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DNA methylation occurs predominantly on cytosine-phosphate-guanine
(CpG) dinucleotides in the mammalian genome, and the methylation land-
scape is maintained over mitotic cell division. It has been posited that
coupling of maintenance methylation activity among neighbouring CpGs
is critical to stability over cellular generations; however, the mechanism is
unclear. We used mathematical models and stochastic simulation to analyse
data from experiments that probe genome-wide methylation of nascent
DNA post-replication in cells. We find that DNA methylation maintenance
rates on individual CpGs are locally correlated, and the degree of this corre-
lation varies by genomic regional context. By using theory of protein
diffusion along DNA, we show that exponential decay of methylation rate
correlation with genomic distance is consistent with enzyme processivity.
Our results provide quantitative evidence of genome-wide methyltransfer-
ase processivity in vivo. We further developed a method to disentangle
different mechanistic sources of kinetic correlations. From the experimental
data, we estimate that an individual methyltransferase methylates neighbour
CpGs processively if they are 36 basepairs apart, on average. But other
mechanisms of coupling dominate for longer inter-CpG distances. Our
study demonstrates that quantitative insights into enzymatic mechanisms
can be obtained from replication-associated, cell-based genome-wide
measurements, by combining data-driven statistical analyses with
hypothesis-driven mathematical modelling.
1. Introduction
DNA methylation is an important epigenetic modification that plays a critical
role in development, ageing and cancer, and it is well conserved among most
plants, animals and fungi [1,2]. In mammals, DNA methylation occurs predo-
minantly in the cytosine-phosphate-guanine (CpG) dinucleotide context.
Across most of the mammalian genome, CpGs occur with low frequency,
except for regions called CpG islands (CGIs), which are often associated with
promoters [3]. Methylated promoters are associated with transcriptional repres-
sion, pointing to a role for DNAmethylation as a stable and heritable chromatin
mark to programme alternative gene expression states [4,5].

The inheritance and maintenance of methylation patterns across cell cycles
is important in development and throughout organismal lifespan. Methylation
patterns encode information related to gene expression [6,7], differentiation [8]
and genomic imprinting [9]. Failure in maintenance and transmission of such
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patterns can lead to aberrant gene expression, and diseases
including cancer [10], developmental abnormalities and
even death [11]. The classical model of DNA methylation
maintenance introduced the idea that the symmetrical
nature of the CpG dinucleotide provides a biomolecular
structure whereby DNA methylation could be inherited
across a single-CpG site by the activity of a, then posited,
‘maintenance’methyltransferase enzyme [9,12]. The mamma-
lian DNA methyltransferase DNMT1 was subsequently
found to serve as the primary maintenance enzyme [13].
However, the classical model has been refined in a number
of ways based on updated understanding of the biochemical
properties and genomic activity of methyltransferases
(reviewed in [14]). For instance, a wealth of evidence suggests
that the efficiency and specificity of methylation enzymes are
not sufficient to support the observed high fidelity of main-
tenance, within the classical, independent-site model [15–19].

Interdependence, or coupling, of maintenance methyl-
ation activities imparted on CpGs located within close
proximity can provide some reconciliation between the
known biochemistry of methylation reactions and the
observed stability of the genomic methylation landscape.
Recent findings of preferential recruitment of DNMT1 [20],
and faster maintenance methylation rates [21], at sites with
more neighbouring hemimethylated CpGs are clearly at
odds with an independent-CpG-site model. CpG interdepen-
dence has been suggested to occur via various molecular
mechanisms, including DNMT1 processivity [22–24] (in
which an enzyme can methylate multiple neighbouring
CpGs on nascent DNA sequentially) and cooperative inter-
actions, e.g. with UHRF1, which localizes, and in turn helps
recruit DNMT1 molecules, to hemimethylated CpGs [25,26].
Mathematical modelling has also suggested the importance
of CpG interdependence, also called collaboration, both in
maintenance and de novo methylation, for long-term collec-
tive stability of methylated and unmethylated genomic
regions [19,27–31].

A quantitative and mechanistic understanding of CpG
interdependence during maintenance methylation in vivo is
lacking. The genomic lengthscales over which CpG coupling
occurs are not well understood. It is not yet known to
what extent processivity, versus other mechanisms of
CpG interdependence, influences dynamics of maintenance
methylation. Nor is it yet well understood how local genomic
context influences these mechanisms in vivo. In this study, we
address these questions by elucidating CpG-coupled-
dynamics in maintenance methylation by use of statistical
inference, bioinformatics and stochastic modelling. We lever-
age experiments that measured methylation status of nascent-
strand CpGs across post-replication timescales, genome-wide
[32]. From these data, we infer how the rates with which indi-
vidual CpGs acquire methylation, post-replication, are
correlated on nearby sites in different regional contexts. By
using stochastic models and theory of proteins diffusing
along DNA, we demonstrate that the rate correlation as a
function of genomic distance provides a mechanistic finger-
print for post-replication enzymatic processes. Our method
provides a novel way to infer lengthscales of linear diffusion
of DNA-binding proteins, and it provides the first direct evi-
dence for genome-wide methyltransferase processivity in
cells. Comparing simulations with data allows us to extract
quantitative insights from data, including the relative
strengths of processive versus non-processive coupling
mechanisms in different genomic regions, and the length of
processive steps.
2. Results
2.1. Overview of method
The methodology of this article can be summarized as fol-
lows. We reanalysed data from whole genome bisulfite
sequencing (WGBS) [33] and replication-associated bisulfite
sequencing (Repli-BS) [32] in human embryonic stem cells
(hESCs) using a combination of data-driven statistical infer-
ence and hypothesis-driven stochastic modelling. First,
maximum likelihood estimation (MLE) was used to infer
per-CpG post-replication remethylation rates from Repli-BS
experiments, following our previously developed method
[34]. We analysed the correlation of these data-inferred rates
on nearby CpGs in different genomic contexts, such as
enhancer, promoter, etc., to study regional differences in
maintenance kinetics. Next, we studied the association of
the strength of nearby-CpG remethylation rate correlations
with other local genomic/epigenomic features. To aid
interpretation of the experiment-derived correlation functions
and their regional differences and associations, we developed
region-specific stochastic models of post-replication DNA
methylation maintenance kinetics. By using these models,
we generated simulated bisulfite sequencing datasets under
different mechanistic hypotheses, and we compared the
resultant in silico-generated rate correlation functions with
those of the experimental data, focusing both on qualitative
and quantitative features, such as shape and lengthscale.
Combining theory with stochastic simulation, we developed
a method to separate processive and non-processive
contributions to the experiment-derived rate correlations.

2.2. DNA methylation rate and state on neighbouring
CpGs are correlated with different extents

An analysis of cytosine methylation within newly replicated
DNA over time (via Repli-BS) revealed that some genomic
loci exhibit a pronounced lag in methylation maintenance
[32]. In our previous work, we developed a statistical infer-
ence procedure to obtain single-CpG post-replication
maintenance methylation rates (here denoted ‘remethylation
rates’) from Repli-BS data [34], which further supported the
variability of remethylation kinetics across the genome.
Other recent studies found variable kinetics of maintenance
methylation in different genomic contexts [21] and of com-
bined methylating/demethylating reactions [35]. However,
these studies did not investigate whether or how methylation
rates vary locally within regions or among neighbouring
clusters of CpGs.

In this article, we focus on local correlation of methylation
kinetics, obtained from Repli-BS data, and analyse the data-
derived correlation using biophysical models of enzymatic
methylation reactions. The data-inferred kinetic parameters
quantify the rate of accumulation of methylation at each CpG
site across hESCs in themeasurement set over the experimental
timecourse of 0–16 h post-replication. We correlate single-CpG
remethylation rate constants (denoted ki, for the rate at the ith
CpG, obtained by MLE, see x4) on pairs of CpGs, as a function
of the genomic distance between them. As such, this
post-replication methylation rate correlation quantifies the
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Figure 1. Methylation states and post-replication remethylation rates are correlated on neighbouring CpGs, and correlation varies with genomic regional context. (a)
Correlation of remethylation rates (red, y-axis) and correlation of per cent methylation (i.e. bulk methylation state, blue, y-axis) of nearby CpGs at given genomic
distances (x-axis), separated in panels by genomic regional context. Each scatter point at distance d represents the correlation coefficient of rate pairs {kX, kY} derived
from all CpG pairs in the region with intervening distance d. The remethylation rates for individual CpG sites were inferred from experimental Repli-BS-seq data, and
the bulk methylation was obtained from separate WGBS data from the same cell line (HUES64). Dots: raw rate correlation in base pair resolution, lines: smoothed
correlation curve by LOESS (locally estimated scatterplot smoothing, [37]) with 100 bp span. (b) Correlation of remethylation rates with curves from different genomic
regional contexts overlapped and y-axis zoomed. Only the LOESS-smoothed curves are shown for clarity. (c) Rate correlation functions computed retaining only pairs
of sites identified either as within the same localized region (red) or not within the same localized region (orange).
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extent to which CpG pairs experience similar (fast or slow)
kinetics.

DNA methylation levels (also from here on denoted
methylation ‘states’, or the fraction of cells exhibiting methyl-
ation at an individual CpG site) on neighbouring CpGs are
also correlated [30,36]. This methylation state correlation, as a
function of genomic distance in basepairs, reflects infor-
mation such as the size of persistently methylated (or
unmethylated) domains. As such, it reflects the generally
static methylation landscape in a given cell type.

We reasoned that correlation of post-replication methyl-
ation rates on individual CpGs could reveal details of
enzyme kinetics in cells, and thereby yield additional infor-
mation beyond that contained in methylation state
correlation. To this end, we first computed correlation from
the two different data modalities ((i) remethylation rate
derived from Repli-BS and (ii) methylation state derived
from WGBS) to relatively short (less than 1 kilobasepair)
distances. We compared them across different genomic con-
texts, by filtering CpG pairs by genomic context in addition
to their inter-CpG distance (figure 1a). Genomic regional con-
texts were based on genomic annotations acquired from the
UCSC genome table browser and included features such as
3’UTRs, enhancers, etc. (see x4). Note that a given CpG can
be located within multiple regional contexts, e.g. CGIs are
often overlapping with promoters.

We observe both common and distinct features in the
correlation functions, when comparing different genomic
regional contexts for both data modalities (i.e. rate corre-
lations and state correlations). Common to all regions and
to the genomic average with no region-filtering, remethyla-
tion rate correlation decreases rapidly with distance until
approximately 100 bp (red curves in figure 1a). After 100 bp,
a slower decay is evident in all regions. However, this steep
decrease in correlation, and rapid change in decay is not
observed in correlation of methylation state (navy curves),
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which generally shows a slower (persisting to greater than 1
kb), smooth decay, albeit with wide variation in
decay lengths between regions. The existence of such a pro-
nounced difference between methylation state and rate
correlation, persistent in all genomic regions, suggests that
the methylation rate correlations are not determined by the
methylation landscape itself and raises the question of what
dynamic processes determine rate correlations.
 .org/journal/rsif

J.R.Soc.Interface
19:20220415
2.3. Post-replication remethylation rates are correlated
on neighbouring CpGs, and correlation varies with
genomic regional context

Some features of the correlation functions vary between the
genomic regions studied. We quantify the average magnitude
of short-range correlation by the mean correlation to 1 kbp.
These magnitudes are highly variable across genomic contexts
and across modalities. Genome-wide, the magnitude of rate
correlation is low (0.06) compared with that of state correlation
(0.82). Across regions, CGIs show the highest magnitude of
state correlation (0.85), while transcription factor binding
regions (TFBRs) show the highest magnitude of rate corre-
lation (0.15). By contrast, both the lowest average magnitude
of state correlation and of rate correlation are found within
SINE (short interspersed nuclear element) regions with 0.18
and 0.035 correlation, respectively. We hereafter refer to
these differences in remethylation rate and state correlations
according to genomic context as ‘genomic region specificity’.

In general, the results for methylation state indicates that
methylation on CpGs within 1 kb are highly correlated
genome wide. Exceptions are within SINEs and LINEs
(long interspersed nuclear elements), where state correlation
has significantly decayed by 1 kbp.

Although the methylation rate correlations show an
apparently uniform sub-100 bp decay across regions, differ-
ences are visible in their longer-lengthscale (greater than
100 bp) decay profiles (figure 1b). In particular, CGIs and
TFBRs show the strongest long-distance correlation, persist-
ing near or above 0.1 past 1 kbp. We further separated the
analysed CpGs from CGIs and TFBRs into ‘within’ and
‘across’ region pairs (figure 1c). ‘Within’ correlation is com-
puted for CpGs that are within one contiguous region (as
defined by the filtering protocol), whereas ‘across’ correlation
only retains pairs of sites that are assigned to non-contiguous
regions. The resultant rate correlation functions indicate gen-
erally stronger contribution of within- versus across-region
correlation (note that the number of datapoints for ‘across’
correlations is lower for short distances, since nearby CpGs
are more likely to be in contiguous regions). Size distributions
of all studied genomic regions are shown in electronic
supplementary material, figure S1.

In all, these results indicate different magnitudes and
decay lengths of inter-CpG coupling in maintenance methyl-
ation. In particular, they point to more pronounced CpG
collectivity of maintenance kinetics in contiguous CGIs and
TFBRs. That is, neighbouring CpGs in CGIs and TFBRs
tend to have more correlated remethylation rates and thus
more similar methylation across post-replication time, com-
pared with other regions. However, all regions showed
correlated rates with some degree.

We note several additional features in the correlation
functions, including apparent periodicity (e.g. in state
correlation, intergenic region, figure 1a) and shoulders or
local peaks (e.g. in several of the rate correlation curves in
figure 1b). Some of these features appear consistent with
nucleosome positioning, which could indicate coupling
between maintenance methylation processes and/or the
methylation landscape with nucleosomes. A detailed investi-
gation of all of these features is outside the scope of this
work; we focus instead on the broad features of the methyl-
ation rate correlation, namely, the sub-100 bp rapid decay
and region-specific, less than 100 bp slower decay.
2.4. Regional correlation of DNA methylation
maintenance kinetics is increased with CpG density
and chromatin accessibility, and decreased with
higher bulk methylation levels

To investigate the factors associated with the observed
region specificity, the association between remethylation
rate correlation and other local genomic characteristics were
examined. For each individual CpG in the dataset, a measure
of the local chromatin accessibility is collected from DNaseI
hypersensitivity data in ENCODE/OpenChrom (see §4).
The local CpG density surrounding a given site is calculated
by the number of neighbouring CpGs within a 500 bp
window. ‘Bulk’ methylation refers to measurement of DNA
methylation in human embryonic stem cells (HUES64)
measured by WGBS. We plotted the magnitude of the
remethylation rate correlation (0–1000 bp) for each region
versus average chromatin accessibility (e.g. DNAse hypersen-
sitivity enrichment) (figure 2a), local CpG density (figure 2b)
and WGBS (‘bulk’) methylation percentage (figure 2c). We
calculated the Pearson correlation coefficients (and associated
p-values) between the mean rate correlations and three fac-
tors using the ‘stats.pearsonr’ in the Scipy package [38].
Linear correlation was found between the magnitude of
remethylation rate correlation and these three factors. We
found that the rate correlation is positively correlated with
DNase level and CpG density (albeit weakly), while it is
inversely correlated with bulk methylation level. These
results suggest that the genomic regional differences
observed in rate correlation in figure 1 may be driven globally
by variation in chromatin accessibility, CpG density and
background methylation landscape.
2.5. Local methylation correlation varies across post-
replication time and shows persistent region
specificity

To investigate the origins and regional differences of methyl-
ation correlation, we focus on three representative genomic
regions characterized by high (CGI), medium (enhancer)
and low (SINE) methylation state correlation. In figure 3,
we plot three types of correlation functions for these three
regions: in addition to bulk WGBS correlation and rate
correlation, we also plot correlation of methylation state
in ‘nascent’ DNA, which contains a subset of measurements
from the full temporal Repli-BS dataset, corresponding
to the 0-hour timepoint of the original pulse-chase exper-
iment[32]. Thus, ‘nascent’ here refers to methylation
readout less than or equal to 1 h post-replication.
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Figure 2. DNA methylation maintenance rates show higher local correlation in genomic regions with higher chromatin accessibility, CpG density and lower bulk
methylation levels. Mean remethylation rate correlation by region, plotted versus other quantified, localized genomic measurements from independent measure-
ments: (a) magnitude of mean remethylation rate correlation (equal to the average over rate correlation for all inter-CpG distance less than 1 kbp (i.e. integers from
2 to 1000) in the given region) versus mean regional chromatin accessibility, as quantified by DNase level; (b) versus mean local CpG density (mean number of
neighbouring CpGs within a 500 bp window); (c) versus mean WGBS (‘bulk’) methylation level. Note that the datasets are site matched, so the analysis is restricted
to sites that tend to have intermediate to high methylation, since these are the sites for which remethylation rates are available.
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Note that the red rate and dark blue state correlations are
derived from the same data as shown in figure 1, but in con-
trast to figure 1, the curves in each panel of figure 3 are site
matched. In practice, remethylation rates are available for
only a subset of CpGs compared with WGBS measurements.
This is because the rate constant is undefined where no
methylation is measured and is often unidentifiable when
methylation is very low. Thus, there is a significant overlap
between the sites for which rates are not available and sites
for which WGBS percentages are 0 or near 0. We reasoned
that some of the methylation state correlation in figure 1
could arise from the bimodal nature of methylated and
unmethylated regions. For a more direct comparison with
rate correlation on a site-specific basis, we thus filtered to a
common set of sites, which in practice retains mostly sites
with intermediate to high methylation in WGBS. After filter-
ing to these common sites, we indeed observe some decrease
in state correlation (dark blue curves in figure 1a versus
figure 3), but rate correlation remained persistently lower
than state correlation in all regions.
We observe that methylation state correlation in nascent
DNA is generally lower than that in bulk DNA, suggesting
that state correlation increases over post-replication time.
(Bulk WGBS measurements reflect temporal variability from
cells in various stages of the cell cycle and from differences
in replication timing across the genome (meaning it largely
contains matured DNA strands), whereas the nascent data in
principle captures reads within 1 h post-replication [32]). In
all studied regions, the nascent methylation correlation is inter-
mediate between rate and bulk state correlation (with the
exception of very short distances in SINEs).

The trend in genomic region specificity of methylation
correlation is persistent across the three types of correlation
functions. This in turn suggests that the region specificity is
persistent across post-replication time. For example, CGIs
consistently show the highest correlation compared with the
other regions in rate, bulk methylation, and nascent
methylation. Conversely, SINE consistently shows the
lowest correlation. These results suggest that the processes
that govern coupling (or interdependence) of methylation
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Figure 4. Schematic of stochastic simulation of DNA methylation maintenance in different genomic regions, according to either distributive or processive mech-
anisms. (a) Each simulation models a strand of N CpGs (N =25 000–75 000), where the CpG positions and the parent-strand methylation at the initial condition are
taken from WGBS measurements in a given genomic region (e.g. CGI or SINE). Multiple-strand replicates are simulated over time. Immediate-post-replication DNA is
assumed to be unmethylated on the nascent strand at all sites, and the binary methylation status of the parent-strand sites are sampled probabilistically from the
input methylation landscape (mean methylation level in WGBS). During simulations, DNMT1 targets hemimethylated CpGs for methylation, according to either a
distributive (b) or processive (c) mechanism. The distributive mechanism assumes that the enzyme binds to each hemi-methylated CpG independently. After cat-
alysing methylation, the enzyme immediately unbinds from DNA (we assume koff≫ kcat, such that methylation and unbinding are treated as a single reaction). To
reach a subsequent CpG, the enzyme must independently rebind with rate kf. The processive mechanism assumes that, after catalysing methylation at a CpG, DNMT1
can remain bound to DNA and reach nearby hemimethylated CpGs by linear diffusion along DNA.
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among neighbouring CpGs differ depending on the genomic
regional context, and that these processes are region specific
already at early post-replication timepoints. In addition, the
distinct shapes and magnitudes of the CpG–neighbour
correlations across time suggest that different processes
control CpG–neighbour interactions at early versus late
post-replication times.

We hypothesize that the three correlation modalities can
be interpreted as follows: rate correlation reflects the dynamic
mechanisms of maintenance methylation, thus shedding light
on early post-replication time processes. In contrast, bulk
methylation state correlation largely reflects the steady-state
methylation landscape, i.e. reflecting the balance among
methyl-reading/writing/erasing processes operating across
post-replication time to regulate the methylation landscape,
but largely reflecting the stable methylation landscape of a
given cell type. Nascent methylation state reflects a mixture
of the two, as the experiment ‘captures’ CpGs in transit
between their state immediately (up to 1 h) post-replication
and steady state. In the following sections, we test this hy-
pothesis by use of computer simulations and model-guided
data analysis.
2.6. Region-specific stochastic simulations of post-
replication maintenance methylation

To gain further biological insight from the experiment-
derived methylation correlation functions, we perform
region-specific stochastic simulations of maintenance methyl-
ation (figure 4) and use these simulations to generate
synthetic data analogous to the various experimental bisulfite
sequencing data modalities. From these synthetic data, we
compute regional correlation functions and compare with
those derived from experiments. Briefly (see x4), the simu-
lations track nascent-strand methylation status of stretches
of sequentially positioned CpGs, numbering of the order of
tens of thousands. In contrast to mathematical models that
treat the interplay of de novo, maintenance and demethylat-
ing reactions, e.g. [19], we apply minimal models of single-
site-resolution DNMT1-mediated methylation on post-repli-
cation timescales. Each stochastic simulation tracks the
binary (methylated or not methylated) status of the ‘nas-
cent-strand’ CpGs. At the start of the simulation
(representing exactly time 0 with respect to DNA replication
at that site, i.e. the time of nucleotide addition), all nascent
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CpGs are assumed to be unmethylated. The presence or
absence of methylation on cytosine bases on the opposing
parental strand at time 0 is determined probabilistically
from a data-derived regional methylation landscape that
acts as the simulation input. If the parental cytosine is
methylated at time 0, then the CpG is considered hemimethy-
lated and the nascent cytosine is assumed to be a target for
DNMT1-catalysed methylation, and it will acquire methyl-
ation stochastically at some post-replication timepoint,
according to the chemical reaction kinetics encoded in the
model. If the parental cytosine is unmethylated at time 0,
then DNMT1 does not target the nascent cytosine for methyl-
ation, and the site will remain fully unmethylated. In this
way, the model tracks only unidirectional maintenance
methylation and does not include active demethylation reac-
tions. It also does not account for any de novo methylation
activity. The simulation tracks post-replication timescales
(following experiments, to approximately 16 h), up to but
not including subsequent replication events.

Region specificity is encoded at the start of the simulation
in two ways: (i) the CpG positions and (ii) the local methyl-
ation landscape, meaning: the probability of the nascent
CpG to be a target for DNTM1-catalysed methyl addition
due to the presence of methylation on the parental strand
CpG dinucleotide. Both of these quantities are derived from
experimental WGBS data with a regional filter to retain
only CpGs in the desired region. Thus, in simulating a CGI
region, the ith simulated CpG (i∈ [1..N ]) has a genomic
position xi and a probability fi to be targeted for methylation.
We obtain both xi and fi from WGBS data from hESCs,
where xi is the integer site ID for the cytosine (which is
identified as being located within a CGI) and fi∈ [0, 1] is
taken to be equal to the measured methylation fraction at
that site. For example, if a given CpG in the dataset has
a WGBS-measured methylation fraction of 0.8, then the
model assigns the parental cytosine to be methylated at the
start of the simulation with a probability equal to 0.8. Strands
are simulated in replicate. With sufficient replicates, the simu-
lation eventually recapitulates the experiment-derived input
methylation landscape, if it is run for a period of time that
is sufficiently long. That is, the simulation assumes perfect
recapitulation of parent-strand methylation by DNMT1 even-
tually, though the time at which each hemimethylated CpG
gains nascent-strand methylation is stochastic. In practice,
the number of replicates and sampled timepoints are
chosen to match those of the experimental data (see x4).
Note that the WGBS data-derived landscape probably reflects
some degree of replication-associated temporal variability
[32], rather than a true steady state. Nevertheless, the use of
the WGBS background methylation landscape as the simu-
lation input allows us to encode realistic region-specific
differences in CpG densities and qualitative differences in
bulk methylation levels.

2.7. Rate correlation provides a mechanistic fingerprint
for enzyme kinetics

We use simulations to generate synthetic data mimicking the
various bisulfite sequencing datatypes (rates from Repli-BS,
nascent methylation from Repli-BS, and bulk methylation
state from WGBS). We then compute the correlation func-
tions for the synthetic data. Figure 5 shows simulation-
derived correlation functions for three representative
genomic regions from chromosome 1 for two mechanistic
models termed distributive and processive. Briefly,
DNMT1 binds to nascent CpGs and catalyses the addition
of a methyl group. In the distributive model (figure 4b),
the enzyme unbinds after the catalytic step and must inde-
pendently rebind to an available hemimethylated CpG to
catalyse a subsequent methyl addition. In the processive
model (figure 4c), the enzyme can remain bound to DNA
after methylating a CpG and can travel along DNA (via a
one-dimensional diffusive random walk) to reach neigh-
bouring hemi-methylated CpGs and again catalyse
methylation. The random walk occurs with one-dimensional
diffusion coefficient, D, and the enzyme potentially unbinds
before reaching its target with rate koff. The kinetic par-
ameters for both models are given in the electronic
supplementary material.

In both distributive and processive mechanisms, the
simulated bulk methylation correlation approaches the
input methylation landscape in the three regions. This is
expected because the input landscape dictates parental
strand methylation in the model, and the model assumes
that as time progresses, the nascent-strand methylation will
ultimately match the parental strand input (i.e. it assumes
perfect maintenance in the long-time limit). In contrast, the
shapes of remethylation rate correlation are distinct from
those of the input methylation landscape and are dependent
on the model mechanism. In all simulated regions, nascent
correlation is intermediate between bulk state and rate, in
agreement with experiments. The distributive model pro-
duces no correlation in remethylation rate, in agreement
with our previous results [34]. In contrast, the processive
model produces a non-zero rate correlation that appears to
qualitatively reproduce the experimentally observed rapid
decay of correlation with genomic distance up to approxi-
mately 100 bp. Neither model reproduces the low but
persistent correlation visible at distances greater than 100 bp
in CGI and enhancer in figure 3.

The simulated correlation functions provide a possible
explanation for the discrepancy between methylation state
and rate correlations observed from experiments (figures 1
and 3). Namely, they suggest that the methylation rate
correlation shape is dictated by enzymatic maintenance
mechanisms, independent of the background methylation
landscape. That is, simulations support that mechanistic
insights on maintenance methylation can be derived using
the rate correlation, since it effectively separates correlations
introduced by early post-replication time processes from
those operating at longer timescales (and which dominate
the bulk WGBS correlation). Thus, the rate correlation is a
useful new quantity, which can be used to distinguish
between hypothesized mechanisms. In the processive
model, the rapid drop-off of rate correlation is due to the
enzyme’s intrinsically limited capability to process along
DNA over long lengthscales. As such, a pair of CpGs can
be strongly correlated in their methylation state (as dictated
by parent-strand methylation, and thus reflective of the
correlated methylation landscape), while showing low corre-
lation of their kinetic rates, if their distance is outside the
enzyme’s processivity range. However, the simulations also
demonstrate that, while the processive mechanism partially
recapitulates experiment-derived rate correlations, it cannot
explain the longer-distance, slow rate correlation decay
in CGI.
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Figure 5. In simulations, rate correlation but not state correlation depends on enzymatic mechanism; only processive model displays non-zero rate correlation.
Simulated correlation functions for three representative regions (SINE, enhancer, CGI) and using the distributive (a) or processive (b) mechanism. Simulations
are performed using experimental regional methylation landscapes for SINE, enhancer and CGI as initial condition inputs (grey curves). The simulations provide
synthetic data corresponding to each of the three experimental data modalities, as shown in figure 3. Synthetic data are processed in the same way as the exper-
imental data to compute the inferred remethylation rates and Pearson correlation functions. Both models recapitulate temporal trends in rate correlation seen in
experiments, figure 3 (correlation in rate < nascent state < bulk state). Only the processive model captures non-zero rate correlation sub-100 bp; neither model
captures low, persistent correlation greater than 100 bp observed in figure 3.
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2.8. Rate correlation in processive model decays
exponentially, dependent on one-dimensional
diffusion and unbinding rates

We used simulations and theoretical modelling to determine
whether quantitative insights could be derived from the
experimental rate correlations. We first investigated how
rate correlations arising from the processive mechanism
depend on model parameters. In an idealized theoretical
model, we find that the rate correlations are related to the dif-
fusion constant D and the unbinding rate, koff, as follows:

CorrðX, YjdÞ/ e�d
ffiffiffiffiffiffiffiffiffi
koff=D

p
, ð2:1Þ

whereX and Y are pairs of remethylation rates on sites that are
distance d apart (along theDNAstrand). See the electronic sup-
plementary material for justification of equation (2.1).

We find a good match between the aforementioned
analytical theory and the stochastic simulations (electronic
supplementary material, figure S2). We performed regional
simulations for varying values of D/koff and then processed
the simulated data through the MLE inference pipeline and
computed the correlation function. We then fit the correlation
functions to a single-exponential decay and observe a good
match between the fitted decay constant and the theoretically
predicted value of

ffiffiffiffiffiffiffiffiffiffiffiffiffi
koff=D

p
. These results demonstrate that

the predicted exponential correlation holds, despite poten-
tially complicating factors in the stochastic model (e.g. the
finite time required for diffusion, many CpG sites and mul-
tiple enzymes acting simultaneously on one strand, etc.),
and uncertainty introduced by the MLE-fitting pipeline.
The simulations also predicted that the exponential decay
length was not strongly affected by the length of measured
reads in the Repli-BS experiments (electronic supplementary
material, figure S3), though some spurious correlation arising
from read length was observed in silico. All in all, these
results support the finding that processivity, in a linear
diffusion model, is consistent with exponential decay of rate
correlations obtained from Repli-BS and that the decay
constant can be interpreted as

ffiffiffiffiffiffiffiffiffiffiffiffiffi
koff=D

p
.

2.9. Mathematical model for diffusion-based and
region-based components of methylation rate
correlation

The processive model can explain exponential decay of rate
correlation, but cannot by itself explain the significant corre-
lation observed past 100 bp in strongly correlated regions
such as CGI (figure 3). Nor can it explain the association of
this correlation to other regional genomic characteristics
(bulk methylation levels, CpG density and chromatin accessi-
bility). On the basis of the observations in figure 2, we
reasoned that this additional rate correlation can be under-
stood to result from correlated methylation times on
neighbouring sites due to a variety of regional features that
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we describe as follows:

CorrregionðX, YjdÞ ¼ fðfeaturesðdÞÞ, ð2:2Þ
and refer to as ‘region-based correlation’. That is, this com-
ponent of the correlation function can be expressed as a
function ϕ, which depends somehow on local features, e.g.
related to the chromatin landscape. These features themselves
held some distance-dependent correlation. Consideration of
additional correlating factors (beyond diffusion) equates to a
revision of the idealized theoretical model above. Now, in
event 1, if the neighbouring site is not reached by diffusion,
but rather the two sites are methylated in separate events,
their times τi and τj are nevertheless correlated in a way that
depends not only on their distance apart but also on various
other features of their location within the genome. We do
not propose a mechanistic model for this additional corre-
lation, but label it as ϕ, and estimate it for each region, based
on the data. Given these two contributions, whichwe term dif-
fusion dependent (denoted θ) and region dependent (ϕ), the
total correlation from both contributions is given by

TotalCorrðX, YjdÞ ¼ uþ ð1� uÞf, ð2:3Þ
where the aforementioned equation can be understood by
probabilistic arguments, i.e. the probability that a neighbour
is reached by diffusion is θ (given by equation (2.1)); additional
correlation ϕ is only present when the neighbour is not reached
by diffusion, with probability 1− θ. This mathematical
decomposition of the rate correlation is shown schematically
in figure 6a. The model of equations (2.1), (2.2) and (2.3)
makes a prediction: if ϕ (the component of correlation due to
genomic regional features) can be estimated from the data,
then the remaining correlation (θ) should decay exponentially
with distance and should not depend on local genomic
context.
2.10. Separation of experimental remethylation rate
correlation functions into diffusion-dependent
and region-dependent components quantifies
genome-wide processivity of DNMT1 in vivo

We developed an approach to estimate ϕ as follows. The total
experiment-derived correlation functions are computed from
a list of cytosine positions and their inferred remethylation
rates. Denote xmn as the position of site n, identified as belong-
ing to region m (where m is 1 of the 14 regions of figure 1, and
n∈ [1, N ] given that data are available for N sites in a region
of interest). Denote the remethylation rate as kmn , giving a list
of pairs {xn, kn}m for each region, from which the correlation is
computed. We also have additional genomic feature data: let
qmn , r

m
n and smn denote the measured bulk methylation level,

the local CpG density and the chromatin accessibility
acquired from independent datasets (see x4). We then per-
form unsupervised k-means clustering on the features {q, r,
s}m to obtain clusters of sites that are (i) previously assigned
as belonging to the same type of genomic region m and (ii)
share more fine-grained similarity in terms of their bulk
methylation level, CpG density and chromatin accessibility.
We then randomly shuffle the nucleotide positions within
each subcluster and denote these shuffled positions as ~xn.
We now have a new list, f~xn, kngm, where the true nucleotide
positions have been randomized, but their reassigned
position is still similar to the true position in terms of the fea-
tures {q, r, s}m.

We recalculate the correlation functions for each of the
regions with the new lists f~xn, kngm. We label this new corre-
lation function as the region-dependent component ϕ,
reasoning that it captures rate correlation that can be attributed
to the regional features, according to the model of equation
(2.2). We then extract θ from the total correlation using
equation (2.3). The results of this decomposition are plotted
in figure 6b (a more detailed view in regions CGI, enhancer
and SINE is shown in electronic supplementary material,
figure S4). We find that ϕ is more variable between different
genomic regions, as compared with the component θ, which
appears nearly uniform across genomic regions and in all
regions shows rapid decay within approximately 100 bp. We
find that θ is generally well fit by a single-exponential decay
and the fitted decay constants are similar across genomic
regions, with a mean decay constant of 0.028 (ranging from
0.023 to 0.032, in TFBR and SINE, respectively), corresponding
to a mean decay length of 36 basepairs (31–43 bp, respect-
ively), figure 6c. Importantly, this decomposition approach
does not impose any a priori assumptions on the functional
form of θ. The results confirm our hypothesis that after
removal of the correlation component dependent on regional
features of the chromatin landscape, the remaining correlation
decays exponentially with distance.

Our model predicts that the fitted exponential decay
constant should be reflective of parameters of enzyme diffu-
sion, namely, equal to

ffiffiffiffiffiffiffiffiffiffiffiffiffi
koff=D

p
. Thus, the model predicts

that the decay constant is insensitive to other factors, such
as variability of inter-CpG spacing. We confirm this in the
experiment-derived correlation functions, by comparing
the fitted decay lengths in each region to the inter-CpG dis-
tance distributions in each region (figure 6d ). Despite the
significant differences in CpG density in the different regions,
the decay lengths are generally constant, i.e. the median inter-
CpG distance is 10 and 161 bp in CGI versus intergenic
regions, with corresponding fitted decay lengths of 39.6
and 35.6 bp, respectively.

Note that the exponential fit is not perfect, as evident by
slight discrepancies in fit constants obtained for different
window sizes. This discrepancy is due to low, persistent,
non-zero longer-range correlation visible in θ in some regions
(electronic supplementary material, figure S4), which we
attribute to our model of ϕ, which was based only on three
genomic features, and thus probably did not fully account
for all region-based correlation. We therefore report fit con-
stants from the 100 bp window, to estimate the short-range
decay while minimizing contamination from long-range
residual correlation. However, the quantitative impact of
different fit window sizes on estimated constants is relatively
minor, as shown in figure 6c.

All in all, these findings support that θ reflects the
diffusion-based contribution to the correlation function
because (i) it is the explicitly distance-dependent part that
remains after removing correlation attributed to the other fea-
tures {q, r, s}m, (ii) it decays exponentially, and (iii) it is
uniform across the genome, consistent with processivity
being an inherent property of DNMT1’s mode of action,
and thus uniform across genomic regions. If θ is interpreted
as reflecting processivity of the enzyme according to a one-
dimensional diffusion model, then diffusion parameters can
be obtained from the experiment-derived correlation
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Figure 6. Decomposition of experimental rate correlation into processive and non-processive components allows estimation of DNMT1 diffusion parameters from
data. (a) Mathematical model of mechanistic contributions to rate correlation predicts that the total rate correlation (red curve) arises from two types of processes,
termed diffusion-based (i.e. processive) and region-based (i.e. non-processive). The diffusion-based component (green curve) is due to an individual enzyme at CpGi
reaching nearby target CpGj by linear diffusion and shows exponential decay with genomic distance d. The region-based component (pink curve) is attributed to any
other sources of correlation in remethylation rates, e.g. when two different enzyme molecules reach their targets (CpGi and CpGj) with correlated arrival times, and
does not have an analytic expression. (b) Rate correlation of all regions from experimental data is plotted in red in left panel (same red curves as figure 1a), and the
corresponding decomposed components (see x4) are plotted in the right panel, with diffusion-based components in green and region-based components in pink. (c)
Single-exponential fit decay constants for the green curves (θ), using either a 100 or 300 bp fitting window. The curves are well fit in each region by a single-
exponential decay function, supporting attribution of this correlation component to the processive mechanism (i.e. to diffusion). The decay constants are relatively
uniform across regions, supporting common diffusive dynamics across the genome. The average decay constant 0.028 bp−1 provides an estimate of

ffiffiffiffiffiffiffiffiffiffi
koff=D

p
and

corresponds to an average distance travelled by DNMT1 to a nearby target CpG of 36 basepairs (values from 100 bp window). (d ) Comparison of the inter-CpG
distances and extracted rate correlation decay length (from θ) of each genomic region, showing that the exponential correlation decay length is insensitive to inter-
CpG distance.
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function. We thus estimate D/koff to be 1300 bp2 and the
length of a processive step of DNMT1 to be 36 bp, on average,
across the genome.
 lsocietypublishing.org/journal/rsif

J.R.Soc.Interface
19:20220415
3. Discussion
3.1. Summary of key results and methodological

contribution
We have analysed correlations among CpG sites in the
genome obtained from estimated kinetics of post-replication
DNA methylation and from WGBS in hESCs. We find that
post-replication remethylation rates on nearby CpGs are cor-
related, and the nature of this correlation can shed light on
molecular mechanisms of maintenance methylation, when
analysed in conjunction with stochastic simulation and math-
ematical models. We summarize our key results as follows:
(i) methylation rate correlation is a new genomic quantity,
which contains information distinct from that contained in
methylation state correlation. In particular, the rate corre-
lation reveals mechanistic information on enzymatic
processes. (ii) Some, but not all, of the rate correlation
observed on nearby CpGs decays exponentially with geno-
mic distance and is consistent with processive activity of
DNMT1 according to a linear diffusion model. Our analysis
indicates an average distance of 36 bp between nearby
CpGs that are methylated processively after DNA replication.
(iii) In addition to evidence of processivity, we also discov-
ered additional correlation, not consistent with a processive
model, that is dependent on the genomic regional context.
Among studied regions, CGIs and TFBRs showed the most
significant contribution of this non-processive (termed
‘region-based’) correlation, which persisted past 1 kbp. In
contrast, SINE and LINE showed the least contribution,
suggesting that CpG interdependence in these regions results
nearly entirely from linear diffusion (processivity) of the
enzyme. (iv) Further analysis of the region-based rate corre-
lation indicates that much of the regional variation can be
attributed to variation in three genomic/epigenomic features:
chromatin accessibility, CpG density and bulk methylation.

More generally, we showhow combining ‘top-down’math-
ematical modelling (i.e. data-driven, using statistical inference)
with a ‘bottom-up’ approach (i.e. using hypothesis-driven, or
mechanistic models) can be used to glean kinetic insights
from a measurement technique that affords genome-wide
readout of the post-replication methylome over time [32].
A major new contribution of our paper is the development of
a method for using data-derived rate correlations on genomic
sites as a quantitative fingerprint of diffusive and non-diffusive
enzyme kinetics. This method could be applied to other
datasets in the future.

A number of experimental techniques have recently been
developed, employing nucleoside-analogue labelling of repli-
cating DNA, followed by isolation/immunoprecipitation and
sequencing [21,39–48]. Our study shows that statistical corre-
lations from such measurements have potential to yield
quantitative insights into molecular mechanisms governing
epigenetic inheritance, even when time resolution is coarse.

Diffusion of proteins along DNA has been an area of
intense study, notably in the context of how transcription fac-
tors (TFs) locate target sites (reviewed in [49,50]). Direct
measurement of linear diffusion of proteins along DNA
in vivo has been achieved by single-molecule tracking
[51,52]. Our study shows that, for enzymes with ubiquitous
target sites on DNA, correlations from temporal sequencing
can also yield quantitative details on protein diffusion
along DNA within cells (albeit indirectly), without recourse
to labelling and microscopy.
3.2. Processivity of DNMT1
While a number of studies have discovered evidence
of DNMT1 processivity previously in in vitro systems
[22–24,28,53,54], our study is the first to our knowledge to
uncover a quantifiable signature of methyltransferase proces-
sivity in genome-wide, mammalian cell-based measurements.
Thus our findings shed new light on enzymatic processivity
within the context of maintenance methylation in vivo. Our
findings are consistent with a picture wherein DNMT1 per-
forms processive catalysis regardless of genomic context and
in a quantitatively consistent manner (i.e. with relatively uni-
form lengths of processive steps between CpG targets,
genome-wide). Our analysis does not afford direct estimation
of linear coefficient D, but rather the ratio D/koff. We are not
aware of any existing quantitative estimates or measurements
of DNMT1 linear diffusion coefficient in vivo. If we assume
that DNMT1 has D within similar range to other measured
DNA-binding proteins (of order 105 to 107 bp2 s−1 [50,55,56]),
our results would indicate average residence times of roughly
10−4 to 10−1 s for the enzyme when it is non-specifically
bound to non-CpG sites, en route to catalytic sites.

Previous in vitro estimates of the length of processive runs
of DNMT1 varied widely. For example, Vilkaitis et al.
reported processive runs as long as 520 bp [23], while
Goyal et al. reported processive runs of over 6000 bp [28].
Our estimates based on the Repli-BS dataset are much shorter
than these, with the average length of a processive run being
about 36 basepairs for nearby CpGs. One possible expla-
nation for the discrepancy is that our estimate is from
experiments in cells, where the in vivo chromatin environ-
ment, replication machinery and full complement of
DNA-binding proteins are present. These could limit free
diffusion of DNMT1 along DNA. TFs are also thought to
search for targets partly by one-dimensional diffusion along
DNA, and the effect of crowding has been considered [50].
While in vitro estimates for one-dimensional sliding lengths
of various DNA-binding proteins are as high as 20 kb [55],
in vivo sliding length of the lac repressor was found to be
short, at 45 bp [51]. How the chromatin environment affects
the motion of eukaryotic DNA-binding proteins is still
poorly understood [57]. In particular, the question of how
methyltransferase processivity is affected by the crowded
environment of the cell warrants further study.

Our analysis of the exponential contribution to rate corre-
lation cannot be directly or certainly attributed to the action
of DNMT1 alone. For example, PCNA plays a role in recruit-
ment of DNMT1 to replication foci [58], and this protein also
can diffuse linearly along DNA [56] (although DNMT1 pro-
cessivity does not rely on PCNA [23]). We cannot exclude
the possibility that some mechanisms other than intrinsic
DNMT1 diffusion along DNA give rise to the observed rate
correlations, although this interpretation is consistent with
the uniform lengthscale observed across different chromatin
environments.
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3.3. Non-processive CpG coupling
We find that additional mechanisms affect post-replication
remethylation rate correlation where the local genomic/chro-
matin landscape allows it. We find this non-processive (i.e.
non-exponential) source of rate correlation to be most preva-
lent where chromatin is locally open, CpGs are dense, and the
background methylation is relatively low. Although our
study does not attempt to define the mechanistic basis of
the non-processive component of the rate correlation, various
mechanisms can be proposed based on our observations
and on previous literature. For example, any mechanism
whereby DNMT1 reaches its CpG target through cooperative
interactions with other molecules could be speculated to
have kinetics dependent on the local genomic and epigen-
omic context. Neighbour rate correlations could then be
sensitive to local context and have lengthscales determined
by the cooperative molecular interactions, rather than being
solely dependent on linear inter-CpG genomic distances,
in contrast with the processive mechanism. For example,
recruitment of DNMT1 to replicating DNA by UHRF1
[25,26] probably results in context-dependent kinetics, since
UHRF1 targeting is dependent on both histone state and
the presence of hemimethylated CpGs [59]. A recent finding
of monoubiquinated histone H3 helping recruit DNMT1 to
DNA stretches with multiple, but not one, hemimethylated
CpGs [20] supports the idea that UHRF1 helps direct
DNMT1 to CpG-dense regions and is consistent with our
observation of higher rate correlation in CpG-dense regions.
Our findings may also be consistent with a nucleation
model, in which the initial binding of DNMT1 to replicating
DNA occurs on nucleosomes, directed by UHRF1, after
which DNMT1 reaches nearby CpGs processively [60]. If
the initial binding events of separate DNMT1s on nearby
nucleosomes are correlated, such correlation would contrib-
ute on a lengthscale of the order of hundreds of basepairs,
while shorter-lengthscale correlation would be introduced
through processivity.

In addition to UHRF1-mediated mechanisms, additional
factors are likely toplaya role in thenon-exponential correlation
we observe. First, DNA is not one-dimensional; DNMT1 could
reach nearby CpGs by facilitated diffusion (combining one-
dimensional diffusion along DNAwith three-dimensional dif-
fusion in the nucleosol to nearby sites) [50] or by
intersegmental transfer, similar to TFs [49]. Our processive
model assumes a one-dimensional substrate, but our results
hint at sensitivity of maintenance kinetics to three-dimensional
DNAstructure in theweakappearance of peaks consistentwith
nucleosome spacing (figure 1). Finally, transient binding of
post-replication DNA by TFs could introduce correlation into
maintenance methylation kinetics, as TFs could transiently
block access toCpGs byDNMT1 and thus delay remethylation.
Such a mechanism could explain why we observe the most
pronounced region-based correlation in TFBRs.

3.4. Relationship between WGBS and rate correlation
Our study reveals a significant difference between the local
correlation of methylation state versus rate. We interpret
this result as being due to the different information content
of the two: WGBS experiments capture reads that largely
reflect the stable methylation landscape (though still partially
influenced by replication-associated temporal variability
[32]), while the Repli-BS-derived methylation rates reflect
the transient dynamic processes occurring post-replication.
Of note, there appears to be some relationship between the
two, as we observed similar trends in region specificity in
the methylation state and rate (specifically in the region-
specific, or non-processive, contribution to correlation). We
furthermore note that, when we restrict the analysis to
common sites (thus retaining CpGs with intermediate to
high methylation levels, as rates are only inferable for these
sites), the similarity between rate and state correlation is
increased (i.e. as in figure 3 versus figure 1, where the
decay of bulk state correlation in SINE is nearly as rapid as
the decay of rate correlation). This suggests partial cross-
talk between the transient post-replication methylation
events (including processivity) and the stable methylation
landscape. Indeed, it was previously reported that CpG co-
methylation decays within tens to hundreds of bp, with
enzyme processivity proposed as its mechanistic origin [36].

However, our results also show that, in some regions (such
as CGI), methylation state correlation is significantly longer
lived than the processive lengthscale and significantly higher
than the rate correlation in total, and so the relationship
between state- and rate correlation is not directly clear. As
our analysis is based only on replication-associated methyl-
ation reactions, it seems likely that our rate correlations
are largely indicative of DNMT1-mediated maintenance
methylation, which cannot by itself shape the methylation
landscape. The stochastic models of this article focus only on
sub-cell cycle timescales and methylation maintenance
and thus assume that the methylation landscape (i.e. state
correlation) is a static property dictated by the parent-
strand landscape at the time of DNA replication. However,
methylation models of multi-cycle dynamics suggest that
differences in kinetic parameters, including maintenance kin-
etics as well as demethylating and de novomethylation, shape
the global methylation landscape across mitotic cycles [19,35].
Our method for obtaining data-driven kinetic correlations
could therefore be useful in the future to further improve
these types of multi-cycle mathematical models.

3.5. Implications for stability of the methylation
landscape

A number of mathematical modelling studies have provided
support for the presence of interactions (also called ‘colla-
boration’) among CpGs in dynamic methylation processes,
including in maintenance, de novo methylation and demethy-
lation reactions [19,27,30,31]. These models, in which a CpG is
in some way affected by the state of nearby CpGs, built upon
the earlier, so-called standard model, wherein each CpG was
considered to be independently targeted by methyltransfer-
ases [61]. Crucially, as the cited studies showed, these
interactions provide the necessary nonlinearity to enable bist-
ability in the dynamic system. That is, they enable the same
family of ‘reader’ and ‘writer’ enzymes to simultaneously
maintain distinct states of hyper- and hypo-methylation on
groups of CpGs in different parts of the genome, thus mimick-
ing observed methylation patterns. While these models tend
to be phenomenological in nature (i.e. capturing dynamic
phenomena without necessarily encoding detailed molecular
mechanisms), processivity can be considered to be one type of
molecular mechanism that contributes to inter-CpG inter-
actions. Indeed, mathematical modelling also supports the
idea that diffusive processivity enhances multi-generational
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stability of methylation patterns [28], just as does other
mechanisms of CpG interaction [19]. It follows that interde-
pendence of CpG methylation kinetics, as quantified by
correlation in this article, has relevance to human ageing
and disease, since instability of the methylation landscape
has been linked to both [62,63].

The mathematical model of Haerter et al. predicted
that local (nearest-neighbour) interactions of methylating
reactions was sufficient to achieve stable propagation
of methylation states over multiple generations, though
longer-range interactions were required for demethylating
reactions [19]. In the present study, we find that maintenance
methylation occurs largely independently in regions that are
CpG sparse and show low region-dependent correlation,
such as LINE. A nearest-neighbour-only model is consistent
with our findings in regions such as 5UTR and SINE,
where the processive lengthscale is on the same order as
the typical inter-CpG distance. In CGIs, the processive
lengthscale is longer than the inter-CpG distance (median
10 bp in the analysed data), suggesting that CpGs in CGIs
effectively interact beyond nearest neighbours. Strong coup-
ling of methylation in CGIs is consistent with faster
maintenance kinetics in CpG-dense regions, as has recently
been reported [21]. TFBRs showed inter-CpG distances simi-
lar to the processive lengthscale; however, here processivity is
compensated by weak but longer-range (region-based) coup-
ling (also evident in CGIs). These findings may predict
enhanced stability of methylation in TFBRs and CGIs across
mitotic cycles, although better understanding of the interplay
of correlation lengthscales for de novo and demethylating
reactions is needed.
3.6. Limitations of our study
Our study shows that novel experimental techniques that
probe replication-associated dynamics genome-wide can
yield surprisingly detailed dynamic insights despite the lim-
ited time resolution. However, the statistical inference
approach is nevertheless limited. First, each site-specific
inferred rate constant is the result of a fit of the data to a
stochastic Poisson process; undoubtedly this is a simplistic
model for dynamics that could potentially be temporally com-
plex in reality, e.g. non-exponential or even non-monotonic.
Thus, individual estimates can be error-prone for a number
of reasons, from the inability of the simplistic model to capture
complex dynamics, to the limited time resolution or sampling
depth for a given site, or all of the above. Because of the
inherent difficulty in characterizing dynamics in detail at
any individual CpG genome-wide, we focused here on gen-
eral features of the rate correlation functions that are robust
across a given genomic region. In this way, the whole-
genome nature of the data partially compensates for the
sparse temporal resolution. We also ensured that our inference
and analysis pipeline performed well on synthetic datasets,
generated from simulations. Going forward, it may be possible
to yieldmore detailed dynamic insights with deeper sampling
and more fine-grained time resolution (as achieved in recent
experiments [21]), which could enable further investigation
into detailed, local kinetic correlation.

Our study was performed on data from a particular cell
line (HUES 64). Cell-type-specific differences in human methy-
lomes have been reported (e.g. [64]). The hESCs analysed here
were found to have bimodal CpG landscapes similar to those
of somatic cell types [65], though significant intermediate
methylation is also present and has been attributed to prolifer-
ation [32]. Although our mathematical modelling suggests that
the dominant short-range correlation lengthscale we observed
relates to enzymatic properties and is thus probably not sensi-
tive to cell-type-specific differences in methylation landscapes,
further studies on other cell types will be needed to determine
the generalizability of our findings.

While we focus our models around the enzyme kinetics of
DNMT1 (for simplicity and because it is the dominantmethyl-
transferase responsible for carrying out maintenance activity),
we acknowledge that our rate correlations are probably
impacted by the presence of other (de novo) methyltransfer-
ases, which have been known to associate with highly
methylated CpG-dense location (i.e. CGIs) [66]. Although
our mechanistic models rigorously incorporate one-dimen-
sional diffusion, they lack the dynamic interplay of de novo,
maintenance and demethylation reactions that has been
studied in mathematical models previously [14,19]. Our
approach could be applied to different cell lines in the
future, e.g. with specific methyltransferases disrupted, to
further disentangle the molecular basis of kinetic correlation.

Another limitation of the model is that it does not directly
include the dynamics of DNA replication, nor account for the
presence of multiple distinct origins of DNA replication in the
genome. Replication timing of distinct loci could introduce
kinetic correlations in DNAmethylation that were not directly
analysed in our study. However, it is possible that rate corre-
lation reported here could be related to replication origins, as
CGIs have been partly linked to replication origin activity
[67] and show more pronounced region-specific correlation
in our study.
4. Material and methods
4.1. Site-specific post-replication methylation

kinetics inference
The post-replication methylation data (Repli-BS data) of human
embryonic stem cells (HUES 64) were downloaded from
GSE82045. In the Repli-BS experiments [32], cells were pulsed for
1 h with bromodeoxyuridine (BrdU). Then, bisulfite sequencing
of BrdU-labelled DNA captured CpG methylation reads from
DNA that was replicated during the pulse interval. The pulse-
chase experiment captured methylation level of CpGs at time-
points 0, 1, 4 and 16 h post-pulse, thereby giving a genome-wide
temporal readout of CpG methylation over 16 h post-replication.

The MLE procedure for inferring per-CpG post-replication
methylation rates from Repli-BS data is described in detail in
[34]. Briefly, the temporally distributed binary read-data (methyl-
ated-1 or unmethylated-0) at each CpG site is fitted by a Poisson
process, with each site i characterized by two inferred constants,
ki and fi, which represent the rate at which methylation accumu-
lates at the site over the course of the experiment, and the
steady-state (or long-time) fraction of cells in the measurement
set that exhibit methylation at site i, respectively. From here on,
we refer to the inferred parameters ki as the ‘post-replication
remethylation rates’ or simply the ‘remethylation rates’. Details
of the inference approach can be found in the electronic sup-
plementary material (Extended methods). Note that, while the
per-site inferences are obtained based on an analytical, indepen-
dent Poisson process model, the inferred rate parameters can
nevertheless be used to investigate more complex types of

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE82045
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dynamics and inter-site dependencies through correlations that
are observed among inferred parameters on nearby CpGs.

The ability to infer a remethylation rate for a given CpG site,
and the uncertainty associated with that inferred rate, depends
on the read-depth of the experimental data, which varies
across sites and across timepoints. Details of uncertainty quanti-
fication can be found in the electronic supplementary material
and in our previous study [34]. We estimated on average 30%
error in any given estimate of rates ki. We validated our
method by ensuring that ground-truth rate correlations (obtained
from simulated data) could be accurately recovered by the MLE
inference pipeline.

4.2. Annotations of genomic regions
The GRCh37/hg19 genome was used as the reference genome in
this article. The region annotations for genes, promoters, exons,
introns, 3’UTRs and 5’UTRs are downloaded from the UCSC
Genes track in UCSC Table Browser, whereas the LINEs (long
interspersed nuclear elements), SINEs and LTRs were extracted
from RepeatMasker track. CGIs and enhancers were downloaded
from CGI track and GeneHancer track, respectively. The promo-
ters in this article were defined as regions 2000 bp upstream and
200 bp downstream of transcription start sites. Local CpG den-
sity for a site was defined as the number of neighbouring
CpGs in a 500 bp window centred at that site.

The chromatin accessibility data were retrieved from
ENCODE/OpenChrom (Duke University) H1 cell line. The
regions of TF peaks or TFBR denoted in this article were acquired
from ENCODE ChIP-seq clusters for 161 TFs in H1 cells. The
whole genome bisulfite sequencing (WGBS) dataset used in
this study was retrieved from GSM1112841.

4.3. Stochastic simulation
Region-specific simulationsof single-CpGstochastic enzyme-kinetic
models were carried out using two candidate mechanisms,
the distributive model and the processive model (figure 4). The
model reactions and associated rate parameters are graphically
depicted in figure 4b,c. The distributive model was simulated
using theGillespie stochastic simulation algorithm[68]. To incorpor-
ate one-dimensional diffusion into the processive model, we used a
first passage time kinetic Monte Carlo algorithm inspired by [69].
The methylation maintenance model and simulation method are
based in part on our previous simulation studies [34]. In the present
article,we refinedourprocessivemodel and simulationalgorithmto
rigorously incorporate physics of one-dimensional diffusion (also
called ‘sliding’) of proteins along DNA, with unbinding [50],
while enabling simulation of large numbers of CpGs. Our analytical
results on enzyme diffusion and simulation algorithmare presented
in the electronic supplementarymaterial (Extendedmethods), along
with further details of themodels. Parameter values are chosen to be
in line with experimentally measured values for DNMT1 where
possible [70] and also to match features of the Repli-BS data (see
electronic supplementary material, table S1 for details).

Simulations are performed for stretches of N CpGs (N =
25 000−75 000). Simulations mimic two types of experimental
data modalities: WGBS and Repli-BS. To simulate WGBS exper-
iments, for a region of CpGs, the simulation is initialized
at post-replication time = 0, and then read out at randomly
sampled timepoints between 0 and 24 h later, to reflect the vari-
able post-replication timings of bulk cells in WGBS experiments.
Ten simulation replicates are combined to generate estimates
of average per-site methylation levels. To mimic the Repli-BS
experiment, the methylation status of CpGs in the simulation
were read out at timepoints sampled from intervals matching
pulse-chase experiments [32], including uncertainty with respect
to true post-replication timing. That is, given the finite BrdU
pulse-length, the 0 h experimental timepoint is assumed to
correspond to t∈ [0−1] hours post-replication, and the 1 h exper-
imental timepoint corresponds to t∈ [1−2] hours post-
replication, etc. Therefore, timepoints of simulation readout
were sampled from tchase + r∈ [0, 1] h, where experimental
timepoints tchase were 0, 1, 4, 16 h and r is a uniformly distributed
random number. The number of simulations and readouts at
each timepoint were chosen to mimic the distribution of exper-
imental read-depths. The synthetic Repli-BS data were then
processed with the same MLE procedure as the experimental
data to infer per-CpG methylation rates. Simulations were
used to validate our statistical inference procedure. We tested
that ground-truth correlation functions produced by the two
models could be recapitulated by the inference procedure.

Data accessibility. Data (including inferred methylation rates and
computed correlation functions) and simulation codes are available
in a github repository: Read-Lab-UCI/DNA-methylation-kinetics-
correlation. The data are provided in electronic supplementary
material [71].
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