetectors (26, 27). In these works,
the electric field does not appreciably tune the
bandgap but rather changes the spectral re-
sponse of the devices by adjusting the relative
band alignment (26) or ion migration proper-
ties (27). Finally, metasurfaces on graphene
exhibit strong tunability in the mid- and far-
infrared wavelength regimes (76, 77). Spec-
troscopy has also been demonstrated by
combining such reconfigurable metasurfaces
with discrete infrared photodetectors (78).
In this case, the encoding process is realized
by tuning the reflection spectra of the meta-
surfaces with an external electric field.

Encoding optical images with reconfigurable
detector arrays

In addition to spectral and polarization infor-
mation, the spatial variations of light intensity
(optical images) can also be encoded in the
photoresponse. To this end, an array of recon-
figurable photodetectors as an image sensor
and an artificial neural network have been used
for ultrafast machine vision (37). The image-
encoding process captures the spatial features
directly and reduces the transmission band-
width requirements. Figure 2F shows an il-
lustration of the device, which consists of n
photoactive pixels arranged in a 2D array,
with each pixel divided intom subpixels (37).
Each subpixel is composed of a WSe2 photo-
diode whose responsivity can be reconfigured
by two split gates. Enabled by the reconfigur-
ability on the subpixel level, the sensor can be
trained to encode optically projected images
into an m-dimensional output, as will be fur-
ther discussed in the section “Roles of neural
networks in optical sensing.”
The concept of capturing spatial features

directly in the light-detection process has been
used in several other works (38–46). For exam-
ple, Fig. 2G illustrates three configurations of
the responsivity matrix of a 3-pixel–by–3-pixel
sensor array for image stylization, edge detec-
tion, and contrast correction in (39). Also in this
case, different geometric features can be cap-
tured directly in the imaging process with dif-
ferent configurations of the device response,

thus eliminating the need for subsequent com-
putational image processing steps. In another
example (79), a large fraction of the sensor ele-
ments in an imaging device were physically com-
bined into several “superpixels” that extended
over the entire surface area of the chip. For a
given pattern recognition task, their optimal
shapes were determined by using a machine-
learning algorithm from training data. Clas-
sification of optically projected images on an
ultrafast time scale and with an enhanced
dynamic range was demonstrated.

General considerations for information encoding

We have shown that there are a number of
pathways to realize information encoding.
This naturally leads to the following ques-
tion: What are the essential requirements for
constructing a good encoder and a measure-
ment channel? To reconstruct the physical in-
formation in Rn or to capture the features of
interest directly from them-dimensional photo-
response, degeneracy is not desirable. When
multiple points in Rn are mapped to the same
point in Rm, loss-less reconstruction is no
longer possible. Indeed, it is the degeneracy in
their photoresponse that hinders conventional
nonreconfigurable detectors from sensing
richer information of unknown light because
light beams with different combinations of
physical properties (i.e., power, spectrum, po-
larization, angular momentum, geometric fea-
tures, and so on) can yield the same output
signal. The reconfigurability can eliminate de-
generacy by increasing the dimensionality of
the response. By configuring the geometric fea-
tures, spectral response, and quantum geomet-
ric properties of the sensor, the tunability in its
optical response can map different points in
Rn to distinct points inRm. Noise introduced
in the measurement process may, however,
increase the possibility of overlapping orig-
inally distinctive points in Rm, which leads to
potential degeneracy. Therefore, a sufficiently
large signal-to-noise ratio is important in the
encoding process. This observation is analo-
gous to the channel capacity in coding theory,
where capacity increases as noise decreases.
Other than noise reduction, introducing re-
dundancy in the measurements (m > n) may
mitigate the degeneracy problem (61).

Decoding pathways

Although the photoresponse vector x itself
may contain valuable information about cer-
tain features of w, a decoder is generally
needed to decipher and reconstruct the orig-
inal physical information to complete the sens-
ing process. In this section, we discuss two
general classes of models that are used in op-
tical sensing tomap the sensor response inRm

to the original physical information in Rn (or
to capture some information of interest direct-
ly from x): analytical (Fig. 3A) and data-driven

(Fig. 3B). Analytical models require a compre-
hensive understanding of the encoder, whereas
data-driven models usually use neural net-
works with experimental photoresponse data.
In addition, other approaches exist that do not
belong to either of the above two models but
could represent alternative future pathways
for decoding optical information. For example,
randomly initialized neural networks without
training have been shown to be effective in
image generation and restoration (80, 81), and
an analytical algorithm followed by a convolu-
tional neural network has been used to solve
inverse problems (82).
For an exemplary illustration of an analytical

decoding process, let us consider the following
method, which is widely used in spectral sens-
ing. In the linear response regime under opti-
cal excitation with spectrum Pl, the response
of a photodetector can be written as IS ¼
∫RlPldl, where Rl is the spectral responsiv-
ity (13–15, 18, 20, 21). The light spectrum and
the spectral responsivity can be represented
in a vector spaceRn by two vectors pl and rl,
respectively. The photoresponse IS is then the
inner product of these two vectors, IS ¼ rTlpl.
[Similar equations hold for other linear optical
properties, for example, the spatial intensity
variation, IS ¼ rTxpx , where px represents a
flattened optical image and rx is a spatially
varying photoresponsivity (37, 79).]
Consider an optical sensor consisting ofm=

n states, Si, where i = 1, 2,…, n. These n states,
or measurements, may be realized by using n
different subelements in the sensor or by n
different operational modes of a single recon-
figurable sensor. In either case, they can be
represented as n inner products discussed
above or as amatrix-vector product with photo-
responsivity matrix R, iS = Rpl. Here, R is an
n-by-n matrix, and its element at ith row and
jth column,RSi;j , represents the discrete photo-
responsivity at wavelength lj in state Si; iS
denotes the discretized photoresponse vector
IS1; IS2 ;…I Snð ÞT ; and the spectrum is denoted
as pl ¼ Pl1;Pl2 ;…Plnð ÞT . If the response matrix
R is known, then the spectrum pl can be recon-
structed using the measured photoresponse
iS. However, direct reconstruction by calculat-
ing the inverse R−1 may lead to unsatisfactory
results becauseRmay be ill-conditioned and
iS may exhibit measurement noise or even
errors. In recent demonstrations, this problem
has beenmitigated using adaptive regression
methods with Tikhonov (83) or LASSO (least
absolute shrinkage and selection operator) reg-
ularizations (84) by minimizing a cost func-
tion, cost = ∥Rpl − iS∥2 + aw(pl). Here, a is a
parameter that controls the regularization
strength andw(pl) is a penalty function. These
regularization approaches allow us to alleviate
the negative effects of an ill-conditionedmatrix
R and measurement noise. In the general case,
n ≠ m, adaptive regression methods can still
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be applied to compute a solution that mini-
mizes the cost function.
Unlike analytical models, data-driven sens-

ing generally consists of two steps. First, the
model, usually a neural network, needs to be
trained. This may occur on-chip or off-chip,
in a supervised or an unsupervised or self-
supervised manner (37–42, 47). In the former
case, both a set of sensor inputs w and their
photoresponse vectors x (or directly deciphered
information, e.g., classification results) are pro-
vided. In the latter, an efficient representation
(encoding) is learned from a set of inputs w
alone, and the decoder attempts to reproduce at
its output the original information, w′ ≈ w.
After training, the neural network can then be
leveraged to decipher the unknown information
based on the measured photoresponse vector x.
Data-driven models have several distinctive

advantages that make them suitable for ad-
vanced sensing applications. First, data-driven
models can be used as decoders to exploit
existing experimental results, even when analy-
tical models are not accessible. As illustrated
in Fig. 3B, after the neural network is trained,
the response can be interpreted without in-
volving any specific mathematical relation.

Second, different types of physical information
can be deciphered simultaneously, as long as
the training process takes them into account.
Third, it is possible to realize functionality
multiplexing because the outputs of the data-
driven models are not limited to specific phys-
ical properties of light. For example, imaging
and classification functions can be combined
using trained neutral networks, which sub-
stantially reduces the complexity of the overall
system.
At the same time, data-driven models re-

quire the acquisition of sufficient training data,
which need to be correctly labeled in the case of
supervised learning. If their characteristics
do not change substantially during operation,
then the sensors only need to be trained or
calibrated once by the manufacturers with-
out the end users having to go through this
process. Data augmentation methods, such as
interpolation and data synthesis, can be used
to expand training datasets (85). In addition to
the initial training of the model, recalibration
during operation can also be applicable to sen-
sors in both analytical and data-driven mod-
els. Choosing reliable references is crucial for
deploying sensors in recalibration because

laboratory-level calibration may not be avail-
able. Good references should have specific and
stable features, andmeasuring themwill provide
enough information for recalibration. Examples
include checkerboard and US Air Force (USAF)
1951 targets for imaging as well as elemental
and molecular spectral lines for spectroscopy.
Recalibration should focus on parameters
directly related to drifting and degradation,
which require a comprehensive understanding
of the sensor’s physical properties.
Manufacturing and environmental variations

andmeasurement noise are further issues that
need to be considered. Sensors may be sen-
sitive to manufacturing variability and envi-
ronmental conditions, such as temperature,
humidity, and stray light. Advanced packaging
schemes can increase tolerance to these con-
ditions. The effects of these variations can be
compensated numerically, if well understood.
Measurement noise can beminimized by opti-
mizing encoding processes and taking into ac-
count the sensor’s physical properties and
sensing requirements. Designing application-
specific encoding strategies is critical to achieve
both efficiency and accuracy. For example,
focusing on operational states that are strong-
ly affected by targeted spectral features can
improve the performance of spectral sensing.
Regardless of the model used, the dimen-

sionality m of the photoresponse vector is de-
terminedby themeasurement parameter space.
The parameters used to characterize the photo-
response vector can be diverse. For example,
in tunable dual-gate sensors (25, 47), top (VTG)
and bottom (VBG) gate biases are typical pa-
rameters that together form a 2D parameter
space. Bias voltage in the photocurrent gener-
ation path, ambient temperature, load applied
to the sensor, and external magnetic field may
also be among the parameters for photocur-
rent measurements, depending on the sensing
application. A conceptual, 3D parameter space
is shown in Fig. 3C, as illustrated by axes P1,
P2, and P3. In practice, the parameter space
can be reduced by a set of constraints to a
manifold (green surface in Fig. 3C) on which
the photoresponse is measured. When analyt-
ical models are applied, the understanding on
the sensor is usually extensive. As a result, a
smaller parameter space can be used. For ex-
ample, in a previously demonstrated dual-gate
black phosphorus spectrometer, it is known
that at charge-neutrality, the photoresponse
is highest and the bandgap tuning is effective
(25). As a result, it is not necessary to perform
the photoresponse measurements across the
entire 2D parameter space of VTG and VBG, but
they can instead be performed in a 1D line
along which VTG and VBG collectively induce
no net doping. In a data-driven model, the
understanding of the sensor does not neces-
sarily need to be as comprehensive. In this case,
usually a larger parameter space is needed
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Fig. 3. Information decoding pathways. (A) Schematic of using an analytical approach to extract n-dimensional
information from an m-dimensional photoresponse vector if the encoding process (not shown for simplicity)
can be modeled explicitly. (B) Schematic of using a data-driven model in sensing. A reconfigurable device (or
an array thereof) is used as an encoder to generate an m-dimensional photoresponse vector, and a trained neural
network is used as a decoder to decipher the n-dimensional information (n′ = n). The sensor itself can also act
as (part of) a neural network. Moreover, desirable features of the n-dimensional information may be directly
extracted from the m-dimensional photoresponse. (C) Schematic of a manifold in a conceptual, 3D parameter
space. For analytical models, usually a smaller parameter space (blue surface) is required to capture the
information, whereas a larger parameter space (red surface) is required for data-driven models.
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to fully capture the information of unknown
light, as illustrated in (47), in which a 2D pa-
rameter space of VTG and VBG was used. The
larger (red) and smaller (blue) areas in Fig. 3C
schematically represent these two types of
parameter spaces, respectively.

Roles of neural networks in optical sensing

We now discuss potential roles of artificial
neural networks in the information encoding
and decoding in optical sensors. Autoencoders
are a specific class of neural networks that are
particularly promising for the sensing scheme
introduced here. Figure 4A shows a schematic
of the network (37). An autoencoder consists
of two parts: an encoder that compresses the
input data in a bottleneck layer with m < n
dimensions and a decoder that attempts to
reproduce the original data at its output. Fig-
ure 2F shows an illustration of a device real-
ization for image encoding (37). We emphasize,
however, that the concept is not limited to
imaging alone; it can also be applied to other
optical sensing tasks, such as spectral measure-
ments. The device consists of n= 9 photoactive
pixels arranged in a 2D array, and each pixel is
divided into m = 3 subpixels. Each subpixel
consists of a WSe2 photodiode whose photo-
responsivity can be configured to adjust the
synaptic weights. By interconnecting the sub-
pixels, an integrated neural network can be
formed in which the encoder is the optical
sensor itself and the decoder is the external
computer programs. Figure 4B shows the oper-
ation of a device after a training process that
is based on backpropagation (37). The encoder
translates the projected images (letters “n,”
“v,” and “z”) into an output current vector,
which is converted by a nonlinearity into an
activation code and finally reconstructed into
the original image by the decoder. It is notice-
able in Fig. 4B that the activation codes are
binary. This is a consequence of the training
process, in which Gaussian noise was injected
to learn binary representations. Such a device
may be operated as a binary-hashing autoen-
coder, which eliminates the need for analog-to-
digital conversion before signal reconstruction.
To implement a deep autoencoder, additional
hidden layers can be added to both the encoder
and the decoder to deepen the network and
increase its complexity and performance. Al-
though this is straightforward on the (software)
decoder side, on the (hardware) encoder side,
it is more elaborate but could be achieved, for
example, by converting the output currents
to voltages that are then fed into a memristor
crossbar (86, 87). However, as demonstrated
in Fig. 4C, comparable performance can be
achieved by keeping a single layer for the en-
coder and only increasing the number of layers
of the decoder.
Other neural network architectures can also

be implemented using a similar device struc-

ture. A machine vision processor was devel-
oped to operate as a convolutional neural
network by integrating 1024 MoS2 photo–
field effect transistors in a crossbar struc-
ture, and a classification of digits from the
Modified National Institute of Standards and
Technology (MNIST) dataset was demonstrat-
ed (38). Figure 4D illustrates the working
principles of another classifier presented in
(39) by implementing a convolutional neural
networkwith a prototypical 3-pixel–by–3-pixel
sensor. Here, the photoresponsivity of each
pixel is reconfigurable, and the total photo-
current represents the convolution of the im-

age and the responsivitymatrix. Binary figures
representing the letters “n,” “j,” and “u” were
used during the training to obtain the respon-
sivity matrix of each letter. A testing classifica-
tion accuracy of 100% was achieved by using
the weighted average of the convolutional ker-
nel. In a third example (42), an array of black
phosphorus programmable phototransistors
that can be programmed with 5-bit precision
was used to implement an in-sensor convo-
lutional neural network.
In addition to the image recognition and

processing functions described above, it is also
possible to detect multiple physical properties

Yuan et al., Science 379, eade1220 (2023) 17 March 2023 6 of 9

A B

C original:

vanilla autoencoder:

deep encoder and decoder:

deep decoder only:

D

Fig. 4. Machine vision using a reconfigurable sensor array. (A) Illustration of an autoencoder with a single
hidden layer. The bottom shows the encoding and decoding of a letter from the MNIST database. (B) Operation
of an autoencoder based on a reconfigurable 9-pixel WSe2 sensor array. The sensor array acts as an encoder
that translates images into current codes that can later be reconstructed into the original image by an external
decoder. [(A) and (B) are adapted by permission from Springer Nature Customer Service Center GmbH,
Springer Nature (37), copyright (2020)] (C) Illustration of an autoencoder with a deep decoder (left) and MNIST
image (n = 784) reconstruction (m = 12) using different types of autoencoders (right). (D) Convolutional neural
network realized by a reconfigurable 9-pixel retinomorphic vision sensor. [Adapted with permission from (39)]
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simultaneously using a reconfigurable sen-
sor. As discussed in the section “Information-
encodingmechanisms,” by using the BPVE, the
polarization state, wavelength, and power in-
formation can be encoded into a 2D photo-
response map (47), as shown in the leftmost
panel of Fig. 5. Although the mechanisms of
theBPVE arewell understoodwithin the frame-
work of quantum geometry, precise analytical
modeling of themeasured photoresponse is not
feasible because of the extrinsic complexities
of themoiré system, such as finite temperature,
unintentional strain, and twist-angle disorder
(67). Instead, a convolutional neural network
can be trained as the decoder by using a large
number of such 2D mappings from excitation
lights with known physical properties. The
trained convolutional neural network can then
be used to decipher the 2D mapping to reveal
the wavelength, power, and polarization state
of an unknown light (47), as illustrated in Fig. 5.
We expect deep neural networks to play an
increasingly important role as the sensing tasks
become more complex and demanding.

Discussion and outlook
Emerging opportunities in deep optical sensing

Asnoted above, a single TDBGsensor can simul-
taneously detect the wavelength, intensity,
and polarization state of unknown light in the
mid-infrared regime. Extending this capability
to other wavelength ranges and enabling the
detection of other physical properties, such as
angular momentum (88–91), will further em-
power this sensing scheme. Innovativematerials
will be needed to demonstrate deep optical

sensing beyond the mid-infrared. Moreover,
the tunable BPVE,which is central to the TDBG
reconfigurable sensor concept, is a second-
order optical effect (47). The regular photo-
voltaic and photoconductive responses can
also be reconfigurable (37–42). The use of re-
configurable linear and higher-order photo-
responses together may further enhance the
capabilities and improve the performance of
deep optical sensing.
Another future direction is to expand the

capability of functionality multiplexing. It has
been shown that an array of reconfigurable
photodetectors can realize image-encoding
and -classification functions based on artificial
neural networks (37). However, the device can
only handle simple images because it is lim-
ited by the low resolution of the array and the
low complexity of the neural network archi-
tecture. The construction of reconfigurable
sensor arrays with higher resolution andmore
layers will enable the use of deep neural net-
works in conjunction with enhanced imaging
capabilities for more challenging machine-
vision tasks. Simultaneous encoding of both
spectral and spatial information may lead to
a new generation of high-throughput hyper-
spectral imaging systems.

Identifying innovative sensing materials
and mechanisms

As sensors become ubiquitous, it is highly de-
sirable to continuously reduce their size to
enable on-chip integration. To achieve this
goal, reconfigurability is key, as emphasized
throughout this Review. Miniaturized sensors

that can perform a wide range of different
tasks have been demonstrated mostly using
2D materials such as black phosphorus (25),
transition metal dichalcogenides (37), moiré
graphene (47), and perovskites (27). Research
on other material systems to realize reconfig-
urability will likely extend the operational
spectral range and enable new functionalities.
Van der Waals heterostructures, for exam-
ple, represent a diverse spectrum of material
systems with strong tunability that can inter-
act with light in the wavelength range from
microwave to ultraviolet. External electric fields
can tune not only the doping (or Fermi energy)
and the bandgap of the constituent materials
in the heterostructure but also the relative
band alignments between different layers (26)
and the quantum geometric properties (47, 57).
As a result, optical transitions within and be-
tween the layers, as well as nonlinear optical
effects, can all be reconfigured by electric
fields, which provides ample opportunities
for the realization of deep optical sensing in a
broad wavelength range. Moreover, conven-
tional thin-film semiconductors such as silicon-
germanium and III-V quantum wells also
exhibit tunability under electric fields (72, 73, 92),
which makes it feasible to build reconfigur-
able sensors based on highly mature semi-
conductor platforms. A recently demonstrated
silicon reconfigurable imager has shown the
potential of using silicon simultaneously for
imaging and in-sensor data processing in the
visible spectral range (93). Compressive sensing
and imaging can also benefit from device re-
configurability (46, 65).
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7.7 mm, respectively. [Adapted by permission from Springer Nature Customer Service
Center GmbH, Springer Nature (47), copyright (2022)]
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Integration of sensing and
computing functionalities
Reconfigurable sensors may generate more
data than conventional sensors because of
their multiple operational states. Reading and
processing these large amounts of data can
be challenging. Developing information pro-
cessing schemes with integrated memory cells
near or within the sensorsmay thus be crucial.
For example, a reconfigurable integrated sen-
sor array, based on a van der Waals hetero-
structure, has been developed that incorporates
sensing, memory, and computing functions
(41). This sensor array exhibits nonvolatile
negative and positive photoresponses, which
are used for motion detection, and external
neural networks can be combinedwith the sen-
sor to enable more advanced functionalities.
A recent article (94) has extensively discussed
the possible strategies for performing in- or
near-sensor computing. Deep optical sensing
is expected to benefit tremendously from this
related field. Further, it is expected that the
hybrid integration of reconfigurable sensors
made from2Dmaterials, perovskites, and other
thin-film semiconductors with silicon electron-
ics for data processing may pave the way for a
new generation of deep sensing technologies.
Optical computing is another promising

pathway for high-throughput information pro-
cessing, which benefits both encoders and
decoders. Optical computing can enable high-
er degrees of freedom in encoder designs by
directly processing the optical signals and high-
throughput decoding through deep neural net-
works in hardware format, owing to the high
bandwidth of opticalmodulation andhigh speed
of light. Functions such as computer vision and
language processing have been demonstrated
based on optical deep neural networks (95, 96).

Leveraging the latest developments in
machine learning

Thedevelopment of deep optical sensing schemes
with reconfigurable sensors provides a singular
opportunity to test and exploit the latest de-
velopments inmachine learning. For example,
a generative-adversarial network (GAN) has
been used to enable compressed sensing with-
out assuming sparsity (97). A GAN typically
consists of two competing neural networks: a
generator and a discriminator (49). The gener-
ator is trained to produce vectors from ran-
dom noise to fool the discriminator, whereas
the discriminator attempts to distinguish the
generated vectors from existing datasets. By
properly training these two neural networks,
the generator learns the distribution of ex-
isting data and eventually generates vectors
that possess the features of the dataset. By
incorporating prior experience or knowledge,
the reconstruction error can be made small
even with a limited number of measurements.
We expect that GANs can be applied to im-

prove the deep sensing performance in terms
of the reduction of required measurements.
Another example is the long short-term mem-
ory (LSTM), which can be used together with
reconfigurable optical sensors to detect ultra-
fast events in computer vision and chemical
reactions (49).

Establishing mathematical guidelines
for encoding

One challenge in information encoding is to
minimize the required number of measure-
ment states m and to identify an optimal en-
coding strategy. If fewermeasurements can be
performed without compromising sensing per-
formance, then not only can the acquisition
speed be increased, but the data processing
requirements in subsequent steps can also
be reduced. By contrast, by choosing a largem,
redundancy can be introduced, which reduces
the probability of degeneracy of the photo-
response. Therefore, a set of mathematical
guidelines are needed to bridge the gap be-
tween these two conflicting requirements.

In conclusion, optical sensing will benefit
tremendously from the latest developments
in device technology, materials science, con-
densed matter physics, and machine learning.
Future sensors are likely to be highly compact,
reconfigurable, multifunctional, and intelligent,
and they will find applications in medical im-
aging, environmental monitoring, infrared as-
tronomy, and many other areas of our daily
lives, especially in the mobile domain.
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Enhancing optical sensing and imaging
Optical sensing and imaging can be considered as an encoding/decoding process in which the encoder is the
hardware or device that takes the light signal or some property thereof (e.g., intensity, polarization, or spectral
composition) and transduces that signal into usable information. The decoder is the software that then takes
the information and converts it into something useful for the user. Yuan et al. provide a review of optical sensing
and imaging methods that reflect the hardware trend toward miniaturization, reconfigurability, and multifunctional
ability. Simultaneously, the development of machine learning algorithms has greatly enhanced image-processing
performance. The development of both areas in concert with an information theory perspective provides a powerful
platform spanning many sensing applications. —ISO
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