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Abstract

Optimal Transport, a theory for optimal allocation of resources, is widely used in various fields such

as astrophysics, machine learning, and imaging science. However, many applications impose elementwise

constraints on the transport plan which traditional optimal transport cannot enforce. Here we introduce

Supervised Optimal Transport (sOT) that formulates a constrained optimal transport problem where cou-

plings between certain elements are prohibited according to specific applications. sOT is proved to be

equivalent to an l1 penalized optimization problem, from which efficient algorithms are designed to solve

its entropy regularized formulation. We demonstrate the capability of sOT by comparing it to other vari-

ants and extensions of traditional OT in color transfer problem. We also study the barycenter problem in

sOT formulation, where we discover and prove a unique reverse and portion selection (control) mechanism.

Supervised optimal transport is broadly applicable to applications in which constrained transport plan is

involved and the original unit should be preserved by avoiding normalization.

Keywords: constrained transport plan, infinity cost matrix, unnormalized marginal distributions, entropic

regularization, Dykstra algorithm.

1. Introduction

Optimal transport (OT) is a powerful tool for geometrically comparing and connecting measures. It

seeks a globally optimal coupling between two probability distributions that minimizes the total coupling

cost given a predefined finite cost [1, 2, 3, 4]. OT has been successfully applied in many fields recently

such as astrophysics [5], machine learning [6, 7, 8], and imaging science [9, 10, 11]. The original OT is

a linear programming problem which has a computational complexity of O(n3) [4]. Recently, significant

advancements in OT computation have been made which enables the application of OT to large scale

practical problems, for example, the Sinkhorn algorithm [6], Greenkhorn algorithm [12], and others [13, 14,

15, 16, 17].
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However, there are limitations of OT that hinder its application to many problems, leading to several

variants and extensions of OT. For example, unbalanced optimal transport was introduced to couple non-

probability measures and reduce noise in transport plan by replacing the original marginal constraints by

soft divergence constraints [18, 19]. Partial optimal transport generalizes OT to optimize the transport plan

under the condition that a given fraction of mass is transported [20, 21, 22]. From the dynamics model

perspective, unnormalized OT was introduced to derive the transport dynamics between two marginals of

different total mass with an external spatial-dependent or spatiotemporal-dependent mass source [23, 24].

In summary, these OT variants relax the marginal mass conservation constraint in the original OT to handle

problems where the total masses of the two marginals do not match.

Another major limitation of OT is that there are natural constraints on the transport plans in many

applications which cannot be handled by current OT methods. For instance, when ground transportation is

blocked after a major natural disaster, many locations with a demand for resources cannot be safely reached

by certain supply distribution locations. In the corresponding optimal transport formulation, there should

be constraints on the transport plan, causing some entries in the transport plan being occluded as zero.

This leads to a challenging optimal transport problem since the total possible transported mass becomes

an unknown due to the elementwise blockages in the transport plan.

Here, we introduce supervised optimal transport (sOT) which supervises the transport plan by enforcing

a given elementwise constraint on the transport plan. sOT optimizes both the total transported mass and

the transport plan simultaneously. Different from the OT problems with prescribed inequality constraints

[20], the inequality constraints in sOT, arising due to the infinity entries in the cost matrix, is implicitly

determined through the optimization of the transport plan. We show that sOT can be equivalently refor-

mulated and link to the unbalanced OT framework [19]. We further extend the standard OT barycenter

problem into sOT barycenter problem, in which an interesting and novel reverse and portion selection

mechanism is discovered. We propose several new numerical methods for entropy regularized sOT based on

Dykstra iteration.

We validate sOT and the proposed numerical algorithms in several numerical experiments. By applying

it to an important problem in imaging science, the color transfer problem, we show the benefit and unique

capability of sOT over other variants and extensions of traditional OT. More importantly, we prove the

reverse and portion selection mechanism for the sOT barycenter problem, which is further validated in

detail by numerical examples.

2. Supervised optimal transport

In this section, we define the supervised optimal transport (sOT) and derive an equivalent formulation

upon which efficient algorithms are derived.

2.1. Definition of sOT

Let Rn+ (and Rn++, respectively) denote the n-dimensional nonnegative (and positive, respectively) vector

space. We define the probability simplex (and strictly positive probability simplex, respectively) as

Σn+ =
{
a = (ai)i ∈ Rn+ :

∑
i

ai = 1
}
, Σn++ =

{
a = (ai)i ∈ Rn++ :

∑
i

ai = 1
}
. (2.1)

The polytope of the couplings between (a,b) ∈ Rn+ × Rm+ is defined as

U(a,b) =
{
P ∈ Rn×m+ : P1 = a,PT1 = b

}
,
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where PT is the transpose of P and 1 is the all-ones matrix. The dimension of 1 is determined by dimension

consistency of matrix multiplication in the context. We further define the following polyhedra

U(≤ a,≤ b) =
{
P ∈ Rn×m+ : P1 ≤ a,PT1 ≤ b

}
,

U(= a,≤ b) =
{
P ∈ Rn×m+ : P1 = a,PT1 ≤ b

}
.

We denote by ιC the indicator of a set C,

ιC(x) =

0, if x ∈ C

∞, otherwise.

For P = (Pij) ∈ Rn×m+ , we define its entropy as

H(P) = −
∑
i,j

Pij(logPij − 1),

in which we use the convention 0 log 0 = 0. The Kullback-Leibler (KL) divergence between P = (Pij) ∈
Rn×m+ and Q = (Qij) ∈ Rn×m++ is defined as

KL(P|Q) =
∑
i,j

Pij log

(
Pij
Qij

)
− Pij +Qij .

For two vectors u = (ui),v = (vi) of the same dimension, we denote entrywise multiplication and division

by

u� v = (uivi)i, u./v = (ui/vi)i.

For the standard Kantorovich’s optimal transport problem with discrete marginal measures a,b ∈ Σn+,

it reads:

LOT(a,b;C) = min
P∈U(a,b)

〈P,C〉. (2.2)

In the framework of sOT, the marginal measures (a,b) ∈ Rn+ × Rm+ do not necessarily have the same sum,

and we are interested in the cost matrix C = (Cij) that contains ∞ entries. The ∞-pattern of C is defined

as the set [25]

P∞(C) = {(i, j) : Cij =∞, i = 1, 2, · · · , n, j = 1, 2, · · · ,m}, (2.3)

of positions of C containing an infinity element. Similarly one can define 0-pattern of a transport plan P.

By virtue of the optimal transport, the 0-pattern of the optimal plan P∗ must contain the ∞-pattern of C,

namely, P0(P∗) ⊇ P∞(C). We further define a feasible set AC for the marginal blocked distribution (µ,ν)

as follows:

AC =
{

(µ,ν) ∈ [0, a]× [0,b]
∣∣∣ ∃P ∈ U(a− µ,b− ν) such that 〈P,C〉 <∞

}
, (2.4)

in which the inclusion (µ,ν) ∈ [0, a] × [0,b] is entrywise, namely, µi ∈ [0, ai], i = 1, 2, · · ·n and νj ∈
[0, bj ], j = 1, 2, · · ·m.

We define sOT as the following minimization problem

LsOT(a,b;C) := min
(µ,ν)∈B

min
P∈U(a−µ,b−ν)

〈P,C〉 (2.5)

where B := argmin(µ,ν)∈AC
‖µ‖1 + ‖ν‖1. In other words, we aim to find the optimal transport plan P

which transports the most marginal density (blocks the least (µ,ν)) with minimal cost.
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Remark 2.1. Note that when the cost matrix C contains ∞, (µ,ν) = (0,0) may still be a feasible point in
AC (and therefore in B). For example, one can consider

C =

 1 ∞ 1
1 1 1
1 1 1

 , a =

 0.2
0.3
0.5

 , b =

 0.4
0.3
0.3

 , P =

 0.1 0 0.1
0.1 0.1 0.1
0.2 0.2 0.1

 ,
then (µ,ν) = (0,0) ∈ AC since P ∈ U(a,b) and 〈P,C〉 is finite. In this case, sOT reduces to the standard
OT as U(a,b) is non-empty and the minimum is reached at some optimal P∗.

In practical applications, the cost matrix C could be sparse with respect to the ∞ entries, which most

likely leads to (µ,ν) = (0,0) /∈ AC. On the other hand, AC is non-empty as (µ,ν) = (a,b) is always an

element in AC. Therefore, we expect to find some (µ,ν) ∈ [0, a] × [0,b] with smallest l1-norm, and the

associated optimal transport plan P∗ over U(a− µ,b− ν).

A problem related to sOT (2.5) is the partial transport problem [20] which finds the optimal plan to

transport a given fraction of mass instead of the total amount of marginal mass. It is formulated as follows.

Given marginal densities (a,b) ∈ Rn++×Rm++, not necessarily with the same total mass, the partial transport

problem minimizes

min
P∈U(≤a,≤b)

{〈P,C〉 : 〈P,1〉 = θ}. (2.6)

in which θ is the given fraction of mass. Different from partial optimal transport, sOT does not require a

given fraction of mass to be transported and instead optimizes the transported mass. Specifically, sOT can

be rewritten as

max
θ∈[0,min(aT1,bT1)]

min
P∈U(≤a,≤b)

{〈P,C〉 : 〈P,1〉 = θ}. (2.7)

where sOT performs an extra maximization over the transported mass θ. Note that if the cost matrix C

does not contain ∞ entries and aT1 = bT1 , the reformulated problem (2.7) degenerates to the standard

OT problem (2.2) since θ can be equal to the total mass, the largest possible value. On the other hand,

if the cost matrix C contains ∞ entries, the partial transport problem (2.6) may not be well defined for a

given fraction of mass θ since the feasible set is potentially empty. In this case, sOT (2.7) remains wellposed

as θ = 0 is always a feasible transported mass.

2.2. Equivalent sOT formulations

The sOT in the forms (2.5) or (2.7) is a double optimization problem which is computationally chal-

lenging. Here, we recast it to the form of a single optimization:

LsOT(a,b;C) = min
(µ,ν)∈AC

P∈U(a−µ,b−ν)

〈P,C〉+ γ(‖µ‖1 + ‖ν‖1) (2.8)

for sufficiently large γ depending on C. The equivalence between (2.5) and (2.8) is summarized in lemma

2.2.

To begin with the proof, we need a lemma characterizing the difference between Pθ and Pθ̄ for the

maximal possible transported mass θ̄ and a mass θ smaller than but close to θ̄.
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Figure 2.1: A schematic polyhedron for lemma 2.1. The green face is the hyperplane 1T x = θ̄. The pink plane is the hyperplane
1
T x = θ. When the pink plane is close enough to the green one, the set of extreme points EJθ is invariant. See the proof of

lemma 2.1 for the definitions of the notations.

Lemma 2.1. Let C = {x : Ax ≤ b} be a bounded convex polyhedron where A =
[
aT1 | · · · |aTr

]T ∈ Rr×n and
b ∈ Rr. Define

θ̄ := max
x̄∈C

1
T x̄, Cθ̄ = argmax

x̄∈C
1
T x̄,

and
Cθ = {x ∈ C : 1Tx = θ},

for any possible value of θ that 1Tx can take. Then there exists a critical θ0 < θ̄, such that for any fixed
θ ∈ (θ0, θ̄], and any x ∈ Cθ, there exists a x̄ ∈ Cθ̄ such that ‖x− x̄‖1 ≤ η|θ̄ − θ|, where η is independent of
θ.

Proof. By definition, Cθ is a bounded convex polyhedron, which can be reformulated as the convex hull of
its extreme points:

Cθ = conv
(
x

(1)
θ , x

(2)
θ , · · · , x(s(θ))

θ

)
in which x

(1)
θ , x

(2)
θ , · · · , x(s(θ))

θ are all extreme points of Cθ. We denote by Jθ := {j : aTj x
(k)
θ = bj , for some 1 ≤

k ≤ s(θ)} the indices of constraints which are saturated in at least one extreme point of Cθ. In other words,
Jθ are the indices of constraints which interacts with hyperplane 1

Tx = θ on C. Let EC = {x1, · · · , xm}
be the set of extreme points of C such that C = conv(EC), we denote by Ej := {x ∈ EC : aTj x = bj} the
extreme points of C saturating the j-th constraint, and EJθ = ∪j∈JθEj .

Evaluating the linear function 1
Tx over EC , we know that the maximal value over {1Tx1, · · · ,1Txm}

equals θ̄. Let the second maximal value over {1Tx1, · · · ,1Txm} be θ0. Note that in an extreme case where
the second maximal value θ0 cannot be attained, the maximal value θ̄ is reached in the entire C, and the
conclusion of the lemma is trivially held. So we only consider the nontrival case where the second maximal
value θ0 is attained. It is evident that EJθ is invariant for any θ ∈ (θ0, θ̄].

For any θ ∈ (θ0, θ̄), we consider the extreme points {x(j)
θ }

s(θ)
j=1 of Cθ in which s(θ) ≡ s. As θ → θ̄, we

have x
(j)
θ → x̄

(j)

θ̄
for j = 1, · · · , s. Here {x̄(j)

θ̄
}sj=1 are the extreme points of Cθ̄, some of which might be

repeatedly counted. Now for any point x ∈ Cθ such that

x = λ1x
(1)
θ + · · ·+ λsx

(s)
θ , {λj}sj=1 ∈ Σs+

we can take x̄ as
x̄ = λ1x̄

(1)

θ̄
+ · · ·+ λsx̄

(s)

θ̄
,

then

‖x− x̄‖1 ≤ max
1≤j≤s

‖x(j)
θ − x̄

(j)

θ̄
‖1 ≤ ‖1‖2 · max

1≤j≤s
‖x(j)

θ − x̄
(j)

θ̄
‖2. (2.9)
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Now we consider the angle σj made by x̄
(j)

θ̄
− x(j)

θ and 1,

σj = arccos

〈
x̄

(j)

θ̄
− x(j)

θ ,1
〉

‖x̄(j)

θ̄
− x(j)

θ ‖2‖1‖2
. (2.10)

It turns out that σj cannot be π/2. Otherwise,

0 =
〈
x̄

(j)

θ̄
− x(j)

θ ,1
〉

= θ̄ − θ,

implies that θ = θ̄, which is the trivial case that θ̄ is attained everywhere in C. Hence {cosσj}sj=1 must be
bounded away from 0. Then we have

cosσj‖x̄(j)

θ̄
− x(j)

θ ‖2‖1‖2 =
〈
x̄

(j)

θ̄
− x(j)

θ ,1
〉

= θ̄ − θ,

which leads to

‖x̄(j)

θ̄
− x(j)

θ ‖2 =
1

cosσj‖1‖2
(θ̄ − θ).

Combining with equation (2.9), we have

‖x− x̄‖1 ≤
1

min1≤j≤s cosσj
|θ̄ − θ|.

The conclusion holds by taking η = (min1≤j≤s cosσj)
−1.

Lastly, we show that cos σj is independent of θ, or more specifically of x
(j)
θ . To this end, we choose an

arbitrary θ̃ ∈ (θ, θ̄). Note that x
(j)
θ and x̄

(j)

θ̄
saturate the same set of constraints since when θ → θ̄, the

hyperplane 1
Tx = θ does not go through any extreme point of C (EJθ is invariant for any θ ∈ (θ0, θ̄]),

therefore the point

x̃
(j)

θ̃
:=

θ̃ − θ
θ̄ − θ

x̄
(j)

θ̄
+
θ̄ − θ̃
θ̄ − θ

x
(j)
θ (2.11)

which saturate the same set of constraints as x
(j)
θ and x̄

(j)

θ̄
, is exactly the extreme point of Cθ̃ that falls on

the line segment between x
(j)
θ and x̄

(j)

θ̄
. Finally the linear relation (2.11) together with the definition of σj

indicates that cos σj is independent of θ. The proof is completed.

Lemma 2.2. Given a cost matrix C with ∞-pattern P∞(C), The two sOT formulations (2.5) and (2.8)
are equivalent for sufficiently large γ.

Proof. Step I. Let (µopt,νopt) be an optimal pair of blocked measures for (2.5), namely, the system can

at most transfer the amount of mass θ̄ := ‖a − µopt‖1 = ‖b − νopt‖1. We denote by P∗θ̄ a corresponding

optimal transport plan. Take any nonnegative and feasible θ < θ̄, if we can show that for a plan P∗θ defined
as

P∗θ = argmin
P
{〈P,C〉 : P ∈ U(≤ a,≤ b), 〈P,1〉 = θ}, (2.12)

one has that

〈P∗θ̄ −P∗θ,C〉 ≤ 2γ〈P∗θ̄ −P∗θ,1〉, (2.13)
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for some γ > 0, then for any (µ,ν) such that θ = ‖a− µ‖1 = ‖b− ν‖1, it results in

‖µ‖1 + ‖ν‖1 − (‖µopt‖1 + ‖νopt‖1)

= 〈µ− µopt,1〉+ 〈ν− νopt,1〉
= 2〈P∗θ̄ −P∗θ,1〉
≥ γ−1

〈
P∗θ̄ −P∗θ,C

〉
,

leading to
〈P∗θ̄,C〉+ γ(‖µopt‖1 + ‖νopt‖1) ≤ 〈P∗θ,C〉+ γ(‖µ‖1 + ‖ν‖1),

which implies the optimality of (µopt,νopt,P
∗
θ̄
) for (2.8), and consequently the equivalence holds.

Step II. We now prove that there exists a constant γ > 0 such that (2.13) holds. Using lemma 2.1, we
know that there exists a critical θ0, such that for any given θ ∈ (θ0, θ̄] and P∗θ defined in (2.12), we can find
a feasible Pθ̄ satisfying 〈Pθ̄,1〉 = θ̄, such that

‖Pθ̄ −P∗θ‖1 ≤ η|θ̄ − θ|. (2.14)

Then

〈P∗θ̄ −P∗θ,C〉 ≤ 〈Pθ̄ −P∗θ,C〉
≤ ‖Pθ̄ −P∗θ‖1 · ‖C‖∞
≤ ‖C‖∞η|θ̄ − θ|
= ‖C‖∞η〈P∗θ̄ −P∗θ,1〉. (2.15)

On the other hand, for any feasible θ ≤ θ0 and P∗θ defined in (2.12), we simply have

〈P∗θ̄ −P∗θ,C〉 = 〈P∗θ̄,C〉 − 〈P
∗
θ,C〉

≤ ‖C‖∞ · θ̄

= ‖C‖∞ ·
θ̄

θ̄ − θ
(θ̄ − θ)

≤ ‖C‖∞ ·
θ̄

θ̄ − θ0
(θ̄ − θ)

= ‖C‖∞ ·
θ̄

θ̄ − θ0
〈P∗θ̄ −P∗θ,1〉. (2.16)

Finally, combining the inequalities (2.15) and (2.16) and taking 2γ = max{η, θ̄/(θ̄ − θ0)} · ‖C‖∞, we prove
the inequality (2.13), and therefore the optimality of (µopt,νopt,P

∗
θ̄
) for (2.8).

Note that AC is always non-empty, we can therefore rewrite the formulation (2.8) in a simpler form:

LsOT(a,b;C) = min
P∈U(≤a,≤b)

〈P,C〉+ γ(‖a−P1‖1 + ‖b−PT1‖1). (2.17)

3. Entropic regularization of sOT

The idea to regularize the standard OT problem by an entropic term can be traced back to the early

work by Schrodinger [26]. This entropic regularization has been well motivated in economics for predicting

flows of commodities or actors in a market, in which the smoothness of such flows can be guaranteed [27]. A

recent work [6] provides a new motivation from the computational perspective that entropic regularization
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defines a strongly convex programming. Unlike the standard OT problem (2.2) which has multiple solutions,

the entropic regularized OT problem has a unique solution, which corresponds to the optimizer of (2.2) with

maximal entropy in the limit as the regularization parameter ε varnishes. More importantly, the unique

solution to the entropic regularized OT problem is simply a diagonal scaling of the matrix e−C/ε. This

diagonal scaling process can be efficiently implemented by the Sinkhorn algorithm [28, 29, 30], which has

linear rate of convergence [31].

We now consider the entropic regularization of sOT (2.8):

min
(µ,ν)∈AC

P∈U(a−µ,b−ν)

〈P,C〉 − εH(P) + γ(‖µ‖1 + ‖ν‖1) (3.1)

or equivalently

min
P∈U(≤a,≤b)

〈P,C〉 − εH(P) + γ(‖a−P1‖1 + ‖b−PT1‖1). (3.2)

It is well known that the unique solution P∗ε of (3.2) converges to the optimal solution with maximal entropy

within the set of all optimal solutions of the problem (2.17) [32].

Taking K = exp(−C/ε) as the Gibbs kernel, sOT problem (3.2) can be rewritten in terms of the KL

divergence as:

min
P∈U(≤a,≤b)

εKL(P|K) + γ(‖a−P1‖1 + ‖b−PT1‖1), (3.3)

or equivalently

min
P∈Rn×m

+

εKL(P|K) + γ‖a−P1‖1 + ι[0,a](P1) + γ‖b−PT1‖1 + ι[0,b](P
T
1). (3.4)

3.1. Dykstra Algorithm

The entropic regularized sOT (3.4) fits into a more general form

min
P∈Rn×m

+

Bg(P|K) + ĥ1(P) + ĥ2(P). (3.5)

Here g is a given proper closed and strictly convex and differentiable function. Bg is the Bregman divergence

(Bregman distance) defined as

Bg(P|Q) = g(P)− g(Q)− 〈∇g(Q),P−Q〉. (3.6)

Besides, ĥ1 and ĥ2 are two proper and lower semicontinuous convex functions.

Note that the Legendre transform of g

g∗(y) = max
x
〈x, y〉 − g(x)

is also smooth and strictly convex. In particular one has that ∇g and ∇g∗ are bijective function such that

∇g∗ = (∇g)−1.

Define the Bregman proximal operator of a convex function φ as

prox
Bg
φ (Q) = argmin

P
Bg(P|Q) + φ(P). (3.7)
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We assume that φ is coercive so that prox
Bg
φ (Q) is uniquely defined by strict convexity.

The Dykstra algorithm for problem (3.5) [33] reads as follows

Dykstra algorithm for (3.5)

Input: P0 = K and λ−1 = λ0 = 0;

General step: for any k = 0, 1, 2, · · · execute the following steps:

P2k+1 = prox
Bg

ĥ1

(
∇g∗

[
∇g(P2k) + λ2k−1

])
; (3.8)

λ2k+1 = λ2k−1 +∇g(P2k)−∇g(P2k+1); (3.9)

P2k+2 = prox
Bg

ĥ2

(
∇g∗

[
∇g(P2k+1) + λ2k

])
; (3.10)

λ2k+2 = λ2k +∇g(P2k+1)−∇g(P2k+2). (3.11)

It is shown in [33] that the sequence {Pn}n≥0 generated by the above Dykstra algorithm converges to

the solution of the problem (3.5).

When taking g(·) as the entropy function, the corresponding Bregman divergence Bg(P|K) = KL(P|K)

becomes the KL divergence. In this case, if ĥ1 and ĥ2 in (3.5) are of the special form as

ĥ1(P) = h1(P1), ĥ2(P) = h2(PT
1),

then the problem (3.5) reduces to

min
P

KL(P|K) + h1(P1) + h2(PT
1). (3.12)

which is consistent with the sOT formulation (3.4), after dividing ε over all terms.

In this case, the optimal solution P has the following decomposition

P = diag(u)Kdiag(v), (3.13)

which is a diagonal scaling of the initial Gibbs kernel K, the same as the optimal solution for the regularized

OT problem (which corresponds to h1(x) = ι{x=a}(x) and h2(x) = ι{x=b}(x) in (3.12)). Indeed, this

decomposition (3.13) is not only holds for the optimal P, but it also holds for each iterate Pn generated

by Dykstra’s algorithm for KL divergence. Therefore we assume that Pn = diag(un)Kdiag(vn). Then the

Dykstra’s algorithm can be written in an implementable form given as follows [19]:

Dykstra algorithm for KL divergence (implementable form)

Input: u0 = v0 = 1;

General step: for any k = 0, 1, 2, · · · execute the following steps:

u2k+1 =
proxKL

h1

(
Kv2k

)
Kv2k

, v2k+1 = v2k; (3.14)

v2k+2 =
proxKL

h2

(
KTu2k+1

)
KTu2k+1

, u2k+2 = u2k+1. (3.15)

Note that in some literatures, this implementable form of the Dykstra’s algorithm for KL divergence is

called generalized Sinkhorn iteration for problem (3.12).
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3.2. Dykstra Algorithm for entropy regularized sOT problem

The entropy regularized sOT problem (3.4) is a special case of the KL divergence problem (3.12) by

taking

1

ε
h1(P1) = γ‖a−P1‖1 + ι[0,a](P1),

1

ε
h2(PT

1) = γ‖b−PT1‖1 + ι[0,b](P
T
1). (3.16)

Indeed, h1/ε (and h2/ε, respectively) can be viewed as a regularization term to render µ = a − P1 (ν =

b − PT1, respectively) as small as possible but within the range [0, a] (and [0,b], respectively). In this

case, the implementation of Dykstra algorithm depends on the form of the proximal operator of ‖ · ‖1 with

respect to the KL divergence, which is given in the following lemma.

Lemma 3.1. Let hi(·) = γ‖ai − ·‖1 + ι[0,ai](·), i = 1, 2 with a1 = a,a2 = b, then the proximal operator of
hi with respect the KL divergence is given as

proxKL
hi/ε

(q) = min{eγ/εq,ai}, i = 1, 2. (3.17)

Proof. By definition of the proximal operator with respect to the KL divergence, we have

proxKL
(γ/ε)‖ai−·‖+ι[0,ai](·)

(q) = argmin
p∈[0,ai]

KL(p|q) + (γ/ε)‖ai − p‖

If ai ≤ q, both KL(·|q) and ‖ai − ·‖ decrease over domain [0, ai], so the minimum is attained at p = ai;
if ai ≥ q, taking the derivative of KL(p|q) + (γ/ε)‖ai − p‖ with respect to p and set it to zero, we find
p = min{eγ/εq, ai}. Combining both two cases yields the result.

Inserting Lemma 3.1 to the Dykstra algorithm for KL divergence, we obtain the generalized Sinkhorn

iteration for entropy regularized sOT problem with the regularization terms in (3.16):

Generalized Sinkhorn algorithm for sOT

Input: u0 = v0 = 1;

General step: for any k = 0, 1, 2, · · · execute the following steps:

u2k+1 =
min{eγ/εKv2k,a}

Kv2k
= min

{
e
γ
ε 1,

a

Kv2k

}
, v2k+1 = v2k; (3.18)

v2k+2 =
min{eγ/εKTu2k+1,b}

KTu2k+1
= min

{
e
γ
ε 1,

b

KTu2k+1

}
, u2k+2 = u2k+1. (3.19)

4. sOT barycenter

Given a set {bj}Jj=1 of unbalanced marginal densities bj ∈ Rm+ and a weight λ = (λ1, · · · , λJ) ∈ int(∆J),

it is of practical interest to compute the weighted sOT barycenter of {bj}Jj=1. This problem can be viewed

as the generalization of the standard Wasserstein barycenter problem studied in [34].

We define the sOT barycenter problem in a similar manner as that for sOT. Let ν = (νj)
J
j=1 ∈ (Rm+ )J

denote the blocked marginal measure, and ‖ν‖1 =
∑
j ‖νj‖1. We define two sets, one of which is for the

feasible blocked marginal density ν, and the other of which is for the feasible ν with minimal 1-norm:

F = {ν : ‖b1 − ν1‖1 = · · · = ‖bJ − νJ‖1, and ∃ Pj ∈ U(a,bj − νj), such that 〈Pj ,C〉 <∞ for some a},
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G = argmin
ν∈F

‖ν‖1.

Then the sOT barycenter problem is defined as:

min
ν∈G

min
Pj∈U(a,bj−νj)

J∑
j=1

λj〈Pj ,C〉. (4.1)

Similarly as the equivalence between various sOT formulations, we can show that (4.1) is equivalent to

min
ν∈F

Pj∈U(a,bj−νj)

J∑
j=1

λj〈Pj ,C〉+
γ

J
‖ν‖1 (4.2)

for sufficiently large γ. The equivalence between (4.1) and (4.2) is summarized in theorem 4.1.

Theorem 4.1. Given a cost matrix C with ∞-pattern P∞(C), the two formulations for the sOT barycenter
problems (4.1) and (4.2) are equivalent for sufficiently large γ.

Proof. The proof is similar to that of Lemma 2.2. Starting from an optimal νopt = (νopt
j )j for the formula-

tion (4.1) and a corresponding optimal plan Pθ̄,∗ = (Pθ̄,∗j )j in which θ̄ = ‖b1−νopt
1 ‖1 = · · · = ‖bJ −νopt

J ‖1,

and taking any nonnegative and feasible θ < θ̄, if we can prove that for any plan Pθ,∗ defined as

Pθ,∗ = argmin
P


J∑
j=1

λj〈Pj ,C〉 : Pj ∈ U(= a,≤ bj),P11 = · · · = PJ1 = a, 〈Pj ,1〉 = θ, ∀j

 , (4.3)

one has that

J∑
j=1

λj〈Pθ̄,∗
j −Pθ,∗j ,C〉 ≤ γ

J∑
j=1

λj〈Pθ̄,∗
j −Pθ,∗j ,1〉, for some γ > 0, (4.4)

then for any ν = (νj)j such that θ = ‖b1 − ν1‖1 = · · · = ‖bJ − νJ‖1, it implies that

‖ν‖1 − ‖νopt‖1 = 〈ν− νopt,1〉 = J
J∑
j=1

λj

〈
Pθ̄,∗j −Pθ,∗j ,1

〉
≥ Jγ−1

J∑
j=1

λj

〈
Pθ̄,∗j −Pθ,∗j ,C

〉
,

leading to

J
J∑
j=1

λj

〈
Pθ̄,∗j ,C

〉
+ γ‖νopt‖1 ≤ J

J∑
j=1

λj

〈
Pθ,∗j ,C

〉
+ γ‖ν‖1,

which implies the optimality of (νopt,Pθ̄,∗) for (4.2).
Now we prove that there exists a γ > 0 such that (4.4) holds. Using lemma 2.1 and taking the bounded

convex polyhedron C to be the set of P = (Pj)j defined by the constraints
PTj 1 ≤ bj ,Pj ≥ 0, j = 1 : J

Pj1 = Pj+11, j = 1 : J − 1

Pj ≥ 0, j = 1 : J

(Pj)kl = 0, (k, l) ∈ P∞(C), j = 1 : J

and

Cθ = {P ∈ C : 〈P,1〉 :=
J∑
j=1

〈Pj ,1〉 = Jθ},
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we know that there exists a critical θ0 such that for any given θ ∈ (θ0, θ̄] and Pθ,∗ defined in (4.3), we can
find a feasible Pθ̄ satisfying 〈Pθ̄,1〉 = Jθ̄, such that

‖Pθ̄ −Pθ,∗‖1 ≤ Jη|θ̄ − θ|. (4.5)

Then

J∑
j=1

λj

〈
Pθ̄,∗j −Pθ,∗j ,C

〉
≤

J∑
j=1

λj

〈
Pθ̄j −Pθ,∗j ,C

〉
≤ 1

J
‖Pθ̄ −P∗θ‖1 · ‖C‖∞

≤ ‖C‖∞ · η|θ̄ − θ|

= ‖C‖∞ · η
J∑
j=1

λj

〈
Pθ̄,∗j −Pθ,∗j ,1

〉
. (4.6)

On the other hand, for any feasible θ ≤ θ0 and Pθ,∗ defined in (4.3), we simply have

J∑
j=1

λj

〈
Pθ̄,∗j −Pθ,∗j ,C

〉
=

J∑
j=1

λj〈Pθ̄,∗
j ,C〉 −

J∑
j=1

λj〈Pθ,∗
j ,C〉

≤ ‖C‖∞ · θ̄

= ‖C‖∞ ·
θ̄

θ̄ − θ
(θ̄ − θ)

≤ ‖C‖∞ ·
θ̄

θ̄ − θ0
(θ̄ − θ)

= ‖C‖∞ ·
θ̄

θ̄ − θ0
η

J∑
j=1

λj

〈
Pθ̄,∗j −Pθ,∗j ,1

〉
. (4.7)

Finally, combining the inequalities (4.6) and (4.7) and taking γ = max{η, θ̄/(θ̄− θ0)} · ‖C‖∞, we prove the
inequality (4.4), and therefore the equivalence between two formulations.

Note that the feasible set F is always non-empty, the formulation (4.2) can be recast into the form

min
(Pj ,a)

Pj∈U(=a,≤bj)

J∑
j=1

λj〈Pj ,C〉+ γ
J∑
j=1

‖bj −PTj 1‖1. (4.8)

Here we replace γ
J by γ in the equivalent formulation for the sake of simple notation.

4.1. Entropic regularization of the sOT barycenter problem

In this section, we consider the entropic regularization for the weighted sOT barycenter problem. To

this end, we introduce the following notations:

KLλ(P|Q) :=
J∑
j=1

λjKL(Pj |Qj), where P = (Pj)j ∈ (Rn×m+ )J ,Q = (Qj)j ∈ (Rn×m++ )J , (4.9)

ĥ1(P) = ιD(P11, · · · ,PJ1), D :=
{

(p1, · · · ,pJ) ∈ (Rm+ )J : p1 = · · · = pJ
}
, (4.10)
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ĥ2(Q) = γ‖b−QT
1‖1 + ι[0,b](Q

T
1) :=

J∑
j=1

(
γ‖bj −QT

j 1‖1 + ι[0,bj ](Q
T
j 1)

)
. (4.11)

h1(p) = ιD(p1, · · · ,pJ), for p = (pj)j , (4.12)

h2(q) = γ‖b− q‖1 + ι[0,b](q) =
J∑
j=1

(
γ‖bj − qj‖1 + ι[0,bj ](qj)

)
, for q = (qj)

n
j=1. (4.13)

Note that ĥi(P) = hi(P1), i = 1, 2. With the above notations, we can formulate the entropic regularized

sOT barycenter problem as

min
P∈(Rn×m

+ )J

J∑
j=1

λj

(
〈Pj ,C〉 − εH(Pj)

)
+ ĥ1(P) + ĥ2(P), (4.14)

or equivalently in terms of the KL divergence,

min
P∈(Rn×m

+ )J
KLλ(P|K) +

1

ε
ĥ1(P) +

1

ε
ĥ2(P), (4.15)

where K = (Kj)
J
j=1 with Kj = e−C/ε, j = 1, · · · , J .

To solve the entropic regularized sOT barycenter problem (4.15), we adopt the generic diagonal scaling

algorithm introduced in [33] (also see [19]), in which each iterate P has the diagonal scaling decomposition

P(n) = (P
(n)
j )j =

(
diag(u

(n)
j )Kdiag(v

(n)
j )
)
j
. (4.16)

With a slight abuse of notation, we denote, consistent with P = (Pj)j ,

u = (u1, · · · ,uJ) ∈ (Rn)J , v = (v1, · · · ,vJ) ∈ (Rm)J .

Then the diagonal scaling algorithm reads

Input: u(0) = v(0) = 1;

General step: for any n = 0, 1, 2, · · · execute the following steps:

u
(2n+1)
j =

[
proxKLλ

h1

(
Kv(2n)

)]
j

Kv
(2n)
j

, v
(2n+1)
j = v

(2n)
j , ∀j; (4.17)

v
(2n+2)
j =

[
proxKLλ

h2

(
KTu(2n)

)]
j

KTu
(2n)
j

, u
(2n+2)
j = u

(2n+1)
j , ∀j. (4.18)

Note that one needs to compute the two proximal operator proxKLλ
h1

and proxKLλ
h2

for h1 and h2 defined

in (4.12)-(4.13) to implement the diagonal scaling algorithm. The following lemma shows that the two

proximal operators for the KL divergence can be computed in closed form. The derivation is similar to that

of Proposition 5.1 in [33], so we omit the details.

Lemma 4.1. For any p = (pj)j ∈ (Rn)J , and h1 and h2 defined in (4.12)-(4.13), one has[
proxKLλ

h1

(
p
)]
j

= pλ1
1 � · · · � pλJJ ,

[
proxKLλ

h2

(
p
)]
j

= min
{
e

γ
λjεpj ,bj

}
. (4.19)
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Additionally, for any P = (Pj)j ∈ (Rn×m)J , and ĥ1 and ĥ2 defined in (4.10)-(4.11), the two proximal

operators proxKLλ
ĥ1

and proxKLλ
ĥ2

are related to (4.19) as

[
proxKLλ

ĥ1
(P)
]
j

= diag


[
proxKLλ

h1

(
P1
)]
j

Pj1

Pj ,
[
proxKLλ

ĥ2
(P)
]
j

= Pjdiag


[
proxKLλ

h2

(
PT1

)]
j

PTj 1

 , (4.20)

in which
P1 := (P11, · · ·PJ1), PT1 := (PT1 1, · · ·PTJ 1).

With the proximal operators computed in (4.19), the diagonal scaling algorithm in a directly imple-

mentable form becomes

Input: u(0) = v(0) = 1;

General step: for any n = 0, 1, 2, · · · execute the following steps:

u
(n+1)
j =

a(n)

Kv
(n)
j

, j = 1 : J, where a(n) =
∏
j

(
Kv

(n)
j

)λj
, (4.21)

v
(n+1)
j = min

{
bj

KTu
(n)
j

, e
γ
λjε

}
, j = 1 : J. (4.22)

4.2. Log-domain implementation

One drawback for the diagonal scaling algorithm (Sinkhorn algorithm) is that it suffers from numerical

overflow when the regularization parameter ε is too small compared to the entries of the cost matrix C.

This drawback is even more severe for the sOT problem as it will cause some entries of K = e−C/ε being

regarded as zero due to the numerical overflow, even they should not. In other words, having more zero

entries in K because of the smallness of ε will change the 0-pattern of K and consequently the ∞-pattern

of C. Therefore it is necessary to implement the diagonal scaling algorithm for sOT barycenter problem in

the log-domain.

Using the log-sum-exp stabilization trick for the soft-minimization, and noting the primal-dual relation

(u(n),v(n)) =
(
ef

(n)/ε, eg
(n)/ε

)
,

the log-domain implementation for the diagonal scaling algorithm reads

Input: f (0) = g(0) = 0;

General step: for any n = 0, 1, 2, · · · execute the following steps:

f
(n+1)
j =

∑
i

λi

[
ε log

(
e(f

(n)
i ⊕g(n)

i −C)/ε
1

)
− f

(n)
i

]
−
[
ε log

(
e(f

(n)
j ⊕g(n)

j −C)/ε
1

)
− f

(n)
j

]
, (4.23)

g
(n+1)
j = min

{
ε log(bj)− ε log

(
e(f

(n+1)
j ⊕g(n)

j −C)T /ε
1

)
+ g

(n)
j ,

γ

λj

}
. (4.24)

for all j = 1 : J .
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4.3. Special case in which λ ∈ ∂(∆J)

In this subsection, we point out an important difference between the standard OT barycenter problem

and the sOT one. For the sake of simplicity, we take J = 2.

Note that when λ = (0, 1), the OT barycenter problem degenerates to the standard OT problem. More

precisely

min
a
λ1LOT(a,b1) + λ2LOT(a,b2),

reduces to

min
a
LOT(a,b2),

which leads to a = b2 and P2 = diag(b2). Then P1 is determined by the standard OT

LOT(a,b1) = min
P1∈U(a,b1)

〈P1,C〉.

Additionally, the entropic OT barycenter problem reduces to the entropic OT problem. In other words,

min
a
λ1L

ε
OT(a,b1) + λ2L

ε
OT(a,b2),

reduces to

min
a
LεOT(a,b2),

which leads to a = Kb2

KT1
and P2 = Kdiag

(
b2

KT1

)
. Then P1 is determined by the entropic OT

LεOT(a,b1) = min
P1∈U(a,b1)

εKL(P1|K).

However, such degeneration does not apply to the sOT barycenter problem,

lim
λ1→0

(
min
a
λ1LsOT(a,b1) + λ2LsOT(a,b2)

)
6= min

a
LsOT(a,b2).

To elucidate the idea, we take the cost matrix C as in (5.2) with Ccut = 0.3, namely, any mass can only

be transported within the distance no longer than Ccut. We take y ∈ Rn+1 be a uniform mesh over [0, 1]

with h = 1/n being the mesh spacing, and let b1 = 1 (and b2 = 1, respectively) be uniform distribution

on y compactly supported over [0.1, 0.3] (and [0.7, 0.9], respectively). For any λ = (λ1, λ2) ∈ int(∆2), the

sOT barycenter a must be the uniform distribution a = 1 on y compactly supported over [0.4, 0.6]. The

corresponding total cost is

λ1(0.3)2 + λ2(0.3)2 = (0.3)2.

This is because any other possible transport plan will cause some mass, even only a bit, being transported

from either b1 or b2 to anywhere beyond [0.4, 0.6], resulting in an infinite cost. On the other hand, when

λ = (0, 1) ∈ ∂(∆2), the sOT barycenter is determined by

min
a
LsOT(a,b2).

Since it is unrelated to LsOT(a,b1), we can take a = b2 such that the total cost equals zero. Hence the

degeneration leads to a discontinuity for the total cost. To resolve this issue, we define the degenerate sOT

problem for λ̃ ∈ ∂(∆J) as the limiting problem when int(∆J) 3 λ→ λ̃,

min
a

∑
j

λ̃jLsOT(a,bj) := lim
int(∆J )3λ→λ̃

(
min
a

∑
j

λjLsOT(a,bj)
)
.
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4.4. Reverse and portion selection mechanism

We can further perform theoretical analysis on the limiting behavior of the barycenter sOT problem.

For the sake of simplicity, we still take J = 2. Let y = (yi)i ∈ Rn be the uniform mesh over [0, 1− h] with

h = 1/n.

To begin with, we define a cumulative sum inequality as follows. For any two vectors u,v ∈ Rn, we say

u is cumulatively less than or equal to v and denote by u ≤C v if they satisfy

k∑
j=1

uj ≤
k∑
j=1

vj , k = 1 : n− 1; and
n∑
j=1

uj =
n∑
j=1

vj . (4.25)

u is strictly cumulatively less than v and denote by u <C v if at least one inequality in (4.25) is strict for

k = 1 : n− 1. We denote by u =C v if all the inequalities in (4.25) are equality. It is clear that u =C v if

and only if u = v.

Let T t be a periodic shift operator for any periodic function f(x) over [0, 1) such that (T tf)(x) = f(x+t).

We take two nonnegative periodic functions b1(x), b2(x) over [0, 1) with compact support [0, 0.2], and let

them satisfy the cumulative sum inequality

b1|y∩[0,0.2] ≤C b2|y∩[0,0.2]. (4.26)

We define two marginal distributions b1 and b2 as

b1 = (T 0.1b1(x))|y, b2 = (T 0.7b2(x))|y. (4.27)

The cost matrix C is taken as

Cij =

|yi − yj |2, if |yi − yj | ≤ 0.3,

∞, if |yi − yj | > 0.3.
(4.28)

In the following lemma, we characterize the marginal distributions which are of the same amount of

mass as b1 and b2, and can be completely transported to b1 and b2 given the cost matrix C in (4.28).

Lemma 4.2. Given marginal distributions b1 and b2 as in (4.27), a marginal distribution a can be com-
pletely transported to both b1 and b2 if and only if

a = (T 0.4a(x))|y (4.29)

in which a(x) is a nonnegative periodic function over [0, 1) with compact support [0, 0.2] and satisfies

b1(x)|y∩[0,0.2] ≤C a(x)|y∩[0,0.2] ≤C b2(x)|y∩[0,0.2]. (4.30)

Proof. We only consider the case for P2. That for P1 is similar.
First, we show that if the cumulative sum inequality (4.30) holds, then there exists some plan P2 to

transport a competely to b2. Here we use the north-west corner rule [35] to construct such a plan P2. If P2

completely transports a to b2, then all the entries off the sub-matrix Q = P2(401 : 600, 701 : 900) ∈ R200×200

must be 0 due to the compact support of a and b2. Besides, since the entries of C are∞ when |yi−yj | > 0.3,
the strict upper triangular entries of Q must also be 0. Now we apply the north-west corner rule to determine
the lower triangular (including diagonal) entries of Q. More precisely, the rule starts by giving the highest
possible value to Q11 = (P2)401,701 by setting it to min{(a)401, (b2)701}. At each step, the entry (P2)ij is
chosen to saturate either the i-th row constraint, j-th column constraint, or both if possible. The indices
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i, j are then updated as follows: i is incremented in the first case, j is in the second, and both i and j are
in the third case. The rule proceeds until (P2)600,900 receives a value. On the other hand, using the second
half of the cumulative sum inequality (4.30), we have that each diagonal entry Qkk of Q must be chosen
to saturate the corresponding row constraint or both the row and column constraints, but cannot saturate
only the corresponding column constraint. Since the total mass of a is equal to that of b2, the possible
excessive mount of mass due to the row saturation is eventually transported by the last row of Q. Hence
mass is completely transported.

Secondly, we show that if the cumulative sum inequality (4.30) is violated, then no plan P2 can completely
transport a to b2. Let k be the smallest integer to break (4.30),

k∑
j=1

a(yj) >
k∑
j=1

b2(yj). (4.31)

Assume there exists a plan P2 which transports a completely to b2. We still denote Q = P2(401 : 600, 701 :
900). Due to the compact support of a,b2 and the ∞ entries in C, the nonzero entries of P2 can only lie in
the lower triangular half (including the diagonal) of Q. Consider the sub-matrix Qk = Q(1 : k, 1 : k). On
one hand, since a is completely transported, we have

Qk1 = [a(y1), · · · ,a(yk)]T , QT
k 1 ≤ [b2(y1), · · · ,b2(yk)]T .

However,
∑
i(Qk1)i =

∑
i,j(Qk)ij =

∑
j(Q

T
k 1)j leads to

∑k
j=1 a(yj) ≤

∑k
j=1 b2(yj), causing a contradiction

to inequality (4.31).

Then we have the following result regarding the sOT barycenter of b1 and b2.

Theorem 4.2. Let b1 and b2 be defined as in (4.27) with b1 and b2 satisfying (4.26). Given cost matrix
C defined in (4.28), we have

lim
(λ1,λ2)→(1,0)

argmin
a

( 2∑
j=1

λjLsOT(a,bj ;C)
)

= (T 0.4b2)|y, (4.32)

lim
(λ1,λ2)→(0,1)

argmin
a

( 2∑
j=1

λjLsOT(a,bj ;C)
)

= (T 0.4b1)|y. (4.33)

Proof. We only prove the case for (λ1, λ2) → (0, 1).The other case is similar. By the virtue of lemma 4.1
and lemma 4.2, all the candidates for the sOT barycenter of b1,b2 are in the form of (4.29) with condition
(4.30) satisfied. We denote by Sa the collection of all these candidates.

In the limit (λ1, λ2)→ (0, 1), λ1LsOT(a,b1) becomes zero. We only need to seek an optimal a∗ in Sa to
minimize LsOT(a,b2). Pick any a ≥C b1, and let k be the smallest integer such that

k∑
j=1

a(yj) >
k∑
j=1

b1(yj). (4.34)

Since
∑n
j=1 a(yj) =

∑n
j=1 b1(yj), there must be some integer l > k such that a(yl) < b1(yl). Let P∗a be

an optimal transport plan for LsOT(a,b2), and (P∗a)ki be a nonzero entry on the k-th row. Then for a
sufficiently small ε > 0, changing (P∗a)ki → (P∗a)ki − ε and (P∗a)kl → (P∗a)kl + ε causes a cost reduction.
Therefore a is not the optimal candidate in Sa unless a =C b1, that is, a = b1.

Remark 4.1. In the standard OT barycenter problem, we have

lim
(λ1,λ2)→(1,0)

argmin
a

( 2∑
j=1

λjLOT(a,bj ;C)
)

= b1, lim
(λ1,λ2)→(0,1)

argmin
a

( 2∑
j=1

λjLOT(a,bj ;C)
)

= b2.

(4.35)

17



However, the sOT barycenter problem, without considering the periodic translation of b1 and b2, gives
exactly opposite results as shown in theorem 4.2. We call the limits (4.32) and (4.33) a reverse and portion
selection mechanism.

5. Numerical Results

In this section, we will present several numerical experiments to validate the proposed sOT problem.

Note that in Lemmas 2.1 and 2.2, we only prove the existence of λ for the equivalence between the double

minimization formulation (2.5) and the single minimization formulation (2.8), but there is no explicit eval-

uation of γ. For the numerical simulations, we will decide the value of γ by the following procedure: taking

several values of γ = γ1, γ2, · · · in ascending order and running the Dykstra solver for each value γi, until

the total transported mass 〈P, 〉 become unchanged (within certain accuracy) at some γj , then we choose

γj to be the value of γ in the simulations.

Figure 5.1 shows an example for this procedure. In this test, we take C as the truncated L2 distance

defined in (5.2) with Ccut = 0.5. The two marginal densities a and b are given as follows,

a =
1

D

(
e−

(x−0.2)2

0.12 + 0.001

) ∣∣∣∣
hZ∩[0,1]

, b =
1

D

(
e−

(x−0.8)2

0.12 + 0.001

) ∣∣∣∣
hZ∩[0,1]

, (5.1)

with h = 1
200 . We take γ = 0, 0.1, 0.2, 0.5, 100. For each value of γ, we calculate 〈P, 〉. We note that when

γ = 0.5 or larger, 〈P, 〉 remains unchanged. Thereby we take γ = 0.5.

Figure 5.1: The schematic for taking the value of γ. We take several values of γ in ascending order, run the Dykstra’s algorithm,
and evaluate the total transported mass 〈P, 〉 until it becomes unchanged within certain accuracy. In this simulation, we
take ε = 0.01. Note that when γ = 0, there is still a tiny mass transported, which is due to the approximation of entry
regularization.

5.1. Effect of ε (regulator weight) for entropy regularized sOT

In our first example, the two marginal densities are taken as 1D discretized Gaussian distribution:

a =
1

2D

(
e−

(x−0.2)2

0.12 + 0.001

) ∣∣∣∣
hZ∩[0,1]

, b =
1

D

(
e−

(x−0.8)2

0.12 + 0.001

) ∣∣∣∣
hZ∩[0,1]

,
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with h = 1
200 . D is a normalization constant such that ‖a‖1 = 1

2 and ‖b‖1 = 1. The cost matrix

C = (Cij) ∈ R200×200 is taken as

Cij =

|xi − xj |2, if |xi − xj | ≤ Ccut,

∞, if |xi − xj | > Ccut.
(5.2)

with cutoff = 0.7. The value of γ is taken to be γ = 2. By taking various values of ε = 1, 0.5, 0.1, 0.05, 0.025

in Figure 5.2, we test the generalized Sinkhorn algorithm with h1 and h2 taken in the form of (3.16). For

all values of ε, a is completely transported. For the transported part of b, namely, the row sum PT1 of the

optimal plan P, it spreads widely over the support of b, with more mass in the region closer to the support

of a. As ε becomes smaller, more amount of mass is moved to the left half of the support of b.

Figure 5.2: The sOT solutions for various ε as ε→ 0. The blue region indicates the transported part of a. The dark red region
indicates the transported part of b, and the light red region corresponds the blocked part of b.

5.2. Effect of Ccut for entropy regularized sOT

In the second example, we test the effect of ∞ entries in the cost matrix C. In particular, we construct

C as in (5.2) but take various cutoff values Ccut = 0.25, 0.35, 0.50, 0.55, 10. The marginal densities a and

b are 1D Gaussian distributions in (5.1). Note that in this example, we take ‖a‖1 = ‖b‖1 such that when

there is no ∞ entry in C, the sOT problem reduces to the standard balanced OT problem. We fix ε = 0.05

and γ = 2 in this example.

Figure 5.3 presents the solutions of sOT problem with different values of cutoff parameter. When Ccut

= 0.25 is small, majority of the mass are blocked, only a tiny amount on the supports of a and b within

the separation of 0.25 is allowed to transport. When the Ccut becomes larger (fewer ∞ entries in C), more

amount of mass is transported from the right corner of the support of a to the left corner of the support of

b. When cutoff becomes large enough, for instance Ccut = 10, all entries of C become finite, and the sOT

problem degenerates to the standard balanced OT problem, in which all mass in a is completely transported

to b.
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Figure 5.3: The sOT solutions for various cutoff values. The dark blue region indicates the transported part of a, and the light
blue is for the blocked part of a. The dark red region indicates the transported part of b, and the light red region corresponds
the blocked part of b.

Figure 5.4: The weighted sOT barycentric solutions for (b1,b2) for various values of Ccut and weights (λ1, λ2). From top
left, top middle, top right, until bottom right, with Ccut = 1.00, 0.50, 0.40, 0.30, 0.28, 0.26, 0.24, 0.22, 0.20, respectively, each
subfigure consists of three cases with (λ1, λ2) = (0.9, 0.1), (0.5, 0.5), (0.1, 0.9).
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Figure 5.5: The resemblance between the sOT barycenter a and the marginal distributions b1,b2. When Ccut is small, it
shows the reverse and portion selection mechanism as indicated by the limits in Theorem 4.2. When Ccut increases, the
mechanism gradually changes back to normal as the standard OT barycenter problem.

5.3. The effect of Ccut on weighted sOT barycenter problem

In this example, two unequal densities b1,b2 ∈ R200 are taken as the discretization of:

b1 =
1

D1

(
χ[0.1,0.3] + 0.001

) ∣∣∣∣
hZ∩[0,1]

, b2 =
1

D2

(
e−

(x−0.8)2

0.12 + 0.001

) ∣∣∣∣
hZ∩[0,1]

over a uniform mesh {xj = jh}200
j=0 with h = 1

200 . The constants D1, D2 are taken such that ‖b1‖1 = 1.0 and

‖b2‖1 = 1.2. The cost matrix C = (Cij) ∈ R200×200 is taken as in (5.2) with various cutoff values. The value

of γ is taken to be γ = 2. For each cutoff value, three pairs of weights (λ1, λ2) = (0.9, 0.1), (0.5, 0.5), (0.1, 0.9)

are considered. Figure 5.4 depicts the numerical simulations for Ccut = 1.00, 0.50, 0.40, 0.30, 0.28, 0.26,

0.24, 0.22, 0.20, from top left, top middle, top right, until bottom right. In each plot, the opaque light blue

(and red, respectively) represents the density b1 (and b2, respectively), the transparent dark blue (and red,

respectively) represents the transported mass of b1 (and b2, respectively), and the transparent yellow is

the weighted sOT barycenter.

For a large Ccut = 1.00 in the top left subfigure, when λ1 is close to 1, the sOT barycenter a is close

to b1. However b2 is only partially transported as the mass of b2 is more than that of b1. When λ1

approaches 0, the sOT barycenter becomes close to partially transported b2. This is similar to the standard

barycentric problem, except that each density bj may be only partially transported.

For a small Ccut = 0.50 in top middle subfigure, when λ1 is close to 1, the sOT barycenter a, compactly

supported near the compact domain of b1, is surprisingly similar to b2 (up to a translational shift). On

the contrary when λ1 is close to 0, the sOT barycenter a, compactly supported near the compact domain

of b2, resembles b1, up to a translational shift.

When taking further small value Ccut = 0.24 as in bottom left subfigure, each density bj is only allowed

to transport within the distance = 0.24. Hence for any pair (λ1, λ2), the sOT barycenter a can only be

compactly supported in between b1 and b2. Besides, without considering the translational shift, a is valued

closely to the transported b2 when λ1 → 1, while a is valued closely to b1 when λ1 → 0. The sOT barycenter

solution in bottom right subfigure for Ccut = 0.20 is similar to that for Ccut = 0.24, except that more mass

is blocked for b1 and b2.
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In Figure 5.5, we further present the resemblance phase diagram between the sOT barycenter a and the

marginal distribution b1 on the λ1-Ccut plane (the left subfigure), and similarly that between a and b2 on

the λ2-Ccut plane (the right subfigure). Here the resemblance between a and bj is defined as

Resem(a,bj) :=
min0≤k≤200 ‖bj − circshift(a, k)‖2

min0≤k≤200 ‖b1 − circshift(b2, k)‖2
, j = 1, 2,

in which circshift is a circular shift operator. The smaller the resemblance value is, the more resemblant

the two densities are. If Resem(x,y) = 0, then x = y up to a translational shift. It is evident that when

Ccut is small, the resemblance of the sOT barycenter a to b1 (and b2, respectively) as (λ1, λ2) → (1, 0)

(and (λ1, λ2)→ (0, 1), respectively) is reversed, compared to the standard OT barycenter problem in which

a resembles b1 when λ1 = 1, and a resembles b2 when λ2 = 1. On the other hand, as the value of Ccut

increases, the reverse effect is lessened. When Ccut becomes sufficiently large such that C contains no ∞
entries, the sOT barycenter problem degenerates to the standard OT barycenter problem, and the reverse

mechanism turns back to normal.

5.4. Color transfer

Finally, we apply sOT to an important class of image processing problem, the color transfer problem.

Specifically, color transfer imposes the color of a target image to an input image so that the output image

has the same pattern and geometry as the input image but with the color palette from the target image.

This can be viewed as transferring the histogram of pixels in the 3D color space of an image to another

[36] which optimal transport is powerful at. Direct application of conventional optimal transport causes

issues, and several optimal transport based algorithms have been introduced to resolve these drawbacks. For

example, adding regularization helps increase the robustness and eliminates outliers [37, 38]. Another issue

is that transferring the entire color palette that is very different from the input image results in unrealistic

looks. Fixing the amount of transferred mass a priori can help mitigate this issue but with the need of

deciding a scale for each application case [21]. With sOT, we are able to directly control the similarity of

transferred color by setting a distance threshold of transferred color in the color space. As a result, we

control the color palette similarity of the output and the input image.

For an image, we represent the n pixels as a point cloud X ∈ Rn×3 in the 3-dimensional color space (the

RGB space). Given two images represented by X ∈ Rn×3 (input image) and Y ∈ Rm×3 (target image), the

color transfer problem is formulated as coupling two uniform distributions a ∈ Rn+ and b ∈ Rm+ with the cost

matrix C ∈ Rn×m+ where Cij = ‖Xi − Yj‖22. In sOT, we use a modified cost matrix C̄ such that C̄ij = Cij

for Cij ≤ Ccut and C̄ij =∞ otherwise. When dealing with large images, a subsampling and upsampling is

often implemented to improve efficiency [37]. We first obtain subsampled images Xs and Ys using the resize

function from the PIL package [39] with the ANTIALIAS option. The optimal transport map Ps between

the subsampled images is then determined by sOT algorithm. The output image Xout ∈ Rn×3 with the

transferred color palette is constructed such that

Xout
i = (PsYs)N(i)/a

s
N(i) + Xs

N(i)(1−
∑
j

Ps
N(i),j/a

s
N(i))−Xs

N(i) + Xi, (5.3)

where N(i) is the index of the pixel in the subsampled image Xs that is the closest (in color space) to pixel

i in the input image, and as
N(i) is the source distribution of the subsampled image. The color difference

between the input and output images is determined by the color difference due to color transfer in the

subsampled input and output images. We take γ = 2 in this example.
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Figure 5.6: The color transfer problem where the color palette of the target image is to be transferred to the source image and
the output image keeps the geometry of the source image. The results of supervised optimal transport with different cutoffs in
the color space, earth mover’s distance, entropy regularized optimal transport (Sinkhorn), and unbalanced optimal transport
are shown.
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The numerical results demonstrate that when the color palettes of the input and target images are

considerably distant, applying color transfer produces unrealistic output images (Figure 5.6. In contrast,

with the supervised cost matrix in sOT, the amount of transferred color can be controlled producing more

realistic output images (Figure 5.6). When the cutoff value in sOT equals infinity, the output image will

converge to the result of regularized optimal transport or earth mover’s distance depending on whether

entropy regularization was used.

6. Conclusion and Discussion

In this work, we introduce the supervised optimal transport problem where the cost matrix C can have

∞ entries and the ∞-pattern of C supervises and controls the transport plans. Also, the source and target

distributions need not to be normalized in sOT. These properties make sOT a method generally applicable

to a large class of transportation problems where application-specific constraints are to be imposed on the

transport plan and the original units are to be preserved for the original distributions. To apply sOT on

large-scale real problems, we develop a fast numerical solver for sOT based on the Dykstra algorithm. We

also extend the OT barycenter problem into a supervised one in the setup of sOT. By considering the

sOT barycenter for two distributions (b1,b2), a new reverse and portion selection mechanism is discovered,

giving the barycenter a opposite to that of the standard OT barycenter problem when the weight approaches

the boundary of the unit simplex. The properties and effects of different parameter values of sOT are

illustrated numerically with toy examples. We also demonstrate the reverse behavior of sOT barycenter in

an extensive numerical example. In an important problem in imaging science, we compare sOT to several

other OT variants to demonstrate its unique utility of supervising the transport plan.

This work can be extended in several ways in the future. For example, a supervised Gromov-Wasserstein

OT analogous to sOT can be developed and will enable the integration of multiple subsamples of the same

system without known inter-sample correspondence.

In the current work, the formulations (2.8) and (2.17) are obtained from the discrete OT setting. Intro-

ducing the entropy regularization terms in (3.4), the optimal plan Pε has a diagonal rescaling form, such

that Dykstra algorithm (Sinkhorn type) can be applied to improve the numerical efficiency significantly.

On the other hand, it is also of practical interest to find an efficient solver for the sOT problem without

entropy regularizaion. Inspired by [40], we may link (2.8) and (2.17) with the dynamical OT (Benamou-

Breiner type [41]) formulation. Discrete sOT formulations (2.8) and (2.17) work for any “ground metric”

C. On the other hand, if the metric C is homogeneous of degree one such as L1 metric C = (‖xi − yj‖1)ij ,

the original OT problem can be reformulated as a minimal flux minimization problem [42]. Motivated by

this, it is also interesting to consider, when taking some degree-one homogeneous metric C in (2.17) with

certain ∞-pattern, whether there exists a minimal flux formulation for sOT problem. Then we can apply

well-established efficient solvers for L1 minimization problems to sOT provided that it can be reformulated

as a minimal flux problem. Such a potential dynamical formulation for the sOT problem can be used to

seek optimal transportation paths with constraints in applications such as continent movement in geology.
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