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Objective and Impact Statement. We present a fully automated hematological analysis framework based on single-channel (single-
wavelength), label-free deep-ultraviolet (UV) microscopy that serves as a fast, cost-effective alternative to conventional
hematology analyzers. Introduction. Hematological analysis is essential for the diagnosis and monitoring of several diseases but
requires complex systems operated by trained personnel, costly chemical reagents, and lengthy protocols. Label-free techniques
eliminate the need for staining or additional preprocessing and can lead to faster analysis and a simpler workflow. In this
work, we leverage the unique capabilities of deep-UV microscopy as a label-free, molecular imaging technique to develop a
deep learning-based pipeline that enables virtual staining, segmentation, classification, and counting of white blood cells
(WBCs) in single-channel images of peripheral blood smears. Methods. We train independent deep networks to virtually stain
and segment grayscale images of smears. The segmented images are then used to train a classifier to yield a quantitative five-
part WBC differential. Results. Our virtual staining scheme accurately recapitulates the appearance of cells under conventional
Giemsa staining, the gold standard in hematology. The trained cellular and nuclear segmentation networks achieve high
accuracy, and the classifier can achieve a quantitative five-part differential on unseen test data. Conclusion. This proposed
automated hematology analysis framework could greatly simplify and improve current complete blood count and blood smear
analysis and lead to the development of a simple, fast, and low-cost, point-of-care hematology analyzer.

1. Introduction

Hematological analysis assesses changes in the morpholog-
ical, molecular, and cytogenetic properties of blood cells,
in addition to blood cell enumeration. It is integral to
diagnose and monitor a range of blood conditions and
diseases, such as infections [1, 2], sepsis [3, 4], autoim-
mune diseases [5, 6], and different types of cancers [7,
8]. The typical workflow consists of collecting a peripheral
blood specimen and analyzing it using a hematology ana-
lyzer to obtain a complete blood count (CBC), which
includes red blood cell (RBC) and platelet counts, white
blood cell (WBC) differentials (neutrophil, eosinophil,
basophil, lymphocyte, and monocyte counts), and hemo-
globin (Hb) levels [9]. Although modern analyzers are
capable of automated analysis, they are expensive and
bulky, use many chemical reagents, and require frequent

calibration. Furthermore, cellular morphology often needs
to be evaluated by a trained expert via manual microscopic
examination. Microscopic examination of peripheral blood
is performed by preparing a blood smear that is then fixed
and stained, typically using Romanowsky-type stains
(including Giemsa), which are generally composed of a
basic dye that stains the nuclei and an acidic dye that acts
as a counterstain [9]. Thus, hematological analysis is
resource-intensive and time-consuming, requires trained
personnel, and is susceptible to variability in staining.

Label-free techniques for quantitative analysis can
address many of the limitations of conventional methods
by eliminating the need for staining or exogenous contrast
agents, thereby simplifying and speeding up the workflow.
Several such techniques have been explored, including
hyperspectral imaging [10], Raman microscopy [11], fluo-
rescence lifetime imaging microscopy [12], and quantitative
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phase imaging [13–16]. While each method has its own
unique advantages and disadvantages, there is a trade-off
between the information provided by each method and its
cost, complexity, and speed.

Deep-ultraviolet microscopy (UV) is a label-free imaging
technique that leverages the distinctive spectral properties of
endogenous biomolecules in this region of the spectrum
(200-400 nm) to yield quantitative molecular and structural
information from biological samples [17–22]. Owing to the
shorter wavelength of UV light, deep-UV microscopy offers
higher spatial resolution than conventional methods. Addi-
tionally, contiguous imaging of live cells is possible over long
durations (>6hrs) without significant photodamage [17].
These properties make deep-UV microscopy well suited to
serve as a simple, fast, and low-cost alternative to modern
hematology analyzers [21]. We recently developed a multi-
spectral UV microscope [21] that enables high-resolution
imaging of live, unstained whole blood smears at three dis-
crete wavelengths: 260 nm (corresponding to the absorption
peak of nucleic acids), 280 nm (corresponding to the absorp-
tion peak of proteins), and 300 nm (which does not corre-
spond to an absorption peak of any endogenous molecule
and can act as a virtual counterstain) [17–19, 21, 23]. We
also introduced a pseudocolorization scheme that uses the
multispectral UV images at these three wavelengths to gen-
erate images whose colors effectively recapitulate those pro-
duced by Giemsa staining and can thus be used for visual
hematological analysis [21]. In addition, we demonstrated
a five-part WBC differential by utilizing structural and
molecular information at 260nm in manually segmented
cells [21]. We also introduced a color-based automated seg-
mentation framework to segment WBCs from the pseudoco-
lorized images [24].

In this work, we take advantage of the capabilities of deep
learning for segmentation [25, 26], classification [15, 27, 28],
and image-to-image translation [29–32] of label-free micros-
copy images, to develop an automated hematology analysis
framework that operates on single-channel UV images
acquired at 260nm (having inherent nuclear contrast due to
the absorption peak of nucleic acids), enabling simpler instru-
mentation and a factor of three improvement in imaging
speed without sacrificing accuracy. Our virtual staining
scheme accurately mimics the colors produced by the gold-
standard Giemsa staining using only a single-channel image
(single-wavelength imaging instead of multispectral imaging),
unlike the pseudocolorization scheme introduced previously
[21]. The problem of virtually staining a single-channel image
is inherently ill-posed because it entails successfully inferring
three different values (R, G, and B intensity values per pixel)
solely from a single grayscale value. Based on the previous suc-
cesses of generative adversarial networks (GANs) [33] (a spe-
cial class of DNNs) in solving image-to-image translation
problems [29, 34], we propose GAN-based virtual staining
that enables fast, fixative-free, and label-free visual inspection
of blood smears.

While several methods for segmentation and classifica-
tion of WBCs have been proposed, most of them rely on fea-
ture extraction or training DNNs using stained images
[35–39] or fail to provide an accurate five-part white blood

cell differential [15, 16, 27, 28, 40]. Here, we present a seg-
mentation method that uses only grayscale images (and is
independent of the virtual staining branch of the pipeline)
and has very high accuracy, with an average dice score of
0.9899 for cellular segmentation and 0.9718 for nuclear seg-
mentation on an unseen test dataset. Segmentation is
followed by a simple and fast classification technique that
requires neither manual feature engineering nor long train-
ing times and achieves five-part WBC classification with an
accuracy of 94.02% on unseen test data. Finally, we show
that the combined segmentation and classification pipeline
yields accurate differential cell counts.

2. Results

2.1. Deep-UV Microscopy of Live, Unlabeled Blood Cells from
Whole Blood Samples. As shown in Figure 1, whole blood was
collected from 23 healthy donors and patients according to pro-
tocols approved by the Institutional Review Board of Georgia
Institute of Technology and Emory University. Blood smears
are prepared on quartz microscope slides using 10μL of whole
blood, without any cell fixation, dilution, or staining. As soon as
a smear dries, it is imaged with the UVmicroscopy system. The
sample is raster scanned to acquire a grid of overlapping UV
image tiles (each having a field of view (FOV) of 170 μm×
230 μm) spanning a 1mm × 2mm FOV in total, to have suffi-
cient cells (>20,000) for statistically significant cell counts and
reliable diagnosis. The image tiles from all 23 individuals were
divided into smaller image patches to train and validate the
deep networks for automated analysis. Since basophils and
eosinophils only occur in small numbers in the smear images,
images of granulocytes (i.e., neutrophils, eosinophils, and baso-
phils) that were isolated using a magnetic antibody-based selec-
tion technique were included in the training and testing of our
networks (more details in Materials and Methods).

Our analysis framework operates on the single-channel,
grayscale image tiles that are divided into smaller overlap-
ping patches for network prediction, following which the
output patches are stitched back together (see Figure 1).
The segmentation masks are combined with input image
tile, to generate an RGB image tile from which patches con-
taining WBCs can be extracted for classification. For visual
hematology analysis and cell counting, the RGB image tiles
containing the segmentation masks and the virtually stained
image tiles can be stitched into large images spanning the
full 1 × 2mm FOV.

2.2. Virtual Staining of Single-Channel Deep-UV Microscopy
Images. Our virtual staining scheme translates single-
channel smear images (i.e., images acquired with single
wavelength illumination using 260nm light) of unstained
live blood cells into colorized images, whose colors accu-
rately recapitulate those of Giemsa stains. Virtual staining
is performed through a conditional generative adversarial
network (cGAN) trained using pairs of cropped image
patches consisting of single-channel UV images and their
corresponding pseudocolorized images, generated from
multispectral UV microscopy data [21]. Training is per-
formed in the Lab color space, an alternative to the RGB
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color space (where all three channels contain color informa-
tion). In the Lab color space, the intensity (the grayscale
image) is encoded by the luminance channel (L) and color
information is encoded in the two other channels (“a” and
“b”) as shown in Figure 2(a) (see Materials and Methods
for more details). The Lab color space is chosen because a
given change in the numerical values of the “a” and “b”
channels corresponds to a similar perceived change in the
color, resulting in smoother color transitions and fewer
instances of abrupt changes in color due to a small change
in the pixel values (unlike in RGB color space) [34]. Further-
more, this choice of color space leads to a simpler network
with fewer parameters that better preserves structure in the
final image since the input image is treated as the output
L-channel. As shown in Figure 2(a), however, the grayscale
input image is not identical to the ground truth L-channel
and appears to have a slightly higher contrast. But rather
than having a detrimental effect on the virtual staining, using
the input image as the output L-channel causes the nuclear
contrast to be enhanced in the final colorized output image.
As in Figure 2(a), the virtually stained image has greater
nuclear contrast and the nucleus appear to have a deeper
blue hue. Figure 2(b) compares the grayscale inputs, the vir-
tually stained images, and the ground truth pseudocolorized
images for test image patches (from all 23 blood smears that
are previously unseen by the network) containing healthy
and sickle RBCs, and different types of WBCs. The grayscale
images acquired at 260 nm have sufficient resolution and

contrast to clearly capture the nuclear morphology and cyto-
plasmic features of different cells, which are essential for fur-
ther analysis and quantification. The virtually stained images
are in excellent agreement with the ground truth pseudoco-
lorized images, and the performance of the virtual staining is
quantified using the multiscale structural similarity index
(MS-SSIM) [41], a modification to the single-scale structural
similarity index (SSIM) that is more representative of per-
ceived image quality. The MS-SSIM values averaged across
~3600 test image patches are 0.9408, 0.9155, and 0.8811 cor-
responding to the R, G, and B channels, respectively, with
the average across the three channels being 0.9125. The
more familiar SSIM [42] averaged across the same test data-
set is 0.7811, with the SSIM of the R, G, and B color channels
being 0.8687, 0.7751, and 0.6995, respectively. The lower
MS-SSIM and SSIM values for the blue channel likely result
from differences in the contrast of the grayscale input image
compared to the ground truth L-channel, as explained previ-
ously. We also note that small changes in the color values of
the background region (that do not affect the appearance of
cells) can have a pronounced effect on the SSIM, whereas the
MS-SSIM is less affected by such imperceptible variations.

Figure 3 compares a large virtually stained image (FOV
~ 1mm × 2mm) obtained by stitching virtually stained
image tiles ( ~ 170 μm× 230 μm) (Figure 3(a)) to a
Giemsa-stained smear imaged with bright-field microscopy
(Figure 3(b)). Such large area blood smear images can be
useful for visual hematology analysis. As the figure shows,
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Figure 1: Workflow for deep-UV microscopy of blood smears, virtual staining, WBC segmentation, and classification. Whole blood smears
are prepared on a quartz slide and imaged using the deep-UV microscopy system. The single-channel image is divided into overlapping
patches that can be simultaneously virtually stained and segmented via three independent neural networks. The output patches are
stitched together, and the segmentation outputs and the grayscale image are combined to generate a 3-channel image, from which WBCs
are cropped and classified (scale bars: 30μm).
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our virtually stained images reproduce the critical features of
different blood cells that are seen in the stained smear image
with high fidelity. The virtually stained images clearly high-
light the distinct nuclear morphology of different WBCs and
accurately portray the appearance of red blood cells (normal
and sickled). The granularity of all granulocytes is preserved,
partially due to the strong scattering of the granules at UV
wavelengths. Our current training dataset contains a small
number of eosinophils and basophils leading to a subtle dif-
ference in the hue of the eosinophils compared to ground
truth Giemsa-stained images. Specifically, our single-
channel virtual staining has a less vibrant orange-ish hue
in the cytoplasm of eosinophils compared to ground truth.
Nevertheless, this does not affect further quantitative analy-
sis since both the segmentation and classification do not
depend on the virtually stained images. Moreover, the virtu-
ally stained images can be enhanced based on the segmenta-
tion and classification to better resemble the ground truth
for visual analysis (see Figure S1). We further note the

presence of subtle halo-like structures in the UV images
due to diffraction and scattering at cell edges and the fact
that our light source has a fairly high degree of spatial
coherence. However, this does not strongly affect the cells’
appearance or the qualitative and quantitative analyses that
follow.

2.3. Cellular and Nuclear Segmentation. Our framework to
automatically segment WBCs from single-channel UV
microscopy images makes use of two independent convolu-
tional neural networks (CNNs) having identical architec-
tures, to predict cell masks and nuclear masks from input
grayscale images. Figure 4(a) shows network predictions on
test image patches (that are previously unseen by the net-
work). The cellular and nuclear segmentation masks are
overlaid on the grayscale image as shown in Figure 4 and
demonstrate the extremely accurate and robust segmenta-
tion capabilities for different types of WBCs. The error
images, obtained by subtracting the network outputs from
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Figure 2: (a) Virtual staining in the LAB color space. A patch extracted from the pseudocolorized image serves as the ground truth. The
network predicts only the “a” and “b” channels, and the input grayscale image is treated as the output L-channel. (b) Input grayscale
(top row), virtually stained (middle row) and ground truth pseudocolorized image patches (bottom row) containing different types of
cells (scale bars: 10μm.)
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the ground truth, show near-perfect segmentation masks, as
is also evident from the Sørensen–Dice coefficient values
being very close to one for both the cellular and nuclear
masks. The Sørensen–Dice coefficient or the Dice coefficient
is a measure of similarity between two samples, and the met-
ric takes a maximum value of one. The Dice coefficient aver-
aged across the entire test dataset of 2010 images (across all
smear samples) is 0.9899 for cellular segmentation and
0.9718 for nuclear segmentation, further validating the accu-
racy of our segmentation method.

For segmentation of UV image tiles, each tile is divided
into nine overlapping image patches, and the corresponding
masks are stitched back together following network predic-
tion. The cellular and nuclear masks are jointly postpro-
cessed (i.e., cell regions without a corresponding nucleus
and nuclear regions without a corresponding cell are
removed) to minimize segmentation errors. Segmentation
errors are generally a result of inconsistencies in the back-
ground, as shown in Figure 4(b). The postprocessing scheme
effectively deals with erroneous pixels and is based on simple
morphological operations and thresholds based on proprie-
ties such as the mean intensity and the areas of the cell
and nucleus (see Materials and Methods for details).

2.4. WBC Classification and Counting. Differential cell
counts are an indispensable quantitative metric for disease
diagnosis and monitoring. While hand-crafted features can

be very effective in classifying small datasets, they may not
generalize as well to larger, more diverse datasets [40]. Deep
neural networks can potentially achieve better performance,
but require a large labeled dataset for training [40, 43]. Here,
we take advantage of transfer learning [44] to achieve robust
classification on a small dataset (~500 cells in total). A pre-
trained ResNet-18 [45] trained on the ImageNet dataset
[46] was used as a fixed feature extractor to extract features
from a three-channel image (consisting of the segmentation
masks and the grayscale input) as shown in Figure 5(a).
ResNet-18 is chosen for its extremely efficient feature repre-
sentation and faster inference speeds compared to several
other state-of-the-art networks [47]. In keeping with current
clinical practice, dead WBCs must be omitted from cell
counts, so we use a two-stage classification procedure that
first eliminates dead cells and then classifies WBCs into the
five subtypes (neutrophils, basophils, eosinophils, lympho-
cytes, and monocytes) (Figure 5(a)).

We first trained a binary classifier on segmented cells from
blood smear images of 18 individuals to distinguish between
healthy and dead cells. The trained binary classifier was tested
on smear data from 5 different (unseen) individuals, to ensure
that our classifier is robust to cross-donor variability in WBC
morphology. An additional checkpoint was added to correctly
classify healthy cells that were misclassified as dead cells (see
Materials andMethods). The overall classifier had an accuracy
of 98.76%, misclassifying a single dead cell as a healthy cell

(a)

Virtually stained UV microscopy image

(b)

Giemsa stained brightfield microscopy image

Figure 3: (a) Wide-field virtually stained UV image of a whole blood smear from a healthy donor. (b) Corresponding white-light bright-
field microscopy image after Giemsa staining (scale bars: 200 μm). The magnified insets highlight cellular features, with black arrowheads
pointing to neutrophils, yellow arrowheads showing lymphocytes, a blue arrowhead pointing to a monocyte, and a green arrowhead
pointing to a basophil (inset scale bars: 30 μm.)
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(out of 81 test cells). We then trained a five-part classifier on
segmented WBCs from blood smear images of 18 individuals
and tested on segmented WBCs from blood smears images
from 5 different individuals. Since both the test and train data-
sets contained small numbers of basophils and eosinophils,
images of magnetically isolated granulocytes were added to
both datasets. We achieved a test accuracy of 94:02%, with 4
of the 67 cells misclassified, and a high sensitivity (above 90
% for all classes except eosinophils) and specificity >96% for
all classes (Figure 5(b)). Again, the low sensitivity to eosino-
phils is a result of the low number of cells in the training
and test data set and can be improved with additional data.
From the confusion matrix in Figure 5(b), we see that the mis-
classified eosinophil and neutrophil are classified as basophils,
likely because of the similarity in nuclear morphology and the
presence of cytoplasmic granules in all granulocytes. Along

similar lines, larger lymphocytes may be misclassified as
monocytes due to similarities in size and cytoplasmic features.

The trained classifiers were then used to obtain differen-
tial cell counts from all the samples. The RGB image tiles
(consisting of the grayscale image and the postprocessed seg-
mentation masks) are stitched to generate a single wide-field
image, from which patches containing WBCs are extracted
(so as to avoid counting cells in overlapping regions of tiles
multiple times) as shown in Figure 5(c). The cells are classi-
fied and counted, and the labels (indicated by colored
bounding boxes corresponding to different cell types) are
overlaid on the virtually stained image for visual analysis.
The total cell counts obtained from the 5 test samples as well
as from all 23 samples are given in Figure 5(d). The ground
truth (actual) counts are from visual assessment by trained
personnel while the predicted counts are a result of
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automated segmentation, classification, and counting. The
predicted and actual counts are in excellent agreement, indi-
cating the reliability of the combined segmentation and clas-
sification pipeline.

3. Discussion

We have introduced an automated pipeline for hematologi-
cal analysis based on single-wavelength (260 nm) deep-UV
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microscopy. Our approach is label-free and fixative-free,
relying only on the UV absorption of endogenous biomole-
cules (e.g., nucleic acid, proteins, and hemoglobin), thereby
rendering the chemical reagents used in traditional hematol-
ogy analysis workflows redundant. We note that the brief
UV exposure (30–100ms) in our approach does not cause
photodamage or alter intracellular morphology [21],
enabling subsequent analysis or validation by Giemsa stain-
ing or fluorescence-based techniques.

Our analysis pipeline requires only single-channel grayscale
images (acquired at 260nm), thus reducing the imaging time by
a factor of three compared to using multispectral UV images.
Additionally, the system can be further simplified, since the
broadband source and filters can be replaced by a single
260nm LED, and other low-cost alternatives can result in a very
compact system (potentially portable) that costs <$5000, com-
pared to commercial hematology analyzers that are extremely
large and cost between $80,000 and $120,000. Commercial ana-
lyzers also have higher operating costs, requiring many reagents
(>10) and regular calibration and maintenance, whereas our
deep-UV microscopy-based assay requires no additional sam-
ple preparation, reagents, or calibration. Further, compared to
the RGB cameras used for bright-field microscopy of stained
smears, single-wavelength imaging with amonochrome camera
takes advantage of the higher space-bandwidth product of the
camera and yields better resolution.

The entire pipeline is fast and efficient. Imaging proto-
cols take ~ 3 minutes for a grid of image tiles spanning a
1mm × 2mm area (containing >20,000 cells) and can be
concurrent with image processing. Segmentation and clas-
sification of all the image tiles take ~ 2 minutes (on a
GPU-enabled computer with an Intel Core i7-7800X CPU
and a NVIDIA GeForce GTX 1080 Ti GPU), which is well
suited for point-of-care, low-resource settings, and poten-
tially at-home use. The virtual staining scheme is also rela-
tively fast, currently taking a little over 4 minutes to
virtually stain all the image tiles in a sample. Stitching of
the image tiles for virtual hematology analysis takes a little
over 2 minutes, resulting in a total time of 6-7 minutes for
virtual staining, compared to conventional Giemsa staining
protocols that usually take over 30 minutes. Note, however,
that virtual staining and stitching are only necessary for
visual assessment by experts and can be omitted if cell
counts are the only parameter of interest (as is the case
for most applications). Thus, our fast and easy segmenta-
tion, classification, and virtual staining scheme is well
suited for translation into clinical, point-of-care, at-home,
and low-resource settings.

As we show here, our virtual staining scheme trans-
forms grayscale images into colorized images whose colors
recapitulate those observed with the gold-standard Giemsa
stains with high fidelity. While several virtual staining tech-
niques based on a variety of label-free imaging techniques
have been presented [29–32], they are mostly geared toward
the staining of tissues for histopathology and are not
designed to digitally stain and analyze blood smears. Fur-
ther, our segmentation method is robust and achieves com-
parable or even better performance than methods based on
stained or pseudocolorized images, without the need for fix-

ing and staining the sample [36–38] or the need for multi-
spectral imaging [24]. We have presented a simple and
robust classification and counting procedure that utilizes
cellular and nuclear segmentation masks along with the
grayscale images to first exclude dead WBCs and then clas-
sify healthy WBCs into five subtypes. Thus, we achieve a
five-part WBC differential, which is integral to diagnose
and monitor many blood diseases and conditions. The pro-
posed deep learning-based classifier enables more accurate
neutrophil classification (with an accuracy of 96:5%) com-
pared to our previous approach based on feature engineer-
ing (with an average test accuracy of 91:9Þ% [24]. Our
classification accuracy is limited by the size of our dataset,
particularly the small numbers of monocytes, eosinophils,
and basophils, but can be readily improved with more data.
Despite the limited dataset, the performance of our com-
bined segmentation and classification scheme based on
fixative-free and label-free images is comparable to other
methods based on stained images [37, 40]. Similarly, other
label-free techniques achieve comparable performance for
the classification of certain WBC subtypes, but require addi-
tional sample preparation or isolation [15, 16] or bulky and
expensive instrumentation [27, 28] compared to our pro-
posed framework. As mentioned above, our automated
analysis pipeline is fast, taking approximately 2 minutes
for the complete analysis of one sample (>20,000 cells)
including segmentation, classification, and counting, allow-
ing nearly real-time analysis. Segmentation and postproces-
sing of the image tiles take nearly 1.5 minutes. The duration
of the classification step depends on the number of cells in
our sample, but is very fast and takes less than 20 s for
any of the samples in our dataset. The speed of the analysis
can be further improved by processing multiple image tiles
in parallel. Since the virtual staining is completely indepen-
dent from the segmentation and classification, it can be per-
formed in parallel or can be omitted entirely if visual
inspection of the blood smear is not necessary. Finally,
given the fast pace of development of deep neural networks,
it is possible that future architectures may continue to
improve colorization, segmentation, and classification accu-
racy. Nevertheless, here we have shown that our simple,
low-cost, and fast UV method, coupled with efficient deep
networks, can achieve a five-part WBC differential, which
is integral to diagnose and monitor many blood diseases
and conditions.

In conclusion, we leverage the high-resolution, quanti-
tative, label-free, molecular imaging capabilities of deep-
UV microscopy to enable low-cost, fast, and automated
hematology analysis. Our pipeline yields virtually stained
images for visual hematology analysis as well as differential
cell counts in a matter of minutes from single-channel
grayscale images. Thus, our analysis pipeline offers substan-
tial improvements over conventional hematology analysis
workflows and can be very beneficial for point-of-care, at-
home, or low-resource settings. Our automated analysis
can be coupled with a microfluidic device to develop a
single-wavelength-based compact, fully automated, label-
free, point-of-care-hematology analyzer and will form part
of our future work.
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4. Materials and Methods

4.1. Preparation of Whole Blood Smears. Whole blood col-
lected from healthy donors or patients was added to an anti-
coagulant solution (sodium citrate; Becton Dickinson), and
blood smears were prepared on uncoated quartz slides using
10 μL of whole blood. Blood samples were collected from 23
individuals (4 healthy donors, 4 patients with sickle cell dis-
ease, 4 patients with thrombocytopenia, and 11 patients with
neutropenia). All protocols were approved by the Institu-
tional Review Boards of Georgia Institute of Technology
and Emory University, and informed consent was obtained
from the donors. After drying the samples in air for
5minutes, UV imaging was performed.

4.2. Experimental Setup. The deep-UV microscopy system
was illuminated by a broadband laser-driven plasma light
source (EQ-99X LDLS, Energetiq Technology), whose out-
put light was collected through an off-axis parabolic mirror
(Newport Corporation) and relayed to the sample using a
short-pass dichroic mirror (Thorlabs, NJ, USA). UV band-
pass filters centered at 260, 280, and 300nm (Chroma Tech-
nology Corp, VT, USA) were installed on a filter wheel for
multispectral imaging (the light intensity on the sample
plane was measured to be 0.14, 4.5, and 0.22mW at 260,
280, and 300nm, respectively); only the 260nm filter is nec-
essary for single-channel imaging. A 40x UV microscope
objective (NA 0.5) (LMU-40X, Thorlabs), which achieves
an average spatial resolution of ~ 280nm, was used for
imaging. Images were captured using a UV-sensitive CCD
(pco.ultraviolet, PCO AG, Kelheim, Germany) camera (inte-
gration time is typically between 30 and 100ms). with each
pixel covering an approximate area of 0:165 μm× 0:165 μm
on the sample. A high-precision, three-axis motorized stage
(MLS2031, Thorlabs) was used to focus and raster scan the
sample to acquire a series of UV image tiles (each having a
FOV of ~ 170 μm× 230 μm) that span a 1mm × 2mm
FOV in total. The total imaging time was approximately
three minutes (per wavelength) and is limited by the transla-
tion stage.

4.3. Preliminary Data Processing. Each image tile in the series,
obtained by raster scanning the sample at a particular wave-
length, was normalized by a background image acquired at
the same wavelength, to minimize any illumination artifacts.
The background image was acquired at a blank region of the
sample, keeping all other conditions unchanged. While the
automated pipeline presented in this work relies only on a
single-channel UV microscopy image acquired at 260nm,
multispectral UV imaging (at 260, 280, and 300nm) was
required to generate the pseudocolorized images [21] that
serve as the ground truth to train our virtual staining network.
The corresponding images at the three wavelengths were reg-
istered using an intensity-based registration algorithm and
pseudocolorized as described in Ref. [21].

4.4. Deep Learning-Based Virtual Staining. Single-channel
UV microscopy images (input) and their corresponding
pseudocolorized images (ground truth) were paired to train
a cGAN for virtual staining. A GAN consists of two net-

works—a generator that generates new examples of data
and a discriminator that attempts to distinguish the gener-
ated examples from the ground truth—that are simulta-
neously trained. Our network was trained in the Lab color
space, where the color information is encoded in two chan-
nels (“a” and “b”) instead of three. The network is trained to
predict the two color channels, which are then concatenated
with the grayscale image (L- channel) to generate the color-
ized Lab image. Instead of using random noise as the input
to the generator as in the case of a traditional GAN, we used
a cGAN where the grayscale input serves as a prior for the
“a” and “b” channel images predicted by the generator.

4.4.1. Data Preparation. Twenty-four 256 × 256 pixel image
patches were extracted with minimal overlap from each
single-channel image tile (1040 × 1392 pixels, having a FOV
of ~ 170 μm× 230 μm), across all 23 blood smears. Patches
containing no cells (only background) and patches with erro-
neous colorization were excluded. For our virtual staining
scheme to be valid, it is imperative for WBCs to be correctly
colorized and clearly distinguishable. Since the proportion of
WBCs in the images is relatively small, the dataset was aug-
mented with WBC images. This was done by using ground
truth segmentation masks to detect WBCs in the image tiles
and extracting overlapping patches containing WBCs. The
same procedure was used to extract ground truth image
patches from the pseudocolorized images, ultimately resulting
in a dataset of ~74,000 image pairs (~3600 images were sepa-
rated to serve as test data). The ground truth RGB images were
converted to the Lab color space prior to training. Since there
was some variations in the gray values across images from dif-
ferent samples, a simple preprocessing operation was applied
to the input grayscale images. The preprocessing was in the
form of a histogram operation applied to each image (normal-
ized to 0-1 by dividing by its maximum pixel value) that satu-
rates the top 1% and bottom 1% of the pixels and enhances
contrast.

4.4.2. Network Architecture and Training. The generator is a
fully convolutional network with encoding and decoding
paths with skip connections, that is based on the U-Net
[48] (shown in Figure 6(a)) and is similar to the generator
in Ref. [34]. In the encoding or downsampling path, 3 × 3
convolutional kernels were used with strided convolutions
(stride of 2), followed by batch normalization and a leaky
ReLU (LReLU) activation function with a slope of 0.2. The
decoding path used 3 × 3 transposed convolutions with a
stride of 2 to perform the upsampling, followed by batch
normalization and a ReLU activation function. The architec-
ture of the discriminator is similar to the encoding path of
the generator and contains 4 convolutional layers (3 × 3 con-
volutional kernels were used with strided convolutions
(stride of 2) as before) having 64, 128, 256, and 512 channels,
respectively, followed by a fully connected layer with a sig-
moid activation function [34].

We used a modified version of the GAN cost function
[49] for a conditional GAN along with a total variation reg-
ularization term added to the generator loss function to
ensure structural similarity [34]. A weight initialization
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similar to Ref. [50] and the Adam optimizers [51] (with β1
= 0:5, β2 = 0:999, and a learning rate of 0.0003) for both
the generator and discriminator were used for training. We
trained our model for 20 epochs with a batch size of 8, for
approximately 60 hours and computed the L1 loss on the
validation set after each epoch (see Figure S2). Our
network was implemented in PyTorch 1.9.1 using a GPU-
enabled computer (Intel Core i7-7800X CPU and NVIDIA
GeForce GTX 1080 Ti).

4.4.3. Postprocessing of Virtually Stained Images. Image
patches were virtually stained by the trained generator in the
Lab color space. The network outputs were then converted
back to the RGB color space, followed by simple postproces-
sing operations to white balance the images. A constant value
of 0.02 was added to each of the RGB channels to increase the
brightness of the image patch. Each image patch was then con-
verted to the HSV color space, where a constant (0.07) was
added to the value (V) channel and then converted back to
the RGB color space. The MS-SSIM and SSIM were calculated
for all three color channels of each image patch, and the values
were averaged to obtain a single MS-SSIM or SSIM value for
every patch. Five scales were used to compute the MS-SSIM,
and the SSIM values from each scale were averaged using
weights from a Gaussian distribution.

4.4.4. Virtual Staining for Visual Hematological Analysis.
Each image tile acquired by the camera (1040 × 1392 pixels)
was normalized by a blank background and contrast adjusted
using a histogram operation as before. Owing to computational
constraints, each image tile was divided into nine 512 × 512
pixel patches (the larger patch size offered a good trade-off

between speed and accuracy) that were input into the trained
generator. The virtually stained image patches were then
stitched together by averaging overlapping regions, and post-
processed as explained previously. For visual hematology anal-
ysis, the image tiles (arranged in a grid of 13 × 9 images) were
stitched into a single wide-field image using the Grid/Collection
stitching plugin [52] of the Fiji [53] software. The plugin calcu-
lates the overlap between each tile and linearly blends the over-
lapping portions resulting in a single large image. An additional
postprocessing step was added to the wide-field images to
improve the contrast for visual analysis. MATLAB’s imadjust
function was used to saturate the top and bottom 1% of the
pixels in each of the color channels, with the minimum set to
zero for all three channels, and the maximum set to 0.95 for
the R channel, and 0.93 for the G and B channels.

4.5. Deep Learning-Based Cellular and Nuclear Segmentation.
Two independent convolutional neural networks (CNNs)
were trained to segment out cells and nuclei from single-
channel UV microscopy images.

4.5.1. Data Preparation. First, for ground truth segmenta-
tion, we leveraged our color-based segmentation scheme
previously introduced in Ref. [24] to generate cellular and
nuclear masks from the 3-wavelength, pseudocolorized
image tiles (1040 × 1392 pixels) (whose 260nm wavelength
channel corresponds to the single-channel (grayscale) image
tiles in this work). Some masks with erroneous pixels at the
edges were manually reannotated using MATLAB’s image
segmenter app to improve the quality of the ground truth
available to the networks. Next, overlapping patches of 256
× 256 pixels containing WBCs, and a small number of
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Figure 6: (a) Architecture of the generator used for virtual staining. (b) Architecture of the CNN used for cellular and nuclear segmentation.
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patches containing no WBCs, were extracted from the larger
grayscale tiles and masks. Additionally, since basophils and
eosinophils only occur in small numbers in the smear
images, images of granulocytes (20 images of each granulo-
cyte subtype) that were isolated using a magnetic antibody-
based selection technique [21] were added to the dataset.
These grayscale images were manually annotated using
MATLAB’s image segmenter app to generate ground truth
cellular and nuclear masks as before. Since the isolated gran-
ulocytes were imaged with a slightly different magnification
(having an effective pixel size of 0:127 μm× 0:127 μm), the
images and their corresponding masks were reinterpolated
to be consistent with the smear images. The reinterpolated
grayscale images and masks were flipped and rotated to fur-
ther augment the dataset, yielding ~51,000 training images,
~13,000 validation images, and ~2000 test images. The gray-
scale images were preprocessed using the same histogram
operation as before.

4.5.2. Network Architecture and Training. The architecture
of the CNNs used for segmentation is inspired by the U-
Net [48], which is well suited for biomedical image segmen-
tation, and is almost identical to that of the generator used
for virtual staining (as shown in Figure 6(b)). The main dif-
ferences are that the segmentation networks used ReLU acti-
vation functions in both the encoding and decoding paths
and that they have single-channel outputs (instead of the
two-channel output of the generator). The performance of
our network is similar to the classical U-Net (a detailed com-
parison is presented in the Supplementary Materials), but is
less computationally demanding, with fewer parameters
(~23.6 million compared to ~31 million). The networks were
trained using a combination of the binary cross-entropy and
the dice loss [54]. The Adam optimizer [51] (with a learning
rate of 0.005 that decayed by a factor of 0.2 when the loss
plateaued) was used for training. Our cell segmentation net-
work was trained for 80 epochs, and the model with the low-
est loss on the validation dataset was chosen (see
Figures S3(a) and S3(b)). The nuclear segmentation
network was initialized with the trained weights of the cell
segmentation network and trained for 95 epochs, with the
best model chosen on the basis of the validation loss (see
Figures S3(c) and S3(d)). Both models were implemented
in PyTorch 1.9.1 and trained using a GPU-enabled
computer (Intel Core i7-7800X CPU and NVIDIA GeForce
GTX 1080 Ti) with a batch size of 8, for approximately 40
hours each.

4.5.3. Prediction on Image Patches and Tiles. Test image
patches (256 × 256 pixels) were segmented by the trained
CNNs, and the Dice coefficient for cellular and nuclear seg-
mentation was calculated for each image patch. The Dice coef-
ficient was averaged across the entire test dataset of 2010
images. The larger image tiles were normalized, and
contrast-adjusted image tiles were divided into nine 512 ×
512 pixel patches (as in the case of virtual staining) that were
input into the cellular and nuclear segmentation networks.
The predicted binary mask patches were then stitched
together, using a logical OR operation in overlapping regions.

4.5.4. Postprocessing of Segmented Masks. The cellular and
nuclear segmentation masks were jointly postprocessed to
remove incorrectly segmented cells and some dead WBCs.
A morphological opening operation was first performed on
both masks to eliminate any groups of pixels with an area
smaller than a typical cell. Cell regions without a corre-
sponding nucleus and nuclear regions without a correspond-
ing cell were removed. Some RBCs which were incorrectly
segmented due to anomalous dark regions, and some dead
WBCs in the background were excluded using thresholds
based on the mean intensity, area, solidity, and Euler num-
ber (a topological property) of the cellular and nuclear
masks. The postprocessing was performed in MATLAB.

4.6. Deep Learning-Based WBC Classification. Accurate clas-
sification of WBCs is necessary in order to obtain reliable
differential cell counts. Here, we used a pretrained ResNet-
18 as fixed feature extractor and then trained fully connected
networks for five-class classification.

4.6.1. Data Preparation. The postprocessed cellular and
nuclear segmentation masks were combined with the grayscale
image to generate a 3-channel RGB image (e.g., second row of
Figure 4(a)) since Resnet-18 requires RGB inputs; the nuclear
mask (multiplied by a factor of 0.5) was assigned to the red
channel, the grayscale image, masked by the cell mask, was
assigned to the green channel, and the cell mask (multiplied
by a factor of 0.5) was assigned to the blue channel. WBCs were
cropped (into 224 × 224 pixel patches) from all the image tiles
across all the samples to generate a classification dataset. We
note that overlap between image tiles resulted in more than
one image of some cells (the repeated cells were retained in
the training set but removed from the test set). The correspond-
ing cells in the pseudocolorized images (that recapitulate
Giemsa-stained images) were classified by a board-certified
hematologist to provide ground truth labels. The dataset con-
tained healthyWBCs, as well as some dead cells (postprocessing
of our segmentation masks eliminated some but not all of the
dead WBCs) that would need to be omitted from differential
cell counts. The dead cells (~80 in total) were separated from
the healthy cells and augmented by saving flipped and rotated
versions of the images, in order to train a binary classifier. A
training dataset was created with WBCs from 18 individuals
whereas the test dataset contained cells from 5 different individ-
uals. Due to the limited data available, a separate validation set
was not used.

To deal with the small numbers of basophils and eosin-
ophils in the smear images for the five-class classification,
images of granulocytes (20 images of each granulocyte sub-
type) that were isolated using a magnetic antibody-based
selection technique [21] were added to the dataset. As with
the segmentation dataset, the images were reinterpolated to
have the same magnification as the smear images. From
our dataset of approximately 500 cells, WBCs from 5 indi-
viduals were separated for testing, as before. Since the test
dataset contained only one basophil and two eosinophils,
two images each of isolated basophils and eosinophils were
added to the test dataset. Our train dataset was extremely
unbalanced, with the number of lymphocytes and
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neutrophils far exceeding the numbers of eosinophils, baso-
phils, and monocytes. Thus, the images in these three classes
were augmented by saving flipped and rotated versions of
each image, resulting in a more balanced training set.

4.6.2. Deep Learning-Based Classifiers. As our classification
dataset was relatively small, we opted for transfer learning
from a pretrained network rather than training from scratch.
We used a pretrained ResNet-18 [45] (ResNet-18 was cho-
sen for its fast inference times and efficient feature represen-
tation) trained on the ImageNet dataset [46] as a fixed
feature extractor as shown in Figure 5(a) to extract a feature
vector containing 512 features from each image. Fully con-
nected networks were implemented in PyTorch 1.9.1 and
trained on these features for cell classification using a
GPU-enabled computer (Intel Core i7-7800X CPU and
NVIDIA GeForce GTX 1080 Ti).

In our two-step classification process, we first trained a
binary classifier to classify cells as “healthy” or “dead.” The
network consisted of an input layer with 512 inputs, four
hidden layers with 128, 64, 32, and 8 neurons, respectively,
and an output layer with two outputs. All the layers except
the output layer used the ReLU activation function and reg-
ularization via a dropout probability of 40%. A cross-
entropy loss function and the Adam optimizer (with a learn-
ing rate of 0.0003) were used for training. The binary classi-
fication network was trained for 150 epochs with a batch size
of 20 for less than five minutes (see Figure S4(a)). While the
classifier was extremely accurate in classifying dead cells in
the test dataset, some healthy neutrophils were
misclassified as dead cells. Thus, we added an additional
checkpoint that updated the classification of all dead cells
based on thresholds for mean intensity, Euler number, and
area of the cells and their nuclei.

We then trained a five-part classifier that used the same
feature vector and consisted of an input layer with 512 inputs,
four hidden layers with 256, 128, 64, and 32 neurons, respec-
tively, and an output layer with five outputs. Once again, the
ReLU activation function and regularization via a dropout
probability of 40% were used for all layers except the output.
A cross-entropy loss function and the Adam optimizer (with
a learning rate of 0.0003) were used for training. The binary
classification network was trained 150 epochs with a batch size
of 20 for less than five minutes (see Figure S4(b)). The
classifier was tested on the test dataset, and specificity and
sensitivity for each class were computed.

4.7. Automatic Cell Counting. In order to obtain WBC
counts from each sample, the RGB image tiles (consisting
of the grayscale image and the postprocessed segmentation
masks) were stitched to generate a single wide-field image
using the Grid/Collection stitching plugin (that was also
used to stitch the virtually stained image tiles). Counting
WBCs in the wide-field image rather than the image tiles
avoids multiple counting of WBCs in overlapping tiles and
minimizes misclassifications arising from incomplete cells
on tile edges. WBCs from the wide-field image were cropped
(into 224 × 224 pixel patches) and classified into “healthy” or
“dead” cells. All the dead cells were passed through the

checkpoint, and all the healthy cells obtained after this step
were then passed to the five-part classifier. The number of
cells of each type was counted, and the output was overlaid
on the stitched virtually stained image to provide additional
information for visual hematology analysis.

4.8. Fixing and Staining of Blood Smear Samples. After UV
imaging, blood smear samples were first fixed using meth-
anol (Thermo Fisher Scientific) for 7 minutes and stained
in May-Grünwald solution (MG500; Sigma-Aldrich) for
15minutes. After a brief rinse, the samples were put in a
1 : 10 diluted Giemsa stain solution (GS500; Sigma-Aldrich)
for 20 minutes. Samples were then washed in a phosphate
buffer solution (pH 6.6) and air-dried for bright-field micros-
copy as explained in Ref. [21].
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of segmentation models with U-Net. (Supplementary
Materials)
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