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Abstract

Optimal Transport, a theory for optimal allocation of resources, is widely used in various fields such
as astrophysics, machine learning, and imaging science. However, many applications impose elementwise
constraints on the transport plan which traditional optimal transport cannot enforce. Here we introduce
Supervised Optimal Transport (sOT) that formulates a constrained optimal transport problem where cou-
plings between certain elements are prohibited according to specific applications. sOT is proved to be
equivalent to an I' penalized optimization problem, from which efficient algorithms are designed to solve
its entropy regularized formulation. We demonstrate the capability of SOT by comparing it to other vari-
ants and extensions of traditional OT in color transfer problem. We also study the barycenter problem in
sOT formulation, where we discover and prove a unique reverse and portion selection (control) mechanism.
Supervised optimal transport is broadly applicable to applications in which constrained transport plan is

involved and the original unit should be preserved by avoiding normalization.

Keywords: constrained transport plan, infinity cost matrix, unnormalized marginal distributions, entropic

regularization, Dykstra algorithm.

1. Introduction

Optimal transport (OT) is a powerful tool for geometrically comparing and connecting measures. It
seeks a globally optimal coupling between two probability distributions that minimizes the total coupling
cost given a predefined finite cost [1, 2, 3, 4]. OT has been successfully applied in many fields recently
such as astrophysics [5], machine learning [6, 7, 8], and imaging science [9, 10, 11]. The original OT is
a linear programming problem which has a computational complexity of O(n?) [4]. Recently, significant
advancements in OT computation have been made which enables the application of OT to large scale
practical problems, for example, the Sinkhorn algorithm [6], Greenkhorn algorithm [12], and others [13, 14,
15, 16, 17].
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However, there are limitations of OT that hinder its application to many problems, leading to several
variants and extensions of OT. For example, unbalanced optimal transport was introduced to couple non-
probability measures and reduce noise in transport plan by replacing the original marginal constraints by
soft divergence constraints [18, 19]. Partial optimal transport generalizes OT to optimize the transport plan
under the condition that a given fraction of mass is transported [20, 21, 22]. From the dynamics model
perspective, unnormalized OT was introduced to derive the transport dynamics between two marginals of
different total mass with an external spatial-dependent or spatiotemporal-dependent mass source [23, 24].
In summary, these OT variants relax the marginal mass conservation constraint in the original OT to handle
problems where the total masses of the two marginals do not match.

Another major limitation of OT is that there are natural constraints on the transport plans in many
applications which cannot be handled by current OT methods. For instance, when ground transportation is
blocked after a major natural disaster, many locations with a demand for resources cannot be safely reached
by certain supply distribution locations. In the corresponding optimal transport formulation, there should
be constraints on the transport plan, causing some entries in the transport plan being occluded as zero.
This leads to a challenging optimal transport problem since the total possible transported mass becomes
an unknown due to the elementwise blockages in the transport plan.

Here, we introduce supervised optimal transport (sOT) which supervises the transport plan by enforcing
a given elementwise constraint on the transport plan. sOT optimizes both the total transported mass and
the transport plan simultaneously. Different from the OT problems with prescribed inequality constraints
[20], the inequality constraints in sOT, arising due to the infinity entries in the cost matrix, is implicitly
determined through the optimization of the transport plan. We show that sOT can be equivalently refor-
mulated and link to the unbalanced OT framework [19]. We further extend the standard OT barycenter
problem into sOT barycenter problem, in which an interesting and novel reverse and portion selection
mechanism is discovered. We propose several new numerical methods for entropy regularized sOT based on
Dykstra iteration.

We validate sOT and the proposed numerical algorithms in several numerical experiments. By applying
it to an important problem in imaging science, the color transfer problem, we show the benefit and unique
capability of sOT over other variants and extensions of traditional OT. More importantly, we prove the
reverse and portion selection mechanism for the sOT barycenter problem, which is further validated in

detail by numerical examples.

2. Supervised optimal transport

In this section, we define the supervised optimal transport (sOT) and derive an equivalent formulation

upon which efficient algorithms are derived.

2.1. Definition of sOT
Let R} (and R, respectively) denote the n-dimensional nonnegative (and positive, respectively) vector

space. We define the probability simplex (and strictly positive probability simplex, respectively) as
X0 = {a: (a;); € RY : Zai = 1}7 Xh, = {az (a;); € R, - Zai = 1}. (2.1)
The polytope of the couplings between (a,b) € R x R is defined as

U(a,b) = {P e R : Pl =a,P"1 =b},



where P7 is the transpose of P and 1 is the all-ones matrix. The dimension of 1 is determined by dimension

consistency of matrix multiplication in the context. We further define the following polyhedra
U(<a,<b)={PeR}*™:P1<aP’1<b},
U(=a,<b)={PeR}™:Pl=a,P"1<b}.

We denote by ¢¢ the indicator of a set C,

() 0, ifxzeC
[’C xTr) =
oo, otherwise.

For P = (P;;) € R}*™, we define its entropy as
H(P)=-> Pj(ogP; —1),
]

in which we use the convention 0log0 = 0. The Kullback-Leibler (KL) divergence between P = (P;;) €
RT*™ and Q = (Qy5) € R\™ is defined as

P,
KL(P|Q) =) P;log <ngl> — P +Qij.
ij *

For two vectors u = (u;), v = (v;) of the same dimension, we denote entrywise multiplication and division
by
uOv= (v w/v=_(u;/v;);.
For the standard Kantorovich’s optimal transport problem with discrete marginal measures a,b € X7,
it reads:
Lot(a,b;C) = Pe%i(g,b)<P7 C). (2.2)

In the framework of sOT, the marginal measures (a,b) € R} x R do not necessarily have the same sum,
and we are interested in the cost matrix C = (C};) that contains oo entries. The oco-pattern of C is defined
as the set [25]

POO(C):{(Za])CZJ:OO7 i:172a"'7na j:172a"'7m}a (23)

of positions of C containing an infinity element. Similarly one can define O-pattern of a transport plan P.
By virtue of the optimal transport, the 0-pattern of the optimal plan P* must contain the co-pattern of C,
namely, Po(P*) D Poo(C). We further define a feasible set Ag for the marginal blocked distribution (u,v)
as follows:

Ac = {(u, v) €[0,a] x [0,b] | IP € U(a — u, b — v) such that (P, C) < oo}, (2.4)

in which the inclusion (u,v) € [0,a] x [0,b] is entrywise, namely, u; € [0,a;],¢ = 1,2,---n and v; €
[0,b;],i =1,2,---m.
We define sOT as the following minimization problem
Ly ,b; C) = i i pP,C 2.5
or(a ) (ur,rwlfl)rés PEU(EI—IS,b—v)< ) (2:5)

where B := argmin(, yycas [[Bll1 + [[V[1. In other words, we aim to find the optimal transport plan P

which transports the most marginal density (blocks the least (u,v)) with minimal cost.



Remark 2.1. Note that when the cost matriz C contains oo, (1, v) = (0,0) may still be a feasible point in
Ac (and therefore in B). For example, one can consider

1 o 1 0.2 0.4 01 0 0.1
c=|11 1|,a=|03]|,b=]03]|,P=|01 01 01 |,
11 1 0.5 0.3 0.2 02 0.1

then (u,v) = (0,0) € Ac since P € U(a,b) and (P, C) is finite. In this case, sOT reduces to the standard
OT as U(a,b) is non-empty and the minimum is reached at some optimal P*.

In practical applications, the cost matrix C could be sparse with respect to the oo entries, which most
likely leads to (u,v) = (0,0) ¢ Ac. On the other hand, Ac is non-empty as (u,v) = (a,b) is always an
element in Ac. Therefore, we expect to find some (u,v) € [0,a] x [0,b] with smallest /*-norm, and the
associated optimal transport plan P* over U(a — pu,b — v).

A problem related to sOT (2.5) is the partial transport problem [20] which finds the optimal plan to
transport a given fraction of mass instead of the total amount of marginal mass. It is formulated as follows.
Given marginal densities (a,b) € R | xR, , not necessarily with the same total mass, the partial transport
problem minimizes

PeUI(ngnal,gb){<P’C> (P, 1) =0}. (2.6)

in which @ is the given fraction of mass. Different from partial optimal transport, sOT does not require a

given fraction of mass to be transported and instead optimizes the transported mass. Specifically, sOT can
be rewritten as

QE[O,mig(lg%{]l,bT]I)} Peur?glg,gb)“P’ C): (P, 1) =06} 27)

where sOT performs an extra maximization over the transported mass 6. Note that if the cost matrix C

does not contain oo entries and a’1 = b’ 1 , the reformulated problem (2.7) degenerates to the standard

OT problem (2.2) since € can be equal to the total mass, the largest possible value. On the other hand,

if the cost matrix C contains oo entries, the partial transport problem (2.6) may not be well defined for a

given fraction of mass 6 since the feasible set is potentially empty. In this case, sSOT (2.7) remains wellposed

as # = 0 is always a feasible transported mass.

2.2. Equivalent sOT formulations
The sOT in the forms (2.5) or (2.7) is a double optimization problem which is computationally chal-

lenging. Here, we recast it to the form of a single optimization:
Lsor(a,b;C) = min (P, C) +([[ufs + (V1) (2.8)
(n,v)EAC
PcU(a—u,b—v)
for sufficiently large v depending on C. The equivalence between (2.5) and (2.8) is summarized in lemma
2.2.
To begin with the proof, we need a lemma characterizing the difference between Py and Pj for the

maximal possible transported mass § and a mass § smaller than but close to 6.



Figure 2.1: A schematic polyhedron for lemma 2.1. The green face is the hyperplane 17z = 6. The pink plane is the hyperplane
17z = 0. When the pink plane is close enough to the green one, the set of extreme points E,, is invariant. See the proof of
lemma 2.1 for the definitions of the notations.

Lemma 2.1. Let C = {z : Az < b} be a bounded convex polyhedron where A = [a] |- \aﬂT € R™" and
b e R". Define
0 :=max 17z, C;=argmax 17z,
zel zeC
and
Co={xecC:17z =0},

for any possible value of 6 that 17z can take. Then there exists a critical Oy < 0, such that for any fized
0 € (00,0], and any x € Cy, there exists a T € Cy such that |z — Z||1 < n|0 — 0], where n is independent of
6.

Proof. By definition, Cy is a bounded convex polyhedron, which can be reformulated as the convex hull of
its extreme points:

Cy = conv (xél), m‘(f), . ,x((f(g)))
in which xé1)7 xéQ), e 71_25(9)) are all extreme points of Cp. We denote by Jy := {j : a?xék) = b;, for some 1 <
k < s(0)} the indices of constraints which are saturated in at least one extreme point of Cy. In other words,
Jy are the indices of constraints which interacts with hyperplane 172 = 6 on C. Let Ec = {x1, - , T}
be the set of extreme points of C' such that C' = conv(E¢), we denote by E; := {z € E¢ : aJT:E = b;} the
extreme points of C saturating the j-th constraint, and E;, = Ujej, E;.

Evaluating the linear function 17z over E¢, we know that the maximal value over {17z, - ,17z,,}
equals 6. Let the second maximal value over {]ngcl, cee ]lTxm} be 6. Note that in an extreme case where
the second maximal value 6y cannot be attained, the maximal value 6 is reached in the entire C, and the
conclusion of the lemma is trivially held. So we only consider the nontrival case where the second maximal

value 6y is attained. It is evident that Fj, is invariant for any 6 € (g, 6].

For any 6 € (6y,0), we consider the extreme points {xéj)};g of Cp in which s(f) = s. As 0 — 0, we

have xgj) — i(gj) for j =1,---,s. Here {;E((;j)}j.:l are the extreme points of Cjg, some of which might be

repeatedly counted. Now for any point « € Cy such that
=\ 1 .. A (s) AT s
T 12y o Ay, {Nj o €2

we can take T as

then

= (1) _ =) () _ =)
Iz =2l < max laf” - s < 1Ll - max [lof” — 2 (29)



Now we consider the angle o; made by f(gj ) a:éj ) and 1

79 — 2§, 1>

04 = arccos

P (2.10)

|

It turns out that ¢; cannot be 7/2. Otherwise,
_ /50 () _7
0= <x§j fxaj ,]l> =0-0,

implies that # = @, which is the trivial case that 6 is attained everywhere in C. Hence {cos 0 }§:1 must be
bounded away from 0. Then we have

cos ;7§ — o Jal1e = () —a§”,1) =00,

which leads to

Combining with equation (2.9), we have

|z —z||; < —————10—9].
minj<;<s COS oy

The conclusion holds by taking 7 = (minj<;j<scosa;) .
Lastly, we show that coso; is independent of 8, or more specifically of J;éj ) To this end, we choose an

arbitrary € (6,0). Note that xéj) and n’cé—j) saturate the same set of constraints since when 6 — 6, the
hyperplane 17z = 6 does not go through any extreme point of C' (Ej, is invariant for any 6 € (6y,0)]),
therefore the point

0. 0= zf(a) L 0= Zxéﬂ (2.11)

which saturate the same set of constraints as xéj ) and a‘c((;j ), is exactly the extreme point of Cj that falls on
the line segment between x((,j ) and ffgj ), Finally the linear relation (2.11) together with the definition of o
indicates that coso; is independent of §. The proof is completed.

O

Lemma 2.2. Given a cost matriz C with co-pattern Poo(C), The two sOT formulations (2.5) and (2.8)
are equivalent for sufficiently large ~y.

Proof. Step 1. Let (Kop, Vopt) be an optimal pair of blocked measures for (2.5), namely, the system can
at most transfer the amount of mass 6 := [|a — p,pll1 = [[b — Vopt/[1. We denote by P a corresponding
optimal transport plan. Take any nonnegative and feasible § < 6, if we can show that for a plan P} defined
as

P, = argmin{(P,C) : P € U(< a,< b), (P, 1) = 6}, (2.12)
P

one has that



for some v > 0, then for any (u,v) such that 6 = ||a — u||; = ||b — v||1, it results in

el + vl = (opellr + l[Vopt 1)
= <Ll — Mopts ]l> + <V — Vopt; ]l>
=2(P; — Py, 1)

2 771 <P:.9i - PZ? C> )

leading to
(P35, C) + v(l[opillt + [Voptll1) < (P, C) +y([lulls + V1),

which implies the optimality of (K,p, Vopt, Pj) for (2.8), and consequently the equivalence holds.
Step I1. We now prove that there exists a constant v > 0 such that (2.13) holds. Using lemma 2.1, we

know that there exists a critical 6, such that for any given 6 € (6o, 0] and Py defined in (2.12), we can find
a feasible Py satisfying (P3, 1) = 6, such that

|Pg— Pyl <nl6—9|. (2.14)
Then
(P; —P;,C) < (P; — Py, C)
< [Pg = Pll1 - [Cllo
< ||IClJoen]@ — 6|
= [[Cllsen(Pj — Pg, 1). (2.15)

On the other hand, for any feasible § < 6y and P} defined in (2.12), we simply have

(P; —P;,C) = (P;,C) - (P},C)

<Cllo -8
o -
= Clle 5 (0-0)
0 -
< ICl - 55 (0= 0)
A~
= |Gl - (P5 — P, 1) (216)

Finally, combining the inequalities (2.15) and (2.16) and taking 2y = max{n,0/(0 — 6y)} - ||C||o0, We prove
the inequality (2.13), and therefore the optimality of (K, Vopt, Pj) for (2.8).
O

Note that Ac is always non-empty, we can therefore rewrite the formulation (2.8) in a simpler form:

O — : _ _pT
Lsor(a,b;C) = PEUr(nglg,Sb)(P, C)+~(|la=PL|:i+||b—P" 12). (2.17)

3. Entropic regularization of sOT

The idea to regularize the standard OT problem by an entropic term can be traced back to the early
work by Schrodinger [26]. This entropic regularization has been well motivated in economics for predicting
flows of commodities or actors in a market, in which the smoothness of such flows can be guaranteed [27]. A

recent work [6] provides a new motivation from the computational perspective that entropic regularization



defines a strongly convex programming. Unlike the standard OT problem (2.2) which has multiple solutions,
the entropic regularized OT problem has a unique solution, which corresponds to the optimizer of (2.2) with
maximal entropy in the limit as the regularization parameter € varnishes. More importantly, the unique
solution to the entropic regularized OT problem is simply a diagonal scaling of the matrix e~C/¢. This
diagonal scaling process can be efficiently implemented by the Sinkhorn algorithm [28, 29, 30], which has
linear rate of convergence [31].
We now consider the entropic regularization of sOT (2.8):
min (P, C) —eH (P) +([lulls + [[vll1) (3.1)

(1, v)EAC
PcU(a—u,b—v)

or equivalently

i P,C) — el (P ~-P1 b-P71|4). 3.2

pogin_, (PC) = cH(P) +7(la Pl + | Ih) (32)

It is well known that the unique solution P} of (3.2) converges to the optimal solution with maximal entropy
within the set of all optimal solutions of the problem (2.17) [32].

Taking K = exp(—C/¢) as the Gibbs kernel, sOT problem (3.2) can be rewritten in terms of the KL

divergence as:

i KL(P|K - P1 b - P71, 3.3
pegiil € (PIK) +~([la I+ 1) (3.3)

or equivalently
min eKL(P|K) +v[la — P1|ly + ¢jg.)(P1) + 7|b — PT1L||; + 10,0 (PT 1). (3.4)

PERixm

3.1. Dykstra Algorithm
The entropic regularized sOT (3.4) fits into a more general form

min By (P|K) + hi(P) + hao(P). (3.5)
PERiX'm.

Here g is a given proper closed and strictly convex and differentiable function. B, is the Bregman divergence

(Bregman distance) defined as

By(PlQ) = 9(P) —9(Q) — (Vy(Q), P - Q). (3.6)

Besides, h; and ho are two proper and lower semicontinuous convex functions.

Note that the Legendre transform of g

9" (y) = max(z,y) — g(z)

is also smooth and strictly convex. In particular one has that Vg and Vg* are bijective function such that
Vg* = (Vg)~".
Define the Bregman proximal operator of a convex function ¢ as

prox;”(Q) = argmin By (P|Q) + 6(P), (3.7)



We assume that ¢ is coercive so that proxfg (Q) is uniquely defined by strict convexity.
The Dykstra algorithm for problem (3.5) [33] reads as follows

Dykstra algorithm for (3.5)

Input: P = K and A1 = A% = 0;

General step: for any kK =0,1,2,--- execute the following steps:
ptt — proxj?g (Vg* [Vg(P%) + Azk*l} ); (3.8)
)\2k+1 )\2k 1 4 vg(PQk) Vg(P2k+1>; (39)
P22 — proxA ( { g(P?F 1) 4 >\2k]>; (3.10)
)\2k+2 /\2k + vg(PZkJrl) Vg(P%H). (311)

It is shown in [33] that the sequence {P"},,>0 generated by the above Dykstra algorithm converges to
the solution of the problem (3.5).

When taking g(-) as the entropy function, the corresponding Bregman divergence By (P|K) = KL(P|K)
becomes the KL divergence. In this case, if h; and hs in (3.5) are of the special form as

h(P) = hy(P1), ho(P) = ha(P”1),
then the problem (3.5) reduces to
min KL(P|K) + 5 (P1) + ho(PT1). (3.12)

which is consistent with the sOT formulation (3.4), after dividing € over all terms.

In this case, the optimal solution P has the following decomposition
P = diag(u)Kdiag(v), (3.13)

which is a diagonal scaling of the initial Gibbs kernel K, the same as the optimal solution for the regularized
OT problem (which corresponds to hi(z) = t{z—a}(v) and ho(z) = t{p—py(x) in (3.12)). Indeed, this
decomposition (3.13) is not only holds for the optimal P, but it also holds for each iterate P" generated
by Dykstra’s algorithm for KL divergence. Therefore we assume that P = diag(u™)Kdiag(v™). Then the

Dykstra’s algorithm can be written in an implementable form given as follows [19]:

Dykstra algorithm for KL divergence (implementable form)

Input: u’ =v° = 1;

General step: for any £ =0,1,2,--- execute the following steps:
roxKL (Kv2k
y2kt - P Y ) ’IL{‘E% ), VIR = 2P (3.14)
T 2k+1
2k+2 _ prox; (K u ) okts 2k+1
vt Tzl , uh = (3.15)

J

Note that in some literatures, this implementable form of the Dykstra’s algorithm for KL divergence is

called generalized Sinkhorn iteration for problem (3.12).



3.2. Dykstra Algorithm for entropy reqularized sOT problem

The entropy regularized sOT problem (3.4) is a special case of the KL divergence problem (3.12) by
taking

1 1
~hi(P1) =5la =Pl + o0 (PL),  —ha(PT1) =9|b =P 1|1+ (PT1).  (3.16)

Indeed, hj/e (and ha/e, respectively) can be viewed as a regularization term to render p = a — P1 (v =
b — P71, respectively) as small as possible but within the range [0,a] (and [0,b], respectively). In this
case, the implementation of Dykstra algorithm depends on the form of the proximal operator of || - ||; with

respect to the KL divergence, which is given in the following lemma.

Lemma 3.1. Let hi(-) = v|la; — -|l1 + t0,a,)(-),7 = 1,2 with ay = a, ay = b, then the proximal operator of
h; with respect the KL divergence is given as

proxffiL/E(q) =min{e"/°q, a;}, i =1,2. (3.17)
Proof. By definition of the proximal operator with respect to the KL divergence, we have

PIOX( 7 a; — | +410.0, () (@) = argmin KL(pla) + (v/e)||a; — pl|

pE[0,a;]
If a; < q, both KL(-|q) and ||a; — || decrease over domain [0, a,], so the minimum is attained at p = a;;
if a; > q, taking the derivative of KL(p|q) + (v/¢€)|la; — p|| with respect to p and set it to zero, we find
p = min{e?’/¢q,a;}. Combining both two cases yields the result. O

Inserting Lemma 3.1 to the Dykstra algorithm for KL divergence, we obtain the generalized Sinkhorn

iteration for entropy regularized sOT problem with the regularization terms in (3.16):

Generalized Sinkhorn algorithm for sOT

Input: u’ =v0 =1;

General step: for any £ =0,1,2,--- execute the following steps:
g /eK 2k
oky1  min{e?“Kv** a} o a 2k+1 _ 2k,
u = Kok = min {661’W}’ v = v (3.18)
g el ,2k+1
S22 min{e?/ K" u’**! b} min e%]l,L 22 g2 (3.19)
KT y2k+1 KT y2k+1
4. sOT barycenter
Given a set {b;}7_; of unbalanced marginal densities b; € R’ and a weight A = (Ay,- -+, A;) € int(A ),

it is of practical interest to compute the weighted sOT barycenter of {b; }.j]:l. This problem can be viewed
as the generalization of the standard Wasserstein barycenter problem studied in [34].

We define the sOT barycenter problem in a similar manner as that for sOT. Let v = (vj)j=1 € (R’
denote the blocked marginal measure, and [ v|[x = >, [[v;|l1. We define two sets, one of which is for the
feasible blocked marginal density v, and the other of which is for the feasible v with minimal 1-norm:

F={v:|bi—vi|i=---=|bs—vy|i, and 3 P; € U(a,b; — v;), such that (P;,C) < oo for some a},

10



G = argmin||v||;.
veF

Then the sOT barycenter problem is defined as:

Aj( 4.1
I\?EQP EU(abv—v])Z ( )

Similarly as the equivalence between various sOT formulations, we can show that (4.1) is equivalent to

J
min 3" AP, C) + Vil (4.2)
P;cU(a,b;j—v;) =1

for sufficiently large v. The equivalence between (4.1) and (4.2) is summarized in theorem 4.1.

Theorem 4.1. Given a cost matriz C with co-pattern Ps(C), the two formulations for the sOT barycenter
problems (4.1) and (4.2) are equivalent for sufficiently large ~

Opt) ;i for the formula-

Proof. The proof is similar to that of Lemma 2.2. Starting from an optimal v°P* = (vj
tion (4.1) and a corresponding optimal plan P?* = (Pe *); in which 6 = ||by —v{™'|y = -+ = ||by —vF'|1,
and taking any nonnegative and feasible # < 6, if we can prove that for any plan P%* defined as

J
PO+ —argmm > A(P;,C):P;eU(=a,<b;),Pil=---=P;1=a,(P;,1)=0,Yjp, (43)

j=1

one has that

J J
> oN(PIT - PO, Z —Pi*.1), for some v > 0, (4.4)
j=1 j=1
then for any v = (v;); such that 6 = ||by — vi|1 = -+ = [|by — V|1, it implies that

Vil = vl = (v = v, 1 J2A< P} — P} >>JWZA< p* - PI*.C),

leading to
J J
TN <P9* >+v||v0pt||1 ST N <P?’*7C>+7HV||1’
j=1 j=1

which implies the optimality of (voPt, P?*) for (4.2).
Now we prove that there exists a v > 0 such that (4.4) holds. Using lemma 2.1 and taking the bounded
convex polyhedron C to be the set of P = (P;); defined by the constraints

PT1<b;,P;>0, j=1:J
Pil=P, 1, j=1:J-1

P, >0, j=1:J

P =0, (k1) €Px(C), j=1:J

and

Co={PeC:( =Y (P;,1) = Jb},

j=1

11



we know that there exists a critical 6 such that for any given 6 € (6o, 0] and P?* defined in (4.3), we can
find a feasible P? satisfying (P?, 1) = J6, such that

[P? — PO ||, < Jnjf — 6. (4.5)

Then

Mk

XJ: 5 (P) - Pi*.C) <

j=1

Y (P7-P)".C)

<.
Il

IA
—

~IIPg — Pjll1 - IClas
IClloc 16— 6

A

J i
= Cllc -1 > A (P)" =PI, 1), (4.6)

Jj=1

On the other hand, for any feasible § < 6y and P?* defined in (4.3), we simply have

J J J
0,% 0,% . 0,% 0,%
SN (PIT—PI7.C) =3 \(PI,C) = > \(PYT.C)
j=1 j=1 j=1
<ICll -0
i
= Ol - =20~ 0)
i
< [[Clo - 55 (0= 0)
6 ! ]
6,x 6,x
= [Clloe - 55 D_ % (PS" - Pi™, 1) (4.7)
j=1

Finally, combining the inequalities (4.6) and (4.7) and taking v = max{n,8/(0 — 6y)} - ||C||«, We prove the
inequality (4.4), and therefore the equivalence between two formulations.

O
Note that the feasible set F is always non-empty, the formulation (4.2) can be recast into the form
J J
min A (P;,C)+9 > [Ib; — PT1s. (4.8)
P,cU(Za<b,) =1 J=1

Here we replace % by 7 in the equivalent formulation for the sake of simple notation.

4.1. Entropic reqularization of the sOT barycenter problem

In this section, we consider the entropic regularization for the weighted sOT barycenter problem. To

this end, we introduce the following notations:

J

KL\(P|Q) := ZAjKL(Pj|Qj)7 where P = (P;); € (RT*™)7,Q = (Q;),; € (RT™)”, (4.9)
j=1

hi(P) = tp(Pi1,--- ,P;1), D:={(p1,--.ps) € RT) :p1=--=ps}, (4.10)

12



<

ha(Q) = 7Ib — Q71| + 1o (QT1) =) (vllbg‘ - Qi1+ L[o,bj}(Qf]l)) (4.11)
Jj=1
hi(p) = tp(p1,--- ,ps), for p=(p));, (4.12)
J
ha(a) = 7IIb = alli + tppy(@) = Y ('Y”bj —q;lli + L[O,b]-](qj))y for q = (q;)j_;. (4.13)
j=1

Note that h;(P) = h;(P1),i = 1,2. With the above notations, we can formulate the entropic regularized
sOT barycenter problem as

min ZA ((P;,C) = eH(P;)) + hn(P) + ha(P), (4.14)

RTLX‘n‘l)J
or equivalently in terms of the KL divergence,

1. 1.
min KL)\(P‘K) + *hl (P) + *hQ(P), (415)
PE(RQILX’"L)J € €

where K = (K;)7_; with K; = e Clej=1,--,J.
To solve the entropic regularized sOT barycenter problem (4.15), we adopt the generic diagonal scaling

algorithm introduced in [33] (also see [19]), in which each iterate P has the diagonal scaling decomposition
P = (Pgn))j = (diag(u§-n))Kdiag(v§-")))j : (4.16)
With a slight abuse of notation, we denote, consistent with P = (P;);,
u=(ug, - ,uy) € R", v=(v, - ,vy) e R™.

Then the diagonal scaling algorithm reads

Input: u(® =v(© = 1;
General step: for any n =0,1,2,--- execute the following steps:

plrongLA (Kv(zn))}

u(2n+1) _ |:

Fi (2n+1) _ _ (2n) %
J K (2n) ) Vj =V 5 v, (4.17)
Vi
KL n
(2n+2) |:pI'OXh A(KTUQ )):|j (2n+2) (2n+1) g
v; = CT , u; = u, , V. (4.18)
u

J

Note that one needs to compute the two proximal operator proxh Ly and proxh L\ for hy and hy defined
n (4.12)-(4.13) to implement the diagonal scaling algorithm. The following lemma shows that the two
proximal operators for the KL divergence can be computed in closed form. The derivation is similar to that

of Proposition 5.1 in [33], so we omit the details.

Lemma 4.1. For any p = (p;); € (R™)’, and hy and hs defined in (4.12)-(4.13), one has
[profo* (p)L =p}'@---@p), {profo* (p)]j = min {e?pj7 bj} i (4.19)
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Additionally, for any P = (P;); € (R™™), and hy and hy defined in (4.10)-(4.11), the two prozimal

operators profo* and proxhKLA are related to (4.19) as
2

1

KL KL
L ' [proxh1 . (P]l)L L ' |:pI‘OXh2 A (PT]l)L
{proxi11 *(P)L = diag Pl P;, {proxi12 *(P)L = P;diag T , (4.20)
J J

in which
Pl := (Pi1,---P;1), PT1:=(P{1,---PT1).

With the proximal operators computed in (4.19), the diagonal scaling algorithm in a directly imple-

mentable form becomes

Input: u® =v(©® =1;
General step: for any n =0,1,2,--- execute the following steps:
(n) Aj
(n+1) a e q . (n) _ ( (n)) J
u; = o j=1:J,  where a™ = H Kv; ) (4.21)
J J
n a b ] = .
v§- D = min I__eXich, j=1:J. (4.22)
KTu;n)

4.2. Log-domain implementation

One drawback for the diagonal scaling algorithm (Sinkhorn algorithm) is that it suffers from numerical
overflow when the regularization parameter € is too small compared to the entries of the cost matrix C.

This drawback is even more severe for the sOT problem as it will cause some entries of K = e~C/¢

being
regarded as zero due to the numerical overflow, even they should not. In other words, having more zero
entries in K because of the smallness of ¢ will change the 0-pattern of K and consequently the co-pattern
of C. Therefore it is necessary to implement the diagonal scaling algorithm for sOT barycenter problem in
the log-domain.

Using the log-sum-exp stabilization trick for the soft-minimization, and noting the primal-dual relation
(u(n)’ v(n)) _ <ef(n)/6’ eg(n)/6> :

the log-domain implementation for the diagonal scaling algorithm reads

Input: £ = g© =,

General step: for any n =0,1,2,--- execute the following steps:
5 =30 {e log (e(fi(n)e‘agyl)’c)/e]l) - fi(n):| a [6 log (e(f;")eag;")—C)/e]l) B fJ(n)] ;o (423)

g§n+1) — ot {elog(bj) —elog (e(f;vL+1>@g;">_C)T/e]l> 4 g§n)7 )’\7} ) (4.24)
J

forall j=1:J.
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4.8. Special case in which X € O(Ay)

In this subsection, we point out an important difference between the standard OT barycenter problem
and the sOT one. For the sake of simplicity, we take J = 2.
Note that when A = (0, 1), the OT barycenter problem degenerates to the standard OT problem. More
precisely
main A1Lot(a,by) + A2 Lot(a, bs),

reduces to
min Lor(a, bs),
a

which leads to a = by and Py = diag(by). Then Py is determined by the standard OT

L b;) = i P, C).
or(a,by) Plerlr}g’bl)< 1,C)

Additionally, the entropic OT barycenter problem reduces to the entropic OT problem. In other words,
min AMLop(a, br) + A2 Lor(a, be),

reduces to
main LEOT (a7 b2) 5

which leads to a = g?i and P, = Kdiag (Kbq?]l). Then P, is determined by the entropic OT

L¢ by) = i KL(P,|K).
or(a,bi) p oy, e (P1|K)

However, such degeneration does not apply to the sOT barycenter problem,

)\ligo (Inain )qLSOT(a, bl) + )\QLSOT (a, bg)) 75 m;n LSOT (a, bg)

To elucidate the idea, we take the cost matrix C as in (5.2) with Ceyt = 0.3, namely, any mass can only
be transported within the distance no longer than Cey;. We take y € R™™! be a uniform mesh over [0, 1]
with A = 1/n being the mesh spacing, and let b; = 1 (and by = 1, respectively) be uniform distribution
on y compactly supported over [0.1,0.3] (and [0.7,0.9], respectively). For any A = (A1, A2) € int(As), the
sOT barycenter a must be the uniform distribution a = 1 on y compactly supported over [0.4,0.6]. The
corresponding total cost is

A1(0.3)2 + X2(0.3)% = (0.3)2.

This is because any other possible transport plan will cause some mass, even only a bit, being transported
from either b; or by to anywhere beyond [0.4,0.6], resulting in an infinite cost. On the other hand, when
A =(0,1) € 9(Ay), the sOT barycenter is determined by

min Lsor(a, ba).
a

Since it is unrelated to Lyor(a,bi), we can take a = by such that the total cost equals zero. Hence the
degeneration leads to a discontinuity for the total cost. To resolve this issue, we define the degenerate sOT
problem for \ € O(Ay) as the limiting problem when int(A;) 2 A — A\,

min XL a,b;):= lim ( in ;i Lg a,b-).
i) Alor(aby)i= | i (mind Ao )
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4.4. Reverse and portion selection mechanism

We can further perform theoretical analysis on the limiting behavior of the barycenter sOT problem.
For the sake of simplicity, we still take J = 2. Let y = (y;); € R™ be the uniform mesh over [0,1 — h] with
h=1/n.

To begin with, we define a cumulative sum inequality as follows. For any two vectors u,v € R", we say

u is cumulatively less than or equal to v and denote by u <¢ v if they satisfy

k k n n
Zuj§Zvj,k:1:n—1; and Zuj:ZUj. (4.25)
j=1 j=1 Jj=1 Jj=1

u is strictly cumulatively less than v and denote by u <¢ v if at least one inequality in (4.25) is strict for
k=1:n—1. We denote by u =¢ v if all the inequalities in (4.25) are equality. It is clear that u =¢ v if
and only if u =v.

Let T be a periodic shift operator for any periodic function f(z) over [0, 1) such that (T f)(x) = f(z+t).
We take two nonnegative periodic functions by (z), ba(x) over [0,1) with compact support [0,0.2], and let

them satisfy the cumulative sum inequality
bilynio,0.21 <c b2lyn0,0.2)- (4.26)
We define two marginal distributions by and b as
by = (T"'b1(2))ly, b2 = (T*"ba(2))ly- (4.27)
The cost matrix C is taken as

= yyl2, if g — ] < 0.3,
Cij = b~ i i = sl < (4.28)

00, if |y; —y;] > 0.3.

In the following lemma, we characterize the marginal distributions which are of the same amount of

mass as by and bs, and can be completely transported to by and bs given the cost matrix C in (4.28).

Lemma 4.2. Given marginal distributions by and b as in (4.27), a marginal distribution a can be com-
pletely transported to both by and bs if and only if

a= (T""a(z))ly (4.29)
in which a(x) is a nonnegative periodic function over [0,1) with compact support [0,0.2] and satisfies

b1(z)|yn0,0.2 <c a(®)]yno,0.2] <c b2()lyn0,0.2]- (4.30)

Proof. We only consider the case for Po. That for Py is similar.

First, we show that if the cumulative sum inequality (4.30) holds, then there exists some plan Ps to
transport a competely to ba. Here we use the north-west corner rule [35] to construct such a plan Py. If Poy
completely transports a to by, then all the entries off the sub-matrix Q = P5(401 : 600, 701 : 900) € R200%200
must be 0 due to the compact support of a and by. Besides, since the entries of C are co when |y; —y;| > 0.3,
the strict upper triangular entries of Q must also be 0. Now we apply the north-west corner rule to determine
the lower triangular (including diagonal) entries of Q. More precisely, the rule starts by giving the highest
possible value to Q11 = (P2)401,701 by setting it to min{(a)4o1, (b2)701}. At each step, the entry (Ps);; is
chosen to saturate either the i-th row constraint, j-th column constraint, or both if possible. The indices
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i, 7 are then updated as follows: 7 is incremented in the first case, j is in the second, and both ¢ and j are
in the third case. The rule proceeds until (P2)g00,900 receives a value. On the other hand, using the second
half of the cumulative sum inequality (4.30), we have that each diagonal entry Qgr of Q must be chosen
to saturate the corresponding row constraint or both the row and column constraints, but cannot saturate
only the corresponding column constraint. Since the total mass of a is equal to that of by, the possible
excessive mount of mass due to the row saturation is eventually transported by the last row of Q. Hence
mass is completely transported.

Secondly, we show that if the cumulative sum inequality (4.30) is violated, then no plan Py can completely
transport a to be. Let &k be the smallest integer to break (4.30),

k
> aly;) > ba(y;). (4.31)

j=1 =

Assume there exists a plan Py which transports a completely to ba. We still denote Q = P5(401 : 600, 701 :
900). Due to the compact support of a, by and the oo entries in C, the nonzero entries of Py can only lie in
the lower triangular half (including the diagonal) of Q. Consider the sub-matrix Q; = Q(1: k,1: k). On
one hand, since a is completely transported, we have

Qrl =[ay1), - ,aly)]’, QLL< [ba(yr), - ba(y)]”.

However, >, (Qx1); =3, ;(Qu)i; = Zj(Q{]l)j leads to Z?:l a(y;) < 25:1 ba(y;), causing a contradiction
to inequality (4.31). O
Then we have the following result regarding the sOT barycenter of b; and bs.

Theorem 4.2. Let by and by be defined as in (4.27) with by and by satisfying (4.26). Given cost matriz
C defined in (4.28), we have

2
li i \;Lg b:;C)) = (T 4.32
o m (l,o)arg;nm(; jLso1(abj; ©)) = (T"4by)]y, (4.32)
2
li i ;L b;;C)) = (T°4b)|,. 4.33
(Ml)nim’l)arggnn(j;J or(a,b;; C)) = (T%b,)], (4.33)

Proof. We only prove the case for (A1, A2) — (0,1).The other case is similar. By the virtue of lemma 4.1
and lemma 4.2, all the candidates for the sOT barycenter of by, bs are in the form of (4.29) with condition
(4.30) satisfied. We denote by S, the collection of all these candidates.

In the limit (A1, A2) = (0,1), A1 Lsor(a, by) becomes zero. We only need to seek an optimal a* in S, to
minimize Lsor(a, bs). Pick any a >¢ by, and let k be the smallest integer such that

k k

a(y;) > > bi(y)- (4.34)

)

j=1

Since Z;lzl aly;) = 2?21 b1(y;), there must be some integer { > k such that a(y;) < bi(y;). Let P} be
an optimal transport plan for Lsor(a,bs), and (PX)g; be a nonzero entry on the k-th row. Then for a
sufficiently small € > 0, changing (P%)ri — (PX)k: — € and (P2)x — (P)r + € causes a cost reduction.
Therefore a is not the optimal candidate in S, unless a =¢ by, that is, a = by. O

Remark 4.1. In the standard OT barycenter problem, we have
2 2
lim argmin(Z AjLot(a,by; C)) = by, lim argmin( Z AjLor(a, bj; C)) = bs.
j=1

(A1,22)—(1,0) a (A1,22)—(0,1) a =

(4.35)
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However, the sOT barycenter problem, without considering the periodic translation of by and by, gives
exactly opposite results as shown in theorem 4.2. We call the limits (4.32) and (4.33) a reverse and portion
selection mechanism.

5. Numerical Results

In this section, we will present several numerical experiments to validate the proposed sOT problem.
Note that in Lemmas 2.1 and 2.2, we only prove the existence of A for the equivalence between the double
minimization formulation (2.5) and the single minimization formulation (2.8), but there is no explicit eval-
uation of y. For the numerical simulations, we will decide the value of v by the following procedure: taking
several values of v = 71,72, in ascending order and running the Dykstra solver for each value ~;, until
the total transported mass (P, 1) become unchanged (within certain accuracy) at some ~;, then we choose
v; to be the value of v in the simulations.

Figure 5.1 shows an example for this procedure. In this test, we take C as the truncated L? distance

defined in (5.2) with C.,; = 0.5. The two marginal densities a and b are given as follows,
1 _ (2-0.2)? 1 _ (z—0.8)?
a=— <e 012 + 0.001) , b=— <e 012 4 0.001)

with h = ﬁ. We take v = 0,0.1,0.2,0.5,100. For each value of v, we calculate (P, 1). We note that when

~v = 0.5 or larger, (P, 1) remains unchanged. Thereby we take v = 0.5.

, (5.1)
RZN[0,1]

hZN[0,1]

y=0, > P;=0.006

y=0.1, > P;;=0.019

y=0.2, > P;=0.184

0.00 %

y=0.5, > P;j=0.465
0.05 | |
0.00

y=100, > P;=0.465

0.05 | |
000 — A e |

Figure 5.1: The schematic for taking the value of 7. We take several values of v in ascending order, run the Dykstra’s algorithm,
and evaluate the total transported mass (P, 1) until it becomes unchanged within certain accuracy. In this simulation, we
take € = 0.01. Note that when v = 0, there is still a tiny mass transported, which is due to the approximation of entry
regularization.

5.1. Effect of € (regulator weight) for entropy reqularized sOT
In our first example, the two marginal densities are taken as 1D discretized Gaussian distribution:

xr—U. 2 T 2
a— % (e(' EE e 0.001) . b= (e‘ EL e 0.001)

)

RZN[0,1]

hZN[0,1]
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with h = zis. D is a normalization constant such that [|af; = 3 and ||b]y = 1. The cost matrix

C = (Cy5) € R?00x200 ig taken as

Cy = lz; — ;]2 ?f |z; — ;] < Cout, (5.2)
00, if |z; — x| > Cews-

with cutoff = 0.7. The value of ~y is taken to be v = 2. By taking various values of ¢ = 1,0.5,0.1,0.05,0.025
in Figure 5.2, we test the generalized Sinkhorn algorithm with hy and hy taken in the form of (3.16). For
all values of €, a is completely transported. For the transported part of b, namely, the row sum P71 of the
optimal plan P, it spreads widely over the support of b, with more mass in the region closer to the support

of a. As e becomes smaller, more amount of mass is moved to the left half of the support of b.

Figure 5.2: The sOT solutions for various € as € — 0. The blue region indicates the transported part of a. The dark red region
indicates the transported part of b, and the light red region corresponds the blocked part of b.

5.2. Effect of Cy; for entropy reqularized sOT

In the second example, we test the effect of oo entries in the cost matrix C. In particular, we construct
C as in (5.2) but take various cutoff values C.,; = 0.25,0.35,0.50,0.55,10. The marginal densities a and
b are 1D Gaussian distributions in (5.1). Note that in this example, we take ||al|; = ||b||1 such that when
there is no oo entry in C, the sOT problem reduces to the standard balanced OT problem. We fix ¢ = 0.05
and v = 2 in this example.

Figure 5.3 presents the solutions of sOT problem with different values of cutoff parameter. When Cly
= 0.25 is small, majority of the mass are blocked, only a tiny amount on the supports of a and b within
the separation of 0.25 is allowed to transport. When the C., becomes larger (fewer co entries in C), more
amount of mass is transported from the right corner of the support of a to the left corner of the support of
b. When cutoff becomes large enough, for instance C.y; = 10, all entries of C become finite, and the sOT
problem degenerates to the standard balanced OT problem, in which all mass in a is completely transported
to b.
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[cutotf =025

[ cutoff = 0.35

Figure 5.3: The sOT solutions for various cutoff values. The dark blue region indicates the transported part of a, and the light
blue is for the blocked part of a. The dark red region indicates the transported part of b, and the light red region corresponds
the blocked part of b.
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0.04 0.04 004
A=(09,0.1) A=(09,0.1) A=(09,0.1)
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0 0 0
0.04 0.04 004
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A=(09,0.1) A=(09,0.1) A=(09,0.1)
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Figure 5.4: The weighted sOT barycentric solutions for (b1, bs) for various values of Ceyt and weights (A1, A2). From top
left, top middle, top right, until bottom right, with Ccy¢ = 1.00, 0.50, 0.40, 0.30, 0.28, 0.26, 0.24, 0.22, 0.20, respectively, each
subfigure consists of three cases with (A1, A2) = (0.9,0.1),(0.5,0.5), (0.1,0.9).

20



Resemblance between aand b 1 Resemblance between a and b2

1 ] 1
09
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08
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o

0 0.1

1

Figure 5.5: The resemblance between the sOT barycenter a and the marginal distributions bj,b2. When Ccyt is small, it
shows the reverse and portion selection mechanism as indicated by the limits in Theorem 4.2. When Ccyt increases, the
mechanism gradually changes back to normal as the standard OT barycenter problem.

5.8. The effect of Ceyy on weighted sOT barycenter problem

In this example, two unequal densities by, by € R?%0 are taken as the discretization of:

1 1 _(@-08)?
b1 = = (x[0.1,0.3 +0.001) , by =— (e To1r 4 0,001)
Dy hZN[0,1] Dy hzZN[0,1]
over a uniform mesh {z; = jh}3%} with h = 55. The constants Dy, D are taken such that ||bs[|; = 1.0 and

[ba]|1 = 1.2. The cost matrix C = (C;;) € R?09%200 j5 taken as in (5.2) with various cutoff values. The value
of 7 is taken to be v = 2. For each cutoff value, three pairs of weights (A1, A\2) = (0.9,0.1), (0.5,0.5), (0.1,0.9)
are considered. Figure 5.4 depicts the numerical simulations for C., = 1.00, 0.50, 0.40, 0.30, 0.28, 0.26,
0.24, 0.22, 0.20, from top left, top middle, top right, until bottom right. In each plot, the opaque light blue
(and red, respectively) represents the density by (and bs, respectively), the transparent dark blue (and red,
respectively) represents the transported mass of by (and b, respectively), and the transparent yellow is
the weighted sOT barycenter.

For a large C.yt = 1.00 in the top left subfigure, when \; is close to 1, the sOT barycenter a is close
to b;. However by is only partially transported as the mass of by is more than that of by. When \;
approaches 0, the sOT barycenter becomes close to partially transported bo. This is similar to the standard
barycentric problem, except that each density b; may be only partially transported.

For a small C.y; = 0.50 in top middle subfigure, when A; is close to 1, the sOT barycenter a, compactly
supported near the compact domain of by, is surprisingly similar to by (up to a translational shift). On
the contrary when A; is close to 0, the sOT barycenter a, compactly supported near the compact domain
of boy, resembles by, up to a translational shift.

When taking further small value Ccy = 0.24 as in bottom left subfigure, each density b; is only allowed
to transport within the distance = 0.24. Hence for any pair (A, A2), the sOT barycenter a can only be
compactly supported in between b and by. Besides, without considering the translational shift, a is valued
closely to the transported bo when Ay — 1, while a is valued closely to b; when Ay — 0. The sOT barycenter
solution in bottom right subfigure for C¢,t = 0.20 is similar to that for C., = 0.24, except that more mass
is blocked for by and bs.
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In Figure 5.5, we further present the resemblance phase diagram between the sOT barycenter a and the
marginal distribution by on the A1-Ceys plane (the left subfigure), and similarly that between a and by on

the Ag-Ceyut plane (the right subfigure). Here the resemblance between a and b; is defined as

minogkggoo ||b] — CiI‘CShif'C(a7 k‘)”g —19

) )

R a,b;) = — ’
esem(a, b;) ming<x<aoo0 ||[b1 — circshift(ba, k)2

in which circshift is a circular shift operator. The smaller the resemblance value is, the more resemblant
the two densities are. If Resem(x,y) = 0, then x = y up to a translational shift. It is evident that when
Ceyt is small, the resemblance of the sOT barycenter a to by (and ba, respectively) as (A1, A2) — (1,0)
(and (A1, A2) — (0, 1), respectively) is reversed, compared to the standard OT barycenter problem in which
a resembles by when A\; = 1, and a resembles by when Ay = 1. On the other hand, as the value of Cey
increases, the reverse effect is lessened. When C¢,; becomes sufficiently large such that C contains no oo
entries, the sOT barycenter problem degenerates to the standard OT barycenter problem, and the reverse

mechanism turns back to normal.

5.4. Color transfer

Finally, we apply sOT to an important class of image processing problem, the color transfer problem.
Specifically, color transfer imposes the color of a target image to an input image so that the output image
has the same pattern and geometry as the input image but with the color palette from the target image.
This can be viewed as transferring the histogram of pixels in the 3D color space of an image to another
[36] which optimal transport is powerful at. Direct application of conventional optimal transport causes
issues, and several optimal transport based algorithms have been introduced to resolve these drawbacks. For
example, adding regularization helps increase the robustness and eliminates outliers [37, 38]. Another issue
is that transferring the entire color palette that is very different from the input image results in unrealistic
looks. Fixing the amount of transferred mass a priori can help mitigate this issue but with the need of
deciding a scale for each application case [21]. With sOT, we are able to directly control the similarity of
transferred color by setting a distance threshold of transferred color in the color space. As a result, we
control the color palette similarity of the output and the input image.

For an image, we represent the n pixels as a point cloud X € R™*3 in the 3-dimensional color space (the
RGB space). Given two images represented by X € R™*3 (input image) and Y € R™*3 (target image), the
color transfer problem is formulated as coupling two uniform distributions a € R’} and b € R’ with the cost
matrix C € R'*™ where Cj; = || X; — Y;||3. In sOT, we use a modified cost matrix C such that Cj; = Cj;
for Cy; < Ceyt and C‘ij = oo otherwise. When dealing with large images, a subsampling and upsampling is
often implemented to improve efficiency [37]. We first obtain subsampled images X® and Y*® using the resize
function from the PIL package [39] with the ANTIALIAS option. The optimal transport map P*® between
the subsampled images is then determined by sOT algorithm. The output image X°U* € R"*3 with the
transferred color palette is constructed such that

X = (PUY®) iy /afv () + X (1 - Z PN .i/ave) — Xve + X, (5.3)
J

where N (4) is the index of the pixel in the subsampled image X® that is the closest (in color space) to pixel
i in the input image, and ajv(i) is the source distribution of the subsampled image. The color difference
between the input and output images is determined by the color difference due to color transfer in the

subsampled input and output images. We take v = 2 in this example.
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Figure 5.6: The color transfer problem where the color palette of the target image is to be transferred to the source image and
the output image keeps the geometry of the source image. The results of supervised optimal transport with different cutoffs in
the color space, earth mover’s distance, entropy regularized optimal transport (Sinkhorn), and unbalanced optimal transport
are shown.
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The numerical results demonstrate that when the color palettes of the input and target images are
considerably distant, applying color transfer produces unrealistic output images (Figure 5.6. In contrast,
with the supervised cost matrix in sOT, the amount of transferred color can be controlled producing more
realistic output images (Figure 5.6). When the cutoff value in sOT equals infinity, the output image will
converge to the result of regularized optimal transport or earth mover’s distance depending on whether

entropy regularization was used.

6. Conclusion and Discussion

In this work, we introduce the supervised optimal transport problem where the cost matrix C can have
oo entries and the co-pattern of C supervises and controls the transport plans. Also, the source and target
distributions need not to be normalized in sOT. These properties make sOT a method generally applicable
to a large class of transportation problems where application-specific constraints are to be imposed on the
transport plan and the original units are to be preserved for the original distributions. To apply sOT on
large-scale real problems, we develop a fast numerical solver for sOT based on the Dykstra algorithm. We
also extend the OT barycenter problem into a supervised one in the setup of sOT. By considering the
sOT barycenter for two distributions (b, bs), a new reverse and portion selection mechanism is discovered,
giving the barycenter a opposite to that of the standard OT barycenter problem when the weight approaches
the boundary of the unit simplex. The properties and effects of different parameter values of sOT are
illustrated numerically with toy examples. We also demonstrate the reverse behavior of sOT barycenter in
an extensive numerical example. In an important problem in imaging science, we compare sOT to several
other OT variants to demonstrate its unique utility of supervising the transport plan.

This work can be extended in several ways in the future. For example, a supervised Gromov-Wasserstein
OT analogous to sOT can be developed and will enable the integration of multiple subsamples of the same
system without known inter-sample correspondence.

In the current work, the formulations (2.8) and (2.17) are obtained from the discrete OT setting. Intro-
ducing the entropy regularization terms in (3.4), the optimal plan P, has a diagonal rescaling form, such
that Dykstra algorithm (Sinkhorn type) can be applied to improve the numerical efficiency significantly.
On the other hand, it is also of practical interest to find an efficient solver for the sOT problem without
entropy regularizaion. Inspired by [40], we may link (2.8) and (2.17) with the dynamical OT (Benamou-
Breiner type [41]) formulation. Discrete sOT formulations (2.8) and (2.17) work for any “ground metric”
C. On the other hand, if the metric C is homogeneous of degree one such as L' metric C = (||z; — y;1)4,
the original OT problem can be reformulated as a minimal flux minimization problem [42]. Motivated by
this, it is also interesting to consider, when taking some degree-one homogeneous metric C in (2.17) with
certain co-pattern, whether there exists a minimal flux formulation for sOT problem. Then we can apply
well-established efficient solvers for L! minimization problems to sOT provided that it can be reformulated
as a minimal flux problem. Such a potential dynamical formulation for the sOT problem can be used to

seek optimal transportation paths with constraints in applications such as continent movement in geology.
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