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An elliptic pair (X, C) is a projective rational surface X with log terminal 
singularities, and an irreducible curve C contained in the smooth locus of X, with 
arithmetic genus 1 and self-intersection 0. They are a useful tool for determining 
whether the pseudo-effective cone of X is polyhedral [1], and interesting algebraic 
and geometric objects in their own right. Especially of interest are toric elliptic 
pairs, where X is the blow-up of a projective toric surface at the identity element 
of the torus. In this paper, we classify all toric elliptic pairs of Picard number two. 
Strikingly, it turns out that there are only three of these. Furthermore, we study 
a class of non-toric elliptic pairs coming from the blow-up of P2 at nine points on 
a nodal cubic, in characteristic p. This construction gives us examples of surfaces 
where the pseudo-effective cone is non-polyhedral for a set of primes p of positive 
density, and, assuming the generalized Riemann hypothesis, polyhedral for a set of 
primes p of positive density.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article 
under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

The effective cone of a projective variety X and its closure, Eff(X), are well-studied invariants of X. In 
particularly nice cases Eff(X) is polyhedral. This is true, for example, when X is a projective toric variety. 
However, in general it is difficult to determine for an arbitrary projective surface X whether Eff(X) is 
polyhedral. Recent work by Castravet, Laface, Tevelev, and Ugaglia [1] has shown that in the presence 
of a curve C on X satisfying certain properties, a polyhedrality criterion can be obtained in terms of the 
group structure of Pic(C). Using this criterion, they were able to prove that the Grothendieck-Knutsen 
moduli space M0,n of stable rational curves has a non-polyhedral effective cone for n ≥ 10, by proving the 
corresponding statement for blow-ups of certain toric surfaces P .

More precisely, an elliptic pair (X, C) is a projective rational surface X with log terminal singularities, 
and an irreducible curve C contained in the smooth locus of X, such that the arithmetic genus of C is one 
and C2 = 0. These elliptic pairs are not only useful for determining the polyhedrality of Eff(X), but are 
also interesting geometric and arithmetic objects in their own right. In this paper we will construct elliptic 
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Fig. 1. Intersections of curves on X̃∆, where ∆ = {(0, 0), (2, 0), (5, 8)}.

pairs in two ways: first from blow-ups of toric surfaces of Picard number one, and then from blow-ups of P 2

at nine points on a nodal cubic.
In Section 2 we follow the procedure given in [1] to construct toric elliptic pairs (X, C), which arise from 

lattice polygons ∆ satisfying certain combinatorial properties. In this case X will be the blow-up of P (∆) at 
the identity element e of the torus. We may denote X instead by X∆ if we wish to emphasize an underlying 
lattice polygon of X.

In [1] a number of interesting classification questions were raised. For instance, it is known that there are 
infinitely many pentagons which give rise to toric elliptic pairs with non-polyhedral effective cone. However, 
classification of quadrilaterals giving toric elliptic pairs is not known. Moreover, we do not have any examples 
of toric elliptic pairs (X, C) where X has Picard number three and Eff(X) is non-polyhedral (see Remark 
4.5 of [1]).

In this paper we completely classify all toric elliptic pairs coming from triangles, i.e. where X has 
Picard number two, the smallest possible. Strikingly, unlike the pentagon case, we prove that combinatorial 
restrictions allow only three such pairs.

Theorem 1.1. There are only three toric elliptic pairs (X, C) where X has Picard number two. They are given 
by lattice triangles ∆ with vertices {(0, 0), (2, 0), (5, 8)} with m = 4, {(0, 0), (5, 0), (12, 20)} with m = 10, 
and {(0, 0), (5, 0), (18, 45)} with m = 15, where m is the width of ∆.

Remark 1.2. Since X has Picard number two in all of these cases, the effective cone is two-dimensional and 
generated by C and the exceptional divisor E over the identity element of the torus. Thus in this case the 
polyhedrality question is trivial and we are really only interested in the problem of classifying these pairs.

In Section 3 we show for each lattice triangle ∆ in Theorem 1.1 that ∆ gives rise to an extremal elliptic 
fibration. We will compute the singular fibers and Kodaira type. Fig. 1 shows the curves on the minimal 
resolution X̃ of X for the m = 4 case. Here the underlying elliptic pair is (X, C). The curve C, which is not 
pictured in Fig. 1, passes through each boundary divisor given by a side of ∆ with multiplicity equal to the 
lattice length of that side.

The curves g̃ and h̃ in Fig. 1 are additional curves of self-intersection −1 on X, which are obtained by 
analyzing curves on X as in will be described in Section 3.

By Castelnuovo’s contraction criterion, we can then contract g̃ and h̃ to obtain the minimal model Z of 
X̃. Fig. 2 shows the singular fibers obtained for the m = 4 case.

Sections 2 and 3 also answer a question posed by González-Anaya, González, and Karu in [8] and Kurano 
in [9]: are there negative curves with positive genus on BleP (∆) where ∆ is a lattice triangle? A negative 
curve C in X is defined as a curve on BleP (∆) of non-positive self-intersection. Our toric elliptic pairs 
(BleP (∆)), C) provide an example of such curves, since by the definition of an elliptic pair we have C2 = 0
and pa(C) = 1.
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Fig. 2. The singular fibers of the minimal elliptic fibration Z∆, where ∆ = {(0, 0), (2, 0), (5, 8)}.

The paper [1] also studies the distribution of primes p such that the reduction of the toric elliptic pair 
(X, C) modulo p, where C is an elliptic curve, has non-polyhedral effective cone. This is related to deep 
conjectures in arithmetic geometry of elliptic curves, including the Lang-Trotter conjecture [10].

In Section 4, we study an analogous question for a class of (non-toric) elliptic pairs, which come from 
blow-up of P 2 at nine points on a nodal cubic C. Instead of the Lang-Trotter conjecture, which concerns 
the arithmetic of elliptic curves, we will study connections to Artin’s conjecture, which can be interpreted in 
terms of the arithmetic of nodal cubics. This construction gives us examples of surfaces where the pseudo-
effective cone is non-polyhedral for a set of primes p of positive density, and, assuming the generalized 
Riemann hypothesis, polyhedral for a set of primes p of positive density.

For our construction, we identify the smooth locus of the nodal cubic C with Pic0(C), and Pic0(C) with 
Gm in such a way that 1 ∈ Gm is a flex point of C. We say that a, q ∈ Q are multiplicatively independent in 
Q∗ if axqy = 1 implies that x = y = 0. Let z1 = ... = z7 = 1, z8 = a, z9 = qa−1 with a, q ∈ Q multiplicatively 
independent. We construct X to be the blow-up of P 2 at the nine points z1, ..., z9, which is an infinitely near 
blow up for z1, ..., z7. That is, we consecutively blow up the point of intersection of the proper transform of 
C with the exceptional divisor of the previous blow-up. Let ā and q̄ be the reductions of a and q modulo p.

The surface X defined this way and the proper transform of C give an arithmetic elliptic pair (C, X )
[1]. That is, (C, X ) are a pair of schemes which are flat over a nonempty open subset U of Spec Z, such 
that the geometric fiber (Cp, Xp) is an elliptic pair for every p in U . In this setting, we derive the following 
arithmetic condition for polyhedrality.

Theorem 1.3. The pair (C, X ) gives an arithmetic elliptic pair [1] over a nonempty open subset U of Spec Z, 
such that the geometric fiber (Cp, Xp) is an elliptic pair for every p in U . Then Eff(Xp) is polyhedral if and 
only if ā2 ∈ 〈q̄〉 ⊂ F∗

p .

The question of when the condition in Theorem 1.3 holds has been studied extensively in number theory. 
More precisely, consider the set of primes p for which the condition is satisfied:

S(a, q) = {p prime: ā ∈ 〈q̄〉 ⊂ F∗
p}.

We show in Lemma 4.2 that the set S(a, q)c contains a set of prime numbers of positive density. That is, 
there is a set of primes of positive density for which Eff(Xp) is not polyhedral.

We also mention some known results about S(a, q). First, by a theorem of Pólya [6], S(a, q) is infinite. 
Therefore, Eff(Xp) is polyhedral for infinitely many primes. Furthermore, by Moree and Stevenhagen [7], 
assuming the generalized Riemann hypothesis, S(a, q) has positive density in the set of all prime numbers.

Another useful result is Artin’s conjecture on primitive roots, which states that if q ∈ Z is neither a 
perfect square nor −1, then q̄ mod p generates F∗

p for a set of primes p of positive density. If Artin’s 
conjecture holds, we see that S(a, q) will contain a set of positive density in the prime numbers.

By work of Hooley [4], Artin’s conjecture follows from the generalized Riemann hypothesis. Thus by 
either Artin’s conjecture or the work of Moree and Stevenhagen, if we accept the generalized Riemann 
hypothesis, there exists a set of primes of positive density for which Eff(Xp) is polyhedral.
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Finally, a theorem of Heath-Brown tells us that for any three primes (a, b, c), Artin’s conjecture is true 
for at least one of a, b, and c [5]. Combined with Lemma 4.2, this allows us to construct surfaces with a 
polyhedral effective cone for a set of primes of positive density, and a non-polyhedral effective cone for a set 
of primes of positive density. We construct such a surface concretely in Lemma 4.3.
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out this work. I would also like to thank Tom Weston for helpful discussions. This project has been partially 
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2. Toric elliptic pairs from triangles

We make preparations to define a toric elliptic pair, as in [1]. First, given a lattice polygon ∆, we define 
a morphism

g∆ : Gm
2 → P |∆∩Z2|−1

x (→ [xiyj : (i, j) ∈ ∆ ∩ Z2]

We let P (∆) be the closure of the image of g∆, and e = g∆(1, 1). We denote by L∆ the linear system of 
hyperplane sections. Then any f in L∆ can be written as a Laurent polynomial with exponent vectors in 
∆. That is,

f =
∑

(i,j)∈∆
aijx

iyj ∈ k[x±1, y±1].

Given a positive integer m, we define L∆(m) to be the linear subspace of L∆ consisting of the curves 
having multiplicity at least m at e. Finally, we let Vol(∆) be twice the Euclidean area of ∆, so that Vol(∆)
will be an integer.

Definition 2.1. Suppose there exist ∆ and m such that the following conditions hold:

(i) Vol(∆) = m2;
(ii) |∂∆ ∩ Z2| = m;
(iii) There is an irreducible curve Γ in L∆(m) such that

(a) Γ has multiplicity m at e
(b) The Newton polygon of Γ coincides with ∆.

Let C be the proper transform of Γ under the blow-up. Then we call (Ble(P (∆), C) a toric elliptic pair.

Remark 2.2. Theorem 4.4 of [1] proves that (BleP (∆), C) is an elliptic pair. In particular, (i), (ii), and (iiia) 
tell us that C has arithmetic genus 1, and (iiib) tells us that Γ does not pass through the singularities 
of P (∆). Thus C does not pass through the singularities of BleP (∆). Also, note that in the definition of 
toric elliptic pair given in [1] the authors additionally require that dimL∆(m) = 1. However, their proof of 
Theorem 4.4 does not use this fact, so we have dropped this assumption in Definition 2.1.

We call a lattice triangle primitive if gcd(a, b, c) = 1. Now we can state our main theorem. In this section 
we will prove that there are at most three toric elliptic pairs of Picard number two, given by a primitive 
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lattice triangle. In the next section we will verify that each of the lattice triangles in Theorem 2 actually 
gives us a toric elliptic pair, and show that non-primitive triangles cannot give toric elliptic pairs. In the 
rest of this paper we will take “triangle” to mean “lattice triangle.”

As one may see from Definition 2.1, not all lattice polygons give toric elliptic pairs. In Lemma 2.3 we 
prove an additional arithmetic condition on the triangles ∆ which do give toric elliptic pairs, in terms of 
the width of ∆. Theorem 2.4 shows that the arithmetic conditions from Lemma 2.3 and (i) and (ii) of 
Definition 2.1 are only satisfied for three primitive lattice triangles, up to SL2(Z) transformation.

Lemma 2.3. Let ∆ be a lattice polygon, let X = BleP (∆) and suppose (X, C) is a toric elliptic pair. Let 
m = |∂∆ ∩ Z2|. Then the width of ∆ is ≥ m.

Proof. Pick a primitive vector λ in the lattice Z2 of one-parameter subgroups. Let Dλ be the prime divisor 
of P (∆) given by the closure of the corresponding one-parameter subgroup. More explicitly, if λ = (i, j) the 
corresponding one-parameter subgroup is (ti, tj), which is given by the equation xj = yi.

Let H be a very ample divisor on P (∆) that gives a linear system L∆. Let wλ be the width of ∆ along 
λ. Then wλ = H ·Dλ.

Now, consider the proper transform D̃λ in the blow-up BleP (∆). Since Dλ goes through the identity with 
multiplicity one, we have E · D̃λ = 1. We also have π∗H ∼ C + mE.

By the projection formula,

wλ = H ·Dλ = π∗H · D̃λ.

So we have

wλ = (C + mE) · D̃λ = C · D̃λ + m(E · D̃λ)

= C · D̃λ + m.

The Newton polygon of C is ∆ by (iii) of Definition 2.1. However, the Newton polygon of Dλ is a line 
segment. Thus they are not translates of one other. This tells us that the proper transforms of C and Dλ

are two different irreducible curves on the blow-up. Thus C · D̃λ ≥ 0, giving us that wλ ≥ m. !

We begin by choosing representatives for equivalence classes of polygons under transformations in SL2(Z). 
Every triangle is equivalent to a triangle with vertex set {(0, 0), (a, 0), (b, c)} such that a > 0 and 0 ≤ b < c.

Theorem 2.4. Let ∆ be a primitive lattice triangle with width w. Let m = |δ∆ ∩ Z2|. Suppose

(i) w ≥ m;
(ii) m2 is twice the Euclidean area of ∆.

Then ∆ can be obtained via an SL2(Z) transformation from one of {(0, 0), (2, 0), (5, 8)} with m = 4, 
{(0, 0), (5, 0), (12, 20)} with m = 10, and {(0, 0), (5, 0), (18, 45)} with m = 15.

Proof. Note that by definition of the area of ∆ we have m2 = ac. Also, the lattice lengths of the sides of ∆
are a, gcd(b, c), and gcd(a − b, c). Thus a + gcd(b, c) + gcd(a − b, c) = m.

By assumption, the width of ∆ is at least m. Let λ = (1, −1) and ν = (1, 0). Then we have wλ =
a − (b − c) = a − b + c and wν = max{a, b}. Then a − (b − c) ≥ m and max{a, b} ≥ m. But we know a < m, 
so max{a, b} = b ≥ m. Rearranging, we get that m − a ≤ c − b ≤ c −m.

Let b′ = c − b. Observe that we can impose any ordering on the lattice lengths of the sides of ∆. Then 
we have the following conditions, where (3) is the ordering of side lengths we impose:
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m2 = ac (1)

a + gcd(b′, c) + gcd(b′ + a, c) = m (2)

a ≥ gcd(b′, c) ≥ gcd(b′ + a, c) (3)

m− a ≤ b′ ≤ c−m. (4)

In particular, by the ordering encoded by (2) and (3), we have a
m ≥ 1

3 . We proceed by cases, considering 
different possible values of a

m .

Case 1: a
m > 2

3 .
We will prove an upper bound for an expression involving a, m, and c. First, observe that c−m

m−a = m
a < 3

2 . 
Thus by (4) we have

m− a ≤ b′ <
3
2(m− a). (5)

Also, by (2) and (3) we have m − a > gcd(b′, c) ≥ m−a
2 . Since by (4) we have b′ ≥ m − a, we cannot have 

b′ = gcd(b′, c). But by (5) we also have b′ < 3
2 (m − a) ≤ 3 gcd(b′, c). Thus b′ = 2 gcd(b′, c).

Let d = gcd(b′, c). Then b′ = 2d and c = kd for some odd k in Z. By (4) we have

d

m− a
≤ 1

2 · c−m

m− a
= 1

2 · m
a

<
1
2 · 3

2 = 3
4 .

Then by (2), gcd(b′ + a, c) > 1
4 (m − a). On the other hand, gcd(a, d) = 1 implies gcd(b′ + a, c) =

gcd(2d + a, k). Thus we have k > m−a
4 .

Also, from condition (2) we have d + gcd(b′ + a, c) = m − a. Combining this with (3) we get d ≥ m−a
2 .

Thus we obtain

c = kd >
(m− a)2

8 = 1
8 · a(c− 2m + a). (6)

We also have c
a =

(
m
a

)2
< 9

4 . Combining this with (6) we see 1
8 (c − 2m + a) < c

a < 9
4 . Clearing 

denominators we obtain our promised upper bound:

c− 2m + a < 18. (7)

Now, consider the following parameterization of the equation ac = m2: a = es2, c = et2, and m = ets, 
where e, t, s ∈ Z and gcd(t, s) = 1. Then our inequality (7) becomes (t −s)2e < 18. This leaves finitely many 
pairs (t − s, e) to consider.

Let x = t − s. Then inequality (4) becomes

esx ≤ 2d ≤ e(s + x)x. (8)

Thus we can write 2d = esx + p where 0 ≤ p ≤ ex2 < 18. From the equation c = kd we get

2e(s + x)2 = k(esx + p). (9)

Equation (9) gives us a family of diophantine equations in s and k with a finite set of parameters (e, x, p). 
We will proceed by solving this family of diophantine equations abstractly in terms of e, x, and p, and using 
a computer to substitute particular values of (e, x, p).
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We rearrange equation (9) into quadratic form with respect to s, obtaining 2es2+ex(4 −k)s +2ex2−pk = 0. 
Solving for s, we obtain

s = 1
4e (−ex(4 − k) ±

√
D), D := e2x2(4 − k)2 − 8e(2ex2 − pk).

Since −ex(4 − k) ±
√
D is in 4Z, we see that 

√
D must be in Z. Let y =

√
D. Then we solve

y2 = D

= e2x2(4 − k)2 − 8e(2ex2 − pk)

= (ex)2k2 − 8e(ex2 − p)k.

Completing the square with respect to k gives us

(
exk −

(
ex− p

x

))2
= y2 + 16

(
ex− p

x

)2
.

Multiplying by x2 on each side to clear denominators gives us (ex2k−4(ex2−p))2 = y2x2 +16(ex2−p)2. 
We can then factor the difference of squares to obtain

(ex2k − 4(ex2 − p) − xy)(ex2k − (ex2 − p) + xy) = 16(ex2 − p)2. (10)

Now we simply need to plug in values of e, x, and p such that 0 ≤ p ≤ ex2 < 18 and factor the right 
hand side of (10). We will obtain a finite list of options for k and y for each choice of (e, x, p) by solving 
two linear equations in two variables. We can further subject (k, y) to the conditions that k is odd and that 
gcd(a, d) = 1. Each choice of (k, y) will give us two options for s (corresponding to ±

√
D). Thus we can 

completely check all possible triangles.
Finally, by condition (2), we have m − a − d = gcd(2d + a, c). Without this condition, we have five 

candidate triangles. With this condition added, we have none. Sage code which executes the algorithm just 
described is included in Section 5.1.

Case 2: 1
2 < a

m ≤ 2
3 .

Observe that c−m
m−a = m

a < 2. Thus by condition (4) we have m − a ≤ b′ < 2(m − a). Also, by conditions 
(2) and (3) we have m − a > gcd(b′, c) ≥ m−a

2 . Thus we have b′ = 2d or b′ = 3d.
We will use the bounds on a

m to bound possible k, where k = c
d is as in case 1.

By conditions (2) and (3) we obtain m2 > d ≥ m
6 . Re-arranging and substituting k = c

d , we obtain

6
( c

m

)
≥ k > 2

( c

m

)
.

Now recall that m2 = ac. Thus a
m · c

m = 1. But we also have 1
2 < a

m ≤ 2
3 . Thus 2 > c

m ≥ 3
2 . Substituting 

these inequalities into our bounds on k, we obtain

12 > k > 3. (11)

Suppose b′ = 2d. Since (b′, c) = d, we know k must be odd. Thus we obtain a finite list of options: 
k = 5, 7, 9, 11.

Next, suppose b′ = 3d. Then k cannot be divisible by 3. Thus we obtain a finite list of options: k =
4, 5, 7, 8, 10, 11.
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Furthermore, by condition (2) and gcd(a, d) = 1, we have that d = m − a − gcd(2d + a, k). Let x =
gcd(2d +a, k). Then x must divide k. Thus we obtain a finite family of diophantine equations in (a, m) with 
parameters (k, x):

m2 = ac = kda = ka(m− a− x). (12)

Putting equation (12) into quadratic form with respect to ma and solving gives us

2
(m
a

)
= k ±

√
k2 − 4k − 4kx

a
. (13)

But recall we have 1
2 < a

m ≤ 2
3 , so

3 ≤ 2
(m
a

)
< 4. (14)

Since k ≥ 4 by equation (11) we have k +
√
k2 − 4k − 4kx

a ≥ 4. Thus the larger root in (13) will always 
fall outside the bound given in (14), and we can restrict our attention to the smaller root.

Suppose that k = 4. Then equation (11) has no real solutions. Thus we must have k > 4.
Since k > 4 we have that 2k − 9 > 0. Now, suppose that a > 4kx

2k−9 . Then 2k − 4kx
a > 9. Adding 

k2 to both sides, we get k2 − 6k + 9 < k2 − 4k − 4kx
a . Thus k − 3 <

√
k2 − 4k − 4kx

a . Finally, we see 

3 > k −
√
k2 − 4k − 4kx

a , which falls outside of our bound in (14). Thus if (14) is satisfied, we must have

a ≤ 4kx
2k − 9 . (15)

We thus have a finite family of triples (k, a, x), which we can use to solve the equation m2 = ka(m −a −x)
for possible m. We can then check for each m obtained this way that m is in an integer, and that a

m > 1
2 . 

The code for this procedure is included in Section 5.2.
Running the code results in the candidates:

k = 5, a = 9, x = 1, m = 15
k = 5, a = 45, x = 5, m = 75.

Finally, we determine whether candidate triangles (m, a, c) listed above are primitive lattice triangles 
satisfying the conditions (1) through (4).

Candidate 1: We calculate d = m − a − gcd(2d + a, k) = 5. Then c = kd = 5 · 5 = 25. Next, suppose 
b′ = 2d. Then b = c − 2d = 25 − 2 · 5 = 15. Thus we get the triangle {(0, 0), (9, 0), (15, 25)}. This triangle is 
SL2(Z) equivalent to {(0, 0), (5, 0), (18, 45)}, and the remaining conditions can be easily checked.

If we instead suppose that b′ = 3d, we get b = 10. Thus we get the triangle {(0, 0), (9, 0), (10, 25)}. 
However, this does not satisfy (4), as 10 = b ! m = 15.

Candidate 2: We calculate d = m − a − gcd(2d + a, k) = 25. Thus c = kd = 125. Then b′ = 2d or b′ = 3d. 
Thus b = 50 or 75. In either case, the lattice triangle we obtain is not primitive, i.e. gcd(a, b, c) > 1.

Case 3: 1
3 ≤ a

m ≤ 1
2 .

Observe that gcd(b, c) = gcd(b′, c) = d. Let b = b0d and c = c0d. Recall that by condition (3), we have 
d ≥ gcd(b′ + a, c). So by condition (2) we get that d ≥ m−a

2 . But since a ≤ m
2 we get d ≥ m

4 . Also, using 
a ≥ m

3 and condition (1), we get c =
(
m
a

)
m ≤ 3m. Thus we have
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c0d ≤ 3m = 12
(m

4
)
≤ 12d.

We also have that b ≥ m > 2d. Thus b0 ≥ 3. To summarize, we’ve obtained the finite list of possibilities

3 ≤ b0 < c0 ≤ 12.

From condition (4) we also have c0 − b0 ≥ m
d . From condition (3) we have m ≥ 2a ≥ 2d, so md ≤ 2. So 

c0 − b0 ≥ 2.
Let x = gcd(b′ + a, c) gcd(b − a, c). Since 1 = gcd(a, b, c) = (a, d), we get

x = gcd(b0d− a, c0d) = gcd(b0d− a, c0)|c0.

Thus we have a finite list of possible x. By condition (2), we have d = m −a −x. From this and condition 
(3) we get that m ≥ 2d = 2(m − a − x). Simplifying, we obtain

m

2 ≥ a ≥ m− 2x
2 .

Thus we can consider the finite list a = m
2 , ..., 

m−2x
2 . Suppose a = m−y

2 where 0 ≤ y ≤ 2x. We also have 
c = c0d = c0(m − a − x). Substituting for a and c into the equation ac = m2, we obtain

(
m− y

2

)
c0

(
m− m− y

2 − x

)
= m2.

Simplifying, we obtain the following quadratic equation in m:

(c0 − 4)m2 − 2c0xm− c0y(y − 2x) = 0. (16)

We can solve equation (16) for m for each of a finite family of parameters (b0, c0, x, y) subject to the 
conditions 0 ≤ y ≤ 2x, x divides c0, 3 ≤ b0 ≤ c0 ≤ 12, and c0 − b0 ≥ 2. Then we check whether the m
obtained is an integer and whether the lattice triangle is primitive. The code for the procedure described 
in this paragraph is given in Section 5.3. Finally, we check that our candidate triples (a, b, c) satisfy (1)
through (4).

By running the code in Section 5.3, we obtain the triples

m = 3 : (1, 5, 9)
m = 4 : (2, 3, 8), (2, 5, 8)
m = 6 : (3, 8, 12)
m = 10 : (5, 12, 20).

We eliminate (1, 5, 9), since the width of the corresponding triangle is 2. We eliminate (2, 3, 8), since the 
width of the corresponding triangle is 3. We eliminate (3, 8, 12) because the number of lattice points on the 
boundary is 8. The other two triples satisfy all of conditions (1) through (4).

Example 2.5. We include an example of how the code in Section 5.3 will proceed for a particular choice of 
(b0, c0, x, y). Suppose b0 = 5 and c0 = 8. Then x = 1, 2, 4, 8 are possibilities. Equation (16) gives us

4m2 − 16xm + 8(2xy − y2) = 0.
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Suppose x = 1 and y = 0. Then we obtain m2 − 4m = 0. Thus m = 4. Then a = m
2 = 2. To calculate d, we 

solve 42 = m2 = c0da = 8 · d · 2. Thus d = 1.
The code produces the candidate triple (2, 5, 8). We manually check the lattice perimeter: a + d + x =

2 + 1 + 1 = 4. Indeed, this triangle is one of the three triangles in the statement of Theorem 2.4. !

3. Elliptic fibrations

Definition 3.1. An elliptic fibration is a morphism from an irreducible projective surface S to a smooth 
curve, e.g. P 1, such that a general fiber is an elliptic curve. An elliptic fibration is called extremal if it has 
a section and the Mordell-Weil group of sections is finite.

Theorem 3.2. Each of the three lattice triangles with vertex sets {(0, 0), (2, 0), (5, 8)}, {(0, 0), (5, 0), (12, 20)}, 
and {(0, 0), (5, 0), (18, 45)} of Theorem 2.4 gives us a rational extremal elliptic fibration. The corresponding 
minimal rational elliptic fibrations are surfaces of types X141, X211, and X211 respectively [3]. That is, they 
have singular fibers of types I∗1 I4I1, II∗I1I1, and II∗I1I1 in Kodaira’s classification.

Proof. We show that if ∆ is one of the three triangles above, then L∆(m) is an elliptic fibration, i.e. a 
pencil which contains an elliptic curve. We then compute the minimal resolutions of each BleP (∆) and find 
the minimal model of the corresponding smooth rational elliptic fibration, and compute its Kodaira type. 
Since ∆ has a side of lattice length one, the toric boundary divisor corresponding to this side intersects the 
elliptic curve in exactly one point. Thus we have at least one section of the fibration. Table 1 in [3] then 
shows that the elliptic fibration is extremal.

Suppose that ∆ is one of our three triangles. Then m is equal to the width of ∆. Let (v, −u) be a 
vector which achieves m. Then the curve (xuyv − 1)m given by m copies of the one parameter subgroup has 
multiplicity m at e. Now, let s = b −mu and consider the curve g(x, y) = xs(xuyv − 1)m, which also has 
multiplicity m at e.

We claim that the exponents of monomials in Supp g are in ∆. To see this, write

g(x, y) =
m∑

i=1
(−1)ixs(xuyv)i.

So all of the exponents of monomials in g lie along the line from (s, 0) to m · (u, v) + (s, 0) = (b, mv). In 
each of our examples, (a, 0) · (v, −u) = m, so c = m2

a = amv
a = mv. Thus the endpoints of the line segment 

are in the convex polygon ∆, so the entire line segment lies in ∆. We conclude that g is in L∆(m). We will 
use the existence of g to find curves on BleP (∆) which we can contract to compute its minimal resolution.

Example 3.3. Consider the triangle ∆ = {(0, 0), (2, 0), (5, 8)} with m = 4. By Computation 3.4 below, the 
width of ∆ is achieved in the direction (2, −1). We expand g(x, y) = x(xy2 − 1)4 = x((xy2)4 − (xy2)3 +
(xy2)2 − xy2 + 1). One can verify visually that each of these monomials have exponents in ∆, as in Fig. 3.

Next, we compute using the Magma package “non-polyhedral” which is available on Github [2] that for 
each of our surfaces P (∆), there is an curve Γ in L∆(m) whose Newton polytope coincides with ∆. We 
include the m = 4 case as an example.

Computation 3.4. Let ∆ = {(0, 0), (2, 0), (5, 8)}. We find a curve Γ on X∆ which goes through the identity 
element of the torus with multiplicity 4. Our Γ is denoted f in the computation below. Here the command 
“Genus” gives the geometric genus of f .
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Fig. 3. The triangle ∆ for m = 4. All monomials in g are lattice points along the median.

> pol:=Polytope([[0,0],[2,0],[5,8]]);
> Width(pol);
4 {

(2, -1),
(-2, 1)

}
> f:=FindCurve(pol, 4, Rationals());
> f;
Curve over Rational Field defined by
9/4*x[1]^5*x[2]^8 - 8*x[1]^4*x[2]^6 + 15/2*x[1]^3*x[2]^4 + 2*x[1]^3*x[2]^3 +

2*x[1]^2*x[2]^3 - 6*x[1]^2*x[2] + x[1]^2 - 6*x[1]*x[2] + 17/4*x[1] + 1
> Genus(f);
1

We know that pa(C) = 1 by Proposition 4.2 of [1]. Thus we have that C is smooth, irreducible, and genus 
one, hence an elliptic curve.

We also need to check that Γ does not pass through the singularities of P (∆). As observed in Section 2, 
this is equivalent to the Newton polytope of Γ being equal to ∆. Again, we include the m = 4 case as an 
example.

Computation 3.5. We compute the Newton polytope of Γ.

> pol:=Polytope([[0,0],[2,0],[5,8]]);
> f:=FindCurves(pol, 4, Rationals())[1];
> Transpose(Matrix(Vertices(NPolytope(f))));
[5 2 0]
[8 0 0]

Let X = BleP (∆)), and C be the proper transform of Γ. Then both C and the proper transform g̃ of g
are in H0(X, C), and they are not the same curve, since one is an elliptic curve and the other is a rational 
curve. Thus for each of our surfaces, h0(X, C) ≥ 2. By Lemma 3.2 in [1], h0(X, C) = 2. Thus (X, C) gives 
an elliptic fibration.

To show that (X, C) is extremal, we compute the minimal resolution X̃ of X, and the minimal elliptic 
fibration Z of X̃. We recover the Kodaira type of Z, showing that the fibration is extremal.

Triangle 1: ∆ = {(0, 0), (2, 0), (5, 8)} with m = 4.
We compute the minimal resolution of X̃ of X, which is given by Fig. 4. The number on each curve in 

Fig. 4 indicates its self-intersection. The lines in bold are the curves of self intersection −1 given by the 
sides of ∆.

The curve g̃ in Fig. 4 is the proper transform of g(x, y) = x(xy2−1)4. The curve h̃ is the proper transform 
of the curve h(x, y) = x2y3 − 3xy + x + 1. We obtain h by factoring the adjoint linear system |K + C| into 
prime components as in Computation 3.6, where K is the canonical divisor on X.
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Fig. 4. Intersections of curves on X̃∆, where ∆ = {(0, 0), (2, 0), (5, 8)}.

Computation 3.6. Finding the factorization of |K + C| for ∆ = {(0, 0), (2, 0), (5, 8)}.

> pol := Polytope([[0,0],[2,0],[5,8]]);
> PolsAdjSys(pol);
[x[1]*x[2]^2 - 1, x[1]^2*x[2]^3 - 3*x[1]*x[2] + x[1] + 1]

By adjunction, (K + C) · C = 0, so h̃ and C are disjoint. In Computation 3.7 we check using Magma 
that g̃ and h̃ are curves of self-intersection −1 on X̃. This will later allow us to contract g̃ and h̃ using 
Castelnuovo’s contraction criterion.

Computation 3.7. Computing the self-intersection of C, g̃, and h̃ on X̃∆. The rows in the matrix return by 
AdjSys represent the classes of C, g̃, and h̃, respectively, in the Picard group of X̃∆. The last number in 
each row gives the multiplicity of the curve at e.

> adjsysmatrix := Matrix(Rationals(), #AdjSys(pol), #AdjSys(pol)[1], AdjSys(pol));
> adjsysmatrix;
[ 8 5 2 1 0 0 0 0 0 0 1 2 5 -4]
[ 2 1 0 0 0 0 0 0 0 0 0 0 1 -1]
[ 3 2 1 1 1 0 0 0 0 1 1 1 2 -2]
> matrix := imatS(pol);
> adjsysmatrix*matrix*Transpose(adjsysmatrix);
[ 0 0 0]
[ 0 -1 0]
[ 0 0 -1]

We also use Magma to calculate the intersections between g̃, ̃h, and the proper transforms of the toric 
boundary divisors of X∆, which are depicted in Fig. 4.

Computation 3.8. The intersection matrix of the minimal resolution X̃∆ of X∆.

> Transpose(Matrix(Reorder(Rays(Resolution(NormalFan(pol))))));
[ 0 -1 -2 -5 -8 -3 -1 1 3 8 5 2 1]
[ 1 1 1 2 3 1 0 -1 -2 -5 -3 -1 0]
> imatS(pol);
[-1 1 0 0 0 0 0 0 0 0 0 0 1 0]
[ 1 -2 1 0 0 0 0 0 0 0 0 0 0 0]
[ 0 1 -3 1 0 0 0 0 0 0 0 0 0 0]
[ 0 0 1 -2 1 0 0 0 0 0 0 0 0 0]
[ 0 0 0 1 -1 1 0 0 0 0 0 0 0 0]
[ 0 0 0 0 1 -3 1 0 0 0 0 0 0 0]
[ 0 0 0 0 0 1 -2 1 0 0 0 0 0 0]
[ 0 0 0 0 0 0 1 -2 1 0 0 0 0 0]
[ 0 0 0 0 0 0 0 1 -3 1 0 0 0 0]
[ 0 0 0 0 0 0 0 0 1 -1 1 0 0 0]
[ 0 0 0 0 0 0 0 0 0 1 -2 1 0 0]
[ 0 0 0 0 0 0 0 0 0 0 1 -3 1 0]
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Fig. 5. Intersections of curves on X̃∆, with ∆ = {(0, 0), (5, 0), (12, 20)}.

[ 1 0 0 0 0 0 0 0 0 0 0 1 -2 0]
[ 0 0 0 0 0 0 0 0 0 0 0 0 0 -1]

Each ray of the normal fan corresponds to a divisor in X̃∆. The toric boundary divisors corresponding to 
the sides of ∆ are given by (0, 1), (8, −3), and (8, −5) in the normal fan, which correspond to the curves of 
self-intersection −1 in the 14 ×14 intersection matrix given by Computation 3.8. We see from the exponents 
of g that g̃ intersects the curves given by ±(2, −1) in the normal fan, which correspond to rows 6 and 9 in 
the intersection matrix, thus allowing us to place g̃ in Fig. 4.

We can also see from the exponents of h that h̃ intersects the curves in the minimal resolution which 
given by (2, 3) and (1, 1) in the normal fan, thus allowing us to place it in Fig. 4.

The elliptic curve C, which is not pictured in Fig. 4, passes through each boundary divisor given by a 
side of ∆ with multiplicity equal to the lattice length of that side.

Since g̃ and h̃ each have self-intersection −1 on X∆, we can contract them using Castelnuovo’s contraction 
criterion. We obtain a configuration of −2 curves with Dynkin diagram D5 from contracting g̃, and A3 by 
contracting h̃, which correspond to singular fibers of Kodaira type I∗1 and I4. These fibers are pictured in 
Fig. 2. Since we have an elliptic fibration, the sum of the Euler characteristics of the singular fibers must 
be 12. So we must also have a singular fiber of type I1. Thus the Kodaira type is X141, and consequently 
the elliptic fibration is extremal [3].

Triangle 2: ∆ = {(0, 0), (5, 0), (12, 20)} with m = 10.
As in Computation 3.8, we obtain Fig. 5 by computing the normal fan and intersection matrix of ∆. By 

a Magma calculation, the width of ∆ is achieved in the direction (2, −1). The curve g̃ in Fig. 5 is the proper 
transform of g(x, y) = x2(xy2 − 1)10.

The curve h̃ in Fig. 5 is the proper transform of h(x, y) = x2y3 − 3xy + x + 1. As in the Triangle 1 
case, h(x, y) is a curve on P (∆) which is obtained by factoring the adjoint linear system |K + C| (see 
Computation 3.9).

Computation 3.9. Finding the factorization of |K + C| for ∆ = {(0, 0), (5, 0), (12, 20)}.

> pol := Polytope([[0,0],[5,0],[12,20]]);
> PolsAdjSys(pol);
[x[1]*x[2]^2 - 1, x[1]^2*x[2]^3 - 3*x[1]*x[2] + x[1] + 1]

The computation that g̃ and h̃ are disjoint and each have self-intersection −1 is identical to that of 
Computation 3.7, with the vertices of “pol” replaced by the vertices of Triangle 2.

Again, we can contract g̃ and h̃ using Castelnuovo’s contraction criterion. We obtain a configuration of 
−2 curves with Dynkin diagram E8 by contracting g̃. Similarly, we obtain a configuration of curves with 
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Fig. 6. Intersections of curves on X̃∆, with ∆ = {(0, 0), (5, 0), (18, 45)}.

Dynkin diagram A1 by contracting h̃. These correspond to singular fibers of Kodaira type II∗ and I1, 
respectively. Thus the Kodaira type is X211, and consequently the elliptic fibration is extremal [3].

Triangle 3: ∆ = {(0, 0), (5, 0), (18, 45)} with m = 15.
By a Magma calculation, the width of ∆ is achieved in the direction (3, −1). The curve g̃ in Fig. 6 is the 

proper transform of g(x, y) = x3(xy5 − 1)15. As in Computation 3.8, we obtain Fig. 5 by computing the 
normal fan and intersection matrix of ∆.

The curve h̃ in Fig. 6 is the proper transform of h(x, y) = x3y7−2x2y5−x2y4 +5xy2−3xy+x −1, which 
is obtained by factoring the adjoint linear system |K + C| (see Computation 3.10). The computation that 
g̃ and h̃ are disjoint and each self-intersection −1 is identical to that of Computation 3.7, with the vertices 
of “pol” replaced by the vertices of Triangle 3.

Computation 3.10. Finding the factorization of K + C for ∆ = {(0, 0), (5, 0), (18, 45)}.

> pol := Polytope([[0,0],[5,0],[18,45]]);
> PolsAdjSys(pol);
[x[1]*x[2]^3 - 1, x[1]^3*x[2]^7 - 2*x[1]^2*x[2]^5 - x[1]^2*x[2]^4 + 5*x[1]*x[2]^2

- 3*x[1]*x[2] + x[1] - 1]

Again, we can contract g̃ and h̃ using Castelnuovo’s contraction criterion. We obtain E8 by contracting 
g̃, and A1 by contracting h̃, which correspond to singular fibers of Kodaira type II∗ and I1, respectively. 
Thus the Kodaira type is X211, as in Triangle 2, and consequently the elliptic fibration is extremal [3]. !

Now that we know that (X∆, C) are elliptic pairs for each of our triangles ∆, we can combine this result 
with Theorem 2.4 to completely classify all toric elliptic pairs of Picard number two.

Theorem 3.11. Suppose that (X, C) is a toric elliptic pair, where X = Ble(P (∆) for some lattice tri-
angle ∆. Then ∆ is one of {(0, 0), (2, 0), (5, 8)} with m = 4, {(0, 0), (5, 0), (12, 20)} with m = 10, and 
{(0, 0), (5, 0), (18, 45)} with m = 15.

Proof. First, recall that SL2(Z)-equivalent polygons give rise to isomorphic toric surfaces. Thus Theorem 2.4
tells us that if ∆ is primitive, then ∆ can be transformed via an SL2(Z) transformation to one of the triangles 
listed in the theorem.

Write ∆ = {(0, 0), (a, 0), (b, c)} where (gcd(a, b, c) = k and m = |δ∆ ∩Z2|. Then m = kn for some n ∈ N.
Let ∆/k be {(0, 0), (a/k, 0), (b/k, c/k)}. Then ∆/k is primitive and satisfies the hypothesis of Theorem 2.4. 

So ∆/k is one of the three triangles listed in the theorem.
Since each of our triangles ∆/k gives an elliptic fibration, we know that dimL∆/k(n) = 2. Let {g, h}

be a basis of L∆/k(n). Then gk and hk are two linearly independent curves in L∆(m), so dimL∆(m) ≥ 2. 
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Fig. 7. Dynkin diagram of E8 labeled with simple roots.

Thus by Lemma-Definition 3.2 of [1], we have that dimL∆(m) = 2. Therefore, every member of L∆(m) is 
a linear combination of gk and hk, and thus factors nontrivally over C. But there must be an irreducible 
curve in L∆(m) by definition of a toric elliptic pair. Thus we have k = 1 and ∆/k = ∆. !

4. Elliptic pairs from a nodal cubic in P2

In this section, we will consider non-toric elliptic pairs coming from blow-ups of P 2 at nine points on the 
nodal cubic over an algebraically closed field of prime characteristic p.

Let C be the nodal cubic y2z = x2(x + z) in P 2. We will identify the smooth locus of C with Pic0(C), 
and Pic0(C) with Gm. We choose 1 ∈ Gm to be the flex point [0 : 1 : 0] of C. We say that a, q ∈ Q are 
multiplicatively independent in Q∗ if axqy = 1 implies that x = y = 0.

Let z1 = ... = z7 = 1, z8 = a, z9 = qa−1 with a, q ∈ Q multiplicatively independent. Let X be the blow-up 
of P 2 at the nine points z1, ..., z9, which is an infinitely near blow up for z1, ..., z7. That is, we consecutively 
blow up the point of intersection of the proper transform of C with the exceptional divisor of the previous 
blow-up. Let ā and q̄ be the reductions of a and q modulo p. Then (C, X) is an elliptic pair defined over Q. 
Thus by Definition 3.19 of [1], (C, X) gives rise to an arithmetic elliptic pair (C, X ) over a nonempty open 
subset U of Spec Z, where the geometric fiber (Cp, Xp) is an elliptic pair for every p in U .

Theorem 4.1. Let (C, X ) be the arithmetic elliptic pair [1] given by the procedure above, and defined over a 
nonempty open subset U of Spec Z, such that the geometric fiber (Cp, Xp) is an elliptic pair for every p in 
U . Then Eff(Xp) is polyhedral if and only if ā2 ∈ 〈q̄〉 ⊂ F∗

p .

Proof. There is a restriction map

res : Pic(X) → Pic(C)

which sends C⊥ into Pic0(C). Also, observe that C⊥/〈C〉 with an intersection pairing gives rise to the root 
lattice E8. In particular, the curves of self-intersection −2 on X are effective roots in E8. We will show that 
a certain subset of these effective roots generates a root sublattice of rank 7.

Let Ei be the exceptional divisor of the ith blow-up. For ease of notation, we will allow ourselves to 
denote the proper transform of Ẽi after the (i + 2)th blow-up as Ẽi, because Ẽi is disjoint from Ei+2 and 
is thus unchanged by the (i + 2)th blow-up. Thus Ei = Ẽi + ... + Ẽ6 + E7 for i ≤ 7. Then E2

i = −1 and 
Ei · Ej = 0 if |j − i| ≥ 1.

Let h be the class of a line in Pic0(C). We can label the Dynkin diagram of E8 with roots as in Fig. 7, 
all of which are effective except E7 −E8.

Since 1 is a flex point of C, the root (h −E1−E2 −E3) is realized by the class of a proper transform of a 
tangent line at 1, so it is indeed an effective root. Also, Ei −Ei+1 = Ẽi are effective roots for all 1 ≤ i ≤ 7. 
Computing the self-intersections, we see that (Ei −Ei+1)2 = −2. Also, since h is disjoint from E1, E2, and 
E3, we have (h − E1 − E2 − E3)2 = h2 − 2h(E1 + E2 + E3) + (E1 + E2 + E3)2 = 1 + 0 − 3 = −2. Finally, 
curves that correspond to adjacent nodes have intersection 1: (Ei − Ei+1)(Ei+1 − Ei+2) = −E2

i+1 = 1.
Because res(C⊥) lies in Pic0(C), we obtain an induced map

res : C⊥/〈C〉 → Pic0(C)/〈res(C)〉.
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Fig. 8. Contracting the E7 sublattice in X to obtain Y .

Table 1
Images of roots under the map res.
Roots Image in Pic0(C)/〈res(C)〉
Ei − E8, i < 8 a−1

Ei − E9, i < 9 a
E8 − E9 a2

h − Ei − Ej − E8, i < j < 8 a−1

h − Ei − Ej − E9, i < j < 8 a

Now, consider the root sublattice E7 of E8 generated by E1 −E2, ..., E6 −E7 and h −E1 −E2 −E3. The 
roots in E7 are mapped to 0 by res, because the corresponding curves are disjoint from C.

Furthermore, we can contract the effective roots in E7 to get a surface Y with a single Du Val singularity, 
as shown in Fig. 8.

From Corollary 3.14 in [1], Eff(X) is polyhedral if and only if Eff(Y ) is polyhedral. Since p(X) = 10, we 
see p(Y ) = 3. This allows us to use Corollary 3.18 in [1] to obtain a criterion for polyhedrality in our case: 
Eff(Y ) is polyhedral if and only if res(β) = 0 for some root β ∈ E8 \ E7.

We will interpret the condition res(β) = 0 in terms of a and q. First, we compute res(C) as follows:

res(C) = res(3h−
9∑

i=1
Ei) = 3 · res(h−E1 − E2 − E3) + 2(E1 + E2 + E3) −

9∑

i=4
Ei.

Since h − E1 − E2 − E3 is represented by a curve of self-intersection −2 disjoint from C, we have 
res(h − E1 − E2 − E3) = 0. Restricting each Ei to C gives Ei ∩ C = [zi], i.e. the class of the point zi in 
Pic0(C). Thus

res(C) = 2([z1] + [z2] + [z3]) −
9∑

i=4
[zi].

From our identification of Pic0(C) with Gm, we have

res(C) = (z1z2z3)2(z4...z9)−1 = (aqa−1)−1 = q−1.

Thus res(β) = 0 if and only if res(β) ∈ 〈q〉 in F∗
p . In Table 1, we analyze the image of the remaining roots 

of E8 = C⊥/〈C〉 which are not in E7, again using the identification with Gm. Note that since 1 is a flex 
point, we can identify h with the tangent line to C at 1 = z0. Then res(h) = 3[z0].
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Thus Eff(X) is polyhedral if and only if at least one of a and a2 is in 〈q〉. But if a is in 〈q〉, then so 
is a2. !

Next, we prove a lemma which tells us that the polyhedrality condition of Theorem 4.1 fails for a set of 
primes of positive density. This lemma is known to experts, but we could not find a reference.

Lemma 4.2. Let a, q ∈ Q be multiplicatively independent in Q∗. Consider the set

S(a, q)c = {p prime: ā /∈ 〈q̄〉 in F∗
p}.

Then S(a, q)c contains a set of prime numbers of positive density.

Proof. For ease of notation, we switch to writing a, q for the reductions of a, q modulo p. Observe that 
a ∈ 〈q〉 if and only if 〈a〉 ∈ 〈q〉 in F∗

p . Let o(x) denote the order of x in F∗
p . Since F∗

p is cyclic, 〈a〉 is in 〈q〉 if 
and only if o(a) divides o(q), if and only if [F∗

p : 〈q〉] | [F∗
p : 〈a〉].

Now, suppose l ∈ Z is a prime satisfying the conditions (i) l | [F∗
p : 〈q〉] and (ii) l " [F∗

p : 〈a〉]. Then 
[F∗

p : 〈q〉] " [F∗
p : 〈a〉]. Thus (i) and (ii) are sufficient conditions for a prime p to lie in S(a, q)c. The conditions 

(i) and (ii) can be rewritten by multiplying both sides by o(q)/l, o(a)/l respectively to get (i) q p−1
l = 1 in 

F∗
p and (ii) a (p−1)

l .= 1 in F∗
p .

Let K = Q(ζl, a
1
l , q

1
l ). We will proceed by encoding (i) and (ii) as conditions on the class of the Frobenius 

element of p in the Galois group of K over Q, and invoking Chebotarev’s density theorem.
By the assumption that a and q are multiplicatively independent in Q∗, we have (a, q) = 1 and that a, q

are not lth powers. Then the Galois group G of K/Q is isomorphic to Z×
l # (Zl ×Zl). Let ζ denote the lth 

root of unity. Then G is generated by elements of the form

σs : ζ (→ ζs

τt : q 1
l (→ ζtq

1
l

ρr : a 1
l (→ ζra

1
l ,

where if the action of σ ∈ G on an element α ∈ K is not written, then σ acts as the identity on α. We can 
thus identify G with 〈σ1〉 # (〈τ1〉 × 〈ρ1〉).

We proceed by writing Frobp = (σs, τt, ρr) and determining what s, t, and r must be. By definition of the 
Frobenius element, we have Frobp(ζ) = ζp. But by condition (i) we have p = 0 mod l. So if Frobp(ζ) = ζs, 
then s = 0. Similarly, we have Frobp(q

1
l ) = q

p
l . Suppose that condition (i) holds, i.e. q p−1

l = 1 in F∗
p . Then 

Frobp(q
1
l ) = q

1
l . So t = 0. By condition (ii), Frobp(a

1
l ) .= a

1
l . So r .= 0. Thus p satisfies (i) and (ii) if and 

only if in the Galois group G, Frobp is of the form (σ1, τ0, ρ*=0).
We check that these elements form a conjugacy class. Any element (σs0, τt0 , ρr0) in G is fixed by elements 

of the form τt, ρr. Conjugating by an element of the form σs gives (σs0 , τst0 , ρsr0). But since 1 ≤ s ≤ p − 1, 
we remain in the conjugacy class.

Applying the Chebotarev density theorem, we see that there are asymptotically (l−1)/((l−1) · l · l) such 
primes. !

In general, it is difficult to “patch” together different values of l to obtain an asymptotic density for 
S(a, q)c, since the probabilities given by the Chebotarev density theorem are not statistically independent 
[7]. However, Moree and Stevenhagen showed in Theorem 2 of [7] that assuming the generalized Riemann 
hypothesis, the density of S(a, q) can be precisely calculated to be

ca,q ·
∏

p prime

(
1 − p

p3 − 1

)
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where ca,q is a constant depending on a and q. The product 
∏

p prime

(
1 − p

p3−1

)
converges to the Stephens 

constant S, whose approximation to 50 decimal places is

S ≈ 0.57595996889294543964316337549249669250651396717649.

In the case that Q∗/〈−1, a, b〉 is torsion-free, then ca,b is between 0.981 and 1.024. Thus in this case (Xp, Cp)
has polyhedral effective cone for roughly 57% of primes, and non-polyhedral effective cone for roughly 43%
of primes.

Furthermore, a theorem of Heath-Brown tells us that for any three primes (a, b, c), Artin’s conjecture 
is true for at least one of a, b, and c [5]. Combined with Lemma 4.2, this allows us to explicitly construct 
surfaces with a polyhedral effective cone for a set of primes of positive density, and a non-polyhedral effective 
cone for a set of primes of positive density.

Corollary 4.3. Let C be the nodal cubic, with Pic0(C) identified with Gm. Let a, q ∈ Q be multiplicatively 
independent. Consider the surface Xq

p given by the blow-up of P 2 at z1 = ... = z7 = 1 and z8 = a, z9 = qa−1, 
where zi are points on the nodal cubic. Then at least one of X2

p , X
3
p , and X5

p has both a polyhedral effective 
cone for a set of primes of positive density, and a non-polyhedral effective cone for a set of primes of positive 
density.

5. Sage code for Section 2

5.1. Code for Section 2, Case 1

The following code finds triangles for which a
m > 2

3 .

# Check gcd conditions and bounds on a/m
def check(e, x, p, s, k):

d=(e*s*x+p)/2
a = e*s^2
c = e*(s+x)^2
m = e*s*(s+x)
return s>0 and gcd(a,d)==1 and (s-x)/s > 2/3 and m-a-d==gcd (2*d+a,c)

def check_integrality(k, y):
return k.is_integer () and int(k)%2==1 and y.is_integer () and y >= 0

# Loop over parameters (e, x, p)
k, y = var(’k,y’)
for x in range (1 ,5):

print("Solutions for t - s = %s" %x)
for e in range (1, floor (18/(x^2))):

for p in range (0, e*x^2):
rhs = 16*(e*x^2 -p)^2
divs = divisors(rhs)
for div in divs:

eqn1 = (e*x^2*k - 4*(e*x^2-p) - x*y == div)
eqn2 = (e*x^2*k - 4*(e*x^2-p) + x*y == rhs/div)
sol = solve ([eqn1 ,eqn2],k,y, solution_dict=True)
k1 = sol [0][k]
y1 = sol [0][y]
if check_integrality(k1, y1):

D = e^2*x^2*(4 -k1)^2 -8*e*(2*e*x^2 - p*k1)
s1 = 1/(4*e)*(-e*x*(4 -k1) + sqrt(D))
s2 = 1/(4*e)*(-e*x*(4 -k1) - sqrt(D))
for s in [s1 ,s2]:

if s.is_integer () and check(e,x,p,s,k1): print(sol)
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5.2. Code for Section 2, Case 2

The following code finds triangles for which 1
2 < a

m ≤ 2
3 .

# Loop over parameter k
possiblek = [4,5,7,8,9,10, 11]
for k in possiblek:

divs = divisors(k)
for x in divs:

for a in range(1, floor ((4*k*x)/(2*k -9))):
m1 = 1/2*(k*a + sqrt((k*a)^2 - 4*k*a*(a + x)))
m2 = 1/2*(k*a - sqrt((k*a)^2 - 4*k*a*(a + x)))
for m in [m1, m2]:

if m.is_integer () and a/m > 1/2:
print("k,a,x,m = %s,%s,%s,%s" %(k,a,x,m))

5.3. Code for Section 2, Case 3

The following code finds triangles for which 1
3 ≤ a

m ≤ 1
2 .

# Check that the lattice triangle is primitive
def primitive(b, c, x, y, m):

a = (m1-y)/2
d = m1 -a-x
b = b*d
c = c*d
return m>0 and gcd(a, gcd(b, c)) == 1

# Loop over parameters (b = b0 , c = c0 , x, y)
for b in range (3, 12):

for c in range(b+2, 12):
divs = divisors(c)
for x in divs:

for y in range (0, 2*x):
D = (2*c*x)^2 + 4*(c-4)*c*y*(y - 2*x)
m1 = 1/(2*(c -4))*(2*c*x + sqrt(D))
m2 = 1/(2*(c -4))*(2*c*x - sqrt(D))
for m in [m1 , m2]:

if m.is_integer () and gcd(b,c)==1 and primitive(b,c,x,y,m):
a = (m-y)/2
d = m-a-x
if x == gcd(b*d - a, c*d):

print("m,a,b,c= %s,%s,%s,%s" %(m,a,b*d,c*d))
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