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How basal cell carcinoma (BCC) interacts with its tumor microenvironment to promote growth is unclear. We use
singe-cell RNA sequencing to define the human BCC ecosystem and discriminate between normal and malignant
epithelial cells. We identify spatial biomarkers of tumors and their surrounding stroma that reinforce the hetero-
geneity of each tissue type. Combining pseudotime, RNA velocity-PAGA, cellular entropy, and regulon analysis in
stromal cells reveals a cancer-specific rewiring of fibroblasts, where STAT1, TGF-B, and inflammatory signals
induce a noncanonical WNT5A program that maintains the stromal inflammatory state. Cell-cell communication
modeling suggests that tumors respond to the sudden burst of fibroblast-specific inflammatory signaling path-
ways by producing heat shock proteins, whose expression we validated in situ. Last, dose-dependent treatment
with an HSP70 inhibitor suppresses in vitro vismodegib-resistant BCC cell growth, Hedgehog signaling, and in vivo
tumor growth in a BCC mouse model, validating HSP70’s essential role in tumor growth and reinforcing the critical

nature of tumor microenvironment cross-talk in BCC progression.

INTRODUCTION

Basal cell carcinoma (BCC) is a locally invasive skin cancer and the
most common human cancer worldwide with an estimated lifetime
risk between 20 and 30% and increasing incidence rates in a number
of regions including North America, Europe, Asia, and Australia (I).
BCC:s originate from inappropriate activation of the Hedgehog (HH)
signaling pathway, in which secreted HH ligand binds the choles-
terol transporter patched homologue 1 (PTCHI1) and negates PTCH1-
mediated suppression of the G protein-coupled receptor Smoothened
(SMO). SMO then activates the GLI (glioma-associated oncogene
homolog) family of transcription factors (TFs) to promote prolifer-
ation and tumor growth. Although the mortality rate for BCC is low,
the large affected patient population imposes substantial morbidity
and cost (1).

Although surgery remains the gold standard of therapy for BCC
(2), it is not a practical option for tumors on cosmetically sensitive
body parts or for metastatic disease. SMO inhibitors, vismodegib
and sonidegib, have emerged as promising treatments for advanced
disease, with a response rate of around 30% in metastatic BCC and
45% in locally advanced BCC (2). However, SMO mutations driving
drug resistance are common, and up to 21% of patients treated with
vismodegib were found to undergo tumor regrowth during treatment
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(3). Additional pathways that contribute to BCC drug resistance include
phosphatidylinositol 3-kinase (PI3K)/MTOR (Mammalian target of
rapamycin) (4, 5), WNT (6), aPKC v/A (7), NOTCH]1 (8), RAS/MAPK
(9, 10), and activation of MRTF (11, 12), to name a few. New thera-
peutic options are needed to treat advanced BCC.

How stroma interacts with and promotes the growth of BCCs
is unclear. Upon hierarchical clustering of cancer-associated FIB
(CAF) markers in BCC, squamous cell carcinoma, and melanoma,
three distinct subgroups can be stratified, each corresponding to the
specific cancer type (13). Specifically, BCC CAFs are notable for their high
expression of platelet-derived growth factor receptor f (PDGFRp),
S100A4, and TWIST. Within different histopathologic subtypes of
BCCs, the tumor-to-stroma ratio is significantly divergent, with
infiltrative BCCs presenting the lowest ratio (14). Genes coding
for extracellular matrix (ECM) components are also up-regulated
in BCCs, suggesting a tumor-induced remodeling of the stromal
matrix (15). In addition, expression of stromal proteins has been
shown to predict the aggressiveness of BCCs (16) and distinguish
between infiltrative BCC and desmoplastic trichoepithelioma (17).
Together, these studies show that expressed factors in BCC stroma
can play important roles in tumor growth, angiogenesis, and metas-
tasis. Defining BCC-stroma interactions may be a vital, yet under-
studied, part of tumor progression and result in more efficacious
therapies.

Single-cell RNA sequencing (scRNA-seq) technologies allow the
analysis of intrasample heterogeneity, tumor/sample microenviron-
ment, pathogenic pathways, and cell-cell interactions in oncogenic
contexts (18). Using this technology, we define BCC cellular hetero-
geneity, cell-cell interactions, and novel active pathways in BCC. We
differentiate between malignant and normal epithelia, identify a
stromal inflammatory response driven by WNT5A, characterize a
subgroup of BCC keratinocytes that overexpress heat shock pro-
teins, and provide data supporting the heat shock protein (HSP)
pathway as a potential novel therapeutic target for BCC.
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RESULTS

Resolving the cellular ecosystem of human BCC

To resolve the cellular ecosystem of human BCCs, we sorted viable,
single cells in toto from primary human BCC surgical discards
(n =4), including peritumor skin (PTS) tissues (n = 2), and subject-
ed them to 3'-droplet-enabled scRNA-seq (Fig. 1A and fig. 1A) (19).
The primary BCC subtypes considered in this study included super-
ficial, nodular, and infiltrative BCC (ID: BCC-I; k = 9837 cells);
superficial and nodular BCC (ID: BCC-II; k = 11,724 cells);
unknown/“hybrid” BCC (ID: BCC-IIL; k = 6712 cells); and infiltrative
with perineural invasion BCC (ID: BCC-1V; k = 8569 cells). PTS
tissues constituted skin directly adjacent to BCC lesions. In total, we
processed 56,162 raw single cells (kprs = 17,727 versus kpcc = 38,435).
After putative doublet/multiplet removal and quality control filter-
ing of individual libraries (fig. S1B and tables S1 to S3), 52,966 “valid”
cells remained (kprs = 16,903 versus kgcc = 37,667). To resolve the
cellular diversity present in individual tumors and enable down-
stream query and comparative gene expression analyses, we processed
and characterized individual BCCs using Seurat (20) and visualized
the inferred putative cell types in two-dimensional space. We iden-
tified 10 coarse-grained cell types based on bona fide biomarkers,
which included MKI67" proliferative epithelial cells, KRT14" basal
epithelial/tumor cells, terminally differentiated IVL" keratinocytes,
AZPG" appendage-associated cells, PDGFRA" fibroblastic cells, RGS5"
FIB-like cells, TIEI" endothelial cells, PROXI" lymphatic endothelial
cells, MLANA™ melanocytic cells, and immune cells identified by
expression of PTPRC (Fig. 1B). We did not confidently identify cell
clusters with gene expression signatures enriched in Stratum spinosum
keratinocytes or Schwann/neural-like cells (fig. S2).

To identify putative malignant tumor cells present in primary
BCC samples, we subjected the KRT14" epithelial/tumor cells to
InferCNYV analysis (InferCNV of the Trinity CTAT Project; https://
github.com/broadinstitute/inferCNV). We observed aberrant ge-
nomic profiles, associated with chromosome duplication (red) and
deletion (blue), in KRT14" epithelial cells from BCC-I, BCC-II, and
BCC-IV donors when compared to their counterpart nonepithelial,
nonimmune internal reference cells (Fig. 1C). BCC-III did not display
significant aberrant genomic structure changes when compared to
other BCC subtypes. Rather, its profile resembled more those from
nonappendage, KRT14" epithelial cells present in the PTS samples
(fig. S3), suggesting that some tumors do not have significant copy
number variations driving tumor growth. Although InferCNV in-
ferred aberrant genomic changes in KRT14" epithelial cells, it can-
not identify individual malignant cells.

When integrating both BCC and PTS datasets using Seurat, we
noticed independent clustering of BCC KRT14" epithelial/tumor
cells from PTS, with further inter-BCC partitioning (fig. S4A). Un-
like KRT14" epithelial/tumor cells, all other nonepithelial cell types
did not drift or cluster independently from each other regardless
of donor. The high BCC tumor heterogeneity is in congruence with
other reports indicating a high degree of transcriptome-driven epi-
thelial, intertumoral heterogeneity in other human cancers, includ-
ing melanoma and squamous cell carcinoma (21, 22). To determine
an alternative approach to identify BCC-associated KRT14" epithelial/
tumor cell states that significantly differ from PTS, we compared
Seurat-based integration with four distinct yet widely popular clus-
tering methodologies, including SCTransform (23), LIGER (24),
Harmony (25), and scMC (26) (Fig. 1D and fig. S4). All algorithms
clustered nonepithelial cells together, irrespective of condition or

Guerrero-Juarez et al., Sci. Adv. 8, eabm7981 (2022) 10 June 2022

donor. However, Seurat, SCTransform, LIGER, and Harmony clus-
tered epithelial cells indistinctly, irrespective of condition or donor,
whereas clustering with Seurat was driven entirely by donor, making
it difficult to identify and interpret BCC-specific epithelial cell types
or states (fig. S4). In sharp contrast, scMC clustered BCC and PTS
epithelial cells distinctly while maintaining clustering of transcrip-
tionally similar cell types (Fig. 1D). As scMC retains biological
variation while removing technical variation associated with each
sample, we therefore used the resultant scMC-corrected BCC-PTS
data for downstream query and comparative analysis.

scMC maintained the same 10 distinct cell types found by inde-
pendent BCC clustering with Seurat (Fig. 1, E to G). Quantification
of each coarse-grained cell type partitioned by condition and donor
revealed relative cell type frequency similarities across BCC and
PTS (Fig. 1F). Non-PTS KRT14" epithelial/tumor cells uniquely ex-
pressed known BCC-associated gene biomarkers including BCAM
and EPCAM (Fig. 1H) (27). KRT14" epithelial/tumor cells from
BCC-III showed a “hybrid” position where many cells significantly
overlapped with the PTS samples, whereas other cells uniquely clus-
tered singly, matching our previous observations with InferCNV
analyses (Fig. 1, Cand D). In sum, our benchmarking approach and
comparative scRNA-seq clustering analyses resolved the distinct
cellular landscape of human BCCs and revealed major KRT14" epi-
thelial cell type differences compared to PTS, suggesting a high level of
inter- and intratumor transcriptional heterogeneity between human
BCC samples.

Defining normal versus malignant epithelial cells
To define the epithelial/tumor cellular landscape of human BCC and
PTS samples, we subclustered 30,058 KRT14" epithelial-derived cells
(kprs = 5146 versus kpcc = 24,872) and identified 15 coarse-grained
epithelial cell clusters, all defined by expression of unique gene bio-
markers (Fig. 2, A to C). Three of the subpopulations (IFE I to III)
appear to be normal epithelia and make up nearly all the PTS sam-
ples and a small proportion of the BCC samples, whereas the rest of
the cells cluster uniquely to the BCC-associated samples (BAS I to
XII). This is distinct from what was found in squamous cell carcino-
ma, where most tumor keratinocytes were indistinguishable from
normal keratinocytes except for the presence of a small population
of tumor-specific keratinocytes (22). Whether the overlap in nor-
mal and tumor keratinocytes in squamous cell carcinoma is due to
the clustering algorithm used, inter-/intratumoral heterogeneity, or
a large proportion of normal keratinocytes in the tumor samples is
unclear. To explore their gene expression profile and spatial archi-
tecture, we spatially resolved select gene products, including KRT15
(BASII), LHX2 (BAS IV), and ACTA2 (BAS XI). KRT15 marked a
subset of KRT14"8" tumor nests (Fig. 2D), LHX2 marked the nucleus
of cells along the outer periphery of KRT14"¢" tumor nests (Fig. 2E),
and ACTA2 marked the outer periphery of KRT14°" tumor nests
(Fig. 2F). LHX2 is significantly expressed in bulk-level RNA-seq
data from vismodegib-sensitive and vismodegib-resistant advanced
BCC tumors compared to normal skin with ACTA2 showing tumor-
specific variability and KRT15 not showing significance (28), rein-
forcing the heterogeneity of BCC tumors and highlighting how
single-cell data can resolve significantly expressed genes that are
otherwise averaged out in bulk-level RNA-seq studies.

We next defined the identity of “transformed” cells by scoring
individual KRT14" cells with a previously defined BCC-associated
gene expression profile that includes coexpression of EPCAM, BCAM,
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Fig. 1. Cellular characterization of human BCC subtypes using scRNA-seq. (A) Schematic representation of in toto epithelial and stromal tissue isolation and process-
ing from human PTS and BCC tissues for 3'-droplet-enabled single-cell RNA sequencing (scRNA-seq). (B) Two-dimensional clustering of single cells isolated from individ-
ual human BCC subtypes. IDs represent subtype and donor. BCC subtypes are color-coded on the basis of subtype and donor and include the following: superficial,
nodular, and infiltrative (BCC-1); superficial and nodular (BCC-Il); unknown/“hybrid” (BCC-III); and infiltrative with perineural invasion (BCC-IV). Ten distinct meta-clusters
are identified at distinct proportions across BCC subtypes and annotated with their putative identities. The putative identity of each cell meta-cluster is defined on the
bottom and color-coded accordingly. (C) Copy number variant analysis of putative malignant epithelial cells with InferCNV. Blue indicates low modified expression, cor-
responding to genomic loss; red indicates high modified gene expression, corresponding to genomic gain. Internal reference cells refer to nonepithelial, nonimmune
control cells. Observations refer to putative malignant epithelial cells. Genomic regions (chromosomes) are labeled and color-coded. (D) Clustering of corrected and inte-
grated PTS and BCC datasets is grouped by condition and donor using scMC. Conditions and donor are labeled and color-coded. (E) Two-dimensional clustering reveals
cellular heterogeneity of integrated human PTS and BCC datasets. Ten distinct metaclusters are identified at various proportions across BCC subtypes and annotated with
their putative cell type identities. The putative identity of each cell meta-cluster is defined on the right and color-coded accordingly per cell type. (F) Proportion of cell
types grouped by condition. (G and H) Feature plots showing bona fide genes (G) and BCC-specific epithelial markers (H). Gray, low normalized gene expression based
on normalized counts; black, high normalized gene expression based on normalized counts.
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Fig. 2. Comparison of epithelial cells reveals regulators of malignancy in human BCC. (A and B) Clustering of 30,058 corrected KRT14" epithelial cells from human
PTS and BCC subtypes grouped by condition and donor. Fifteen putative KRT14" epithelial cell identities, including 1 proliferating epithelial and 3 interfollicular epitheli-
al cells, and 11 basal/basaloid epithelial cells were identified and defined. PTS/BCC agglomerative clustering shows relationships between KRT14" epithelial cells. Cells are
color-coded accordingly. (C) Dot plot of top two marker genes identified by differential gene expression among epithelial cells. Gray, low average gene expression;
purple, high average gene expression. Size of circle represents the percentage of cells expressing gene markers of interest. (D to F) Protein immunostaining of select
BCC-epithelial cell markers shows cluster specificity and distinct spatial localization in human primary clinical tumors. Inset shows magnified area of BCC nest. White
arrows point at epithelial cells expressing KRT14. Yellow arrows point at epithelial cells coexpressing protein of interest and KRT14. Tissues were counterstained with
DAPI. Scale bars, 100 um. (G to I) Heatmap of condition and donor-specific active gene regulatory networks demonstrates differentially active FOX, HOX, and SOX regu-
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and TP63 (27, 29). When grouped by condition and qualitatively
and quantitatively evaluated, we observed that most of the BCC-
associated cells expressed some of these markers, but not all three.
Of interest, EPCAM and BCAM were rather unique to BCC, where-
as TP63 was lowly expressed in PTS samples, a similar pattern to
bulk-level RNA-seq data where EPCAM and BCAM showed signif-
icant expression in BCC tumors and TP63 was significant in only a
subset of tumors (28). Canonical HH target genes such as PTCH]I,
GLI1, and GLI2 were not reliable markers of BCC-associated cells,
likely due to their lower expression levels and the limitations of the
10X Genomics platform—which relies on the chemistry used and
mainly capturing highly expressing mRNAs. To develop a better
measure of transformation, we identified prominent gene expres-
sion differences between BCC and PTS epithelial cells (fig. S5A).
This approach led to the identification of LGALSI as a gene that is
highly up-regulated in BCC epithelial cells (fig. S5B). LGALS1 has
been previously implicated in pancreatic ductal adenocarcinoma
(30), clear cell renal cell carcinoma (31), cervical cancer (32), and
malignant melanomas (33). However, to our knowledge, it has not
been previously implicated in BCC biology or previously identified
as a marker of BCCs and is not significantly enriched in bulk-level
RNA-seq data of BCC (28). We conducted a similar approach to
identify genes associated with the different BCC samples in our
cohort of donors. We identified MYLK, CALM5, SCGB2A2, and
KRT19 as highly expressed within each tumor sample (fig. S5C), all
of whom are not significantly enriched in bulk-level RNA-seq of
BCC (28).

To identify BCC-specific gene regulators (regulons) that may be
driving condition-specific gene expression changes in the different
epithelial-derived cell populations, we performed gene regulatory
network (GRN) analysis using pySCENIC (34) and identified sig-
nificantly active regulons specific to BCC subtypes in our cohort of
donors (Fig. 2, G to I). In addition to identifying active regulons
known to be implicated in the initiation and progression of BCC,
including as GLI1**8(+) and GLI2"¢(+) (fig. S5, D to F), we identi-
fied several classes of regulons of particular interest that include the
FOX, HOX, and SOX family of TFs (Fig. 2, G to I). FOX TFs, which
are highly active in BCC-IV, have been implicated in HH signaling
in other systems. For instance, FOXC1, which is active in BCC-I,
can activate SMO-independent HH signaling in basal-like breast
cancer, suggesting that it may regulate BCC drug resistance (35).
The HOX TFs, which are highly active in BCC-II, are main players
in murine digit patterning, where HOX TFs can activate Shh tran-
scription, with Shh protein establishing additional Hox expression
zones (36). However, the interplay between HOX TFs and HH
signaling in cancer is unclear. Last, the SOX TFs, which are highly
active in BCC-1V, have several known family members with con-
nections to BCC, including SOX2 (37) and SOX9 (38). These results
suggest that there are specific regulons that are active in BCC-associated
epithelial cells whose activity differs between BCC subtypes, reinforcing
the heterogeneity of BCC and which may be important in BCC biology.

We were interested in using scRNA-seq data to determine whether
we could resolve genes or gene-specific loci identified in other bulk-
level genomic or transcriptomic studies with individual cells within
the BCC macroenvironment. As a proof of principle, we used our
human BCC scRNA-seq data and overlaid expression of genes asso-
ciated with BCC risk loci identified via GWAS (genome-wide associ-
ation study) in BCC (fig. S6) (39). We successfully identified several
differentially expressed genes that were associated with specific BCC
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risk loci and that were expressed only in BCC-IV epithelial cells, in-
cluding BNC2, CUX1, ZBTBI10, and CASCI5, whereas other genes
showed broader expression across cell types in both normal and tumor
cells, such as LPP, PLIN2, HLA-B, and NEUI. We also used a similar
approach to identify significantly enriched vismodegib-resistant genes
from bulk-level RNA-seq analysis of advanced BCC (28) that are
expressed only in BCC epithelial cells (fig. S7, A and B). We found a
cohort of genes that were nonspecific and had broad expression
in other cell types in both normal and tumor contexts, including
SLC39A14 and DUSPI0. In contrast, other genes displayed unique
expression in BCC-IV epithelial cells, including FBN3 and SH3GL3
(fig. S7C). This approach could enable the identification of genes
specific to certain BCC subtypes or BCC epithelial subclusters.

RNA velocity analyses show distinct cellular dynamics in BCC
As BCCs display both inter- and intratumor heterogeneity, we per-
formed RNA velocity analysis using scVelo (40) to better estimate
and generalize transient cell states within KRT14" epithelial cells
through dynamical modeling. Coupling RNA velocity vectors with
Markovnikov root and terminal states demonstrates that superficial
and nodular (BCC-I); superficial, nodular, and infiltrative (BCC-II);
and the unknown/“hybrid” subtype BCC (BCC-III) velocity vectors
point toward a terminal state associated with high levels of BCC-
associated signature genes and high in HH and WNT pathway genes
(fig. S8, A to C). In contrast, the infiltrative with perineural invasion
BCC (BCC-1V) displayed vectors pointing away from a region high
in HH genes (fig. S8D). Velocities derived from cells with a clear
high late differentiation gene signature (41) in BCC-I and BCC-II
suggest a potential dedifferentiation fate choice of late differentia-
tion epithelial cells in favor of a more basal-like fate in BCC (fig. S8,
A and B), in contrast to normal epithelia that display velocities
going toward the high late differentiation gene signature (fig. S8C).
These results may reflect distinct tumor states that are also seen as a
consequence of drug treatment (6, 42).

FIB heterogeneity and function in human BCC

Recent studies have identified a large degree of functional heteroge-
neity in fibroblasts (FIBs) and fibroblast-like (FIB-like) cells across
different states and conditions in human (21, 22, 43) and mouse
(44, 45) skin tissues with important biological relevance in homeo-
stasis, injury-mediated repair and regeneration, disease, and cancer.
To discern whether cellular and spatial FIB or FIB-like heterogene-
ity exists in human BCC and PTS regions, we subclustered FIB and
FIB-like cells based on expression of PDGFRA and RGS5, yielding a
total of 7080 cells (kprs = 1305 versus kpcc = 5775) (Fig. 3, A and B).
Both cell types were collectively positive for ECM proteins DCN
and LUM. This subclustering approach led to the identification of
four coarse-grained FIB populations, and two FIB-like populations,
all defined by differential expression of unique gene biomarkers
(Fig. 3, Bto D).

To explore their gene expression profile and spatial architecture
in human BCC, we spatially resolved their distribution in situ using
RNA in situ hybridization or protein immunostaining coupled with
high-resolution confocal imaging. Cluster 1 fibroblasts (FIB I) rep-
resent ~8% of all FIBs analyzed and collectively express ASPN (Fig. 3E).
ASPN overexpression has been shown to lead to cancer progression
and enhanced metastasis, and its expression is similar in mesen-
chymal stromal cells and CAFs (46). In situ, ASPN" FIBs appeared
ubiquitously yet sparsely throughout the dermis (Fig. 3E). Cluster 2
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Fig. 3. Analysis of stromal cells highlights FIB and FIB-like cell heterogeneity in human BCC. (A) Clustering of 7080 corrected FIB/FIB-like (FIB/FIB-like) cells from
human PTS and BCC subtypes grouped by condition and subtype. Four putative PDGFRA™ FIB and two putative RGS5" FIB-like cell identities were identified and defined.
(B and €) Quantification and agglomerative clustering of FIB/FIB-like cells. Bar graph represents cell average per donor per cluster + SEM. Unpaired Student’s two-tailed
t test. n.s., not significant. (D) Dot plots of canonical/marker genes in FIB/FIB-like cells. Blue, low-average gene expression; red, high-average gene expression. (E to
H) Feature plots and in situ RNA/protein staining show FIB marker specificity/distinct spatial localization in human primary clinical tumors. Inset shows magnified area in
BCC nests. White arrows point at FIBs expressing gene/protein of interest. Tissues were counterstained with KRT14 (RNA/protein) and DAPI. Scale bars, 100 um. (I) Pseudo-bulk
dot plots of ECM remodeling genes. Red, low-average gene expression; blue, high-average gene expression. Size of circle, percentage of expressing cells. (J) Heatmap of
differentially expressed genes in FIB IV cells. Yellow, down-regulated genes; red, up-regulated genes. (K and L) Gene expression (K) and cellular density (L) plots of
TMEM119, WNT5A, or TMEM119;WNT5A cells. Purple, low cellular density; yellow, high cellular density. (M) RNA in situ hybridization of WNT5A in human primary clinical
tumors. Inset shows magnified area of BCC cells. White arrows point at WNT5A" FIBs. Tissues were counterstained with KRT74 and DAPI. Scale bars, 100 um. (N and
0) Heatmap showing active regulons in FIB/FIB-like cells (Z score > 0). Yellow, low regulon activity; blue, high regulon activity; white, absent regulon activity. Regulon
activity was used for dimensionality reduction in a two-dimensional embedding. White arrows mark BCC-specific FIBs (IV). Purple, low regulon activity; yellow, high regulon
activity; density plots, AUC distribution per regulon.
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FIBs (FIB II) represent ~8% of all FIBs and collectively express
CLIC2 (Fig. 3F). In situ, CLIC2" FIBs are located sparsely surround-
ing KRT14" tumor cell nests (Fig. 3F). Cluster 3 FIBs (FIB III) rep-
resented ~32% of all FIBs and collectively express CEMIP (Fig. 3G).
In colorectal cancer, hypoxia-mediated overexpression of CEMIP
in submucosa epithelial cells leads to eventual enhanced cell migra-
tion status (47). In addition, CEMIP" FIBs surround KRT14" tumor
cell nests (Fig. 3G). Last, cluster 4 FIBs (FIB IV) represent ~28%
of all FIBs and robustly express TMEM119 (Fig. 3H). TMEM119 is
up-regulated in osteosarcoma cells, and its overexpression is associ-
ated with increased tumor size, clinical stage, distant metastasis, and
poor prognosis (48). Most of the TMEM119" FIBs appeared to
be positioned peripherally and juxtaposed to KRT14" tumor nests
(Fig. 3H), to a greater extent than those observed for CLIC2" and
CEMIP" FIBs or sparse ASPN™ FIBs (Fig. 3, E to G). We also iden-
tified two types of RGS5" FIB-like cells, expressing ACTA2 (~3%)
and NEU4 (~21%). Quantification of cells from each putative FIB
and FIB-like subtype partitioned by condition revealed similar cell
type frequencies across BCC and PTS samples, with the exception of
TMEM119" FIBs, which appeared slightly expanded in BCC com-
pared to PTS (Fig. 3B). Our in situ imaging analysis suggests that
TMEM119" FIBs segregate distinctly across KRT14" tumor nests in
terms of both position and density, further reinforcing the notion
that significant intertumoral FIB heterogeneity exists in human BCC
and that this particular population may be functionally and struc-
turally positioned to support tumoral growth and progression.

We then examined genes coding for ECM-related proteins and
compared their expression profiles between conditions to approx-
imate the level of ECM remodeling in BCC compared to PTS. In
general, we identified prominent changes in extent and expression
of genes coding for various collagens, including COLIA1, COL1A2,
COL3A1, COL4A1, COL4A2, COL5A1, COL5A2, COL5A3, COL6AL,
COL6A2, COL6A3, COL8A1, COLI2A1, COL14Al, and COL16A1
(Fig. 3I). Analogous to collagen-coding genes, other ECM-related
protein-coding genes, including FN1, SPARC, TIMP1, TIMP2, MMP2,
MMP9, MMP10, and MMPI12, were also enriched in BCC com-
pared to PTS stroma (Fig. 3I). The expression of these ECM-related
coding genes was not restricted to individual FIB subsets, but rather
represents a pan-BCC ECM-related remodeling gene profile. This
comparative analysis suggests a large degree of ECM-related re-
modeling in BCCs compared to PTS that is likely driven by expres-
sion of collagen- and metalloproteinase-coding genes.

Rewiring FIBs to a reactive stroma state

Because TMEM119" FIBs segregated distinctly across KRT14" tu-
mor nests and were significantly higher in proportion in BCC sam-
ples, we wondered whether they may have a unique gene expression
profile that may functionally support tumoral growth and progres-
sion. To shed light on this notion, we performed differential gene
expression analysis on cluster 4 FIBs across BCC and PTS condi-
tions using a modified version of DEseq2 specifically tailored for
single-cell analysis (49). This analysis led to the identification of 16
genes differentially up-regulated in PTS cluster 4 FIBs and 50 genes
differentially up-regulated in BCC cluster 4 TMEM119" FIBs
(Fig. 3]). One particular gene, WNT5A, was overexpressed in BCCs
and coexpressed with TMEM119, and its RNA localization showed
a similar pattern of distribution to TMEM119 protein expression
(Fig. 3, H and K to M). WNTS5A has emerged as an important
molecule involved in cancer progression, and recent studies have
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demonstrated that WNT5A regulates cancer cell invasion, metasta-
sis, metabolism, and inflammation (50). Hence, our results suggest
a potential functional signaling network of TMEM119* FIBs with
KRT14" tumor cells driven through paracrine noncanonical WNT
signaling.

To identify BCC-specific regulons that may be driving condition-
specific gene expression changes in the different FIB populations,
including TMEM 119" FIBs, we performed GRN analysis with
pySCENIC and identified significantly active regulons that were specific
to each FIB/FIB-like cluster in BCCs but not in PTS (Fig. 3N). The
top five regulons active in TMEM119" FIBs included ATF6B ¢(+),
ETV1R8(+), STAT1R8(+), STAT2R8(+), and THAP11R8(+)
(Fig. 30). Our single-cell GRN analysis suggests that there are spe-
cific regulons that are active in FIB and FIB-like cells, and they dif-
fer significantly in activity and regulation of specific targets between
BCC and PTS. Furthermore, we found that the STAT1R8(+) regu-
lon may be involved in the upstream regulation of the noncanon-
ical WNT ligand WNT5A (Fig. 30).

Our analysis in stroma identified a large degree of cellular FIB
and FIB-like heterogeneity in human BCC and PTS at gene expres-
sion and regulon levels. To determine whether these cells exist on a
continuum or have distinct cellular states, we calculated the cellular
entropy (&, energy associated with cellular transitions) of BCC and
PTS FIB/FIB-like cells using cellular entropy estimator (CEE) (51)
and visualized their individual CEE scores on three-dimensional
Waddington energy landscapes (Fig. 4, A and B). Our results indi-
cated that BCC FIB populations have lower overall entropy than those
of PTS and that TMEM 119" FIBs show the most stability (Fig. 4C),
suggesting that FIB I to III may display higher likelihoods of transi-
tion to those FIBs that are most juxtaposed to BCC tumor nests
(FIBIV). We followed up our analysis with unbiased RNA dynamics—
PAGA analyses (40, 52). These complimentary approaches revealed
two distinct initial/root states with distinct associated developmen-
tal trajectories between BCC and PTS. Focusing on FIBs cells only,
PTS FIBs bifurcated toward WNT5A" or ASPN" termini from a
common CEMIP" FIB origin (Fig. 4, D and E). In sharp contrast,
BCC FIBs followed a unilateral trajectory, emanating mainly from
ASPN' FIBs and culminating in TMEM 119" FIBs (Fig. 4, F and G).
These observations suggest that a “rewiring” of the tumor stroma
may take place to fuel FIBs toward a TMEM119"/WNT5A" state to
support tumor growth.

To identify candidate TFs involved in the acquisition of a
TMEMI119"/WNT5A" state, we extracted FIBs represented in this
trajectory, tree-aligned them in pseudotime with Monocle2 (53), and
performed scEpath analysis (54) to identify significant, pseudotime-
dependent TFs (a = 0.05). We identified a total of 69 pseudotime-
dependent dlfferentlally expressed TFs in PTS (VPTs Trajectory 1) and
225 TFsin BCC (VBCC Trajectory 1) along trajectory 1 (Fig. 4, Hand I).
We compared and contrasted TFs from both trajectories by parti-
tioning TFs into groups displaying average TF dynamics, which led
to the identification of several genes uniquely present in the BCC
trajectory (Fig. 4]). Of interest, STAT1, and to a lesser extent TBX15
and ATF7, demonstrated pseudo-dependent expression late in the
trajectory in BCC compared to PTS toward TMEM119" FIBs. Other
TFs displayed early pseudo-dependent trajectories and were shut
down in TMEM119" FIBs, such as FOSB in BCC and NFKBI in PTS
(Fig. 4]). To gain a broader view of these TFs and identify major
pathways in each trajectory compartment, we performed Gene
Ontology (GO) analysis on the pseudotime-dependent TFs (Fig. 4K).
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Fig. 4. RNA dynamics analyses reveal differential stromal developmental trajectories in human BCC. (A and B) Three-dimensional Waddington energy (i.e., entropy)
landscape of human PTS and BCC. Blue, low entropy; blue, high entropy. (C) Quantification of cellular energy. Color of circles corresponds to distinct FIB/FIB-like clusters.
Dashed lines connect FIB/FIB-like clusters and are color-coded on the basis of type of condition (i.e., PTS versus BCC). (D to G) Modeling of initial states in FIB/FIB-like cells
suggests distinct developmental trajectories in PTS and BCC stroma. Arrows representing direction of cells’ flow of PAGA-velocity graph were projected as vector field on
a two-dimensional embedding. In PTS, bidirectional path of FIBs is represented by trajectory 1 (VPTS, Trajectory 1) @and 2 (\_/'sty Trajectory 2)- IN BCC, unidirectional path of FIBs
is represented by trajectory 1 (\73@, Trajectory 1)- (H @and 1) Rolling-wave plots identify pseudo-dependent TFs overexpressed in PTS (H) and BCC (1) along developmental
trajectory 1 and grouped depending on their dynamics (k=3 in PTS; k=4 in BCC). Pseudotime levels are based on normalized counts. Blue, down-regulated TFs; red,
up-regulated TFs. (J) Comparison of significant pseudo-dependent TFs overexpressed in PTS and BCC developmental trajectories in specific groups. TF dynamics are
color-coded on the basis of condition. (K) Significant pathway ontologies associated with PTS and BCC FIB developmental trajectory 1 (P,gj < 0.05). Specific pathway
ontologies in BCC are color-coded on the basis of significance. Adjusted P value scale shown on the right is based on a rainbow scale. Purple, low significance; red, high
significance. (L) TGF-B, inflammation, and noncanonical WNT pathway scores based on normalized counts overlaid on two-dimensional embedding with RNA velocity

streams reveal specific pathway programs associated with PTS and BCC stromal developmental trajectory 1. Yellow, low score; black, high score.
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Among these, we found pathways related to transforming growth
factor-B (TGF-P) and inflammation to be significantly expressed.
We overlaid these GO terms as a GO biomarker score onto two-
dimensional embedding to determine whether their expression was
closely associated with the rewiring of tumor stroma and overlaid
an RNA velocity stream to visualize and match the movement of the
cells with their corresponding GOs (Fig. 4L). ASPN" FIBs appear to
go through a TGF-B" inflammation state in BCC, but not PTS, be-
fore reaching a final reactive stroma status composed of ncWNT
signaling-active FIBs—a region high in WNT5A ligand. These re-
sults suggest that ASPN" FIBs are responding to an inflamed micro-
environment in BCC and that rewiring of the stroma could arise
from inflammatory signals, possibly due to cross-talk with immune
cells that have invaded the dermis during BCC progression.

Inflammatory signaling pathways are active in BCC stroma
How FIB state changes and BCC tumor growth influence each other
is unclear. To identify signaling differences between the BCC and
PTS microenvironments, we probed the human BCC FIB-epithelial
interactome by modeling single cell-cell interactions among KRT14"
epithelial/tumor and FIB/FIB-like cells using CellChat (55). We iden-
tified 25 significant signaling pathways active in the stroma-epithelial
axis (Fig. 5A). Although most pathways showed signaling activity in
both PTS and BCC, GRN (Progranulin), PSAP (Prosaposin), TGF-B,
and WNT pathways were inactive in BCC, whereas insulin-like growth
factor (IGF), melanocyte release inhibiting factor (MIF), NT (Neuro-
trophin), PDGF, tumor necrosis factor (TNF), and ncWNT pathways
were inactive in PTS (Fig. 5, A and B). The pathways were subdivided
into functional signaling relationships between epithelial-derived cells
and FIBs, which resulted in four clusters that show similar activities
(Fig. 5C). We then identified differentially regulated signaling path-
way ligands and receptors between BCC and PTS by comparing
the communication probabilities from cell-cell groups. This ap-
proach identified ncWNT as a major signaling pathway highly ac-
tive in BCC compared to PTS (Fig. 5, D and E). The expression of
WNT5A ligand in PTS FIBs was not significant compared to BCC—
with no relative contribution from any ligand-receptor pairs. In sharp
contrast, ncWNT signaling was highly active in BCC and mainly
driven by WNT5A ligand to Frizzled receptors FZD6, FZD7, and
FZD10, the latter representing autocrine communication between
FIBs (Fig. 5, D and E). A closer look at the probability of cross-talk
of WNT5A to its receptor shows significant cross-talk to FZD6 in all
the BAS clusters, whereas FZD7 cross-talk occurs in a subset of BAS
clusters (Fig. 5E). In congruence with these observations, we detect
significant increases in WNT5A expression and a subset of FZD re-
ceptors in vismodegib-resistant bulk-level RNA-seq data (fig. S9A),
and our single-cell expression data show WNT5A largely originating
from FIB and immune cells and likely interacting with FZD6 and
FZD?7 in the BAS clusters, differentiating epithelia, endothelium,
and lymphatic cells (fig. S9, B and C). We also detect tumor-specific
in situ expression of FZD7 adjacent to WNT5A" FIBs (fig. S10), sug-
gesting that the cells are in the right location to interact.

WNT5A is a known driver of proinflammatory responses, in-
cluding CXCL, interferon-I (IFN-I), interleukin 6 (IL6), and TNF
(56, 57). CXCL signaling is contained within FIBs in PTS but ex-
pands to the BAS cell clusters in BCC (Fig. 5F); IL6 signaling shows
greater cross-talk in BCC compared to PTS (Fig. 5G); IFN-I signal-
ing is contained within epithelia in PTS but expands to FIBs in
BCC (Fig. 5H); and TNF signaling is exclusive to BCC (Fig. 5I).

Guerrero-Juarez et al., Sci. Adv. 8, eabm7981 (2022) 10 June 2022

TNF auto- and paracrine signaling originates from cycling epitheli-
al cells in BCC, signals to other epithelial cells and FIBs, and is an
activator of WNT5A (58). Together, these results suggest that acute
inflammatory signals may be linked to WNT5A activation, which in
turn may maintain a proinflammatory state and act as a major in-
flammatory and stress signaling hub center in BCC stroma.

Heat shock proteins regulate BCC growth

Our BCC FIB-epithelial interactome modeling revealed an inflam-
matory and stress signaling hub in BCC stroma. To determine how
a proinflammatory response from FIBs may influence tumor growth
and progression, we looked for relevant differentially expressed genes
in BCC versus PTS epithelia and found HSP genes up-regulated in
BCC compared to PTS epithelia (Fig. 6A). Their expression levels
are largely not significant in bulk-level RNA-seq of vismodegib-
resistant BCC compared to normal skin (fig. S11, A and B), reinforc-
ing the advantage of gene expression at single-cell resolution. HSPs
are an adaptive response to cellular stress and inflammation and
have been strongly implicated in cancer development and progres-
sion (59). We identified eight HSP70-coding family genes that were
significantly up-regulated in BCC compared to PTS epithelial cells,
including HSP12A2, HSPA13, HSPA1A, HSPA1B, HSPA1L, HSPAS,
HSPAS, and HSPAY (Fig. 6A and fig. S11, A and B). We then spa-
tially resolved the expression of HSP70 in situ using protein immu-
nostaining coupled with high-resolution confocal imaging. We found
that KRT14" BCC nests expressed cytoplasmic HSP70, with seldom
interfollicular epithelial epithelial cells and nonepithelial cells ex-
pressing the protein (Fig. 6B and fig. S11, C and D). A primary
infiltrative BCC with perineural invasion demonstrated nuclear ex-
pression of HSP70 (fig. S11D).

To determine whether HSPs are important for BCC cell growth,
we used the HSP70 inhibitor Ver155008 on the vismodegib-resistant
murine BCC cell line ASZ001 (12, 60) and observed decreased
protein expression of Hsp70 and a dosage-dependent inhibition of
ASZ001 cell proliferation (Fig. 6, C and D). Two other HSP family
inhibitors, KNK437 (pan-HSP inhibitor that includes HSP70) and
ganetespib (HSP90 inhibitor), also showed a dosage-dependent
inhibition of ASZ001 cell proliferation (fig. S11, E and F). HSP90
genes are also significantly enriched in our single-cell data, but not
in bulk-level RNA-seq (fig. S10, A and B), suggesting that some
BCC tumor cells may use HSPs as a general mechanism to promote
tumor cell growth. Ver155008 treatment resulted in a decrease
in Glil expression, a downstream HH target gene, at both RNA and
protein levels (Fig. 6, E and F), suggesting that HSP70 may be a
novel HH pathway regulator. HSP70 inhibition affected both prolif-
eration and survival of the vismodegib-resistant BCC cells as deter-
mined by Mki67 and Casp3 staining quantification (Fig. 6, G and H).
Last, we aimed to determine the role of HSPs on BCCs in vivo using
the BCC mouse model Gli1-Cre®X"%ptch "7 (61). We induced
Gli1-Cre® 2, Ptch 1" mice with tamoxifen for three consecutive days
to generate BCC microtumors, followed by intraperitoneal injection
with vehicle control or Ver155008 daily for 7 days (Fig. 6I). Histo-
logical staining of the dorsal skin of Ver155008-treated mice showed
significant reduction in microtumor area compared to vehicle-
treated controls (Fig. 6]). Our in vitro and in vivo studies help to
reconcile our scRNA-seq analysis and identify HSPs, particularly
HSP70 family members, as potential new regulators of BCC tumor
growth and HH signaling and may offer a novel therapeutic venue
for the treatment of BCCs.
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Fig. 5. Epithelial-FIB communication modules in human BCC. (A) Heatmap of active signaling pathways in epithelial-FIB cross-talk from human PTS and BCC samples. Blue,
active signaling pathway; red, inactive signaling pathway. (B) Ranking of active signaling pathways in PTS and BCC based on their overall information flow within the inferred
cellular networks. Signaling pathways are colored according to condition where they are enriched, whereas those in black are enriched equally across conditions. (C) Joint
clustering of active signaling pathways from PTS and BCC into a shared two-dimensional manifold according to their functional signaling relationship similarity (k=4).
Circles represent PTS signaling pathways; squares represent BCC signaling pathways. Each shape represents the communication network of one signaling pathway. A mag-
nified view of each cluster with labeled active signaling pathways is shown on the right. (D) Circle plots show ncWNT signaling in sending and receiving cells. Nodes are colored
similarly as senders. Size of cell clusters is representative of the number of active cells in signaling network. ncWNT is active in BCC but not in PTS. Cell types participating in
signaling pathway network are labeled. Bar graphs show relative contribution of specific ligand-receptor pairs for ncWNT signaling in BCC. WNT5A ligand is the only active
ligand in the ncWNT signaling network. (E) Dot plots show cross-talk probability between FIBs (senders) and epithelial cells (receivers) via ncWNT signaling. Blue, low cross-talk
probability; red, high cross-talk probability. Size of circle represents the percentage of cells with high cross-talk probability. Ligands are colored aqua blue; receptors are colored
magenta. (F to I) Circle plots and network centrality analysis for CXCL (F), IL6 (G), IFN-I (H), and TNF (1) signaling. Only cell clusters participating in signaling network are labeled.

Inactive pathway indicates that the pathway is not active. Heatmaps represent network centrality. White, low importance; green, high importance.
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Fig. 6. Heat shock proteins are prominent regulators of BCC. (A) Heatmap of pseudo-bulk HSP70-coding gene expression in human PTS versus BCC epithelial cells.
(B) In situ expression of HSP70 protein shows distinct spatial localization in human primary clinical tumors. Inset shows magnified area in BCC nest. White arrows point at
HSP70* epithelial cells in BCC nest. Scale bars, 100 um. (C) Western blot and quantification of RFI (Relative Fluorescence Intensity) against Hsp70in ASZ001 murine cells
treated with HSP inhibitor Ver155008. B-Actin served as loading control. Mann-Whitney test (**P =0.007). (D to F) HSP inhibitor Ver155008 negatively affects growth of
ASZ001 murine cells (D) (two-way ANOVA test; ****P < 0.0001) and down-regulates Glil mRNA (E) and protein expression (F) in vitro in a concentration-dependent manner
(unpaired Student’s two-tailed t test with Welch’s correction; *P < 0.05 and ***P < 0.001). Tubb served as loading control. Experiments were repeated at least three times,
and data are represented as the means + SEM. (G and H) HSP inhibitor Ver155008 significantly induces apoptosis via Casp3 (H) and negatively affects proliferation (G) via
Mki67 in ASZ001 murine cells in vitro in a concentration-dependent manner. Bar graphs represent the mean of nine replicate wells + SEM. Unpaired Student’s two-tailed
ttest (*P < 0.05 and **P < 0.01). (I) Schematic representation of microtumor development and HSP inhibitor treatment in Gli1-Cre®f™:ptch 1" mice. Ver155008- and vehicle-
treated dorsal skin tissues were collected and assessed for microtumors. (J) H&E of Ver155008- and vehicle-treated GliT-Cre®%:Ptch 1" mouse dorsal skin tissues. Scale bars,
100 um. Quantification of microtumor surface area in vehicle- and Ver155008-treated Gli1-Creff"%:Ptch ™" mouse dorsal skin tissues. Bars represent average individual micro-
tumor area + SEM. Surface area decreased in a concentration-dependent manner compared to vehicle-treated control mice. Unpaired Student’s two-tailed t test (*P < 0.05).

DISCUSSION

Functional heterogeneity in human BCC has largely been explored
using bulk-level genomic and transcriptomic studies where it was
difficult to separate out distinct cell types and clonality within tumors
and their unique contributions to BCC pathogenesis (28, 62, 63).
Using single-cell technologies, we identified the milieu of cell types
and states that make up BCC and found that bulk-level studies can
provide complementary datasets but often lead to identification of
significant genes that are nonspecific and broadly expressed across
different cell types due to the heterogeneity of normal and cancer-
ous cells in biopsy samples (figs. S6 and S7). When analyzed at the
single-cell level, we found additional BCC biomarkers that better
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define BCCs and label tumors from specific donors that further
highlight the heterogeneity of this disease. We also identified spatial
heterogeneity in FIBs that led to an oncogenic trajectory favoring
TMEM119"/WNT5A" reactive stroma and inflammatory signals that
create a burst of cell-cell cross-talk between FIBs and BCC epithelial
cell clusters. Last, our results suggest that BCC tumors may respond
to inflammatory signals from the stroma by expressing HSPs and
that HSP inhibitors may serve as an effective therapeutic strategy to
suppress HH signaling and tumor growth.

Our efforts to distinguish between malignant and normal cells
between and within biopsy samples to create a more nuanced BCC
gene signature highlighted the importance of integration benchmarking.

110f 17

€20 ‘70 ACIN UO SUIAI[ BIUIOJI[E)) JO AJSIOATU() J& S10°00UIdS MMmm//:SdNY w0y popeojumo(



SCIENCE ADVANCES | RESEARCH ARTICLE

Although no algorithm is unflawed (64), we demonstrated that use
of benchmark integration using several different methods increases
user confidence in clustering of the underlying data. BCCs are highly
heterogeneous and have the highest mutation frequency out of all
cancers (62), making integration of multiple samples difficult. All
five clustering algorithms we used (Seurat, SCTransform, LIGER,
Harmony, and scMC) showed remarkable efficiency in correctly
clustering nonepithelial cell types with low mutational burden
(Fig. 1, C to E, and fig. $4), but epithelial cells with higher mutational
burden showed significant batch effects in clustering. In our experi-
ence, Seurat, SCTransform, LIGER, and Harmony could not distin-
guish between normal and malignant cells, often separating donor
samples from each other regardless of origin. However, scMC—and
pySCENIC via regulon activity (fig. S5, D and E) (34)—clustered
normal and malignant epithelial cells distinctly while maintaining
cohesion within each condition (Fig. 1D), likely due to its ability to
learn a shared reduced dimensional embedding of cells to retain
biological variation while removing technical variation associated
with each sample (26).

Despite the difficulty in integrating epithelial cells, stromal cell
states displayed remarkable cohesion between PTS and BCC sam-
ples. Four FIB states and two FIB-like states were found in both nor-
mal and malignant samples, suggesting that CAFs may be an active
state of normal tissue-resident FIBs and that cancer-specific stro-
mal states do not occur in BCC. However, there is a large degree of
active remodeling that occurs in BCC stroma, likely driven mainly
by collagen and metalloproteinase gene products (Fig. 3I). Further-
more, joined RNA velocity-PAGA analysis suggests that highly
inflamed stroma expressing TGF-p and IL genes, classic activators
of CAFs (65), give rise to reactive stroma highlighted by WNT5A"
FIBs (Fig. 4L). This cancer-specific rewiring of the stroma goes from
an ASPN" state (FIB I) to a CLIC2" (FIB II) and CEMIP" (FIB III)
state found sparingly around KRT14" tumor nests, before reaching
the TMEM119*/WNT5A" state (FIB IV) that surrounds KRT14"
tumor nests at a relatively high density compared to the other three
FIB states (Fig. 3, E to H and M). TGFBI and general inflammatory
genes are expressed throughout the first three FIB populations and
may provide a mechanism of activation to the WNT5A" state, while
WNT5A may reinforce this signaling as it is a known driver of
proinflammatory signals to induce an immune response (56, 57).
Stromal rewiring driven by inflammation and CAFs are promising
therapeutic targets (65), and our GRN analysis suggests that the
JAK-STAT pathway may regulate WNT5A expression (Fig. 5, N
and O), opening up the possibility for JAK-STAT inhibitors in
treating BCC patients (66).

How CAFs and general FIB inflammation affect BCC tumor
growth is unclear. Our CellChat inferred signaling results suggest a
burst of signaling between FIBs and BAS clusters involving CXCL,
IL6, IFN-1, and TNF pathways (Fig. 5, F to I). WNT5A is a known
driver of each of these pathways (56, 57), and TGF-B1 and inflam-
matory signals like IL6 and TNF are known activators of CAFs and
WNT5A in particular (65). With this influx of inflammatory signals,
BCCs may respond by up-regulating HSPs as a protection mechanism
(59), although this mechanism may be indirect given that WNT5A
treatment in combination with HH ligand does not significantly af-
fect HSP70 protein levels (fig. 11G). HSPs are known to have signif-
icant roles in DNA repair mechanisms to maintain genome stability
and integrity, a process that is heavily intertwined with inflamma-
tion (67). Cancers live on a “double-edged sword” where they need
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enough genomic instability to thrive, but not too much instability to
adversely alter successful replication (68). Cancer-specific HSP ex-
pression may help maintain the genomic instability balance to pro-
mote tumor growth, which may explain our results that show that
HSP inhibitors are effective at suppressing BCC growth. Although
HSP inhibitors, especially HSP90 inhibitors, have general cytotox-
icity issues as all tissues require continuous molecular chaperone
activity to ensure proper folding of essential proteins (69), HSP70
inhibitors may provide a useful alternative route to therapy as
Hsp70 knockout mice are healthy (70), the protein is dispensable
for growth of nontransformed cells (71), and HSP70 inhibition
shows distinct effects compared to HSP90 inhibitors (72). Our data
suggest that short-term HSP70 inhibitor treatment may be better
tolerated systemically in the Gli1-Cre®* % ptch " murine model
(Fig. 6]), and BCCs have the advantage of topical treatment that
may allow better toleration to toxic compounds (73). In addition,
HSP inhibition may be more effective with combinatorial treat-
ment, a likely future direction, as evidenced by ongoing clinical trials
in several cancer types (74).

Overall, our findings illustrate the heterogeneity and dynamic
nature of the BCC cellular ecosystem. The signaling relationships
between BCC epithelial cells and FIBs revealed a WNT5A-mediated
inflammatory signature that led to the discovery of an HSP-specific
protective mechanism that is necessary to maintain tumor growth.
Further characterizing these types of responses may provide addi-
tional mechanistic insight into the complicated cross-talk between
the tumor and its microenvironment and provide additional avenues
for therapeutic suppression of skin cancer.

MATERIALS AND METHODS

Ethics statements

Human clinical studies were approved by the Ethics Committee and
Institutional Review Board of Stanford University Hospital (Palo Alto,
California, USA). We certify that all applicable institutional regula-
tions concerning the ethical use of information and samples from
human volunteers were strictly followed in this work. Each subject
provided written informed consent. All animal studies were per-
formed in strict adherence to the Institutional Animal Care and
Use Committee (IACUC) guidelines of the University of California,
Irvine (AUP-21-006).

Human samples

A total of six surgically discarded human tissues (BCC, n = 4; PTS,
n = 2) were obtained from excisional biopsy specimens at Stanford
University Hospital (Palo Alto, California, USA). BCCs were clas-
sified into superficial, nodular, and infiltrative BCC (ID: BCC-I);
superficial and nodular BCC (ID: BCC-II); unknown/“hybrid” (ID:
BCC-III); and infiltrative with perineural invasion BCC (ID: BCC-IV)
subtypes by a board-certified dermatopathologist. All data collection
and anonymous analysis were approved by the Institutional Review
Board of Stanford University Hospital.

Mice

The following mice were used in this study: GliI-CrefRT? (JAX #007913)
and Ptch 11! (JAX #012457) (61). Glil-CreERT%Ptch 1"/ mice were
genotyped by polymerase chain reaction (PCR). Briefly, genomic
DNA was collected from mouse toes and lysed in DirectPCR lysis
reagent as per the manufacturer’s protocol (Fisher Scientific).
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Genomic DNA was amplified using Taq polymerase (Apex), and
products were resolved on a 2% agarose gel (Apex). The following
primers were used: CreER, 3'-CATGCTTCATCGTCGGTCC-5’
(forward) and 3'-GATCATCAGCTACACCAGAG-5’ (reverse);
Ptchl, 3’-AGTGCGTGACACAGATCAGC-5’ (forward) and
3’-CCCAATTACCCATCCTTCCT-5' (reverse).

Microtumor induction and drug treatment

Microtumors were induced in the skin of 6-week-old Glil-
Cre®®7%ptch " mice (of indiscriminate gender), by administering
100 ul of tamoxifen (10 mg/ml; Sigma-Aldrich) intraperitoneally
for three consecutive days. Five weeks later, mice were treated with
either dimethyl sulfoxide (DMSO; vehicle) or Ver155008 (16 mg/kg)
intraperitoneally for seven consecutive days. The final volume of all
injections was 100 pl. At the end of treatment, mice were sacrificed,
and dorsal skin were collected, fixed in 4% paraformaldehyde, im-
mersed in 30% sucrose, and frozen in Tissue-Tek OCT (Optimal
Cutting Temperature) compound (Sakura, Japan). Samples were
cryosectioned at 14 um. Unless otherwise noted, at least five mice
were used for each treatment condition.

Microtumor assessment

Frozen mouse dorsal skin tissues were cryosectioned at 14 um and
stained with hematoxylin and eosin (H&E) (Thermo Fisher Scien-
tific). Images were taken at x200 magnification on an AmScope mi-
croscope with an AmScope MU500B digital camera. Microtumor
size was assessed as the sum of total microtumor area and as average
size per microtumor and quantified using FIJI software (75). Statisti-
cal analysis was performed using GraphPad Prism, and application
of Student’s two-tailed f test was used to dictate statistical signifi-
cance (*P < 0.05).

Histology and immunohistochemistry

Discarded human tumor skin tissues were processed at the Depart-
ment of Pathology at Stanford University and sectioned at a thick-
ness of 5 um. Immunostaining was performed on paraffin sections.
Heat-based antigen retrieval was performed when necessary. Tissue
sections were blocked in either 3% bovine serum albumin (BSA)
or 3% donkey serum. The following primary antibodies were used:
rabbit anti-CLIC2 (Abcam; 1:50), rabbit anti-CEMIP (Proteintech;
1:100), rabbit anti-TMEM119 (Proteintech; 1:50), chicken anti-
KRT14 (BioLegend; 1:1000), mouse anti-LHX2 (Santa Cruz Biotech-
nology; 1:50), rabbit anti-ACTA2 (Abcam; 1:250), mouse anti-KRT15
(Santa Cruz Biotechnology; 1:50), rabbit anti-HSP70 (Proteintech;
1:100), rabbit anti-CASP3 (R&D Systems; 1:1000), and rabbit anti-
MKI67 (Abcam; 1:1000). Secondary chicken (Abcam), rabbit (Life
Technologies), and mouse (Life Technologies) were used at a
concentration of 1:1000. Sections were counterstained with 4’,6-
diamidino-2-phenylindole (DAPI) (Vector Laboratories). Images
were acquired on an Olympus FV3000 confocal laser scanning
microscope.

Histology and hematoxylin and eosin staining
OCT-embedded skin tissues of DMSO vehicle control or
Ver155008-treated mice were cryosectioned at a thickness of 10 um
using the CryoStar NX50 cryostat (Thermo Fisher Scientific). Cryo-
sections were incubated at 55°C for 10 min, washed in phosphate-
buffered saline (PBS) before performing a standardized H&E staining
protocol using Gill’s 3 formulation Hematoxylin (Thermo Fisher
Scientific) and Eosin Y at pH 4.7 (Thermo Fisher Scientific) for
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counterstaining and clearing of the stain with xylene-based solutions,
and mounted with a toluene-based mounting medium (Permount,
Fisher Scientific). Images were acquired with the 10x objective on
an AmScope bright-field microscope with a MU500B digital camera.
RNA in situ hybridization

Frozen tissue sections were processed for RNA in situ hybridization
using the RN Ascope Multiplex Fluorescent Detection Kit v2 [323100,
Advanced Cell Diagnostics (ACD)] as per the manufacturer’s pro-
tocol. The following ACD probes were used in this study: Human
(Hs): ASPN (402731-C2), KRT14 (813871), WNT5A (316791-C2),
and FZD7 (414061-C4). Slides were counterstained with DAPI (Vec-
tor Laboratories). Images were acquired on an Olympus FV3000
confocal laser scanning microscope.

Cell culture and growth assay

Vismodegib-resistant murine BCC ASZ001 cells were grown in
154CF medium containing chelated 2% fetal bovine serum (FBS;
Life Technologies), 1% penicillin-streptomycin (Life Technologies),
and 0.07 mM CaCl, (Life Technologies). NIH 3T3 cells were grown
in Dulbecco’s modified Eagle’s medium (Life Technologies) contain-
ing 10% FBS (Life Technologies) and 1% penicillin-streptomycin
(Life Technologies) and were incubated in a water-jacketed incuba-
tor at 37°C with 5% CO, output. Cells were seeded at a density of
1000 cells per well into 96-well flat-bottom plates. After 24 hours,
cells were treated with DMSO (vehicle control) or varying concen-
trations of Ver155008 (MedChemExpress), KNK437 (Thermo Fisher
Scientific), or ganetespib (Thermo Fisher Scientific) consecutively
for 2, 4, and 6 days. Growth assay was performed with MTT 3-(4,5-
(dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) (Sigma-
Aldrich) as per the manufacturer’s protocol. Proliferation (MKI67)
and apoptosis (CASP3) were determined by immunostaining fixed
cells at the indicated time points. Unless otherwise noted, experiments
were repeated at least three times, and data are represented as the
mean of nine replicate wells + SEM. Statistical analysis was performed
using GraphPad Prism, and application of Student’s two-tailed ¢ test
and two-way analysis of variance (ANOVA) test was used to dictate sig-
nificance (*P < 0.05, **P < 0.01, and ***P < 0.001; n.s., not significant).
Cell culture and treatments

NIH 3T3 cells were seeded to confluence, serum-starved, or serum-
starved in 1:100 SHH-N conditioned medium with DMSO (vehicle
control) or Ver155008 (MedChemExpress) at various concentrations
for 24 hours. RNA was isolated using the Direct-zol RNA MiniPrep
Plus (ZYMO Research). Quantitative reverse transcription PCR was
performed using the iTaq Univer SYBR Green 1-Step Kit (Bio-Rad)
on the StepOnePlus Real-time PCR System (Applied Biosystems).
The fold change in mRNA expression of the HH target gene Glil
was measured using AAC; analysis with Gapdh as an internal
control gene. The following primers were used: Glil, 5'-GCAG-
GTGTGAGGCCAGGTAGTGACGATG-3' (forward) and 5'-
CGCGGGCAGCACTGAGGACTTGTC-3' (reverse); Gapdh,
5'-AATGAATACGGCTACAGCAACAGGGTG-3' (forward) and 5'-
AATTGTGAGGGAGATGCTCAGTGTTGGG (reverse). Vismodegib-
resistant murine BCC ASZ001 cells were grown in 154CF/PRF
(Thermo Fisher Scientific) medium containing 2% FBS (Life
Technologies/GIBCO; 10437028), both heat-inactivated and chelated,
0.07 mM CaCl,, and 1% penicillin-streptomycin (Life Technologies/
GIBCO) until confluent in six-well plates. Cells were then treated
with either SHH-N conditioned medium or SHH-N conditioned
medium in combination with Wnt5a recombinant protein (200 ng/
ml; R&D Systems) for 24 hours or with single treatment of vehicle
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control (DMSO) or Ver155008 (25 uM) inhibitor for 24 hours. Un-
less otherwise noted, experiments were repeated at least three times,
and data are represented as the mean of triplicates + SEM. Statistical
analysis was performed using GraphPad Prism, and application of
Student’s two-tailed ¢ test was used to dictate statistical significance
(*P < 0.05, **P < 0.01, and ***P < 0.001).

Protein immunoblotting

Protein extraction was performed in control- and 24-hour-treated
vismodegib-resistant murine BCC ASZ001 cells grown in six-well
plates using 250 pl of 2x SDS loading buffer (100 mM tris-HCI, 1 M
dithiothreitol, 4% SDS, and 0.2% bromophenol blue) and by shak-
ing for 30 min at 250 rpm at 4°C. Denatured proteins (10 ul) were
ran in a Mini-PROTEAN TGX precasted SDS-PAGE gel (Bio-Rad)
with 4 to 20% polyacrylamide gradient and bis-acrylamide cross-linker
and blotted onto a nitrocellulose membrane (0.45 um; Prometheus).
Membranes were probed with primary antibodies [1:1000 in 5%
skimmed milk in TBST (tris-buffered saline and Tween 20)] over-
night at 4°C. The following primary antibodies were used: rabbit anti-
Hsp70 (Proteintech), mouse anti—-B-actin (BioTechne), and mouse
B-tubulin [E7, DSHB (Developmental Studies Hybridoma Bank)].
Fluorescence bands were visualized using an Odyssey CLx Li-Cor
imaging system by incubating for 1 hour at room temperature with
conjugated secondary antibodies. The following secondary conjugated
antibodies were used: donkey anti-rabbit Alexa Fluor 680 (1:5000 in
5% skimmed milk in TBST; The Jackson Laboratory) or donkey anti-
mouse Alexa Fluor 790 (1:5000 in 5% skimmed milk in TBST; The
Jackson Laboratory). The relative fluorescence intensity of proteins
of interest was quantified using FIJI software (75) and normalized to
a housekeeping protein (B-actin or B-tubulin). Statistical analysis was
performed using GraphPad Prism, and application of Mann-Whitney
test was used to dictate statistical significance (*P < 0.05 and **P < 0.01).
Cell isolation and 3'-droplet-enabled scRNA-seq

Adjacent peritumor and tumor skin specimens were surgically
excised from human donors at Stanford University Hospital (Palo
Alto, CA, USA) and immediately shipped to University of California,
Irvine (Irvine, CA, USA). Within 24 hours, excised tissues were
minced and incubated in a dispase II (Sigma-Aldrich) and collagen-
ase IV (Sigma-Aldrich) solution overnight at 4°C. Cells were incu-
bated in 0.25% trypsin-EDTA for 15 min at 37°C and quenched with
chelated FBS. Cells were passed through a 40-um filter and centrifuged
at 1500 rpm for 5 min, and the pellet was resuspended in keratinocyte
serum-free medium supplemented with Epidermal Growth Factor
1-53 and Bovine Pituitary Extract (Life Technologies; 17005042).
After isolation, cells were resuspended in PBS free of Ca," and Mg,"
and 1% BSA and stained with SYTOX Blue Dead Cell Stain (Thermo
Fisher Scientific). Samples were bulk-sorted at 4°C on a BD FACSAria
Fusion using a 100-um nozzle (20 PSI) at a flow rate of 2.0 with a
maximum threshold of 3000 events per second. After exclusion of
debris and singlet/doublet discrimination, cells were gated on via-
bility. Live cells were resuspended in 0.04% UltraPure BSA (Sigma-
Aldrich) and counted using the automated cell counter Countess
(Thermo Fisher Scientific). Cells were captured using Chromium
(10X Genomics). GEM (Gel Bead-In EMulsions) generation, barcod-
ing, post—-GEM-RT (reverse transcription) cleanup, complementary
DNA (cDNA) amplification, and cDNA library construction were
performed using Single-Cell 3’ v2 chemistry (10X Genomics).
cDNA libraries were sequenced on an Illumina HiSeq4000 platform
(Illumina) [one lane, 100 PE (Paired End)]. Cell counting, suspen-
sion, GEM generation, barcoding, post-GEM-RT cleanup, cDNA
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amplification, library preparation, quality control, and sequencing
were performed at the Genomics High Throughput Sequencing
facility at the University of California, Irvine.

3'-Droplet-enabled scRNA-seq raw data processing

Transcripts were aligned to the human reference genome (GRCH38/
transcriptome) using Cell Ranger (version 2.1.0). Sequencing metrics
for each library are as follows: (PTS-I) Sequencing metrics: ~264,949,873
total number of reads and ~98.7% valid barcodes; mapping metrics:
~93.1% reads mapped to genome, ~91.0% reads mapped confidently
to genome, and ~71.1% reads mapped confidently to transcriptome;
cell metrics: ~7164 estimated number of cells, ~92.9% fraction
reads in cells, ~36,983 mean reads per cell, ~2382 median genes per
cell, ~21,853 total genes detected, ~9238 median UMI (unique
molecular identifier) counts per cell. (PTS-II) Sequencing metrics:
~317,022,706 total number of reads and ~98.7% valid barcodes;
mapping metrics: ~93.1% reads mapped to genome, ~91.0% reads
mapped confidently to genome, and ~71.1% reads mapped confi-
dently to transcriptome; cell metrics: ~7164 estimated number
of cells, ~92.9% fraction reads in cells, ~36,983 mean reads per
cell, ~2382 median genes per cell, ~21,853 total genes detected, and
~9238 median UMI counts per cell. (BCC-I) Sequencing metrics:
~170,434,662 total number of reads and ~98.5% valid barcodes;
mapping metrics: ~91.3% reads mapped to genome, ~89.0% reads
mapped confidently to genome, and ~67.6% reads mapped confi-
dently to transcriptome; cell metrics: ~10,025 estimated number of
cells, ~90.2% fraction reads in cells, ~17,000 mean reads per cell,
~2484 median genes per cell, ~22,986 total genes detected, ~6618 median
UMI counts per cell. (BCC-II) Sequencing metrics: ~128,178,058
total number of reads and ~98.5% valid barcodes; mapping metrics:
~92.8% reads mapped to genome, ~90.6% reads mapped confidently
to genome, and ~70.4% reads mapped confidently to transcriptome;
cell metrics: ~12,487 estimated number of cells, ~86.8% fraction
reads in cells, ~10,264 mean reads per cell, ~1708 median genes per
cell, ~22,737 total genes detected, and ~4361 median UMI counts
per cell. (BCC-III) Sequencing metrics: ~335,812,707 total number
of reads and ~98.3% valid barcodes; mapping metrics: ~87.5% reads
mapped to genome, ~84.8% reads mapped confidently to genome,
and ~65.7% reads mapped confidently to transcriptome; cell metrics:
~7094 estimated number of cells, ~82.6% fraction reads in cells,
~47,337 mean reads per cell, ~2315 median genes per cell, ~23,364
total genes detected, and ~8292 median UMI counts per cell. (BCC-
IV) Sequencing metrics: ~277,281,459 total number of reads and
~98.6% valid barcodes; mapping metrics: ~93.2% reads mapped to
genome, ~90.6% reads mapped confidently to genome, and ~62.6%
reads mapped confidently to transcriptome; cell metrics: ~8829 es-
timated number of cells, ~88.8% fraction reads in cells, ~31,405 mean
reads per cell, ~1983 median genes per cell, ~23,362 total genes de-
tected, and ~5516 median UMI counts per cell.

Doublet/multiplet simulation and low-quality cell pruning
Putative doublets/multiplets were simulated with Single-Cell Re-
mover of Doublets (Scrublet) (version 0.2.1) (76) using raw count
matrices. The number of neighbors used to construct the KNN (K
Nearest Neighbors) classifier of observed transcriptomes and simu-
lated doublets/multiplets was set as default. The doublet/multiplet
score threshold was adjusted manually as suggested by the developer.
Briefly, digital matrices for putative singlets were used for low-quality
cell pruning using a user-defined pipeline. Viable singlets were kept
and used for downstream query and comparative analyses if and
only if they met the following collective quality control criteria: (i)
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350 < genes/cell < 5000 (ii) cells contained no more than 10% of
mitochondrial gene expression; (iii) cells were not identified as out-
liers (P=1x 107°) (77).
Data processing and benchmarking of
3'-droplet-enabled scRNA-seq
Processing of individual datasets. Preprocessed digital matrices from
individual tumor datasets were processed using Seurat (version 4.0.1).
Seurat objects were created and log-normalized with a scale factor
of 10,000. Variable features were identified using vst with top 2000
features. Data were scaled, and metadata variables, including mito-
chondrial gene expression, were regressed. Principal components
analysis was calculated using variable features identified using a com-
bination of heuristic and statistical approaches. Individual datasets
were visualized using a two-dimensional embedding.
Benchmarking of integrated datasets. Individual datasets from
PTS and BCC were processed for integration, downstream analyses, or
visualization with Seurat (version 3.0.0900) (20), Single-Cell Trans-
form (version 0.3.2) (23), LIGER (version 2.0.1) (78), Harmony (ver-
sion 0.1.0) (25), or scMC (version 1.0.0) (26) as suggested by each
developer with minor modifications to source code. Of note, cells
from PTS scoring high for appendage-related genes (79) were ex-
cluded from integration and anchoring, as well as from downstream
query and comparative analyses.
Statistical analyses
Statistical analysis was performed using GraphPad Prism Software
(v5.02). Differences between groups were assessed using unpaired
Student’s two-tailed t test, unpaired Student’s two-tailed ¢ test with
Welch’s correction, two-way ANOVA test, or Mann-Whitney test.
A P value smaller than 0.05 was considered statistically significant.

SUPPLEMENTARY MATERIALS

Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abm7981

View/request a protocol for this paper from Bio-protocol.
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