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An elliptic pair (X,C) is a projective rational surface X with log terminal
singularities, and an irreducible curve C contained in the smooth locus of X, with
arithmetic genus 1 and self-intersection 0. They are a useful tool for determining
whether the pseudo-effective cone of X is polyhedral [1], and interesting algebraic
and geometric objects in their own right. Especially of interest are toric elliptic
pairs, where X is the blow-up of a projective toric surface at the identity element
of the torus. In this paper, we classify all toric elliptic pairs of Picard number two.
Strikingly, it turns out that there are only three of these. Furthermore, we study

a class of non-toric elliptic pairs coming from the blow-up of P2 at nine points on
a nodal cubic, in characteristic p. This construction gives us examples of surfaces
where the pseudo-effective cone is non-polyhedral for a set of primes p of positive
density, and, assuming the generalized Riemann hypothesis, polyhedral for a set of

primes p of positive density.
© 2023 The Author(s). Published by Elsevier B.V. This is an open access article
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The effective cone of a projective variety X and its closure, Eff(X), are well-studied invariants of X. In
particularly nice cases Eff(X) is polyhedral. This is true, for example, when X is a projective toric variety.
However, in general it is difficult to determine for an arbitrary projective surface X whether Eff(X) is
polyhedral. Recent work by Castravet, Laface, Tevelev, and Ugaglia [1] has shown that in the presence
of a curve C on X satisfying certain properties, a polyhedrality criterion can be obtained in terms of the
group structure of Pic(C). Using this criterion, they were able to prove that the Grothendieck-Knutsen
moduli space Wm of stable rational curves has a non-polyhedral effective cone for n > 10, by proving the
corresponding statement for blow-ups of certain toric surfaces P.

More precisely, an elliptic pair (X,C) is a projective rational surface X with log terminal singularities,
and an irreducible curve C' contained in the smooth locus of X, such that the arithmetic genus of C' is one
and C? = 0. These elliptic pairs are not only useful for determining the polyhedrality of Eff(X), but are
also interesting geometric and arithmetic objects in their own right. In this paper we will construct elliptic
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Fig. 1. Intersections of curves on X, where A = {(0,0),(2,0), (5,8)}.

pairs in two ways: first from blow-ups of toric surfaces of Picard number one, and then from blow-ups of P2
at nine points on a nodal cubic.

In Section 2 we follow the procedure given in [1] to construct toric elliptic pairs (X, C), which arise from
lattice polygons A satisfying certain combinatorial properties. In this case X will be the blow-up of P(A) at
the identity element e of the torus. We may denote X instead by X if we wish to emphasize an underlying
lattice polygon of X.

In [1] a number of interesting classification questions were raised. For instance, it is known that there are
infinitely many pentagons which give rise to toric elliptic pairs with non-polyhedral effective cone. However,
classification of quadrilaterals giving toric elliptic pairs is not known. Moreover, we do not have any examples
of toric elliptic pairs (X, C) where X has Picard number three and Eff(X) is non-polyhedral (see Remark
4.5 of [1]).

In this paper we completely classify all toric elliptic pairs coming from triangles, i.e. where X has
Picard number two, the smallest possible. Strikingly, unlike the pentagon case, we prove that combinatorial
restrictions allow only three such pairs.

Theorem 1.1. There are only three toric elliptic pairs (X, C') where X has Picard number two. They are given
by lattice triangles A with vertices {(0,0),(2,0),(5,8)} with m = 4, {(0,0),(5,0),(12,20)} with m = 10,
and {(0,0), (5,0), (18,45)} with m = 15, where m is the width of A.

Remark 1.2. Since X has Picard number two in all of these cases, the effective cone is two-dimensional and
generated by C' and the exceptional divisor F over the identity element of the torus. Thus in this case the
polyhedrality question is trivial and we are really only interested in the problem of classifying these pairs.

In Section 3 we show for each lattice triangle A in Theorem 1.1 that A gives rise to an extremal elliptic
fibration. We will compute the singular fibers and Kodaira type. Fig. 1 shows the curves on the minimal
resolution X of X for the m = 4 case. Here the underlying elliptic pair is (X, C). The curve C, which is not
pictured in Fig. 1, passes through each boundary divisor given by a side of A with multiplicity equal to the
lattice length of that side.

The curves § and h in Fig. 1 are additional curves of self-intersection —1 on X, which are obtained by
analyzing curves on X as in will be described in Section 3.

By Castelnuovo’s contraction criterion, we can then contract § and & to obtain the minimal model Z of
X. Fig. 2 shows the singular fibers obtained for the m = 4 case.

Sections 2 and 3 also answer a question posed by Gonzélez-Anaya, Gonzdlez, and Karu in [8] and Kurano
in [9]: are there negative curves with positive genus on Bl.P(A) where A is a lattice triangle? A negative
curve C' in X is defined as a curve on BI.P(A) of non-positive self-intersection. Our toric elliptic pairs
(BI.P(A)), C) provide an example of such curves, since by the definition of an elliptic pair we have C? = 0
and p,(C) = 1.
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Fig. 2. The singular fibers of the minimal elliptic fibration Za, where A = {(0,0), (2, 0), (5,8)}.

The paper [1] also studies the distribution of primes p such that the reduction of the toric elliptic pair
(X, C) modulo p, where C is an elliptic curve, has non-polyhedral effective cone. This is related to deep
conjectures in arithmetic geometry of elliptic curves, including the Lang-Trotter conjecture [10].

In Section 4, we study an analogous question for a class of (non-toric) elliptic pairs, which come from
blow-up of P2 at nine points on a nodal cubic C. Instead of the Lang-Trotter conjecture, which concerns
the arithmetic of elliptic curves, we will study connections to Artin’s conjecture, which can be interpreted in
terms of the arithmetic of nodal cubics. This construction gives us examples of surfaces where the pseudo-
effective cone is non-polyhedral for a set of primes p of positive density, and, assuming the generalized
Riemann hypothesis, polyhedral for a set of primes p of positive density.

For our construction, we identify the smooth locus of the nodal cubic C with Pic’(C), and Pic’(C) with
Gy, in such a way that 1 € G,, is a flex point of C. We say that a,q € Q are multiplicatively independent in

Q*ifa®qV = 1impliesthat t =y =0.Let z2; = ... = 2y = 1, 23 = a, 29 = qa !

with a, ¢ € Q multiplicatively
independent. We construct X to be the blow-up of P2 at the nine points 21, ..., 29, which is an infinitely near
blow up for z1, ..., z7. That is, we consecutively blow up the point of intersection of the proper transform of
C with the exceptional divisor of the previous blow-up. Let a and ¢ be the reductions of a and ¢ modulo p.

The surface X defined this way and the proper transform of C give an arithmetic elliptic pair (C, X)
[1]. That is, (C,X) are a pair of schemes which are flat over a nonempty open subset U of Spec Z, such
that the geometric fiber (Cp, X,) is an elliptic pair for every p in U. In this setting, we derive the following

arithmetic condition for polyhedrality.

Theorem 1.3. The pair (C, X) gives an arithmetic elliptic pair [1] over a nonempty open subset U of Spec Z,
such that the geometric fiber (Cp, Xp) is an elliptic pair for every p in U. Then E(Xp) is polyhedral if and
only if a®> € (q) C Fy.

The question of when the condition in Theorem 1.3 holds has been studied extensively in number theory.
More precisely, consider the set of primes p for which the condition is satisfied:

S(a,q) = {p prime: a € (q) CF,}.

We show in Lemma 4.2 that the set S(a, ¢)° contains a set of prime numbers of positive density. That is,
there is a set of primes of positive density for which Eff(X,,) is not polyhedral.

We also mention some known results about S(a,q). First, by a theorem of Pélya [6], S(a, q) is infinite.
Therefore, ﬁf(Xp) is polyhedral for infinitely many primes. Furthermore, by Moree and Stevenhagen [7],
assuming the generalized Riemann hypothesis, S(a, q) has positive density in the set of all prime numbers.

Another useful result is Artin’s conjecture on primitive roots, which states that if ¢ € Z is neither a
perfect square nor —1, then ¢ mod p generates I, for a set of primes p of positive density. If Artin’s
conjecture holds, we see that S(a,q) will contain a set of positive density in the prime numbers.

By work of Hooley [4], Artin’s conjecture follows from the generalized Riemann hypothesis. Thus by
either Artin’s conjecture or the work of Moree and Stevenhagen, if we accept the generalized Riemann
hypothesis, there exists a set of primes of positive density for which Eff(X,,) is polyhedral.
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Finally, a theorem of Heath-Brown tells us that for any three primes (a, b, ¢), Artin’s conjecture is true
for at least one of a,b, and ¢ [5]. Combined with Lemma 4.2, this allows us to construct surfaces with a
polyhedral effective cone for a set of primes of positive density, and a non-polyhedral effective cone for a set
of primes of positive density. We construct such a surface concretely in Lemma 4.3.

1.1. Acknowledgments

I am grateful to my senior thesis advisor, Jenia Tevelev, for his guidance and extensive feedback through-
out this work. I would also like to thank Tom Weston for helpful discussions. This project has been partially
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2. Toric elliptic pairs from triangles

We make preparations to define a toric elliptic pair, as in [1]. First, given a lattice polygon A, we define
a morphism

2
ga : G — PIANZTI-1

x s [2'y) 2 (i,7) € ANZ?

We let P(A) be the closure of the image of ga, and e = ga(1,1). We denote by L the linear system of
hyperplane sections. Then any f in LA can be written as a Laurent polynomial with exponent vectors in
A. That is,

f= Z aijrty’ € klzE yH.
(i,5)€A

Given a positive integer m, we define LA (m) to be the linear subspace of LA consisting of the curves
having multiplicity at least m at e. Finally, we let Vol(A) be twice the Euclidean area of A, so that Vol(A)
will be an integer.

Definition 2.1. Suppose there exist A and m such that the following conditions hold:

(i) Vol(A) = m?;
(ii) [0ANZ2| = m;
(iii) There is an irreducible curve I" in £ (m) such that

(a) T has multiplicity m at e
(b) The Newton polygon of I' coincides with A.

Let C be the proper transform of I under the blow-up. Then we call (Bl,(P(A), C) a toric elliptic pair.

Remark 2.2. Theorem 4.4 of [1] proves that (Bl.P(A), C) is an elliptic pair. In particular, (i), (ii), and (iiia)
tell us that C has arithmetic genus 1, and (iiib) tells us that ' does not pass through the singularities
of P(A). Thus C does not pass through the singularities of Bl.IP(A). Also, note that in the definition of
toric elliptic pair given in [1] the authors additionally require that dim £a(m) = 1. However, their proof of
Theorem 4.4 does not use this fact, so we have dropped this assumption in Definition 2.1.

We call a lattice triangle primitive if ged(a, b, ¢) = 1. Now we can state our main theorem. In this section
we will prove that there are at most three toric elliptic pairs of Picard number two, given by a primitive
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lattice triangle. In the next section we will verify that each of the lattice triangles in Theorem 2 actually
gives us a toric elliptic pair, and show that non-primitive triangles cannot give toric elliptic pairs. In the
rest of this paper we will take “triangle” to mean “lattice triangle.”

As one may see from Definition 2.1, not all lattice polygons give toric elliptic pairs. In Lemma 2.3 we
prove an additional arithmetic condition on the triangles A which do give toric elliptic pairs, in terms of
the width of A. Theorem 2.4 shows that the arithmetic conditions from Lemma 2.3 and (i) and (ii) of
Definition 2.1 are only satisfied for three primitive lattice triangles, up to SLy(Z) transformation.

Lemma 2.3. Let A be a lattice polygon, let X = Bl.P(A) and suppose (X,C) is a toric elliptic pair. Let
m = |0A N Z2|. Then the width of A is > m.

Proof. Pick a primitive vector A in the lattice Z? of one-parameter subgroups. Let Dy be the prime divisor
of P(A) given by the closure of the corresponding one-parameter subgroup. More explicitly, if A = (i, j) the
corresponding one-parameter subgroup is (¢,¢7), which is given by the equation 27 = y.

Let H be a very ample divisor on P(A) that gives a linear system L£a. Let wy be the width of A along
A. Then wy = H - D)\.

Now, consider the proper transform bv,\ in the blow-up Bl.IP(A). Since D) goes through the identity with
multiplicity one, we have E - bv)\ = 1. We also have 7*H ~ C' + mFE.

By the projection formula,

wy=H-Dy, =na"H - Dj.
So we have

wy = (C+mE)-Dy=C-Dy+m(E-D,)
:C’-D\j\—I—m.

The Newton polygon of C is A by (iii) of Definition 2.1. However, the Newton polygon of D, is a line
segment. Thus they are not translates of one other. This tells us that the proper transforms of C' and D)
are two different irreducible curves on the blow-up. Thus C' - Dy > 0, giving us that wy > m. O

We begin by choosing representatives for equivalence classes of polygons under transformations in SLy(Z).
Every triangle is equivalent to a triangle with vertex set {(0,0), (a,0), (b,c)} such that a > 0 and 0 < b < c.

Theorem 2.4. Let A be a primitive lattice triangle with width w. Let m = |6A N Z2|. Suppose

(i) w>m;
(ii) m? is twice the Buclidean area of A.

Then A can be obtained via an SLy(Z) transformation from one of {(0,0),(2,0),(5,8)} with m = 4,
{(0,0), (5,0), (12,20)} with m = 10, and {(0,0), (5,0), (18,45)} with m = 15.

Proof. Note that by definition of the area of A we have m? = ac. Also, the lattice lengths of the sides of A
are a, ged(b, ¢), and ged(a — b, ¢). Thus a + ged(b, ¢) + ged(a — b, ¢) = m.

By assumption, the width of A is at least m. Let A = (1,—1) and v = (1,0). Then we have wy =
a—(b—c)=a—b+cand w, = max{a,b}. Then a — (b —¢) > m and max{a,b} > m. But we know a < m,
so max{a, b} = b > m. Rearranging, we get that m —a <c—b<c—m.

Let & = ¢ — b. Observe that we can impose any ordering on the lattice lengths of the sides of A. Then
we have the following conditions, where (3) is the ordering of side lengths we impose:
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m? = ac (1)

a+ ged(b,e) +ged(V) +a,c) =m (2)
a>ged(d',c) > ged(b +a,c) (3)
m—a<b <c—m. (4)

In particular, by the ordering encoded by (2) and (3), we have £ > % We proceed by cases, considering

different possible values of .

a
m

Case 1: - > %
We will prove an upper bound for an expression involving a, m, and c. First, observe that & = = <
Thus by (4) we have

[\GI[9%)

m—agb'<g(m—a). (5)

Also, by (2) and (3) we have m —a > ged(b', ¢) > ™%, Since by (4) we have b’ > m — a, we cannot have
Y = ged(V, c). But by (5) we also have b’ < 3(m — a) < 3ged(V, ¢). Thus b = 2ged(V, c).
Let d = ged (¥, ¢). Then b’ = 2d and ¢ = kd for some odd k in Z. By (4) we have

c—m

d 1
< —
m—a~ 2 m-—a

<

23

3
=

N W

| =
| =

Then by (2), ged(b' + a,¢) > 1(m — a). On the other hand, ged(a,d) = 1 implies ged(b' + a,c) =
ged(2d + a, k). Thus we have k > ™%,
Also, from condition (2) we have d 4+ ged(b’ + a,c¢) = m — a. Combining this with (3) we get d > 22

2_ .
Thus we obtain

B (m—a)?® 1
C—kd>T—§~a(c—2m+a). (6)

We also have & = (m)Q < 2. Combining this with (6) we see §(c — 2m + a) <

a

< %. Clearing

c
a

denominators we obtain our promised upper bound:

c—2m+a < 18. (7)

Now, consider the following parameterization of the equation ac = m?: a = es?,c = et?, and m = ets,
where e, t,s € Z and ged(t, s) = 1. Then our inequality (7) becomes (t — s)?e < 18. This leaves finitely many
pairs (t — s, e) to consider.

Let x = ¢ — s. Then inequality (4) becomes
esx < 2d < e(s+ x)x. (8)
Thus we can write 2d = esz + p where 0 < p < ez? < 18. From the equation ¢ = kd we get
2e(s + x)* = k(esx + p). 9)
Equation (9) gives us a family of diophantine equations in s and k with a finite set of parameters (e, z, p).

We will proceed by solving this family of diophantine equations abstractly in terms of e, z, and p, and using
a computer to substitute particular values of (e, z, p).
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We rearrange equation (9) into quadratic form with respect to s, obtaining 2es®+ex(4—k)s+2ex?—pk = 0.
Solving for s, we obtain

1
s= 4—(—635(4 — k)£ VD), D = e*2?(4 — k) — 8e(2ex? — pk).
e

Since —ex(4 — k) + VD is in 47, we see that v/D must be in Z. Let y = v/D. Then we solve

y’=D
= e%2%(4 — k)% — 8e(2ex? — pk)
= (ex)?k? — 8e(ea® — p)k.

Completing the square with respect to k gives us

(exk — (em - g))2 =y + 16 (em — 5)2

Multiplying by 22 on each side to clear denominators gives us (ex?k —4(ex? —p))? = y?2? + 16(ex?® — p)2.
We can then factor the difference of squares to obtain

(ex?k — 4(ex? — p) — xy)(ex’k — (ex? — p) + xy) = 16(ex? — p)2. (10)

Now we simply need to plug in values of e,x, and p such that 0 < p < ex? < 18 and factor the right
hand side of (10). We will obtain a finite list of options for k& and y for each choice of (e, x,p) by solving
two linear equations in two variables. We can further subject (k,y) to the conditions that & is odd and that
ged(a,d) = 1. Each choice of (k,y) will give us two options for s (corresponding to /D). Thus we can
completely check all possible triangles.

Finally, by condition (2), we have m — a — d = ged(2d + a,c¢). Without this condition, we have five
candidate triangles. With this condition added, we have none. Sage code which executes the algorithm just
described is included in Section 5.1.

Case2:%<%§%.

Observe that == = ™ < 2. Thus by condition (4) we have m —a < b < 2(m — a). Also, by conditions
(2) and (3) we have m —a > ged(b', c) > ™52, Thus we have O/ = 2d or b’ = 3d.

We will use the bounds on -~ to bound possible k, where k = § is as in case 1.

By conditions (2) and (3) we obtain % > d > . Re-arranging and substituting k = 5, we obtain

o(2)=r2(2)

Now recall that m? = ac. Thus % . % = 1. But we also have % < % < % Thus 2 > % > % Substituting
these inequalities into our bounds on k, we obtain
12>k > 3. (11)

Suppose b’ = 2d. Since (V',c) = d, we know k must be odd. Thus we obtain a finite list of options:
k=5,7911.

Next, suppose b = 3d. Then k cannot be divisible by 3. Thus we obtain a finite list of options: k =
4,5,7,8,10, 11.
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Furthermore, by condition (2) and ged(a,d) = 1, we have that d = m — a — ged(2d + a, k). Let z =
ged(2d+a, k). Then  must divide k. Thus we obtain a finite family of diophantine equations in (a, m) with
parameters (k, z):

m? = ac = kda = ka(m — a — ). (12)

Putting equation (12) into quadratic form with respect to " and solving gives us

2(%):ki,Mﬁ—4k—4%? (13)

< =< 3,80

wWino

But recall we have % L
m

3§2(%)<4. (14)

Since k > 4 by equation (11) we have k + {/k2 — 4k — 452 > 4. Thus the larger root in (13) will always
fall outside the bound given in (14), and we can restrict our attention to the smaller root.
Suppose that k = 4. Then equation (11) has no real solutions. Thus we must have k > 4.

Since k > 4 we have that 2k — 9 > 0. Now, suppose that a > Qik_””g. Then 2k — 4%“’ > 9. Adding
k? to both sides, we get k* — 6k +9 < k* — 4k — 452 Thus k — 3 < y/k? — 4k — 4%2_ Finally, we see

3>k —/k?—4k — 4%”, which falls outside of our bound in (14). Thus if (14) is satisfied, we must have

4kx
—2k—9

a (15)
We thus have a finite family of triples (k, a, z), which we can use to solve the equation m? = ka(m—a—zx)
for possible m. We can then check for each m obtained this way that m is in an integer, and that =~ > %
The code for this procedure is included in Section 5.2.
Running the code results in the candidates:

k=5 a=9, =1, m=15
k=5 a=45 =5 m="75.

Finally, we determine whether candidate triangles (m,a,c) listed above are primitive lattice triangles
satisfying the conditions (1) through (4).

Candidate 1: We calculate d = m — a — ged(2d 4 a,k) = 5. Then ¢ = kd = 5-5 = 25. Next, suppose
b =2d. Then b =c—2d =25—2-5=15. Thus we get the triangle {(0,0), (9,0), (15,25)}. This triangle is
SL2(Z) equivalent to {(0,0), (5,0), (18,45)}, and the remaining conditions can be easily checked.

If we instead suppose that b’ = 3d, we get b = 10. Thus we get the triangle {(0,0),(9,0), (10,25)}.
However, this does not satisfy (4), as 10 = b % m = 15.

Candidate 2: We calculate d = m —a — ged(2d + a, k) = 25. Thus ¢ = kd = 125. Then V' = 2d or V/ = 3d.
Thus b = 50 or 75. In either case, the lattice triangle we obtain is not primitive, i.e. ged(a, b, c) > 1.

I=

Case 3: % < % < .
Observe that ged(b, ¢) = ged(b',¢) = d. Let b = bod and ¢ = c¢od. Recall that by condition (3), we have
d > ged(b' + a,c). So by condition (2) we get that d > ™52, But since a < % we get d > 7. Also, using

a > and condition (1), we get ¢ = () m < 3m. Thus we have

[« V]
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cod < 3m =12 (%) < 12d.
We also have that b > m > 2d. Thus by > 3. To summarize, we’ve obtained the finite list of possibilities
3< by <co <12
From condition (4) we also have co — by > %. From condition (3) we have m > 2a > 2d, so % < 2. So
Co — bo > 2.
Let z = ged(b' + a, ¢) ged(b — a, ¢). Since 1 = ged(a, b, ¢) = (a,d), we get

x = ged(bod — a, cod) = ged(bod — a, co)|co.

Thus we have a finite list of possible z. By condition (2), we have d = m —a — . From this and condition
(3) we get that m > 2d = 2(m — a — z). Simplifying, we obtain

m m — 2x
— >a > .
2 - = 2

m—2x
2

Thus we can consider the finite list a = 7, ..., . Suppose a = “5¥ where 0 < y < 2z. We also have

¢ = cod = co(m — a — ). Substituting for a and ¢ into the equation ac = m?, we obtain
(5o (5 ) =
2 2 '
Simplifying, we obtain the following quadratic equation in m:
(co — 4)m? — 2cozm — coy(y — 22) = 0. (16)

We can solve equation (16) for m for each of a finite family of parameters (bg, co, z,y) subject to the
conditions 0 < y < 2z, x divides ¢g, 3 < by < ¢g < 12, and ¢y — by > 2. Then we check whether the m
obtained is an integer and whether the lattice triangle is primitive. The code for the procedure described
in this paragraph is given in Section 5.3. Finally, we check that our candidate triples (a,b,c) satisfy (1)
through (4).

By running the code in Section 5.3, we obtain the triples

m=23:(1,5,9)
m=4:(2,3,8),(2,5,8)
m=26:(3,8,12)

m =10 (5,12,20).

We eliminate (1,5,9), since the width of the corresponding triangle is 2. We eliminate (2, 3, 8), since the
width of the corresponding triangle is 3. We eliminate (3, 8,12) because the number of lattice points on the
boundary is 8. The other two triples satisfy all of conditions (1) through (4).

Example 2.5. We include an example of how the code in Section 5.3 will proceed for a particular choice of
(bo, co, x,y). Suppose by = 5 and ¢y = 8. Then = = 1,2,4,8 are possibilities. Equation (16) gives us

4m? — 16xm + 8(2xy — y*) = 0.
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Suppose = 1 and y = 0. Then we obtain m? — 4m = 0. Thus m = 4. Then a = @ = 2. To calculate d, we

2
solve 42 =m? = cpda =8 -d-2. Thus d = 1.
The code produces the candidate triple (2,5,8). We manually check the lattice perimeter: a + d + z =
2+ 1+ 1 =4. Indeed, this triangle is one of the three triangles in the statement of Theorem 2.4. 0O

3. Elliptic fibrations

Definition 3.1. An elliptic fibration is a morphism from an irreducible projective surface S to a smooth
curve, e.g. P!, such that a general fiber is an elliptic curve. An elliptic fibration is called extremal if it has
a section and the Mordell-Weil group of sections is finite.

Theorem 3.2. Fach of the three lattice triangles with vertez sets {(0,0), (2,0), (5,8)}, {(0,0), (5,0), (12,20)},
and {(0,0),(5,0), (18,45)} of Theorem 2.4 gives us a rational extremal elliptic fibration. The corresponding
minimal rational elliptic fibrations are surfaces of types X141, X211, and Xo11 respectively [3]. That is, they
have singular fibers of types 131411, II* 1111, and IT*11 1, in Kodaira’s classification.

Proof. We show that if A is one of the three triangles above, then £ (m) is an elliptic fibration, i.e. a
pencil which contains an elliptic curve. We then compute the minimal resolutions of each BI.P(A) and find
the minimal model of the corresponding smooth rational elliptic fibration, and compute its Kodaira type.
Since A has a side of lattice length one, the toric boundary divisor corresponding to this side intersects the
elliptic curve in exactly one point. Thus we have at least one section of the fibration. Table 1 in [3] then
shows that the elliptic fibration is extremal.

Suppose that A is one of our three triangles. Then m is equal to the width of A. Let (v,—u) be a
vector which achieves m. Then the curve (z%y?” — 1)™ given by m copies of the one parameter subgroup has
multiplicity m at e. Now, let s = b — mu and consider the curve g(z,y) = z*(z*y® — 1)™, which also has
multiplicity m at e.

We claim that the exponents of monomials in Supp g are in A. To see this, write

m

glz,y) = > (—1)'a(a"y")".

i=1

So all of the exponents of monomials in g lie along the line from (s,0) to m - (u,v) + (s,0) = (b, mv). In

amuv

each of our examples, (a,0) - (v, —u) =m, so ¢ = m? _ = muw. Thus the endpoints of the line segment

a
are in the convex polygon A, so the entire line segment lies in A. We conclude that g is in LA (m). We will

use the existence of g to find curves on Bl.P(A) which we can contract to compute its minimal resolution.

Example 3.3. Consider the triangle A = {(0,0), (2,0), (5,8)} with m = 4. By Computation 3.4 below, the
width of A is achieved in the direction (2, —1). We expand g(z,y) = x(zy? — 1)* = z((zy*)* — (23?)3 +
(ry?)? — xy? + 1). One can verify visually that each of these monomials have exponents in A, as in Fig. 3.

Next, we compute using the Magma package “non-polyhedral” which is available on Github [2] that for
each of our surfaces P(A), there is an curve I' in £a(m) whose Newton polytope coincides with A. We
include the m = 4 case as an example.

Computation 3.4. Let A = {(0,0),(2,0),(5,8)}. We find a curve T' on XA which goes through the identity
element of the torus with multiplicity 4. Our I' is denoted f in the computation below. Here the command
“Genus” gives the geometric genus of f.
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Fig. 3. The triangle A for m = 4. All monomials in g are lattice points along the median.

\'2

pol:=Polytope([[0,0],[2,0],[5,8]]1);
Width(pol) ;
{

(2, -1),

(-2, 1)

sV

}

> f:=FindCurve(pol, 4, Rationals());

> f;

Curve over Rational Field defined by

9/4*xx[1]"5*x[2] "8 - 8%x[1]"4*x[2]76 + 15/2*x[1]"3*x[2]"4 + 2*x[1]"3*x[2]"3 +
2xx[1]72*%x[2]73 - 6*x[1]172*x[2] + x[1]172 - 6*xx[1]*x[2] + 17/4*x[1] + 1

> Genus(f);

1

We know that p,(C) = 1 by Proposition 4.2 of [1]. Thus we have that C' is smooth, irreducible, and genus
one, hence an elliptic curve.

We also need to check that T' does not pass through the singularities of P(A). As observed in Section 2,
this is equivalent to the Newton polytope of I' being equal to A. Again, we include the m = 4 case as an
example.

Computation 3.5. We compute the Newton polytope of T.

> pol:=Polytope([[0,0],[2,0],[5,8]]1);

> f:=FindCurves(pol, 4, Rationals())[1];

> Transpose(Matrix(Vertices(NPolytope(£))));
[5 2 0]

[8 0 0]

Let X = Bl.P(A)), and C be the proper transform of I'. Then both C' and the proper transform g of g
are in H°(X, C), and they are not the same curve, since one is an elliptic curve and the other is a rational
curve. Thus for each of our surfaces, h°(X,C) > 2. By Lemma 3.2 in [1], h°(X,C) = 2. Thus (X, C) gives
an elliptic fibration.

To show that (X, () is extremal, we compute the minimal resolution X of X , and the minimal elliptic
fibration Z of X. We recover the Kodaira type of Z, showing that the fibration is extremal.

Triangle 1: A = {(0,0), (2,0), (5,8)} with m = 4.

We compute the minimal resolution of X of X , which is given by Fig. 4. The number on each curve in
Fig. 4 indicates its self-intersection. The lines in bold are the curves of self intersection —1 given by the
sides of A.

The curve § in Fig. 4 is the proper transform of g(x,y) = z(zy?—1)*. The curve h is the proper transform
of the curve h(x,y) = 2?y> — 3zy + z + 1. We obtain h by factoring the adjoint linear system |K + C| into
prime components as in Computation 3.6, where K is the canonical divisor on X.
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-3

Fig. 4. Intersections of curves on X, where A = {(0,0), (2,0),(5,8)}.

Computation 3.6. Finding the factorization of |K + C| for A = {(0,0), (2,0),(5,8)}.

> pol := Polytope([[0,0],[2,0],[5,8]1);
> PolsAdjSys(pol);
[x[1]1*x[2]1"2 - 1, x[1]1"2*x[2]"3 - 3*x[1]1*x[2] + x[1] + 1]

By adjunction, (K + C) - C = 0, so h and C are disjoint In Computation 3.7 we check using Magma
that § and h are curves of self-intersection —1 on X. This will later allow us to contract g and h using
Castelnuovo’s contraction criterion.

Computation 3.7. Computing the self-intersection of C, §, and h on S(X. The rows in the matrixz return by
AdjSys represent the classes of C, g, and h, respectively, in the Picard group of Xa. The last number in
each row gives the multiplicity of the curve at e.

adjsysmatrix := Matrix(Rationals(), #AdjSys(pol), #AdjSys(pol)[1], AdjSys(pol));
adjsysmatrix;
8 5 2 1

2 1 0 O

3 2 1 1
matrix := imatS(pol);
adjsysmatrix*matrix*Transpose(adjsysmatrix);
0 0 0]

0-1 0]

0 0 -1]

-4]
-1]
-2]

= O O«

0
0
0

o O O
o O O
o O O
= O O

1
0
1

= O N

5
1
2

m VY Vesaes VoV

We also use Magma to calculate the intersections between §, h, and the proper transforms of the toric
boundary divisors of X, which are depicted in Fig. 4.

Computation 3.8. The intersection matriz of the minimal resolution S(X of Xa.

> Transpose (Matrix(Reorder (Rays (Resolution(NormalFan(pol))))));
[0-1-2-5-8-3-1 1 3 8 5 2 1]
[1 11 2 3 1 0-1-2-56-3-1 0]

> imatS(pol);

[T 1 0 0 0O0OOO O OO0 O0 1 0]
[1t-2 1 0 0 0OOO O OO O O 0]
[0 1-3 1. 0 0 0O OO O 0 0 0]
[o 0O01-2 1 0 0 0 0O O O 0O 0 0]
[o 00 1-1 1 0 0 0O OO O O O]
[o 000 1-31 00 0O O O O]
[o 00 0O 1-21 00 0 0 0 0]
[o 00 0O 0 1-21 0 0 0 0 0]
[o 0o 00 00O 1-3 10 0 0 0]
[o 0o 00 OO OO 1-1 1 0 0 0]
[o 0o 0O0OO OO OO OT1-21 0 0]
[0 00O0OO0OUOO0OO1-3 1 0]




E. Pratt / Journal of Pure and Applied Algebra 227 (2023) 107323 13

Fig. 5. Intersections of curves on )f(z, with A = {(0,0), (5,0), (12, 20)}.
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Each ray of the normal fan corresponds to a divisor in j(z . The toric boundary divisors corresponding to
the sides of A are given by (0,1), (8, —3), and (8, —5) in the normal fan, which correspond to the curves of
self-intersection —1 in the 14 x 14 intersection matrix given by Computation 3.8. We see from the exponents
of g that g intersects the curves given by +(2, —1) in the normal fan, which correspond to rows 6 and 9 in
the intersection matrix, thus allowing us to place g in Fig. 4.

We can also see from the exponents of h that h intersects the curves in the minimal resolution which
given by (2,3) and (1,1) in the normal fan, thus allowing us to place it in Fig. 4.

The elliptic curve C, which is not pictured in Fig. 4, passes through each boundary divisor given by a
side of A with multiplicity equal to the lattice length of that side.

Since § and h each have self-intersection —1 on X, we can contract them using Castelnuovo’s contraction
criterion. We obtain a configuration of —2 curves with Dynkin diagram Dy from contracting §, and Az by
contracting h, which correspond to singular fibers of Kodaira type If and I,. These fibers are pictured in
Fig. 2. Since we have an elliptic fibration, the sum of the Euler characteristics of the singular fibers must
be 12. So we must also have a singular fiber of type I;. Thus the Kodaira type is X141, and consequently
the elliptic fibration is extremal [3].

Triangle 2: A = {(0,0), (5,0), (12,20)} with m = 10.

As in Computation 3.8, we obtain Fig. 5 by computing the normal fan and intersection matrix of A. By
a Magma calculation, the width of A is achieved in the direction (2, —1). The curve g in Fig. 5 is the proper
transform of g(z,y) = 22 (xy? — 1)1°.

The curve h in Fig. 5 is the proper transform of h(z,y) = 2%y> — 3zy + x + 1. As in the Triangle 1
case, h(z,y) is a curve on P(A) which is obtained by factoring the adjoint linear system |K + C| (see
Computation 3.9).

Computation 3.9. Finding the factorization of |K + C| for A = {(0,0),(5,0), (12,20)}.

> pol := Polytope([[0,0],[5,0],[12,20]11);
> PolsAdjSys(pol);
[x[1]*x[2]"2 - 1, x[1]1"2*x[2]"3 - 3*x[1]1*x[2] + x[1] + 1]

The computation that g and h are disjoint and each have self-intersection —1 is identical to that of
Computation 3.7, with the vertices of “pol” replaced by the vertices of Triangle 2.

Again, we can contract § and h using Castelnuovo’s contraction criterion. We obtain a configuration of
—2 curves with Dynkin diagram FEg by contracting §. Similarly, we obtain a configuration of curves with
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Fig. 6. Intersections of curves on Xa, with A = {(0,0), (5,0), (18,45)}.

Dynkin diagram A; by contracting h. These correspond to singular fibers of Kodaira type II* and I,
respectively. Thus the Kodaira type is X211, and consequently the elliptic fibration is extremal [3].

Triangle 3: A = {(0,0), (5,0), (18,45)} with m = 15.

By a Magma calculation, the width of A is achieved in the direction (3, —1). The curve § in Fig. 6 is the
proper transform of g(z,y) = 2®(zy® — 1)*®. As in Computation 3.8, we obtain Fig. 5 by computing the
normal fan and intersection matrix of A.

The curve h in Fig. 6 is the proper transform of h(z,y) = 23y" — 222y — 2%y* + 52y — 3xy + 2 — 1, which
is obtained by factoring the adjoint linear system |K + C| (see Computation 3.10). The computation that
g and h are disjoint and each self-intersection —1 is identical to that of Computation 3.7, with the vertices
of “pol” replaced by the vertices of Triangle 3.

Computation 3.10. Finding the factorization of K + C for A = {(0,0),(5,0), (18,45)}.

> pol := Polytope([[0,0],[5,0],[18,45]11);

> PolsAdjSys(pol) ;

[x[1]*x[2]"°3 - 1, x[1]73%x[2]°7 - 2*x[1]"2*x[2]"5 - x[1]"2*x[2]"4 + 5*x[1]*x[2]"2
- 3xx[1]*x[2] + x[1] - 1]

Again, we can contract § and h using Castelnuovo’s contraction criterion. We obtain Es by contracting
g, and A; by contracting h, which correspond to singular fibers of Kodaira type IT* and I, respectively.
Thus the Kodaira type is X211, as in Triangle 2, and consequently the elliptic fibration is extremal [3]. O

Now that we know that (Xa,C) are elliptic pairs for each of our triangles A, we can combine this result
with Theorem 2.4 to completely classify all toric elliptic pairs of Picard number two.

Theorem 3.11. Suppose that (X,C) is a toric elliptic pair, where X = Bl.(P(A) for some lattice tri-
angle A. Then A is one of {(0,0),(2,0),(5,8)} with m = 4, {(0,0),(5,0),(12,20)} with m = 10, and
{(0,0), (5,0), (18,45)} with m = 15.

Proof. First, recall that SLy(Z)-equivalent polygons give rise to isomorphic toric surfaces. Thus Theorem 2.4
tells us that if A is primitive, then A can be transformed via an SLy(Z) transformation to one of the triangles
listed in the theorem.

Write A = {(0,0), (a,0), (b, c)} where (ged(a,b,c) = k and m = |§ANZ?2|. Then m = kn for some n € N.

Let A/k be {(0,0), (a/k,0), (b/k,c/k)}. Then A/k is primitive and satisfies the hypothesis of Theorem 2.4.
So A/k is one of the three triangles listed in the theorem.

Since each of our triangles A/k gives an elliptic fibration, we know that dim La/,(n) = 2. Let {g,h}
be a basis of La/(n). Then g¥ and h* are two linearly independent curves in L£a(m), so dim L (m) > 2.
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F1—FEy Eo—FE3 E3s—FEy E4—FEs Es —FEg Eg— FE7 E7—Eg
[ L 4 L 4 L 4 L 4 . ]

h—E| — E; — E3

Fig. 7. Dynkin diagram of Eg labeled with simple roots.

Thus by Lemma-Definition 3.2 of [1], we have that dim LA (m) = 2. Therefore, every member of La(m) is
a linear combination of ¢¥ and k¥, and thus factors nontrivally over C. But there must be an irreducible
curve in La(m) by definition of a toric elliptic pair. Thus we have k =1 and A/k =A. O

4. Elliptic pairs from a nodal cubic in P?

In this section, we will consider non-toric elliptic pairs coming from blow-ups of P2 at nine points on the
nodal cubic over an algebraically closed field of prime characteristic p.

Let C be the nodal cubic 2z = 2%(x + z) in P2. We will identify the smooth locus of C' with Pic"(C),
and Pic’(C) with G,,. We choose 1 € G,, to be the flex point [0 : 1 : 0] of C. We say that a,q € Q are
multiplicatively independent in Q* if a®q¥ = 1 implies that z =y = 0.

Let 21 = ... = 27 = 1,28 = a, z9 = ga~ ! with a, ¢ € Q multiplicatively independent. Let X be the blow-up
of P? at the nine points z1, ..., 29, which is an infinitely near blow up for 21, ..., z7. That is, we consecutively
blow up the point of intersection of the proper transform of C' with the exceptional divisor of the previous
blow-up. Let a and ¢ be the reductions of a and ¢ modulo p. Then (C, X) is an elliptic pair defined over Q.
Thus by Definition 3.19 of [1], (C, X) gives rise to an arithmetic elliptic pair (C,X) over a nonempty open
subset U of Spec Z, where the geometric fiber (Cp, X,) is an elliptic pair for every p in U.

Theorem 4.1. Let (C, X) be the arithmetic elliptic pair [1] given by the procedure above, and defined over a
nonempty open subset U of Spec Z, such that the geometric fiber (C,, X)) is an elliptic pair for every p in
U. Then Efi(X,) is polyhedral if and only if a* € (g) C F};.

Proof. There is a restriction map
res : Pic(X) — Pic(C)

which sends C* into Pic?(C). Also, observe that C/(C) with an intersection pairing gives rise to the root
lattice Eg. In particular, the curves of self-intersection —2 on X are effective roots in Eg. We will show that
a certain subset of these effective roots generates a root sublattice of rank 7.

Let E; be the exceptional divisor of the ith blow-up. For ease of notation, we will allow ourselves to
denote the proper transform of E after the (i 4+ 2)th blow-up as E, because E is disjoint from F; o and
is thus unchanged by the (i + 2)th blow-up. Thus E; = E + .+ E‘g + E; for i < 7. Then E? = —1 and
E,-E;=0if|j—i >1.

Let h be the class of a line in PicO(C). We can label the Dynkin diagram of Eg with roots as in Fig. 7,
all of which are effective except E; — Fs.

Since 1 is a flex point of C, the root (h— E; — E5 — E3) is realized by the class of a proper transform of a
tangent line at 1, so it is indeed an effective root. Also, E; — E;11 = E are effective roots for all 1 <7 < 7.

Computing the self-intersections, we see that (F; — E;11)? = —2. Also, since h is disjoint from Ey, E,, and
Eg, we have (h — El — E2 — E3)2 = h2 — 2h(E1 + E2 + Eg) + (El —|— E2 + E3)2 = ]. + 0 — 3 = —2. Finally,
curves that correspond to adjacent nodes have intersection 1: (F; — E;y1)(Eip1 — Eipo) = —EZ-2_~_1 =1.

Because res(C) lies in Pic’(C), we obtain an induced map

fes : C1/(C) — Pic(0)/(res(C)).
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Fig. 8. Contracting the E; sublattice in X to obtain Y.

Table 1
Images of roots under the map Tes.

Roots Image in Pic®(C)/(res(C))

E;, —FEg, i <8 a~ !

B, —Fo, i <9 a

Eg b Eg CL2
a
a

h*Eiijng, 1<j<8
h*Eiijng, 1< j<8

Now, consider the root sublattice E; of Eg generated by Ey — FEs, ..., Fg — Fy and h — E; — E5 — E3. The
roots in [E; are mapped to 0 by Tes, because the corresponding curves are disjoint from C.

Furthermore, we can contract the effective roots in E7 to get a surface Y with a single Du Val singularity,
as shown in Fig. 8.

From Corollary 3.14 in [1], Eff(X) is polyhedral if and only if Eff(Y') is polyhedral. Since p(X) = 10, we
see p(Y') = 3. This allows us to use Corollary 3.18 in [1] to obtain a criterion for polyhedrality in our case:
Eff(Y) is polyhedral if and only if Tes(3) = 0 for some root 3 € Eg \ E7.

We will interpret the condition Tes(8) = 0 in terms of a and ¢. First, we compute res(C') as follows:

9 9
res(C) =res(3h — Y E;) =3-tes(h — By — Ey — E3) + 2(Ey + By + E3) — »_ E.

i=1 1=4

Since h — E; — FEy — Ej3 is represented by a curve of self-intersection —2 disjoint from C, we have
res(h — Ey — Ey — E3) = 0. Restricting each E; to C gives E; N C = [z], i.e. the class of the point z; in
Pic(C). Thus

res(C) = 2([z1] + [22] + [23]) — Z[Zi]~

From our identification of Pic’(C') with G,,, we have

res(C) = (z12023)%(24...29) "' = (aqa™ 1)t = ¢~ L.

Thus tes(3) = 0 if and only if res(8) € (g) in F,;. In Table 1, we analyze the image of the remaining roots
of Eg = C+/(C) which are not in E7, again using the identification with G,,. Note that since 1 is a flex
point, we can identify h with the tangent line to C' at 1 = z5. Then Tes(h) = 3[z].



E. Pratt / Journal of Pure and Applied Algebra 227 (2023) 107323 17

Thus Eff(X) is polyhedral if and only if at least one of a and a? is in (g). But if a is in {(g), then so
2

isa“. 0O
Next, we prove a lemma which tells us that the polyhedrality condition of Theorem 4.1 fails for a set of
primes of positive density. This lemma is known to experts, but we could not find a reference.

Lemma 4.2. Let a,q € Q be multiplicatively independent in Q*. Consider the set

S(a,q)° = {p prime: a ¢ (q) in F,}.
Then S(a,q)¢ contains a set of prime numbers of positive density.

Proof. For ease of notation, we switch to writing a,q for the reductions of a,q modulo p. Observe that
a € (q) if and only if (a) € (g) in F,. Let o(z) denote the order of = in I Since [, is cyclic, (a) is in (g) if
and only if o(a) divides o(q), if and only if [F; : (¢)] | [, : (a)].

Now, suppose | € Z is a prime satisfying the conditions (i) I | [F; : (¢)] and (ii) I { [F; : (a)]. Then
[Fy: {@)] 1 [F,; : (a)]. Thus (i) and (ii) are sufficient conditions for a prime p to lie in S(a, ¢)°. The conditions
(i) and (ii) can be rewritten by multiplying both sides by o(q)/l, o(a)/l respectively to get (i) ¢"T =1in
F7 and (i) a “7" # 1 in F}.

Let K = Q(¢, at, q%). We will proceed by encoding (i) and (ii) as conditions on the class of the Frobenius
element of p in the Galois group of K over Q, and invoking Chebotarev’s density theorem.

By the assumption that a and ¢ are multiplicatively independent in Q*, we have (a,q) = 1 and that a, ¢
are not [th powers. Then the Galois group G of K/Q is isomorphic to Z;* x (Z; x Z;). Let ¢ denote the Ith
root of unity. Then G is generated by elements of the form

0s:(—C°
gl e (gl
pr:a% HCTa%a

where if the action of o € G on an element o € K is not written, then o acts as the identity on a. We can
thus identify G with {(o1) X ({11) % {p1)).

We proceed by writing Frob,, = (o5, 71, pr) and determining what s,¢, and r must be. By definition of the
Frobenius element, we have Frob,(¢) = ¢P. But by condition (i) we have p =0 mod [. So if Frob,({) = (°,
then s = 0. Similarly, we have Frobp(q%) = ¢. Suppose that condition (i) holds, i.e. qp%l =1in F;. Then
Frob,(¢i) = 7. So t = 0. By condition (i), Frob,(at) # at. So r # 0. Thus p satisfies (i) and (ii) if and
only if in the Galois group G, Frob, is of the form (o1, 79, p0)-

We check that these elements form a conjugacy class. Any element (o, 7¢,, pr,) in G is fixed by elements
of the form ¢, p,.. Conjugating by an element of the form oy gives (05, Tsty, Psro)- But since 1 < s <p—1,
we remain in the conjugacy class.

Applying the Chebotarev density theorem, we see that there are asymptotically (I—1)/((I—1)-1-1) such
primes. 0O

In general, it is difficult to “patch” together different values of | to obtain an asymptotic density for
S(a, q)¢, since the probabilities given by the Chebotarev density theorem are not statistically independent
[7]. However, Moree and Stevenhagen showed in Theorem 2 of [7] that assuming the generalized Riemann
hypothesis, the density of S(a,q) can be precisely calculated to be

Ca,q ~ H <1 - p3p_ 1)

p prime
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where ¢, 4 is a constant depending on a and ¢. The product [| %) converges to the Stephens

p prime (1 )
constant S, whose approximation to 50 decimal places is

S =~ 0.57595996889294543964316337549249669250651396717649.

In the case that Q*/(—1, a, b) is torsion-free, then ¢, p is between 0.981 and 1.024. Thus in this case (X, Cp)
has polyhedral effective cone for roughly 57% of primes, and non-polyhedral effective cone for roughly 43%
of primes.

Furthermore, a theorem of Heath-Brown tells us that for any three primes (a,b,c), Artin’s conjecture
is true for at least one of a,b, and ¢ [5]. Combined with Lemma 4.2, this allows us to explicitly construct
surfaces with a polyhedral effective cone for a set of primes of positive density, and a non-polyhedral effective
cone for a set of primes of positive density.

Corollary 4.3. Let C be the nodal cubic, with PicO(C’) identified with G,,. Let a,q € Q be multiplicatively
1

7

independent. Consider the surface X1 given by the blow-up of P2atz; =..=2;=1and zz = a, 29 = qa~
where z; are points on the nodal cubic. Then at least one of Xg,XS, and XS has both a polyhedral effective
cone for a set of primes of positive density, and a non-polyhedral effective cone for a set of primes of positive
density.

5. Sage code for Section 2
5.1. Code for Section 2, Case 1

The following code finds triangles for which - > %

# Check gcd conditions and bounds on a/m
def check(e, x, p, s, k):
d=(e*s*x+p)/2
a exs”2
c ex(s+x)”2
m exs*(s+x)
return s>0 and gcd(a,d)==1 and (s-x)/s > 2/3 and m-a-d==gcd (2xd+a,c)

def check_integrality(k, y):
return k.is_integer () and int(k)%2==1 and y.is_integer() and y >= 0

# Loop over parameters (e, x©, p)
k, y = var(’k,y’)
for x in range(1,5):
print ("Solutions for t - s = %s" %x)
for e in range (1, floor (18/(x~2))):
for p in range (0, e*x72):
rhs = 16*(e*x”2 -p)~2

divs = divisors(rhs)
for div in divs:
eqnl = (e*x"2xk - 4*(e*x"2-p) - x*y == div)
eqn2 = (exx"2%k - 4x(e*x"2-p) + x*y == rhs/div)
sol = solve([eqnl,eqn2],k,y, solution_dict=True)
k1 = sol[0][k]
yl = sol[0][y]
if check_integrality(kl, yi1):
D = e 2%xx72x(4-k1)72 -8*xex*(2*xe*x"2 - px*kl)
s1 1/(4*e)*(-e*x*(4 -k1) + sqrt(D))

s2 1/(4xe)*(-e*xx*(4 -k1) - sqrt(D))
for s in [s1,s2]:
if s.is_integer () and check(e,x,p,s,kl): print(sol)
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5.2. Code for Section 2, Case 2

The following code finds triangles for which % <2<

win

a
m
# Loop over parameter k
possiblek = [4,5,7,8,9,10, 11]
for k in possiblek:
divs = divisors (k)
for x in divs:
for a in range (1, floor ((4*kx*x)/(2%¥k-9))):
ml = 1/2x(k*a + sqrt((k*a)"2 - 4xk*xa*x(a + x)))
m2 1/2x(k*xa - sqrt((k*a)”~2 - 4xk*xax(a + x)))
for m in [m1, m2]:
if m.is_integer () and a/m > 1/2:
print("k,a,x,m = %s,%s,%s,hs" %(k,a,x,m))

5.8. Code for Section 2, Case 3

The following code finds triangles for which % < <

a 1
m 2°
# Check that the lattice triangle is primitive

def primitive(b, ¢, x, y, m):

a = (ml-y)/2

d = ml-a-x
b = bx*d
c = cx*d
return m>0 and gcd(a, gcd(b, c)) == 1
# Loop over parameters (b = b0, c = c0, z, y)

for b in range(3, 12):
for ¢ in range(b+2, 12):
divs = divisors (c)
for x in divs:
for y in range (0, 2%*x):
D = (2%c*x)72 + 4x(c-4)xcxy*(y - 2%x)
mi = 1/(2%(c-4))*(2*xc*xx + sqrt(D))
m2 1/(2*%(c-4))*(2*%c*x - sqrt(D))
for m in [ml1, m2]:
if m.is_integer () and gcd(b,c)==1 and primitive(b,c,x,y,m):

a = (m-y)/2
d = m-a-x
if x == gcd(b*d - a, c*d):

print("m,a,b,c= %s,%s,%s,%s" %(m,a,bxd,c*d))
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