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Objective and Impact Statement. Identifying benign mimics of prostatic adenocarcinoma remains a significant diagnostic
challenge. In this work, we developed an approach based on label-free, high-resolution molecular imaging with multispectral
deep ultraviolet (UV) microscopy which identifies important prostate tissue components, including basal cells. This work has
significant implications towards improving the pathologic assessment and diagnosis of prostate cancer. Introduction. One of
the most important indicators of prostate cancer is the absence of basal cells in glands and ducts. However, identifying basal
cells using hematoxylin and eosin (H&E) stains, which is the standard of care, can be difficult in a subset of cases. In such
situations, pathologists often resort to immunohistochemical (IHC) stains for a definitive diagnosis. However, IHC is expensive
and time-consuming and requires more tissue sections which may not be available. In addition, THC is subject to false-negative
or false-positive stains which can potentially lead to an incorrect diagnosis. Methods. We leverage the rich molecular
information of label-free multispectral deep UV microscopy to uniquely identify basal cells, luminal cells, and inflammatory
cells. The method applies an unsupervised geometrical representation of principal component analysis to separate the various
components of prostate tissue leading to multiple image representations of the molecular information. Results. Our results
show that this method accurately and efficiently identifies benign and malignant glands with high fidelity, free of any staining
procedures, based on the presence or absence of basal cells. We further use the molecular information to directly generate a
high-resolution virtual THC stain that clearly identifies basal cells, even in cases where IHC stains fail. Conclusion. Our simple,
low-cost, and label-free deep UV method has the potential to improve and facilitate prostate cancer diagnosis by enabling
robust identification of basal cells and other important prostate tissue components.

1. Introduction

Prostate cancer (PCa) is the most common extracutaneous
cancer malignancy and the second leading cause of cancer-
related deaths in men in the United States [1, 2]. Further,
biopsy-based studies have shown that more than half of
men over the age of 50 harbor some form of prostatic adeno-
carcinoma or high-grade prostatic intraepithelial neoplasia
(HGPIN; a precancerous lesion) [3]. The high prevalence
of PCa, combined with (i) early screening (now beginning
at 40 years of age using serum prostate-specific antigen
(PSA) and/or ultrasound/MRI imaging) and (ii) widespread
use of needle biopsy, has made interpretation of small, diag-
nostically challenging atypical glands a routine part of

uropathology practice. Despite active regular screening and
application of advanced imaging techniques, cases of false
negative and false positive are relatively abundant particularly
in challenging cases (especially small foci of glands) and in the
nonexpert uropathology setting. (Approximate estimates
from different sources suggest a 2-4% false-negative rate and
a ~15-35% false-positive rate for prostate cancers [4-12].)
For false-positive cases, misdiagnosis of prostate cancer gives
rise to unnecessary treatment of healthy patients. For the
false-negative cases (which are far more alarming), patients
with actual cancer lesions may be left untreated at early stages
when interventions can be highly effective. The fact that there
is significant diagnostic uncertainty can be psychologically
taxing on patients, and the results of overtreatment or
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undertreatment can have severe consequences for patients’
overall clinical outcome, as well as the economic impact on
healthcare systems [5, 13-15].

In routine practice, the diagnosis of PCa is based on his-
tological analysis of prostate tissue sections using hematoxy-
lin and eosin (H&E) stains, and assessment is based on
morphological features such as growth pattern, nuclear aty-
pia, and the absence of basal cells [16-19]. However, a num-
ber of benign entities closely mimic cancer, making
definitive diagnosis challenging, particularly in cases such
as small foci of cancer or atypical glands, which as stated
above are increasingly common. Therefore, in many cases,
it is necessary to use immunohistochemistry (IHC) stains
to differentiate cancer from benign entities [20].

Some of the most common IHC stains used for definitive
prostate cancer diagnosis include p63 and high-molecular-
weight cytokeratin (HMWCK), which selectively label basal
cells in prostate tissue [21, 22]. p63 is a homologue of the
tumor suppressor gene p53, and HMWCK reacts with the
monoclonal antibody keratin 34BE12, both of which are
present in the basal layer of prostatic glands [23, 24]. These
IHC stains are extremely powerful because the absence of
basal cells in glands and ducts is a strong indicator of pros-
tate carcinoma, and the presence of basal cells alone usually
precludes a cancer diagnosis for that structure [24]. How-
ever, these methods have important limitations. First, IHC
antibodies are expensive and require trained personnel and
cumbersome procedures for staining. Second, IHC stains
do not always react with basal cells, leading to cases where
basal cells in benign glands are not stained (negative expres-
sion) or are weakly stained [25, 26]. For example, benign
lesions such as partial atrophy often result in false-negative
stains [24, 27]. Third, there is inherent variability in the
uptake of IHC stains that depends on how the tissue is han-
dled, which may also result in weak or no stain expression.
Finally, it is not always possible to obtain additional tissue
sections for IHC. Thus, there is a critical need for a reliable,
robust, and accessible method that can accurately identify
basal cells to aid in the diagnosis of suspicious prostate tissue
samples.

In this work, we address this important limitation using
transmission-based multispectral deep UV microscopy.
Recently, deep ultraviolet (UV) imaging has reemerged as
an important tool for fast, simple, and reliable label-free
molecular imaging based on light attenuation in this spectral
region, providing a number of important advantages over
conventional optical microscopy modalities (a comparison
is provided in the supplemental material). For example,
many biomolecules critical to cellular function and the
development of diseases have distinct absorption spectral
signatures in the deep UV region of the spectrum, which
enable high-contrast, quantitative molecular imaging and
phenotyping [28, 29]. Further, unlike other label-free molec-
ular imaging methods, deep UV microscopy is fast, offers
high spatial resolution owing to its shorter wavelength, and
does not require expensive laser systems. (Note that the
resolution, r, of a microscope depends on the wavelength,
A, and numerical aperture, NA, of the collecting optics and
is given by r=1/2A/NA.) Finally, unlike modalities that
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require fluorescent agents or dyes, deep UV imaging is
label-free and quantitative, thus obviating the need for
chemical staining [28, 29]. This significantly simplifies labo-
ratory procedures and reduces testing/operational costs and
variability. These advantages uniquely position deep UV
microscopy as a promising candidate for facile, low-cost
quantitative molecular imaging of prostate cancer.

Here, we show that UV spectral and spatial features of
basal cells uniquely separate them from other prostate tissue
components, enabling stain-free virtual p63 IHC stain, a feat
that has yet to be demonstrated despite significant advances
in computational imaging and deep neural networks
[30-32]. The method proposed here obviates the need for
immunohistochemical staining processes and represents a
powerful tool that can help pathologists diagnose prostate
cancer. Further, given the quantitative nature of UV micros-
copy, the same method can potentially be optimized for
automated computer-aided diagnosis. Finally, the proposed
method is nondestructive and preserves the unstained tissue
sections. This avoids the need for multiple tissue sections
which may not be available and can thus become a particu-
larly critical tool in scenarios where tissue samples are
limited, such as in small core needle biopsies.

2. Results

2.1. Deep UV Microscopy of Prostate Tissue Sections. Details
of the multispectral deep UV transmission microscope are
provided in Materials and Methods. This system uses atten-
uation of transmitted UV light through the sample to obtain
endogenous molecular information (more details in Mate-
rials and Methods). Unlabeled fixed radical prostatectomy
tissue samples obtained from formalin-fixed paraffin-
embedded (FFPE) blocks were sliced (~5pm thick) and
mounted on quartz microscope slides for imaging. All pro-
cedures followed protocols approved by the IRB of our Insti-
tution. A filter wheel was used to switch spectral filters at
different wavelengths (each with a bandwidth of ~10nm)
to acquire multispectral images from histologically impor-
tant regions containing structures such as benign tissue,
inflammation, stroma, red blood cells, and glands with
various grades of prostate cancer. Eighty-seven regions of
interest were acquired from 15 patients. Each region was
~1mm x 1.5mm, acquired with a spatial resolution of
~250nm. To achieve maximum molecular contrast while
minimizing the number of acquisitions, images were taken
at four key wavelengths: 220 nm, 255 nm, and 280 nm which
correspond to absorption peaks of proteins and nucleic acids
[28]. In addition, we included a fourth wavelength at 300 nm
which incorporates tissue scattering signatures as an indica-
tor of tissue nanoarchitecture [28, 33, 34].

A geometrical representation of principal component
analysis (PCA) is applied for further dimension reduction
and to enable a visual representation of the spatially resolved
spectral signals. PCA is chosen here due to its simplicity and
the fact that the PCA inherently maximizes the variance of
the data in each principal component, thus yielding a space
well-suited to capture both subtle and large molecular
changes. In this process, we first selected ~130 million
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spectra, selected from regions such as gland and stroma
components, to calculate the principal components (PCs).
Figure 1(a) shows the resulting principal components. Inter-
estingly, the calculated PCs are similar to the absorption and
scattering spectra of biological media. Specifically, the spec-
tra of PC1 are similar to the spectral response for tissue scat-
tering with a monotonically decreasing response with
increasing wavelength. On the other hand, PC 2 and 4
resemble the absorption spectra of proteins, while PC 3 is
similar to the inverted spectra of nucleic acid absorption
[28]. However, as we have outlined previously [29], these
PCs cannot solely be attributed to these molecular compo-
nents, and we do not rule out contributions from other
molecules.

To leverage the spectral response for molecular imaging,
we take the projections of the spectra onto the first three
principal components (which contain over 99% of the data
variance) and do a coordinate transformation from Carte-
sian coordinates to spherical coordinates. With this transfor-
mation, the shape of the spectrum of each spatial pixel in the
image, given by the biochemical composition within that
pixel, can be accurately described using only the azimuth
(0) and elevation (¢) angles [29]. The radius in spherical
coordinates then serves as a relative measure of concentra-
tion. Thus, images can be represented in a hue-saturation-
value (HSV) color space, with the hue given by the angular
coordinates (either elevation or azimuth angle). In practice,
multiple representations of the molecular information can
be rendered using any combination of three PCs. The pro-
posed colorization method results in two molecular stain
maps with contrast for important prostate tissue compo-
nents such as nuclei, cytoplasm, nerve, stroma, gland con-
cretion, and inflammation as described in [29]. We show
two examples of these maps in Figures 1(d) and 1(e).

In Figure 1(d), the elevation angle is used to encode the
hue. This optical stain provides clear contrast for nuclei,
stroma, and cytoplasm. Since the elevation angle in this rep-
resentation corresponds to the ratio of the 3rd principal
component relative to a combination of the 1st and 2nd
PCs, it is expected that this stain provides a strong contrast
for nuclei (since the 3rd PC is representative of inverted
nucleic acid absorption). Alternatively, in Figure 1(e), we
use PC 2, 3, and 4 to allow for more subtle differences in
spectral signatures (from weaker PCs and hence biochemical
components) to produce appreciable color differences in the
optical stains/molecular maps, free from scattering (PC 1)
contributions. The resulting images yield nuclear contrast
with subtle differences based on cell types (e.g., luminal epi-
thelial, basal, inflammation, and fibroblast nuclei), depicted
in different tones of red, while stroma is highlighted in
bright yellow. It is worth noting that color variations here
primarily reflect differences in the ratio of PC 3 to PC 2 that
are attributed to nucleic acid and protein absorption, respec-
tively, which can differentiate between cell nuclei types.

Careful analysis of the optical stains (Figures 1(d) and
1(e)) and the average spectra of different components (calcu-
lated from all the patients, Figure 1(b)) suggests that it is
possible to utilize spectral differences of biomolecules to
uniquely identify various components of prostate tissue,

including basal cells that are a strong indicator of benign
glands (Figure 1(c)). To this end, we use both geometrical
principal component representations applied above (ie.,
PC 1, 2, and 3 and PC 2, 3, and 4) in a two-step process to
first separate nuclei from stroma and cytoplasm and then
categorize different cell types (based on nuclei spectral
response). The steps taken to identify all prostate tissue com-
ponents are detailed in the flowchart in Fig. S2. Briefly, in the
first step, we use the elevation direction of the PC 1, 2, and 3
spherical domains to separate nuclei from stroma and cyto-
plasm. This step is necessary to efficiently separate stroma
and cytoplasm structures from cell nuclei (which may have
some overlap in the PC 2, 3, and 4 representation). Next,
the azimuth direction of the PC 2, 3, and 4 spherical domain
is used to differentiate among different nuclei subtypes, as
shown in Figure 1(b). Following this two-step process, a
slight spectral overlap between stroma, cytoplasm, and
nuclei results in an observed “salt and pepper” noise in the
final cell nuclear segmented maps. To remove this noise,
we apply an area thresholding criteria to eliminate small-
area, nonzero clusters of pixels that cannot physically repre-
sent cell nuclei.

The analysis above efficiently separates stroma, cyto-
plasm, and luminal epithelial cells from basal cells and
inflammatory cells. However, inflammatory cells and basal
cells share some UV spectral overlap and are not always well
separated. The spectral overlap can be attributed, in part, to
similarities in the chromatin packing structure [35, 36];
however, the shape and anatomical location of these cells
differ substantially. Thus, to finally produce label-free optical
stains with UV microscopy that faithfully recapitulate p63
and HMWCK THC, we apply a morphological filtering step.
This process effectively identifies the elongated shape of
basal cells by computing the gradient of the segmented
nuclei map and then applying a dilation procedure followed
by intensity thresholding. This procedure (shown schemati-
cally in Fig. S2) allows facile separation of the inflammation
cells that spectrally overlap with basal cells.

Finally, we apply two colorization schemes to the nuclear
maps. In the first scheme, we seek to recapitulate p63 stains
to produce virtual IHC images. Here, basal cells are color-
ized with a dark brown color while other nuclear subtypes
have a dark blue hue and stroma has a light gray shade (as
observed in p63). In the second colorization format, we
leverage the fact that we can uniquely identify multiple
important prostate tissue cellular components to develop a
more detailed 4-channel molecular map. Specifically, we
encode basal cells in red, luminal epithelial and fibroblast
cells in green, inflammatory cells in yellow, and stroma
and cytoplasm in blue. These two maps clearly identify the
location of the benign gland (given by the presence of basal
cells) as well as other important tissue constituents. In
Figures 2(a)-2(h), we show two examples of virtual THCs
and 4-channel molecular maps from a benign and cancer
region. As clearly highlighted in Figure 2(c), basal cells sur-
round the benign glands with a strong brown hue as seen
in a standard p63 stain. Interestingly, in Figures 2(g) and
2(h), there is a lack of basal cells detected with UV micros-
copy which suggests that the glands correspond to prostatic
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FIGURE 1: Summary of data processing steps and average spectral data: (a) the 4 principal components resulting from 130 million spectra
from representative select regions. (b) Elevation integral of the two-dimensional molecular histogram calculated using projection of
multispectral data on principal components 2, 3, and 4. The specified points correspond to the average azimuthal coordinates of
inflammation (yellow), basal cells (red), luminal epithelial cells (green), and cytoplasm/stroma (blue). The arrows illustrate the azimuthal
angle interval attributed to each component. The inset shows a schematic of coordinate transformation from Cartesian to spherical
coordinates. (c) Calculated average spectra from basal cells, luminal epithelial cells, cytoplasm/stroma, and inflammation. (d, e) A
representative example of high-contrast molecular colorization using this geometrical representation of the PCs from a prostate tissue
region including various components. The insets show the two-dimensional geometrical representation angular distribution histogram of
the molecular images using PC 1, 2, and 3 and PC 2, 3, and 4, respectively.

adenocarcinoma. These findings are indeed in agreement  tent, androgen receptor level, and other intracellular

with H&E and p63 stains (from adjacent sections). biomolecules [37, 38]. Thus, unlike the actual p63 IHC stain
Note that with this method, basal cell identification for =~ which labels the entire basal cell, this method will only color-
virtual p63 stains is based on the unique combined absorp-  ize pixels whose absorption profile matches the expected

tion spectrum of the nucleic acids, chromatin, keratin con-  unique spectral signatures of the basal cells. This leads to a
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F1Gure 2: Virtual IHC and 4-channel molecular map colorization for a (a-d) benign and (e-h) prostate cancer tissue. (a, b, e, and f) Show
H&E- and p63-stained sections of the same regions (from adjacent sections). As clearly observed, the virtual and stained p63 images are in
excellent agreement. Color coding for the 4-channel molecular map in (d, h) is based on the azimuth angle as shown in Figure 1(c) and the
cell segmentation procedure described above (red, yellow, green, and blue represent basal cells, inflammation, luminal epithelial cells, and

stroma and cytoplasm, respectively).

“fuzzy” appearance of the basal cells in the virtual p63 stains,
compared to the physically stained tissue. Mode conversion
methods using deep neural networks [29] may help clean
up this appearance and improve the resemblance to real
IHC, but this is not necessary as the goal of p63 IHC is to
identify basal cells. For this task, even the “fuzzy” virtual
stain directly provided by this method is sufficient. Further,
given the somewhat limited spectral separation of basal cells
to other structures, some small regions may be falsely color-
ized in brown; however, these regions do not show a clear
appreciable structure and do not interfere with basal cell
detection nor identification of benign glands.

2.2. Application of Virtual IHC in Challenging Diagnostic
Cases. The proposed molecular basal cell identification
method using label-free deep UV microscopy enables
faithful virtual IHC stains, which has the potential to be
applied as a powerful tool to aid pathologists in challeng-
ing diagnostic cases. Such capabilities can be key when
insufficient tissue is available for IHC or when IHC stains
show weak or no uptake. Further, adoption of this method
can lead to more routine and robust use of basal cell local-
ization in histology analysis since it obviates the need for
expensive and time-consuming procedures. In the follow-
ing section, we apply this method to illustrate its utility
in resolving several challenging pathology scenarios in

which H&E alone or even in combination with p63 can
lead to significant diagnostic uncertainty.

2.3. Entrapped Benign Glands. In most prostate cancer
lesions, there are some entrapped benign glands that do
not show any sign of malignancy but are challenging to
identify. The importance of entrapped benign gland identifi-
cation arises from two aspects: First, in some cases, the prev-
alence of entrapped benign glands can be indicative of
adjacent invasive cancer. Second, entrapped benign glands
along with colonization by intraductal carcinoma are two
possible explanations for residual basal cells [39, 40]. Thus,
it is important to identify entrapped basal cells in a cancer
region. Our proposed method allows the identification of
entrapped benign glands in a cancer region free of any
stains. In Figure 3, we show an example of virtual THC
of an entrapped benign gland along with H&E, p63, and
the 4-channel molecular image of the same region. Specif-
ically, Figure 3 shows a benign gland with a few basal cells
that are surrounded by cancer glands (Gleason Grade 3
and 4). Identification of entrapped benign glands, espe-
cially when they lack papillary infoldings and have fewer
basal cells, is challenging; thus, IHC imaging is critically
important in cases like this. Our proposed UV imaging
method is capable of identifying basal cells (and therefore
benign glands) only from molecular signatures without the
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Ficure 3: Virtual IHC and 4-channel molecular representation of an entrapped high-grade PIN gland. The existence of basal cells clearly
identifies the entrapped high-grade PIN gland with adjacent cancer glands. H&E and p63 stains of the same region are shown for

comparison.

need for extra slices for IHC staining and shows excellent
agreement with p63 IHC.

2.4. Basal Cell Hyperplasia. Prostatic epithelium in humans
consists of three components: basal cells, luminal epithelial
cells, and neuroendocrine cells. Basal cells are slightly
smaller than luminal epithelial cells with an exiguous cyto-
plasm. In normal prostate glands, basal cells represent up
to 10% of the cell bodies. But basal cell proliferation in the
prostate gland exhibits a wide morphologic continuum rang-
ing from focal basal cell hyperplasia (BCH), in the setting of
nodular hyperplasia, to florid adenoid basal cell tumor
(ABCT). These diverse proliferations have been referred to
by many names including fetalisation of the prostate, embry-
onal hyperplasia, basal cell tumor, basal cell adenoma, basa-
loid carcinoma, and adenoid cystic carcinoma. Among
them, benign prostatic basal cell hyperplasia (BCH) is a
common benign mimic of adenocarcinoma that is challeng-
ing to diagnose [41-43]. In many of these cases, BCH
requires the use of an IHC panel to differentiate benign
BCH from adenocarcinoma. Figure 4 shows an example of
benign basal cell hyperplasia, which consists of two types

of glands: large gland with few layers of basal cells and few
small crowded acini glands. Both of these cases are mimics
of adenocarcinoma and are challenging to distinguish from
cancer using only H&E-stained tissue slides. This issue is
particularly important if we consider the abundance of
BCH in prostate tissue. For example, in our existing data
set, there are 7 BCH cases (out of 15 patients) with clearly
large prostatic glands with two or more layers of basal cells,
occasionally protruding in the acinar lumen or small gland
basal cell proliferation. This relatively high abundance of
cells typically calls for an extra tissue section for IHC stain-
ing to obtain a firm diagnosis which adds to the complexity
and costs of the diagnosis. Deep UV microscopy can aid in
this process by obviating the need for the expense and
time-consuming THC stain, while still providing IHC images
that look nearly identical to standard p63 stains (as shown in
Figures 4(b) and 4(c)).

2.5. Weak or Negative p63 Expression and Atrophy. One of
the most challenging scenarios in prostate cancer diagnostics
is when basal cell markers have weak or negative staining. In
such cases, it is possible that the lack of staining may be
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FIGURE 4: Virtual THC and 4-channel molecular representation of benign prostate glands with basal cell hyperplasia.

interpreted as malignancy and result in a false positive/over-
diagnosis [25, 26]. This is especially important and mislead-
ing for small foci of atypical or partially atrophic benign
glands. Multispectral deep UV microscopy allows spectro-
scopic identification of basal cells, and reliability identifies
basal cells even when the IHC stain fails. In Figures 5(a)-5(d),
we show an example of several small benign glands with
negative p63 expression. This an excellent example of small
well-formed glands with negative p63 which can be misdiag-
nosed as Gleason Grade 3 glands with H&E and p63. Indeed,
upon close inspection, an expert uropathologist can identify
basal cells here with H&E based on the cells’ typical location
on the outer layer of prostate glands next to the prostatic
stroma and their slightly smaller and/or more elongated
shape compared to luminal epithelial cells. Basal cells also
exhibit higher hematoxylin stain uptake which gives them a
darker blue/purple appearance compared to the relatively
pale benign luminal epithelial cells. Nevertheless, less experi-
enced pathologists and/or more difficult cases would require
IHC for a more definitive diagnosis—this is why basal cell
markers like p63 IHC are so important and used widely for
prostate cancer diagnosis. Thus, weak or negative basal cell
uptake of p63 is a significant limitation of this stain, which

as shown here can be readily addressed by label-free deep
UV microscopy.

Figures 5(e)-5(h) show a different example of a “cystic”
atrophic gland which also contains basal cells with negative
p63 expression. Atrophy is a common benign mimicker of
prostate cancer that may occasionally be misdiagnosed.
Most of the atrophic glands have only a few distorted basal
cells [9, 44, 45]. Here, basal cells can be identified by an
expert uropathologist by looking for relatively elongated,
dark nuclei that are surrounding luminal epithelial cells
and are not within the stroma. But in general, detection of
atrophic benign glands becomes especially challenging if
the basal cell markers fail to highlight them, as is the case
here. Nevertheless, as demonstrated in Figures 5(g) and
5(h), multispectral deep UV microscopy can clearly identify
basal cells, independent of the chemical reactivity of basal
cells with the stain.

3. Discussion

In this study, we have introduced multispectral deep UV
microscopy as a fast, cost-effective, and efficient molecular
imaging tool that can identify critical structures within
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FiGure 5: Virtual IHC and 4-channel molecular representation of (a-d) crowded small foci of benign glands with negative p63 expression
and (e-h) two cystic atrophic glands with negative p63 expression. Cystic atrophic glands have very few basal cells and might be
misinterpreted as cancer. (c-g) Virtual p63 images from deep UV microscopy clearly show the basal cells while the p63 IHC fails to
stain them. H&E and p63 stains from adjacent sections are shown for comparison.

prostate tissue sections, including basal cells, without the
need for any exogenous labels or dyes. The system also does
not require expensive laser systems or complex optical
equipment and can potentially be manufactured out of
low-cost components (<$5,000 total). The quartz slides used
in this work can be replaced by low-cost UV transparent
polymers/plastics. Our methodology applies a geometrical
representation of principal component analysis to transform
the multispectral data into two domains that map out differ-
ent constituents of prostate tissue. The first domain is dom-
inated by scattering and allows the separation of nuclei from
stroma and cytoplasm. The differences in scattering signa-
tures arise from tissue nanoarchitecture alterations [34,
46-48]. The second domain, which is calculated by remov-
ing scattering-dominated PCl, uses absorption variations
from tissue components (prominently proteins and nucleic
acids) and allows differentiation of main gland constituents,
including basal cells, inflammation, luminal epithelial cells,
stroma, and cytoplasm.

Among all the separated tissue components, the unique
identification of basal cells is of critical importance for pros-
tate cancer diagnosis because the lack of basal cells in a pros-
tate gland is a strong indication of prostate cancer
development. In a number of cases, identification of basal
cells using only H&E stains may be quite challenging. This
issue necessitates the utilization of IHC stains to label basal

cells, but IHC is expensive, requires additional tissue slice,
and does not always successfully stain basal cells. Here, for
the first time to our knowledge, we have developed a novel
approach that uniquely identifies basal cells without the
need for stains or labels using multispectral deep UV
microscopy. We hypothesize that the spectral difference
between basal cells and other subtypes of cells arises from
parameters such as chromatin packing, keratin content,
and androgen receptor level, among other factors [37, 38].
Identifying the specific molecular factors that enable unique
basal cell identification will be part of our future work.

We have also shown that UV microscopy can be applied
to directly produce high-fidelity virtual p63 IHC images.
This has a number of important implications. For example,
there are cases where extra tissue slices are not available
for THC staining or IHC stains have weak or no expression
(or there might be patchy staining) due to staining proce-
dure flaws or intrinsic basal cell uptake failure. Also, the
growing demand for routine, fast, and robust basal cell local-
ization in histology requires the development of methods
that are free of any expensive and time-consuming proce-
dures. In all these cases, deep UV microscopy allows fast,
cost-effective, and accurate access to basal cell content and
virtual p63 maps.

One of the most important implications of using multi-
spectral deep UV microscopy for basal cell identification is
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FIGURE 6: Virtual H&E and p63 stains of a representative prostate region with foci of small benign glands (mimics Gleason Grade 3 prostatic
adenocarcinoma). (a) H&E and (b) virtual H&E rendered using a deep learning model as described in Ref. [29]. (c) p63 and (d) virtual p63

rendered using a geometrical representation of PCA.

detection of benign mimics of prostate cancer without utiliz-
ing any staining procedures. There are a class of benign
mimickers of prostatic adenocarcinoma that specifically
require the detection of basal cells to confirm a benign diag-
nosis. These cancer mimics include (1) atrophy and its
variants, including simple atrophy, partial atrophy, and
postatrophic hyperplasia, (2) crowded small gland prolifera-
tion with small or no atypia, (3) adenosis, (4) hyperplastic
and metaplastic lesions, (5) seminal vesicle epithelium, (6)
paraganglia, (7) urothelial metaplasia, (8) squamous meta-
plasia, and (9) sclerosing adenosis [9]. In all these cases,
using multispectral deep UV microscopy can facilitate the
identification of basal cells, significantly reducing diagnosis
costs and uncertainty.

It is important to highlight that in our previous work
[29], we have shown that label-free UV imaging can also
produce high-fidelity H&E images. With the added ability
to produce virtual IHC images from the same multispectral
UV data, as shown in this work, UV microscopy effectively
obviates the need for much of the gold-standard tissue pro-
cessing being done today. In fact, deep UV microscopy can
be used to generate a multistain panel (H&E, p63 IHC,
and various “optical” stains) at no extra cost while also pre-

serving the unstained tissue sections (note that with the
short exposure times of <100 ms per image and low power
illumination used <40 W, no damage is observed in the
fixed tissues). To illustrate this important feature,
Figures 6(b) and 6(d) show an example of an unstained
prostate tissue section from a region with foci of small
benign glands imaged with deep UV microscopy and virtu-
ally stained to appear like H&E and p63. Again, both of these
images are generated from the same multispectral deep UV
microscopy data and show excellent agreement with adja-
cent tissue sections stained with H&E (Figure 6(a)) and
p63 IHC (Figure 6(c)). The same unstained tissue section
shown in Figures 6(b) and 6(d) was then stained with
H&E (Fig. S4) and shows excellent agreement with the deep
UV virtual H&E stain. This also demonstrates that this
method does not damage or alter the unstained tissue sec-
tions and that the tissues can indeed be used for additional
tests after UV imaging.

Other label-free methods have been proposed for virtual
H&E staining based on deep learning (e.g., using phase con-
trast [49], autofluorescence [50], and brightfield [51]), but to
our knowledge, deep UV microscopy is the only approach
that has demonstrated the ability to provide both H&E and
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highly specific p63 IHC simultaneously (or just label-free
p63 THC virtual stains). Further, unlike virtual H&E stain-
ing, the proposed virtual ITHC stain does not rely on deep
learning methods which, while promising, have their own
unique challenges [29, 50-52]. For instance, deep learning
requires a lot of matched labeled data in order to train a con-
version model, thus inherent artifacts in the images—like
weak or negative p63 expression and faded staining—can
be learned. Thus, as shown here, our approach which
directly uses endogenous scattering and absorption signa-
tures has the unique potential to not just duplicate IHC
but actually improve it.

In our previous work [29], we have shown that the
endogenous UV molecular information can serve as a per-
sonalized continuous prostate cancer biomarker to help
grade disease. However, this method measures relative
molecular shifts of cancerous glands relative to benign
glands from individual patients and thus relies on an expert
pathologist to help identify benign prostate glands as Refer-
ence [29]. In this current work, we show that multispectral
deep UV imaging can also aid in this process, as benign
prostate glands can be easily identified based on basal cell
content. This is an important finding because it can poten-
tially result in automatic cancer detection and grading. Fur-
ther, prostate tumor invasion is believed to be a multistage
process, progressing sequentially from benign to malignant
with associated invasion. Part of the process leading to inva-
sion is triggered by the overproduction of proteolytic
enzymes primarily by cancer cells, which leads to focal glan-
dular basal cell disruption [53-55]. Since UV microscopy
uses molecular information to determine the presence or
absence of basal cells, it could conceivably facilitate the
detection of prostate cancer at a relatively early stage.

It is important to emphasize that our proposed method is
simply a brightfield transmission microscope with deep UV
illumination and can thus be integrated into the current clin-
ical workflow much like modern whole slide digital scanners.
Indeed, we use quartz slides in this work, but tissues can be
mounted on low-cost UV-transparent polymers/plastics.
Further, estimated total acquisition times with our system
for a 10 mm x 10 mm slide is currently about 1 min per wave-
length which yields a throughput of 15 slides/hr with 4 wave-
length acquisitions (commercial visible digital slide scanners
have a throughput of 20-80 slides/hr). The computational
time for image conversion is also negligible (<1 min for a
whole slide). With multiplexing and further improvements
in automation, higher scanning rates may be achievable.
Note, however, that with a single acquisition of our deep
UV system, multiple virtual stains can be obtained, including
H&E, p63 THC, the 4-channel molecular map, and other
unique optical stains as shown in Figure 1. Moreover, given
the rich molecular content and high-resolution structural
detail of the deep UV images—along with the increasing
power of computational deep learning methods—it is also
possible that this method may provide a path towards
mimicking other important molecular stains or providing
additional unique insight. Thus, deep UV microscopy may
ultimately be much faster and lower cost than current proce-
dures required to obtain the same information.

BME Frontiers

In conclusion, we have demonstrated that multispectral
deep UV microscopy is a novel quantitative tool that
allows automatic detection of basal cells with high fidelity
and free of any stain or chemical processes. This method,
along with our previous label-free virtual H&E staining
with UV microscopy, has profound implications in aiding
pathologists in the diagnosis of prostate cancer. This entire
label-free pipeline may also be used for automatic cancer
detection and grading in the future. The method is fast,
low-cost, and simple and provides subcellular resolution
and can be used as a possible tool along with standard
methods (such as H&E) to increase diagnostic confidence,
accuracy, and reproducibility.

4. Materials and Methods

4.1. Deep UV Multispectral Microscopy Setup. The deep UV
transmission images were acquired using a microscopy sys-
tem that consists of a plasma-driven broadband light source
(Energetiq, EQ-99X). The light source provides a continuous
spectrum from 200 nm to 2 ym. The output light from the
source is relayed to the sample using an off-axis parabolic
mirror (Newport). A long-pass dichroic mirror is used to fil-
ter out the wavelengths of light above ~550 nm to remove
unnecessary exposure. For each region of interest, a multi-
spectral data cube is captured using bandpass filters centered
at 220, 255, 280, and 300nm (all with a bandwidth of
~10nm). A filter wheel is used to change the imaging wave-
length of the system. A 0.5 N.A. UV objective (Thorlabs
LMU-40X-UVB) is used to collect the transmitted light,
and a biconvex (f = 150 mm) lens is used to relay light onto
a UV camera (pco.ultraviolet). A schematic of the setup is
shown in Fig. S1. For each acquisition, the camera integra-
tion time was set to ~100ms to capture a field of view of
about ~ 170 ym x 230 ym. The resolution of our system is
~250nm. In this work, we studied regions that were com-
prised of 81 tiles in the form of a 9 by 9 mosaic image. To
enable reliable stitching, each tile has ~15% overlap with
its neighbors. The final resulting region is approximately
~1mm X 1.5mm.

4.2. Sample Collection and Preparation. We collected
formalin-fixed paraffin-embedded blocks (FFPE) from radi-
cal prostatectomy specimens from 15 prostate cancer
patients. The patients had not received any neoadjuvant
therapy prior to radical prostatectomy. Next, thin slices
(~5 microns thick) of the tissue blocks were mounted on
quartz slides and were deparaffinized by incubating the
slides in xylene bath for 5 minutes. The samples were then
placed in 95% ethanol for 3 minutes to remove xylene and
washed with deionized water. For each region of interest,
we used three adjacent slices. One section was used for UV
imaging, and a second section was stained with H&E and
imaged with a bright field microscope. In addition, a third
section was stained with p63 stain to identify basal cells in
case of benign gland presence.

All tissues were deidentified from archived tissue blocks
at our Institution (n = 15) or a commercial vendor (Biomax)
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(n=15). This work is conducted under an IRB exempt proto-
col (H16343).

4.3. Data Processing. To study the molecular content of the
imaged tissue slides, different wavelengths in each captured
multispectral data cube were registered in MATLAB (Math-
Works) environment. Next, in order to have a single wide-
field UV image, we used an image stitching code (MIST)
[56] developed by the National Institute of Standards to
stitch the 81 tiles, captured separately.

To calculate the principal components (PCs) of the mul-
tispectral prostate tissue images, we selected 90 regions that
yielded approximately ~130 million spectra which repre-
sented all biologically important structures in prostate tissue.
Next, we performed PCA in MATLAB to calculate the 4 prin-
cipal components of the selected regions.

To separate different components of tissue using molecu-
lar signatures, first, we calculated the projections of the mul-
tispectral UV data on PC 1, 2, 3, and 4, respectively. Next, we
converted the resulting projection vectors (Proj 1, Proj 2, and
Proj 3) and (Proj 2, Proj 3, and Proj 4) from Cartesian coor-
dinates to spherical coordinates (azimuth (0), elevation (¢),
and radius I), where Prj i represents the projection of UV
data on PCi. In the first step of separation, we use the eleva-
tion component of PC 1, 2, and 3 representation to separate
the nuclei from stroma and cytoplasm. Next, we used the azi-
muthal component of the PC 2, 3, and 4 representation to
separate different species of cells. At this step, the final sepa-
rated maps, especially the separated basal cell map, contain
residual salt and pepper noise as well as misidentified cells
from spectrally overlapping molecular species such as
inflammation and luminal epithelial cells. To remove the
noise, we used a dilation followed by an area filtering step
that voids small nonzero pixels. At this step, there are some
inflammation cells that are still present in the basal cell
map. Here, we used morphological features of basal cells to
remove the residual misidentified inflammation. The Prewitt
gradient [57] of the separated nuclei exhibits a larger magni-
tude for most of the basal cells compared to other molecular
species. We utilize this feature to separate basal cells from
misidentified inflammation. To this end, we have calculated
the Prewitt gradient of the nuclear image and apply an inten-
sity threshold followed by a Gaussian filter. This step pro-
duces a dilated mask of approximate locations of basal cells
and allows the removal of misidentified inflammation.
Finally, to produce a virtual p63 image, we have applied three
average representative colors to basal cells, other nuclei, and
stroma that allows colorization of the image similar to a
p63. In addition, we have generated a false color image for
each region by using red (for basal cells), green (for luminal
epithelial, fibroblast, and smooth muscle nuclei), blue (for
stroma and cytoplasm), and yellow for inflammation.

Data Availability

The data generated in this study are available upon request
from the corresponding author.
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