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Cell-cell interactions (CCl) play significant roles in manipulating biological
functions of cells. Analyzing the differences in CCl between healthy and
diseased conditions of a biological system yields greater insight than
analyzing either conditions alone. There has been a recent and rapid growth
of methods to infer CCl from single-cell RNA-sequencing (scRNA-seq),
revealing complex CCI networks at a previously inaccessible scale. However,
the majority of current CCl analyses from scRNA-seq data focus on direct
comparisons between individual CCl networks of individual samples from
patients, rather than “group-level” comparisons between sample groups of
patients comprising different conditions. To illustrate new biological features
among different disease statuses, we investigated the diversity of key network
features on groups of CCl networks, as defined by different disease statuses. We
considered three levels of network features: node level, as defined by cell type;
node-to-node level; and network level. By applying these analysis to a large-
scale single-cell RNA-sequencing dataset of coronavirus disease 2019 (COVID-
19), we observe biologically meaningful patterns aligned with the progression
and subsequent convalescence of COVID-19.

KEYWORDS
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1 Introduction

Cell-cell interactions (CCI) manipulate multiple biological processes, including
organismal development, homeostasis, and immune responses (Armingol et al., 2021).
When cells do not interact properly, disease occurs (Armingol et al., 2021). The recent
advances in single-cell RNA-sequencing (scRNA-seq) offer great opportunities to
decipher CCI through coordinated gene expression of ligand-receptor pairs. Using a
diverse range of strategies, many tools have been designed to infer CCI from scRNA-seq
(Almet et al., 2021; Armingol et al., 2021). These computational tools can be grouped into
four categories: differential combination-based, network-based, permutation-based, and
array-based (Armingol et al., 2021). The majority of CCI inference methods are designed
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to analyze CCI for a single condition. As characterizing
differences in CCI activity across multiple conditions—for
example, between healthy and diseased tissue—helps elucidate
the diverse mechanisms of CCI-mediated responses to disease,
more so than analyzing condition-specific CCI networks in
isolation, recent efforts have focused on developing
methodologies to systematically study the differences in CCI
between multiple conditions (Xiong et al., 2019; Gibbs et al.,
2021; Wang et al., 2022). However, the majority of previous CCI
analyses that analyze differences between conditions tend to
analyze CCI networks inferred from a single scRNA-seq
sample from each condition or analyze CCI networks
constructed by aggregating several samples. These analyses
result in deterministic characterizations of CCI and fail to
take into account the underlying variability across the groups
of samples that constitute each biological condition.

As single-cell omics field is expanding, data are becoming
more readily accessible. Advances in sequencing technologies
have enabled more sample replicates to be obtained at cheaper
prices and a greater number of cells that can be sequenced per
replicate (Svensson et al, 2018). While including multiple
samples can obscure biological variation via batch effects
(Luecken et al.,, 2022), having multiple samples per condition
enables one to characterize the variability of key aspects such as
CCI at the “group level”, where multiple samples comprise a
single condition. Being able to account for variability across
samples, such as those sampled from human patients, is
particularly important for diseases where host response is
associated with severity of disease progression, such as
COVID-19 (Ong et al., 2020). Indeed, there are a number of
scRNA-seq studies of COVID-19 where multiple samples have
been obtained for both healthy and diseased status (Liao et al.,
2020; Zhang et al., 2020; Melms et al., 2021; Ren et al., 2021;
Stephenson et al., 2021; Kuchroo et al., 2022). In particular, Ren
et al. (2021) produced scRNA-seq data containing 1.5 million
cells from 196 patients across five COVID-19 conditions. As
more large-cohort scRNA-seq studies become available, it is
important to develop methodologies that account for and
analyze the sample-to-sample variability within and across
biological conditions.

Thus, in this article, we propose a study on diversities of three
classes of features of CCI networks within groups of different
conditions. More specifically, since a CCI network can be
represented as a directed weighted graph, where the nodes
correspond to cell states and edge weights correspond to
interaction strengths, we can extract CCI features at three
levels: single node, node-to-node, and whole graph. We apply
these methods to a large single-cell transcriptomic COVID-19
dataset comprising peripheral blood mononuclear cells (PBMC)
sampled from 181 patients and analyze CCI diversity patterns
under different COVID-19 conditions. By analyzing each specific
CCI feature and comparing its diversity across different sample
groups comprising biological conditions, we are able to observe
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consistent and biologically meaningful patterns aligned with the
progression and subsequent convalescence of COVID-19.

2 Materials and methods

In this section, we have described the dataset we used, the
CCI analysis from CellChat, and the methods that we
implemented to analyze CCI diversity.

2.1 Data preparation

The scRNA-seq data of COVID-19 progression were
downloaded from the NCBI GEO database, accession number
GSE158055. The original scRNA-seq data consist of samples
taken from PMBCs, bronchoalveolar lavage fluid (BALF), and
sputum. To ensure consistency in biological sample type as well
as cell type, we only retained PBMCs. The considered data consist
of 181 COVID-19 patients and controls, including 25 healthy
controls, 18 patients with moderate symptoms, 43 patients with
severe symptoms, 57 patients in the convalescent stage from
moderate symptoms, and 38 patients in the convalescent stage
with severe symptoms. All single-cell preprocessing and analysis
were performed using Seurat (Hao et al,, 2021). Quality control
was performed according to the original study (Ren et al., 2021).
Specifically, cells with fewer than 1,000 unique molecular
identifier (UMI) counts and 500 detected genes were removed,
as well as cells with more than 10% of gene counts arising from
mitochondrial genes. To remove potential doublets, we also
filtered out cells that contained more than 25,000 UMI counts
and 5,000 detected genes. In addition, we used Scrublet (Wolock
et al., 2019) to identify doublets. The expected doublet rate was
set to 0.08, and cells predicted to be doublets were removed. Prior
to dimensionality reduction, we determined the 1,500 most
highly variable genes. Gene expression counts were
normalized to 10,000 counts per cell, log-transformed, and
then scaled. We used the original clustering metadata to label

B cells, T cells, and myeloid cells (Ren et al., 2021).

2.2 CCI analysis by CellChat

To infer significant CCI from the patient-specific scRNA-seq
data, we used CellChat (Jin et al, 2021). CellChat infers
significant CCI activity from scRNA-seq data between
identified cell groups, such as cell states or cell types. CellChat
calculates an interaction score based on mass action kinetics that
reflects the likelihood of CCI by integrating gene expression with
prior knowledge of the interactions between signaling ligands,
receptors, and their cofactors (Jin et al., 2021). CCI is identified at
two levels: at the level of single ligand-receptor pairs and at the
aggregate level of signaling pathways that consist of multiple

frontiersin.org


https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.948508

Wang et al.

ligand-receptor interactions. The calculated interaction strength
between cell group i and cell group j between a particular
ligand-receptor pair is between 0 and 1. Assuming N cell
types have been identified in the data, the result of the
inference is a CCI network where each node i € {1, 2, ..., N}
represents a cell type and interactions are encoded by the
weighted adjacency matrix, A. Therefore, each entry, Ajj, is a
directed weighted edge that represents the strength of interaction
from the sender cell type i to the receiver cell type j.

CellChat provides functionality to quantify and compare
relevant biological features of a single CCI network and
between pairs of networks. For this study, we used CellChat
to calculate the information flow, network centrality, functional
similarity, and structural similarity between pairs of CCI
networks. Here, we briefly describe each method.

The information flow of a network in CellChat is computed
by the following formula:

N
If = —l:log( z Al]>
i,j=1

where the log is taken to amplify small differences in interaction

-1

, o

scores. The information flow, I quantifies the total strength of
interactions in a network.

CellChat also allows for a network centrality analysis on the
CCI networks. In each directed and weighted CCI network, the
in-degree centrality, out-degree centrality, flow betweenness
centrality, and information centrality measure can be
calculated to identify important receivers, senders, mediators,
and influencers in the network (Jin et al., 2021).

The functional similarity between two networks is calculated

using the Jaccard similarity (Jin et al., 2021):

_|E@) nE(G")|

S ek bl Sl 2
|E(G) U E(G")| @)

where G and G’ are two signaling networks and E(G) and E (G)
are the edge sets describing the set of interactions in signaling
networks G and G', respectively. It quantifies the similarity of
major sender and receivers of each network. The structural
similarity is used to measure a topological similarity between
the structures of two networks. It is based on a previous measure
on topological similarity (Schieber et al., 2017).

The structural similarity, S, between two graphs, G and G,
with N and M cell types, respectively, is defined with respect to
the structural dissimilarity, S (G, G') = 1 — D (G, G'), which is
defined as follows:

D(G,G'") = wy\/JSD (ug, ug)/log 2 + w,|YNND (G) — y\NND (G')|

+% ( \ISD (Pag, Pog)[log 2 + \/]SD (Puges Pug) [l0g2 )
(3)

where w1, w,, and wj are the weights such that wy + w, + w3 = 1.
The Jensen-Shannon divergence, JSD, is defined across N

probability distributions, Py, ..., Py, as follows:

Frontiers in Genetics

03

10.3389/fgene.2022.948508

N (s
JSD(Py, ..., Py) = % D pi (j)log<nu—(7)>,
ij J
N )
1
U=y ZPi(J')’-

where u; is the average across the N probability distributions.

In Eq. 3, JSD (ug, ug) is the Jensen-Shannon divergence
between the averages of the cell type distance distributions of
signaling graphs; JSD (P,s Pac) is the Jensen-Shannon
divergence between the a-centrality (Katz centrality) values of
G and G'; and JSD(Pus,P,s) is the Jensen-Shannon
divergence between the a-centrality values of the graph
complements of G and G' and G° and G, respectively, where
for a graph, G, with N vertices, the graph complement, G, is
defined by the same vertex set, V (G°) = V(G), but the edge set is
constructed by E (G°) = E (Ky)\E(G), where the complete graph,
Ky, is the graph constructed by connecting all distinct pairs of
vertices.

Finally, NND is the network node dispersion (Schieber et al.,
2017) defined over the distance distributions of the N cell types,
P; = {pi(j)}, encoded by G:

JSD(Py, ..., Px)

log(d+1) ~ ®)

NND (G) =

where d is the diameter of the network.

Next, to learn a shared space for pathway classification,
manifold learning of different signaling CCI networks is
performed through the following steps. First, a shared nearest-
neighbor similarity network, Gs, of CCI networks is constructed
by calculating the k-nearest signaling pathways of each pathway
with respect to the functional or structural similarity matrix, S.
The weights of the shared nearest-neighbor network are
calculated as the fraction of shared nearest signaling pathways
between a given pathway and its neighbors. Next, the similarity
matrix, S, is smoothed by calculating Gs x S. Finally, uniform
manifold approximation and projection (UMAP) is performed
on the smoothed similarity matrix.

To adapt these methods and analyze the differences across
the five considered COVID-19 conditions, we first combined
scRNA-seq data of all patients in each condition group as a
single aggregated sample. We interpret the resulting CCI
network as describing the CCI within an average patient in
each group.

2.3 Measures of graph features

In this section, we devise and implement measures of single
node and between-node features of a CCI network to compare
the diversity of these features across all COVID-19 conditions.
Rather than using the methods described in Section 2.2 for
aggregated scRNA-seq data, we used CellChat to obtain the
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CCI network for each individual patient, and the following
analysis was performed based on these 181 data points.

2.3.1 Single node features in the CCl network
For each sender or receiver cell type, we considered three
measures of diversity:

1) Node degree. The weighted out-degree of a sender cell type is
the total amount of interactions of the sender cell type. For
receiver cell types, we considered the weighted in-degree.

2) Node diversity. The diversity of a sender cell type is the
number of different receiver cell types with which it interacts.
Conversely, the diversity of a receiver cell type is the number
of different receivers with which it interacts.

3) Node entropy. The entropy of a sender (receiver) cell type
measures how balanced or uniform the distribution of its
outgoing (incoming) interactions are (Shannon, 1948). This
measure of how balanced or uniform the relevant outgoing
(incoming) interactions are depends on the relative
interaction strengths between one sender cell type and
relevant different receiver (sender) cell types. For example,
if the outgoing interaction strengths of one sender are spread
evenly across all receivers, then the entropy will be low. On
the contrary, if the outgoing interactions from a sender are
highly concentrated toward one receiver, then the entropy
will be high. As entropy depends on the relative strengths,
rather than absolute strengths, we first normalized the
interaction strengths of each sender cell type i:

Al

A= , 6
vy ©)

For the case when a sender cell does not interact with any
receivers, we defined A; i = 0. The (outgoing) entropy of a sender
cell type, i, is then calculated using Shannon entropy (Shannon,
1948):

Hsender (l) == Z Az] log(Aij)> (7)
i1
The (incoming) entropy of receiver cell types is calculated
similarly:
Hreceiver (l) == z Aji log(Aji)) (8)
j=1

We noted that the entropy is always positive. For cases where
a sender (receiver) has no outgoing (incoming) interactions, we
treat its entropy as zero.

2.3.2 Proximity measures between CCI node
pairs

In this section, we have described three measures for node-
to-node or cell-type-to-cell-type features.
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2.3.2.1 Information flow proximity matrix

Cell signaling can be interpreted as the flow of biochemical
information between cells (Azeloglu and Iyengar, 2015). Thus,
based on several assumptions, we can consider the CCI network
as an information exchange network. As the communication
score is based on the level of relevant gene expression and a
higher level of relevant ligand and receptor expression reflects
more signiﬁcant interaction, a higher interaction, in turn, implies
that more information from sender cell type i flows to receiver
cell type j. Furthermore, we assumed that if the interaction
strength between cell type i and type j is 1, then the quantity
of information flow reaches its maximum. For a network
described by the directed, weighted adjacency matrix, A, each
interaction strength, Ajj, can be viewed as a proportion in the
maximal amount of information that cell type i can send to cell
type j. Second, we assumed that the information flow does not
only happen within a direct neighborhood of cells but may also
flow through intermediate cell types. For example, some
information from cell type i to cell type k can first flow to cell
type j and then arrive at cell type k. Therefore, it is natural to
assume that the information flow can be aggregated among all
paths from cell i to j.

Now, we may consider the information flow from cell type i
to j along all possible (directed) paths within the network. Such a
propagation of information can take n steps with n - 1
intermediate nodes; in general, (A")ij measures the
information flow from node i to node j in n steps. Note that
we may sum the information flow along all paths from i to j, since
flows along each path are independent of each other. Under this
framework, to measure the total amount of information
exchange from any cell type i to cell type j across the
network, we can define the information flow proximity
matrix, S, as follows:

A= (I-A)"-1, )]

[
M8

n:

where I is the identity matrix. Each entry, Sij, measures the total
information flow from node1i toj. It measures how much information
is lost to node j if node i is removed from the network. Thus, we
interpret the information flow as a network-level measure of
importance of cell type i to j, as opposed to individual-level
importance, which is characterized by the CCI strength.

2.3.2.2 Modified Canberra proximity matrix

It is fair to assume that the interactions of a sender with
different receivers are mutually independent. Thus, a more
reasonable way to compare the differences in outgoing
interactions between two senders with each individual receiver
is to consider the relative difference between each interaction,
instead of the absolute differences. We measured the relative
difference of two senders or receivers using the modified
Canberra distance.
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For two sender cell types, we can represent all outgoing
=(Ain - A, V= (Ajb S
Ajp). The original Canberra distance is defined as the sum of all

interactions by interaction vectors, u

relative pairwise distances between two interaction vectors
(Lance and Williams, 1966):

dCan (ll, (10)

Z |A1k ]k|

|Aikl + 1A x!
where k is summed over all entries of the interaction vectors such
that Ajx # 0 and A
vectors are often sparse. Therefore, when both u and v are zero

k # 0. However, in practice, the interaction

for the same entry, that is, A; = Ajp=0 for some k, the receiver k
does not provide information about sender similarity. Therefore,
we choose to use the modified Canberra distance. The modified
Canberra distance between two sender cell types is defined as
follows:
1

Amodcan (W, V) = adCan (w,v), (63))
where 0 < m < n is the number of terms in the summation of Eq.
10. Canberra distance is sensitive to small changes when both
entries are near zero (Kaur, 2014), and the modified Canberra
distance inherits this characteristic straightforwardly. A small
modified Canberra distance between two sender cell types can be
interpreted as the two senders having similar outgoing
interaction strengths across all other cell types.

We then define the modified Canberra similarity between u
and v as 1 — dpjpacan(u, v). By considering all pairwise modified
Canberra similarities between sender cells, we can construct the
modified Canberra sender proximity matrix, Dysodcan(s), where
the entries (Daodcan (5));; represent the modified Canberra
similarities between sender cell type i and j. We defined
modified Canberra receiver proximity matrix, Dyoacan(r),
similarly.

2.3.2.3 Weighted cosine proximity matrix

As signaling pathways consist of multiple interacting
ligand-receptor pairs, it is natural to expect that not all
ligands, or receptors, contribute equally to CCI activity. To
characterize the similarity of outgoing (incoming) interactions
between two senders (receivers), we may ask if both senders
(receivers) contain a similar composition of pathway-specific
ligands (receptors) but only differs in the level of expression. To
quantify this similarity, we used the interaction strength between
a sender and all receivers, as inferred from CellChat. For sender
cell types, i and j, we represent the outgoing interactions by the
vectors, u = (Aj;, ..., Ay) and v = (Aj, ..., Aj,), respectively.
Similarly, if i and j were both receivers, the incoming interactions
can be represented by the two vectors,u= (A, ...,
(Alj, s
meaning that the outgoing interactions from sender i and j to all

A,;) andv=
A,,j), respectively. If u and v lie in the same direction,

receivers are similar, then it is reasonable to believe that sender i
and j express the same composition of ligands. To characterize
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the similarity of directions between u, v, we used the cosine
similarity. However, in practice, the interaction vectors u and
v are often sparse. Therefore, when both u and v are zero for
the same entry, that is, Ajx = Aj; = 0 for some k, the receiver k
does not provide information about sender similarity. This
observation motivates the use of the weighted cosine
similarity:
m u-v

Cosyei u,v)=—-
wztghted( > ) n ||u||||v||’

(12)

where 0 < m < n is the total number of non-zero entries.
Compared with the traditional unweighted cosine similarity,
the weighted cosine similarity characterizes the certainty of
the similarity measure between two interaction vectors,
providing a more reliable measure of node-to-node similarity.

The weighted cosine sender proximity matrix consists of
pairwise (sender cell type to sender cell type) weighted cosine
similarities; that is, the i-jth entry represents the weighted cosine
similarity between sender cell type i and j. We defined the
weighted cosine receiver proximity matrix in a similar manner.

2.3.3 Variability measures of CCl network groups

In this section, we introduced different ways to measure
distance between CCI networks. Using these distance measures,
we calculated the variability of networks within each group of
COVID-19 conditions correspondingly.

2.3.3.1 Root euclidean distance between proximity
matrices

Having defined node-to-node similarity measures, it is
valuable to have a measure of network-to-network similarity.
We used the root Euclidean distance to measure the distance
between node-to-node proximity matrices S and S (Koutra
et al., 2013):

d, (SM,8?) (13)

5 (57,

i,j=1

Compared to the traditional Euclidean distance, d, enlarges
the difference when the entries are close to zero. This property of
the root Euclidean distance allows one to discern differences
between networks even when the interactions are small.

Based on the root Euclidean distance, we studied the
variability of CCI networks under different disease conditions.
For a condition-specific group of patients with CCI networks A,
AP, .
within-group variability:

., A%, we used the following definition as the measure of

Var,(A®, A® d (59,80, (14)

where S can be either the information flow, modified Canberra,
or weighted cosine proximity matrix of A®.
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2.3.3.2 Modified Canberra distance between networks

The modified Canberra distance between two CCI networks
represented by adjacency matrices A and B across the same cell
types is defined as follows:

Bz]l

Z |Az] (15)
|Aijl + |yl

dModCun (A; B)

where the summation is over i and j such that Ajj#0orB; #0,
and m is the number of non-zero entries. Similar to the previous
definition of modified Canberra distance for sender cell types
(Equation (11)), a small modified Canberra distance implies that
two CCI networks are similar with respect to their interaction
strengths.

Based on the modified Canberra distance between networks,
we studied the variability of CCI networks under different disease
conditions. For a condition-specific group of patients with CCI
networks AV, A®, ..,
ith network, we used the following definition as the measure of

A®, where A? is the adjacency matrix of

within-group variability:

VarMudCan(A(l),A(z),. .. ,A(k)) = %1 min ZdModCan(A() A(J))

(16)

3 Results

We applied the methods described to analyze the diversity of
CClIs across different COVID-19 conditions. We first applied the
analysis from CellChat to analyze difference of conditions
comprising aggregated samples. We then analyzed the within-
condition heterogeneity of CCI networks using the three
categories of our developed measures: single node level, node-
to-node level, and whole graph level.

3.1 Analysis of CCl across different
COVID-19 conditions

To study CCI differences across COVID-19 patients under
different disease conditions, such as healthy, moderate disease,
severe disease, convalescent from moderate disease, and
convalescent from severe disease, we used CellChat and
studied the interactions among all 3 cell types: myeloid,
B cells, and T cells.

CCI between any two cell types consist of interactions via
different signaling pathways. First, we compared the CCIs of each
cell pair in five groups (Figure 1A). We observed that autocrine
signaling of T cells only exists in moderate and severe groups.
Myeloid autocrine signaling decreased in severe samples,
compared to healthy controls and moderate samples. In
samples in the convalescence stage from severe disease,
myeloid autocrine was recovered compared to the severe

group. Compared to healthy controls and moderate patients,
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signaling from T cells to B cells was decreased in the rest of the
condition groups. Interestingly, interaction strengths from T cells
to myeloid cells were consistent over all the five groups. We then
examined the differences in total interaction strengths in the five
groups (Figure 1B) and found that the interaction strengths were
higher in the control and moderate groups and the lowest in the
severe group. We also compared the incoming and outgoing
interaction strengths of different cell types (Figure 1C). The total
interaction strength of B cells as a receiver is always stronger than
as a sender, while the total interaction strength of T cells as a
sender is always stronger than as a receiver. Myeloid cells interact
similarly in strengths as senders and receivers.

Having obtained a general knowledge on CCI strengths
across five conditions, we then investigated upregulated and
downregulated signaling in each group compared with the
1D). CellChat predicted
significant upregulation of three ligand-receptor pairs in
control patients, consisting of the ligands TNFSF13, IL16, and
TNFSF13B, which were sent by B cells and received by B cells;
significant downregulation of ligand-receptor in control
patients, consisting of the ligands CCL3 and TNFSF13B,
which are sent from myeloid cells to B cells and from T cells

remaining four groups (Figure

to B cells. We also observed five upregulated ligand-receptor
pairs in severe patients, with the corresponding ligands being
IL1B, ANXA1, CCL3, TNEFSFI13B, and MIF, and two
dowregulated ligand-receptor pairs, where the ligands are
IL16 and LGALSY. Interestingly, there were no upregulated
ligand-receptor pairs in the severe convalescence group.

Next, we examined functional and structural similarities of
different signaling pathways in five disease conditions (Figures
1E,F). We observed that most pathways were grouped together
under both similarity measures even if they were of different
disease conditions.

To test robustness of CCI output and the conclusions from
CellChat, we downsampled the original data to 80% of each
original condition groups. We found that the CCI networks were
robust to downsampling (Figure 1A, Supplementary Figure S1A),
as had been found previously in Jin et al. (2021). The majority of
conclusions from CellChat hold under downsampling. However,
the upregulated and downregulated ligands change (Figure 1D,
Supplementary Figure S1C). Specifically, the upregulated genes
all disappear in the downsampled version, and downregulated
ligands in moderate and convalescence from severe group are
different.

3.2 Analysis of the MIF signaling pathway

The log-scaled information flow calculated by CellChat is
shown in Figure 2A. We observed that the MIF pathway contains
the highest total interactions over all signaling pathways, while
other pathways contain little amount of interactions. We then
calculated the percentage of patients in different groups using
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each pathway (Figure 2B). Out of all pathways, we found that the
GALECTIN, MIF, ANNEXIN, BAFF, and IL16 pathways were
present in more than 60% of patients, while other inferred

Frontiers in Genetics

pathways were present in fewer than 60% of patients in each
condition. To find the most differential pathway across
conditions among these popular pathways, we calculated
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FIGURE 2

CCl analysis using CellChat focused on the MIF pathway. (A) Information flow (total interaction strengths) of each pathway. The MIF pathway
contains the most amount of information. (B) Proportion of people using each pathway in different groups. The majority of CCl occurs through
GALECTIN, MIF, ANNEXIN, and BAFF. (C) Average pairwise Canberra distance of CCl across conditions in the popular pathways. (D). CCl strengths in
the MIF pathway. Each edge represents an interaction; the color of the edge matches with the sending cell type. (E) Relative contribution of
ligand—-receptor pairs in the MIF pathway. (F) Network centrality scores of the MIF pathway. In severe and convalescence from severe groups,
myeloid cells lose its function as a mediator.
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pairwise Canberra distance of CCI in these pathways between
each condition and took average among all pairs. We observed
that the MIF pathway is also the most differential pathway across
conditions (Figure 2C). Furthermore, as recent studies have
shown that there is a strong correlation between the MIF
serum level and COVID-19 severity, suggesting that the MIF
serum level may be a useful predictor of COVID-19 disease
severity (Aksakal et al., 2021; Bleilevens et al., 2021; Dheir et al.,
2021), we focused our analysis on CCI diversities in the MIF
pathway for the remainder of this study.

We observed that in the MIF pathway, autocrine signaling of
T cells only exists in two diseased groups, which indicates that most
T cells’ autocrine signaling in total CCI comes from the MIF pathway
(Figure 2D). We found that unlike the rest of the groups, myeloid
cells exhibit no autocrine signaling in severe and convalescence from
severe groups. We also observed an interaction from B cellsto T cells
occurring in the severe group, which does not exist in the rest of the
groups. We found that in the MIF pathway, the interaction from
T cells to B cells was the highest interaction, except for convalescence
from severe group in which it is the second highest. This indicates
that T to B signaling functions as the major interaction in the MIF
pathway. The most active ligand-receptor pairs in the MIF pathway
are then compared across conditions (Figure 2E). In the control,
moderate,and convalescence from severe conditions, themostactive
multi-receptor unit is the heteromeric complex containing
CD74 and CD44. However, in the severe and convalescence from
moderate conditions, the most active multi-receptor unit is the
heteromeric complex containing CD74 and CXCR4, indicating
differences in the types of MIF-specific interactions across
COVID-19 conditions.

Next, applying the network centrality analysis of the MIF
signaling network shows that in severe and convalescence from
severe groups, myeloid cells lose their function as a mediator
(Figure 2F). This indicates that in those two groups, the myeloid
cells have a diminished role as a gatekeeper of CCL

To validate the robustness of these results, we repeated the
analysis of CCI after downsampling the original data to 80% of the
sample sizes for each condition group. We observed that the CCI
networks and network centrality conclusions of MIF pathways are
robust to downsampling (Figure 2, Supplementary Figure S2).

3.3 Cell type diversity of CCls in the MIF
pathway

We applied three cell type diversity statistics of CClIs,
including degree, diversity, and entropy, to study the diversity
in interactions of each cell type across five groups in COVID-19.

We first calculated the cell type diversity to measure the
number of different cell types with which sender or receiver
interacts (Figures 3C,D). A higher cell type diversity means the
cell type interacts with more cell types, indicating a higher
variability of interactions. We observed that T cells are the
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cell type with the highest mean cell type diversity as receivers
but the lowest cell type diversity as senders. When comparing
between groups of conditions, when myeloid cells or B cells are
senders, we found a clear decrease in mean diversity from control
to moderate to severe groups. Also, when these two cell types are
senders, mean diversity decreases from the moderate
convalescence group to the severe convalescence group. These
findings indicate that as disease progresses, myeloid and B cells as
senders tend to interact with fewer receivers. When T cells are
sender cells, there is an increase in diversity from control to
moderate to severe groups and an increase from the moderate
convalescence group to the severe convalescence group. This
means that unlike myeloid and B cells, T cells tend to interact
with more cell types in severe patients. Interestingly, when T cells
are sender cells, we observed that the mean of cell type diversity
in moderate and severe convalescence groups are less than
moderate and severe groups respectively, which indicates a
loss of interaction diversity in convalescent stages. Looking at
diversity of receiver cell types, we observed a decreasing pattern
of diversity of myeloid as receiver cells from control and
moderate groups to severe groups, and the diversity in two
convalescence groups are less than their corresponding groups
in disease. This indicates that receiver diversity decreased in the
severe group and the convalescence groups. We also observed
that when B or T cells are receiver cell types, the variation of
diversity is the highest in the convalescence from severe group.

We then calculated the cell type entropy to measure whether a
sender interacts evenly with different receivers in strengths (Figures
3E,F). A high cell type entropy means the cell type interacts evenly
with different cell types, while a lower entropy means the
interactions of a sender are concentrated on few receivers.
Comparing the cell type entropy across different COVID-19
conditions, we observed that both diversity and entropy had a
similar trend. For example, the decreases in diversity in myeloid
and B cells as senders from control to moderate to severe also occur
in entropy. This means that a sender (receiver) in a typical sample
will not have extremely uneven interactions with its receivers
(senders). Otherwise, if myeloid cells are communicating with
all three cell types but the interactions are concentrated towards
T cells, then its entropy will be close to minimum but diversity will
be three, which is maximum, causing the two measures to be
significantly different.

As a standard measure of interaction strength, the in-degree
and out-degree for all nodes (cell types) across all five condition
groups are also calculated. The in-degree of a node is the total
amount of interactions a receptor receives from all senders.
Similarly, out-degree is the total amount of interactions a
sender sends to all receivers. Interestingly, the trends we
observed in cell type diversity and entropy were similar in
senders but not so in receivers. When T cells are receiver
cells, we observed a decrease from control to moderate to
severe groups and from moderate convalescence to severe
convalescence groups. But the consistent decreasing pattern
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Distribution of cell type diversity statistics in different COVID-19 conditions are visualized. (A) Distribution of sender diversity in MIF pathway. There is

a consistent pattern of decreasing diversity from control to moderate to severe groups and from moderate convalescent to severe convalescent groups
in myeloid and B cell types as senders. The pattern in T cell type is different from the patterns in myeloid and B cell types. (B) Distribution of receiver
diversity in the MIF pathway. There is a decreasing pattern of diversity from control to moderate to severe to moderate convalescence and to severe
convalescence groups in myeloid as a receiver. (C) Distribution of sender entropy in the MIF pathway. The patterns are similar to sender diversity. (D)
Distribution of receiver entropy in the MIF pathway. The patterns are similar to receiver diversity. (E) Distribution of sender degree in the MIF pathway. The
patterns are similar to sender diversity and sender entropy. (F) Distribution of receiver degree in the MIF pathway. When B cells are receiver cells, there is a
consistent decreasing trend of receiver degree from control all the way to severe convalescence groups.

from control to moderate to severe groups does not occur in
receiver diversity nor receiver entropy of T cells. When B cells are
receiver cells, there is a consistent decrease from control all the way
to severe convalescence groups, which does not occur in the
previous measures either. The aforementioned analysis implies
that the three cell type diversity statistics can be used together to
reveal a comprehensive picture of its interactions from three angles:
interaction strength, number of senders or receivers the cell type
interacts with, and the evenness of distribution of interaction with
different senders or receivers. We applied these three cell type
diversity metrics on a COVID-19 dataset to summarize the
overall diversity trend of cell types in different disease conditions.

3.4 Node-to-node information flow in CCI
networks in the MIF pathway

To study the total amount of information flow among
different nodes in CCI graphs, we calculated the information
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flow proximity matrix of each patient in the COVID-19 dataset.
Comparing the distributions of node-to-node or cell-type-to-
cell-type information flow across the five groups of different
disease conditions, we observed several patterns (Figure 4A).
When myeloid cells are sender cells, there is a decrease in mean
information flow from control to moderate to severe groups and
from moderate convalescence to severe convalescence groups.
This observation indicates that the importance of myeloid cells as
sender cells in a network decreases in these groups. The mean
information flow from B cells to each cell type is lower in severe
patients than in healthy and moderate COVID-19 patients and is
lower in severe convalescence patients than in moderate
We
observation that when B is the sender cell type, in each of five

convalescence patients. also made an interesting
groups of conditions, mean and variance of information flow
increases from myeloid to B cells and from myeloid cells to T cells
as receivers. We found that T cells mainly function as receivers
rather than senders, and there is almost no information sending

from T cells to myeloid in all five groups.
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FIGURE 4

Distribution of cell-type-to-cell-type features. (A) Distribution of information flow between cell types of five COVID-19 conditions in the MIF
pathway. When B cells are the sender cell type in each group of condition, mean and variance of information flow increases from myeloid to B cells to
T cells as receiver cell types. (B) PCA of information flow proximity matrices of five COVID-19 conditions in the MIF pathway. There is a clear pattern
that differentiates severe patients from healthy controls and moderate patients. (C) Distribution of cell-type-to-cell-type modified Canberra
similarity between sender cell type pairs of five COVID-19 conditions in the MIF pathway. Myeloid and B cell types are similar as senders. (D)
Distribution of cell-type-to-cell-type modified Canberra similarity between receiver cell type pairs of five COVID-19 conditions in the MIF pathway. B
and T cell types are similar as receivers. (E) Distribution of cell-type-to-cell-type weighted cosine similarity between sender cell type pairs of five
COVID-19 conditions in the MIF pathway. When comparing myeloid and B as sender pairs, there is a decreasing pattern from control to moderate to
severe and from moderate convalescence to severe convalescence groups. On the contrary, when comparing myeloid and T cells or B cells and
T cells sender pairs, the patterns are the opposite. (F) Distribution of cell-type-to-cell-type weighted cosine similarity between receiver cell type pairs
of five COVID-19 conditions in the MIF pathway. When comparing myeloid and B as receiver pairs, there is a decreasing pattern from control and
moderate groups to severe and to moderate convalescence and to severe convalescence groups.

A principal component analysis (PCA) is then performed
on the information flow proximity matrices of each patient.
Patients are then visualized with respect to the first two
principal 4B). While
projection methods, such as t-distributed stochastic
neighbor embedding (tSNE) or UMAP can be used, we

components (Figure nonlinear
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PCA
as

visualization to maximize
tSNE and UMAP
calibration of hyperparameters to ensure robust results
(Supplementary Figure S3). We can see that with respect to
information flow, severe patients differentiate from healthy

controls and moderate patients.

used linear for

interpretability, require careful
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Network variability based on four distance measures. (A) Network variability based on information flow distance. The variability in moderate and
severe groups is higher than that in the control group. The variability in the severe convalescence group is higher than that in the moderate
convalescence group. (B) Network variability based on cell-type-to-cell-type modified Canberra distance. There is an increasing pattern of variability
from control to moderate to severe groups and from moderate convalescence to the severe convalescence group. (C) Network variability
based on cell-type-to-cell-type weighted cosine similarity. There is an increasing pattern of variability from control to moderate to severe groups
and from moderate convalescence to the severe convalescence group. (D) Network variability based on graph-to-graph modified Canberra
distance. There is an increasing pattern of variability from control to moderate to severe groups and from moderate convalescence to the severe

convalescence group.

3.5 Modified Canberra node-to-node
similarity in CCl networks via the MIF
pathway

To study how similar two cell types as senders (receivers) are
with respect to their interaction strength with each receiver
(sender), we calculated the modified Canberra proximity
matrix for each patient and plotted the distribution of
modified Canberra similarity of each pair of senders or
4C,D). There
observations we can make. First, myeloid cells and B cells as

receivers (Figures are several interesting
senders have the highest similarity among sender pairs in all five
groups. Second, myeloid cells and T cells as senders have a similar
pattern with B cells and T cells as senders across different groups.
These two findings may indicate that for each receiver, myeloid
cells and B cells are very similar as senders, but T cells seem to

function differently as senders. We also observed that of all
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possible receiver pairs, B cells and T cells have the highest
similarity. Myeloid cells and B cells or myeloid cells and
T cells as receivers have similar patterns of similarity across
different groups. Similarly, this indicates that for each sender,
B cells and T cells as receivers act similarly, but myeloid cells may
function differently. We then compared the differences in five
different groups of conditions. When comparing myeloid cells
and T cells as senders, or B cells and T cells as senders, there is an
increase of mean modified Canberra similarity from control to
moderate to severe groups and from moderate convalescence to
severe convalescence. This indicates that as disease progresses,
the relative difference of interactions of myeloid cells and T cells
as senders tend to decrease as a response to disease. Similarly for
B cells and T cell types, when observing patterns in receiver pairs,
we found that severe group has the lowest similarity between
myeloid cells and B cells and between myeloid cells and T cells.
Thus in severe patients, the relative difference of interactions
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between myeloid cells and B cells or between myeloid cells and
T cells as receivers decreases.

3.6 Weighted cosine node-to-node
similarity in CCl networks in the MIF
pathway

The weighted cosine similarity between two senders
measures if the senders have similar relative composition of
ligands. A high similarity between two senders indicates that
interactions of both senders with the same receiver are highly
positively correlated. We also have a similar interpretation for
weighted cosine similarity of two receivers. We calculated
weighted cosine proximity matrices of each patient in the
dataset and plotted the distribution of similarity of each pair
of senders and receivers (Figures 4E,F). In comparing myeloid
and B as both senders and receivers, we observed a decrease in
mean similarity from control to moderate to severe groups and
from moderate convalescent to severe convalescent groups. This
means that in the progression of disease, the relative composition
of ligand genes in myeloid cells and B cells start to differ. On the
contrary, when comparing myeloid cells and T cells or B cells and
T cells as senders, we found an increase from control to moderate
to severe groups and from moderate convalescent to severe
convalescent groups. This suggests that as disease progresses,
myeloid cells and T cells and B cells and T cells start to recruit
similar receivers. These trends also indicates that while the
functions of myeloid and B cells as senders alters across
COVID-19 progression, their function approaches that of
sender T cells.

We also observed a significant decrease in of mean weighted
cosine similarity of myeloid cells and T cells as receivers in severe
patient group, compared to control and moderate groups. Thus,
as disease progresses, the relative composition of receptor genes
changes dramatically in myeloid cells and T cells. Overall, we
found that myeloid cells and B cells as senders and B cells and
T cells as receivers are still the most similar pairs of senders and
receivers under this measure, as they have the highest mean
weighted cosine similarity in all the five groups.

3.7 Diversity of CCI networks in the MIF
pathway

Following Section 2.3.3, we used the following distances to
characterize distance between CCI networks:

1) Apply root Euclidean distance between information flow
proximity matrices;

2) Apply root Euclidean distance to sender and receiver node-

to-node modified Canberra proximity matrices and take d =

& ier + A2

onder T rocoiver 5 the combined distance.
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3) Apply root Euclidean distance to sender and receiver

weighted cosine proximity —matrices and wuse d=
\Dopnder T Broceiver @S the combined distance.

4) Modified Canberra distance between CCI adjacency matrices.

The measures (1), (2), and (3) measure the root Euclidean

distances between node-to-node affinity matrices, thus
quantifying the overall cell-type-to-cell-type differences.

Then we calculated variations of network measures within
each health condition group (Figure 5). In the case of information
exchange, we can interpret a higher variation within a condition
as a larger difference in network level node-to-node importance.
We observed a consistent increase in network diversity from
healthy controls to severe patients. These findings indicate that
CCI patterns in COVID-19 patients are more diverse compared
with healthy controls. Under the aforementioned measures, we
also observed a higher variation in the convalescent group from

severe symptoms than that in the moderate convalescent group.

4 Discussion

As more large-cohort scRNA-seq studies, both in terms of
the number of cells and the number of tissue samples, become
available, it is important to account for and analyze the
individual-sample heterogeneity, both within and across the
relevant biological groups, such as disease status. To this end,
we derived different diversity measures of CCI and used them to
study the diversity of CCI in a scRNA-seq dataset of COVID-19
that was sampled from 181 patients across five conditions,
focusing in particular on the MIF pathway. By representing
CCC networks as networks, where cell types are nodes and
interaction scores are directed, weighted edges, we studied
three categories of network features: single node (cell type),
We then studied
variations across networks in different groups of conditions.

node-to-node level, and network-level.

At the node level, we analyzed both sender and receiver
variation and entropy. The sender (receiver) variation measures
the number of receivers with which (sender) a sender (receiver)
cell type interacts, while sender (receiver) entropy measures the
uniformity of outgoing (incoming) interaction strengths with
different receivers (senders). Together with sender (receiver)
degrees, these
comprehensive picture of diversity at the cell type (node) level.

three  diversity —measures provide a

Next, we studied pairwise node-to-node or cell-type-to-cell-
type level features, which measures either amount of total
information exchange from one type to another or the
similarity of two senders (receivers). The first measure,
information flow from cell type i to j, measures the total
amount of information sending from cell type i that is received
by j. The second measure, modified Canberra node-to-node
similarity, measures the relative difference of interactions
between two senders (receivers). The third measure, weighted
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cosine node-to-node, measures if the senders (receivers) have
similar relative composition of ligands (receptors). The
modified Canberra and weighted cosine node-to-node
similarities can serve as complementary measures of node-to-
node similarities. The former provides similarity in relative
interaction strengths, and the latter provides similarity in
relative composition of relevant ligands or receptors.

Finally, using different metrics between CCI graphs, we
studied total variation across graphs in different patient
groups comprising conditions. We found that there was a
consistent pattern in an increase of variation in COVID-19
groups than in control groups, suggesting a more diverse CCI
reaction pattern in diseased patients. The aforementioned
analysis of CCI networks from three angles, namely, single
node, node-to-node, and network levels, can be applied to
analyze any other pathways in COVID-19. These proposed
methods on analyzing CCI diversities within different groups
of conditions could also be applied to sub cell types to reveal
biologically meaningful results, with the caveat that introducing
more cell types can increase the amount of noise from CCI
output (Supplementary Figure S4-S8). We noted that using
different CCI tools, such as CellCall (Zhang et al., 2021), may
result in different CCI output for individual patients, and the
overall trend of patient-to-patient variability in CCI will remain,
emphasizing the importance of methodologies and analyses that
measure the diversity of CCI across cohorts of networks.

One technical limitation of the diversity measures proposed
for CCI is that the majority of networks identified signaling
pathways were sparse, indicating very few interactions. As cell
types were more isolated for these pathways, the node-to-node
analyses fail to recognize meaningful patterns. For example, the
cosine similarity between two sender cell types is almost
exclusively 0 and 1, and the majority of interactions do not
overlap. This phenomenon pertains even with weighted cosine
similarity for very sparse networks. As a result, the diversity of
sparse networks based on these measures cannot be interpreted
meaningfully, in the way that dense networks can be. One can use
hand-selected features in sparse networks to condense the
interaction information, but this may result in loss of
biological interpretation after feature selection. In this
direction, future work will be needed to address this
limitation of sparsity when studying sample-to-sample graph
diversity, while retaining biological interpretability of these
methods.
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