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A mathemati­
cal method 
and software 
for spatially 
mapping 
intercellular 
communica­
tion

Communication between 
cells is crucial for coordinated 
cellular functions in 
multicellular organisms. We 
present an optimal transport 
theory-based tool to infer cell–
cell communication networks, 
spatial signaling directions 
and downstream targets in 
multicellular systems from 
spatial gene expression data.

The problem

Cells communicate with each other to 
instruct cell function and fate. A major 
process in cell–cell communication 
is through molecular interactions in 
which signaling molecules (ligands) 
interact with compatible host molecules 
(receptors), resulting in the activation 
of downstream intracellular targets1. 
Coordinated functions of cells and 
the mechanisms responsible for the 
organization of a multicellular sys-
tem are directly linked to its cell–cell 
communication networks. Emerging 
spatial transcriptomics technologies2 
provide unprecedented opportunities 
for dissecting these complex processes. 
With spatial constraints on molecular 
interactions, competition between cells, 
and varying promiscuity of signaling in-
teractions, inferring cell–cell communi-
cation from spatial data is a challenging 
task. Moreover, tools for evaluating and 
benchmarking computational methods 
are lacking. New methods are needed for 
effective representations and visualiza-
tions of spatial signaling and analysis of 
downstream targets. Broadly applicable 
methods for inferring cell–cell commu-
nication are a pressing need.

The solution

We reformulated the cell–cell communi-
cation problem as an optimal transport 
(OT)3 system wherein ligands are ‘trans-
ported’ to receptors and the ‘optimal’ 
transport connections coupling them 
are calculated. Specifically, the meas-
ured ligand and receptor expression 
levels are considered as spatial mass 
distributions and the transportation 
cost is estimated from spatial distances. 
To deal with modeling challenges  
associated with spatial constraints and 
competition among cells and molecules, 
we developed a new OT method named 
collective OT, along with an efficient 
numerical implementation. We devel-
oped a user-friendly collective-OT-based 
software platform (Fig. 1a,b), commu-
nication analysis by optimal transport 
(COMMOT), for cell–cell communica-
tion inference using spatial gene expres-
sion data, along with intuitive tools 
for visualization and novel analysis of 
downstream targets.

We demonstrated the general 
applicability of COMMOT by study-
ing spatial gene expression datasets 
generated using various state-of-art 
technologies, obtaining results consist-
ent with prior knowledge in systems 

such as tumors and the brain cortex. 
For example, fibroblast growth factor 
signaling is directed toward the cerebel-
lar cortex in the mouse brain (Fig. 1c). In 
a case study of human skin, COMMOT 
identified new signaling molecules that 
regulate skin development. To develop 
benchmarking tools, we constructed a 
partial differential equation model of 
diffusive ligands and their interactions 
with receptors. COMMOT accurately 
reconstructed cell–cell communication 
from the synthetic data generated by the 
model. Using machine learning models, 
COMMOT screens affected genes on the 
basis of the inferred signaling networks. 
Convenient visualizations in COMMOT, 
such as for spatial signaling directions, 
enable further exploration of the infer-
ence outputs.

Future directions

Our work provides a mathematical 
framework, a computational tool, and 
the COMMOT open-source software 
for inferring cell–cell communication 
using various sources of spatial gene 
expression data. COMMOT is equipped 
with multiple visualization options and 
downstream analysis utilities, has exten-
sive documentation and tutorials, and is 
particularly powerful for comprehensive 
screening of cell–cell communication 
connections in spatial systems. Our 
study should spark interest in develop-
ing new OT methods that can handle 
different constraints or types of compe-
tition in biology or other applications4.

Spatial transcriptomics data are 
related to, but do not directly repre-
sent, the actual abundance of proteins 
that mediate cell–cell communication. 
Multiple biophysical processes, includ-
ing the translation of mRNA into protein, 
need to be considered for more accurate 
inference. A lack of such details in COM-
MOT might lead to false positive links for 
some systems. An extension and refine-
ment of the method would be to use 
other spatial or non-spatial multi-omics 
data to fill the gap between transcrip-
tomics and proteomics. The inclusion 
of prior knowledge of a specific biologi-
cal system, either directly to the data 
or after the inference step, can further 
improve robustness and accuracy in 
discovering communication links by 
COMMOT.
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Expert opinion

“With COMMOT, Cang et al. present an 
elegant mathematical solution to the 
problem of inferring cell–cell communication 
from spatial transcriptomics data based on 
a variant of optimal transport. The method is 
applied to spatial datasets of different sizes 

and technologies, and robustness of results 
is shown. Further, the authors show how their 
method can be used in different biological 
contexts, including human breast cancer 
and mouse brain samples.” Fabian Theis and 
Marius Lange, Helmholtz Munich, Germany

Behind the paper

In our earlier work, we equipped single-
cell gene expression data with spatial 
information by integrating it with imaging 
data using the optimal transport method. 
Now, with spatially annotated single-cell 
data or spatial transcriptomics data, we can 
better study cell–cell communication. We 
have a long-standing interest in intercellular 
communication and have developed 
widely used tools5 for inferring intercellular 
communication from non-spatial data.  
With more spatial data becoming available, 
we thought the optimal transport method 

would be a great way to establish  
the connection between ligands and 
receptors represented as mass distributions 
to model cell–cell communication.  
The need to incorporate various biological 
constraints motivated us to develop 
extensions of optimal transport theory.  
Our study led to both a practically useful 
piece of software for signaling inference 
from spatial data and the mathematical 
development of a generally applicable 
optimal transport method. Z. C. & Q. N.

From the editor

“Studying cell communications in the 
context of where cells are located is of 
interest. This work presents a promising 
computational tool, COMMOT, that employs 
collective optimal transport to study cell–
cell communication from spatially resolved 
transcriptomics data.” Lei Tang, Senior 
Editor, Nature Methods.
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Fig. 1 | Design and illustration of COMMOT. a, Left, inferring cell–cell communication (CCC) in space  
by considering competition between different ligand and receptor species. Right, collective optimal 
transport (COT) can include multi-species distributions (such as the ligands L1–L3 and receptors R1  
and R2) and enforce constraints on spatial ranges. b, Inferred fibroblast growth factor (FGF) signaling 
direction (arrows) in a sagittal section of the posterior mouse brain in Visium spatial transcriptomics data.  
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