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ABSTRACT

Unbiased evaluation of morphology is crucial to understanding development, mechanics, and pathology of striated muscle tissues. Indeed, the ability
of striated muscles to contract and the strength of their contraction is dependent on their tissue-, cellular-, and cytoskeletal-level organization.
Accordingly, the study of striated muscles often requires imaging and assessing aspects of their architecture at multiple different spatial scales. While
an expert may be able to qualitatively appraise tissues, it is imperative to have robust, repeatable tools to quantify striated myocyte morphology and
behavior that can be used to compare across different labs and experiments. There has been a recent effort to define the criteria used by experts to
evaluate striated myocyte architecture. In this review, we will describe metrics that have been developed to summarize distinct aspects of striated
muscle architecture in multiple different tissues, imaged with various modalities. Additionally, we will provide an overview of metrics and image
processing software that needs to be developed. Importantly to any lab working on striated muscle platforms, characterization of striated myocyte
morphology using the image processing pipelines discussed in this review can be used to quantitatively evaluate striated muscle tissues and contribute
to a robust understanding of the development and mechanics of striated muscles.
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function of striated muscle organs is influenced by architecture at mul-
tiple length scales (Fig. 1). The appearance of striated muscle is derived
from the alternating pattern of thick myocin filaments and thin actin
filaments [Figs. 1(2)-1(c)]." In a longitudinal section through myofi-
brils, an array of myofilaments, alternating, anisotropic dark bands
appear, which are called z-lines or z-discs [Figs. 1(b)-1(d)], and the
area between two z-lines is called a sarcomere [Fig. 1(b)]." Striated
muscle utilizes the synchronized contraction of sarcomeres organized
at the multiple length scales to properly function," which in the heart,
leads to forces that can pump blood throughout the body. As a result,
any structural changes within the architecture of the myocardium
leading to impaired cardiac function.” Recreating in vitro the normal
and pathological in vivo architecture would significantly improve our
understanding of the mechanisms that link the architecture of the stri-
ated muscle and the emergent function. To achieve this, it is essential
to be able to quantify the multi-scale architecture of proteins and cells
that compose the striated muscle tissues.” However, the multitude of
different proteins in the striated muscle (actin, z-actinin, tubulin, etc.)
that is part of different constructs such as myofibrils [Fig. 1(c)], z-lines,
and microtubules create a challenge in the analysis and quantitative
description of architecture.

Quantification of cellular morphology and structure from images
is fundamental to the study of striated muscles. It has been used to char-
acterize muscle developmental stages,” ~ engineered tissues,” ' effects
of disease' " or injury,”'® and treatment with pharmacological
agents'” as well as to predict the reduction in contractile function.””"”’
This is in large part due to the unique link between structure and func-
tion in striated myocytes, as their ability to contract is dependent on the
nearly crystalline order of their cytoskeletal components.””*’ Indeed, a
large fraction of human myopathies is the result of mutations in the
structural components.”” While many of the hypotheses about the
aspects of striated myocyte morphology that impact function may come
from the qualitative assessment of images, it is essential to use quantita-
tive techniques to ensure reproducibility and reliability across labs,
which is especially challenging for immature and highly variable cell
types.

These new cell types have emerged as the adult heart has a
restricted regenerative potential because the mature cardiomyocytes
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(CMs) are at the post-mitotic stage, making the heart vulnerable to
progressive damage. A couple of strategies, used to supplement exist-
ing cardiac cells, are (1) forcing cardiac cells back into a pre-mitotic
stage,” and (2) using stem-cell derived cardiomyocytes.” The develop-
ment of human-induced pluripotent stem-cell-derived cardiomyocytes
(hiPSC-CMs) technology holds great promise as a therapeutic option
and a disease model.”” However, hiPSC-CMs resemble cardiomyo-
cytes in their embryonic stage and are immature in their phenotype,
physiological stiffness, and gene expression, thus they do not fully
recapitulate a functioning myocardium.” ** To fully utilize these
highly variable cells and tissues engineered based on the hiPSC-CM
technology, it is essential to be able to fully capture their architecture
and compare it quantitatively among experimental groups.

In this review, we present an overview of different metrics and
software for quantitative assessment of striated myocytes from images
and their impact in order to facilitate future striated myocyte biology
research. Additionally, we provide a look at the future of the field and
the missing metrics and image analysis pipelines that could make a
significant contribution to the field in the future.

Il. STRIATED MYOCYTE CELLULAR MORPHOLOGY

Muscle tissue function is reliant on the specially designed organi-
zation that spans multispatial scales, all the way down to the nano-
scale,”” and connecting and choosing, which scale to focus on presents
its own challenges (Fig. 1). In evaluating pathology of the heart or effi-
cacy of stem-cell derived cells, it can be useful to measure aspects of
gross cell geometry such as area, volume, and aspect ratio.”” > For
example, in the ventricular myocardium, the cellular aspect ratio is
tightly regulated (approximately 7:1),”" " but increases”” or
decreases””” in some types of heart disease. Additionally, in cell cul-
ture experiments, Kuo et al.” established both a correlation between
contractility and cardiomyocyte aspect ratio, as well as between cardio-
myocyte aspect ratio and changes to the cytoskeletal architecture.
Indeed, the cell area is an important property of the cardiomyocyte,
and there are analysis pipelines that have been designed to extract it
automatically from experimental images. For example, ConTraX, a
pipeline that provides high throughput, morphological measurements
of traction force microscopy data, enabled Pardon et al.”” to evaluate

(E) Cardiac Tissue
400-1000 ym

(F) Heart / Myocardium
1-100 mm

10-’'m 10-6m 10-5m

10-4m 10-3m 10-2m 10-'m

FIG. 1. A diagram of mycardium components and their relative length-scale. (a) Actin—myosin motor, (b) a sarcomere unit, (c) a myofibril composed of aligned sarcomere units,
(d) a cardiomyocyte, (e) multiple cardiomyocytes in a tissue, and (f) the heart. (d) and (e) Red—o-actinin; green—actin; blue—nuclei; Scale bar: 10 um.
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the morphology of thousands of hiPSC-CMs within days as opposed
to a few months.” In gathering quantitative data, they were able to
show a significant change by day 20 of hiPSC-CMs maturation.” As
with all automated image analysis pipelines, ConTraX requires careful
handling. For instance, unintentional exclusion of certain hiPSC-CM
phenotypes can occur if the morphological selection gates are not care-
fully defined while using ConTraX." Furthermore, the throughput of
ConTraX and other platforms is limited by the automation of cell dif-
ferentiation and fluorescent labeling, and by the computational power
of computers used.” While these pipelines are powerful, evaluating
only cell or tissue scale architecture is insufficient to fully characterize
striated muscle tissues.

Ill. STRIATED MYOCYTE CYTOSKELETON
ARCHITECTURE

Striated myocytes are composed of parallel myofibrils that are
spanned by repeating sarcomere units [Figs. 1(b)-1(e)], which are
highly ordered structures that self-assemble during embryonic and
post-natal development.””*’ Organization of the striated myocyte
cytoskeleton is integral to the efficiency of force production,™*"*
where sarcomere units produce a contractile force parallel to
the thick myosin filaments as they slide past the thin actin
filaments™**’ [Fig. 2(a)]. The uniaxial force generated by muscle
tissues is maximized when all sarcomeres within a cell are aligned
and all cells in a tissue are aligned.”” Consequently, myofilament
disorganization has been shown to have a critical role in contractile
impairment.”**” Furthermore, the organization of myofibrils and
their sarcomeres may guide the position, shape, or organization of
other organelles, in particular the mitochondria and nuclei.** *
Organizational guidance and changes to morphology caused by
the cytoskeleton may also impact gene expression and have other
downstream functional consequences.”” ** In order to address the
need to evaluate cytoskeletal architecture, many metrics and image
processing tools have been developed.

REVIEW scitation.org/journal/bpr

A. Metrics to evaluate cytoskeleton architecture:
Organization

Quantifying the organization of cytoskeletal proteins such as
actin and sarcomeric «-actinin is an extremely useful tool for the char-
acterization of striated muscle [Figs. 2(b)-2(d)]. One popular metric
for measuring global construct organization, such as myofibril organi-
zation within a cell or tissue, is the orientational order parameter
(OOP) [Fig. 2(b)].”**"*** The value of OOP ranges from 0 to 1 with
0 indicating complete isotropic orientation and 1 indicating perfectly
aligned orientation [Fig. 2(b)].”” The sarcomere OOP can be calculated
from images [Figs. 1(d) and 1(e)] analyzed to identify constructs, such
as actin and z-lines. Using the OOP to quantitatively summarize both
the sarcomeric o-actinin and actin organization has shown a positive
and predictive relationship between cytoskeletal alignment and con-
tractile stresses in engineered cardiac tissues.””” The QOP [Fig. 2(b)]
of sarcomeric a-actinin has also been used to phenotype stem cell
derived cardiomyocytes, and compare them with primary cardiomyo-
cytes.”””” The local organization has been measured by quantifying
the OOP of a construct, such as a sarcomere or actin fibril, at shorter
length scales,'” the correlation between the orientation of cellular con-
structs relative to other components, the co-orientational order
parameter (COOP),” and by the sarcomere organization score devel-
oped by Sutcliffe et al”” Both experimentally and theoretically, the
cytoskeletal organization has been shown to impact contrac-
tion,””” underscoring the significance of quantifying this property
of striated myocyte architecture. One important caveat to these
metrics is that they require accurate segmentation of the construct
of interest, such as a z-line, in order to accurately capture the orga-
nization of that construct. There are different ways to tackle this
image analysis challenge. For example, in Morris et al.,”’ the local
actin organization was used to isolate the o-actinin of sarcomeric
z-lines from that belonging to immature stress fibrils. The propor-
tion of o-actinin that comprised sarcomeric z-lines rather than
immature stress fibers (z-line fraction) has also been used as a met-
ric to compare engineered tissues [Fig. 2(c)].”
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FIG. 2. Striated myocyte architectural metrics and features. (a) Schematic with a label for the sarcomere length and continuous z-line length for four myofibrils. (b) Schematic
of the Orientational Order Parameter (OOP), where each red line represents a construct such as a sarcomeric z-line. (c) Schematic of the z-line fraction, where the red arrows
indicate the sarcomeric z-lines and the green lines represent actin. (d) Examples of perfect continuity and variable continuity of the z-lines (red) of four parallel myofibrils
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To further quantify specific aspects of z-line architecture from
fluorescent images and evaluate the function of engineered tissues, mul-
tiple pieces of software have been developed, such as ZlineDetection and
SarcTrack (Table 1).”'%°°"%* ZlineDetection is an automated protocol

REVIEW scitation.org/journal/bpr

from ZlineDetection to quantify the OOP of sarcomeres and actin
belonging to healthy individuals and patients with progressive heart dis-
ease.”’ The results showed that for one patient’s line, the organization of
sarcomeres was significantly lower than for control lines.”’

that isolates z-lines and characterizes their architecture {OOP
[Fig. 2(b)], Z-line fraction [Fig. 2(c)], and Z-line continuous length [Fig.
2(d)]°°} while SarcTrack is a Matlab software that can determine sarco-
mere content, sarcomere length [Fig. 2(a)], and rate of contractile func-
tion®" (Table 1). These analysis techniques can also be combined as
demonstrated by Morris et al.”’ who combined SarcTrack with methods

B. Metrics to evaluate cytoskeleton architecture:
Sarcomere length

Another important characteristic of striated myocytes is the sar-

comere length [Fig. 2(2)],"*”” which increases during myofibril devel-
opment.”® Accordingly, it has been commonly used to characterize the

TABLE I. Open source codes used in quantitative analyses of striated tissue.

Name Language Capabilities Key measures Link to code
ConTraX™” Matlab Dynamic Over time tracking of contrac- https://github.com/MicrosystemsLab/ContraX
tile dynamics of thousands of
cells and quantifying cell area
SarcTrack”' Matlab Dynamic Quantifying sarcomere length https://github.com/HMS-IDAC/SarcTrack
and content, as well as contrac-
tion and relaxation parameters
SOTA” Matlab Static Cell segmentation and sarco- http://bme.virginia.edu/saucerman/*
mere registration
Z-line detection®’ Matlab Static, ~dynamic Segmention and analysis of sar-  https://github.com/Cardiovascular-Modeling-
comeric z-discs Laboratory/zlineDetection
Deepsynth®’ Image] Static Nuclei segmentation https://github.com/grockious/deepsynth
LoS* Mathematica Dynamic 3D fluorescent nuclei www.physikalischebiologie.de/downloads
segmentation
OpenSegSPIM"* Matlab Static Nuclei segmentation of confo- opensegspim.weebly.com

cal, multiphoton, and LSFM
data
Other resources the reader might be interested in

SarCoptiM*” Image] Dynamic Computation of spatial fre- https://pcev.univ-tours.fr/Image]/
quency SarcOptiM/dl/SarcOptiM.zip
of the striated pattern of a
myocyte

Sarc-Graph™ Python Dynamic Segmentation, tracking and https://github.com/elejeunel1/Sarc-Graph

analysis of sarcomeres
TANGO"’ Image] and R Static Quantitative study of nuclear http://biophysique.mnhn.fr/tango

organization

in fluorescent images

MINS® Matlab/C++ Static 2D and 3D segmentation of http://katlab-tools.org
cells and nuclei detection

RACE"™ C++ Static 3D cell segmentation for con-  https://bitbucket.org/jstegmaier/race/downloads/

focal and LSFM data
SAMA”’ ImageJ/R Dynamic Quantitative and morphologi- https://montevil.theobio.org/en/content/sama®

cal
3D analysis of cell structure
Vaa3D”'! Qt/C++ Dynamic 3D visualization of gigabyte- https://github.com/Vaa3D/Vaa3D_Wiki/
sized microscopy images wiki/Download-Vaa3D-executables
3D-cell-annotator’” MITK Static 3D segmentation and annota- www.3d-cell-annotator.org
tion of single cells

XPIWIT” Qt/C++ Static 3D+t segmentation of fluores-  https://bitbucket.org/jstegmaier/xpiwit/downloads/

cent nuclei

“The link given in the paper does not work. Contact authors for a functioning link.
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immaturity of stem-cell derived cardiomyocytes, which have shorter
sarcomere lengths than that of primary cardiomyocytes.” Because
measuring the sarcomere length cannot be done efficiently by hand,
numerous automated software, including SarcTrack, have been devel-
oped to measure sarcomere length in images.”'*°"* For example, the
sarcomere content of hiPSC-CM was quantified using SarcTrack dur-
ing differentiation from days 12 to 20.”"

There are some metrics that are important characteristics of stri-
ated muscle tissue that SarcTrack is not able to extract from the
images, such as continuous z-line length [Fig. 2(d)]. Due to the mor-
phological changes of striated myocytes during development, both the
sarcomere length and the continuous z-line length are essential metrics
that should be included in analysis pipelines. However, depending on
the pathology or maturity of the tissue, it may be necessary to measure
more subtle changes in sarcomere architecture. Although SarcTrack,
ZLineDetection, and other similar software offer a powerful tool to
segment, track, and analyze sarcomeres, there are limitations that
include a potential bias in interpreting data due to heterogeneity in
sarcomere width and shape, and/or the inability to track all
sarcomeres.”’

C. Metrics to evaluate cytoskeleton architecture:
Sarcomere registration and continuity

Lateral alignment of sarcomeric z-lines in neighboring myo-
fibrils (i.e., z-line registration) has also been considered an impor-
tant metric to assess striated myocytes [Fig. 2(a)].”"*>">77 %
Based on this prior work, it is clear that the registration has sec-
ondary importance to the overall organization of the muscle tis-
sue. Indeed, when the sarcomeres are well organized with the
same sarcomere length, it has been hypothesized that sarcomeric
z-line registration influences contractile function and is an impor-
tant characteristic of well-formed myofibrils.””>’"% The
hypothesis has been supported by the observation of a disruption
in z-line registration between adjacent myofibrils in the ventricles
of failing hearts.”” The significance of z-line registration has
been investigated using both theoretical and experimental
approaches,”*>”" %% which often required measuring z-line
registration in images of striated muscle. Using an experimentally
observable metric—the length over which z-lines of neighboring
myofibrils are registered [Figs. 2(a) and 2(d)]—to approximate
z-line registration, a correlation between high z-line registration
and coherent, strong contractions was demonstrated in single
cells.”>”?~%! However, many of these methods lack robustness,
high throughput techniques, and repeatable tools to characterize
z-line architecture.”’ In order to overcome the reliance on experts
to manually or semi-manually measure the registration length in
images, an automatic method of measuring continuous striation
lengths was developed by Morris et al.”” and used to quantify dif-
ferences among engineered tissues. The developed computational
protocol was used to (1) calculate the fraction of a z-line protein,
o-actinin, that is formed into z-lines as opposed to immature
stress fibrils, (2) locate the z-discs of neighboring myofibrils, and
(3) measure their lengths.("j However, a difference in striation
continuity length could not fully account for functional differ-
ences between engineered isotropic and anisotropic tissues or sin-
gle cells with the constant area, but variable aspect ratios.”’

REVIEW scitation.org/journal/bpr

1. Additional metric: Z-line registration

In order to more successfully predict contractile stresses in engi-
neered tissues, it may be necessary to incorporate a metric that cap-
tures the degree of z-line registration, rather than z-line continuity,
into existing models of contractile function.”’ The registration param-
eter is a measure of the registry of alignment of z-discs across different
parallel myofibrils [Fig. 2(c)]. The registry can be described as a phase-
order parameter that can influence the synchronized motion of beat-
ing in a cardiomyocyte, which in turn will impact its ability to develop
force.”’

True sarcomeric registration has been calculated theoretically
and for single myofibrils, manually.”' There have been some attempts
to create image processing pipelines to evaluate properties that are
likely related to sarcomeric registration. For example, a pixel-based
image analysis called Sarcomere Texture Analysis (SOTA)””** utilizes
Haralick texture features, which are defined by Haralick et al.® to be
calculated from the gray level co-occurrence matrix and can be applied
to any geometric shape (Table ). Synthetic data of striped images
that represent idealized sarcomere patterns were constructed and used
to demonstrate the power of this method.”” Each pattern produced
repeated peaks in the Haralick correlation with the greatest peak mag-
nitude corresponding to the direction of the sarcomere, which is remi-
niscent of the director information produced by other methods. The
novelty of this method is based on measuring the decay of the
Haralick Correlation as a function of offset distance, and it can extract
various features of the sarcomere structure that might not be otherwise
accessible.”” However, the interpretation of these results requires more
work to tie the mathematical output with variability in registration or
other functional features. In the field of liquid crystal, a description of
the registration of short segments is measured using the smectic order
parameter.” In the future, it would be very interesting to develop an
adaptation of the smectic order parameter from liquid crystals that
could be automatically calculated for large cardiac tissues as it may be
crucial in producing more accurate predictions of engineered tissue
contractile function.”

IV. NUCLEAR MORPHOLOGY

The striated myocyte nucleus is mechanically connected to the
cell membrane through the cytoskeleton, which has been shown to
influence nuclear morphology.”” > Because changes in nuclear mor-
phology are often accompanied by altered function, fully understand-
ing the functional and genomic consequences of striated myocytes in
pathology, aging, or in response to stimuli, requires recognizing
changes to nuclear morphology.”””*""** For example, mouse models
of muscle laminopathies showed nuclear envelope and DNA damage
due to nuclear migration during skeletal muscle maturation that corre-
lated with disease severity, which illustrated the importance of evaluat-
ing nuclei morphology.” According to Heffler et al.,” disruption in
desmin, intermediate filaments that form a honeycomb-like structure
that wraps around the sarcomere at the z-disk and maintains nuclear
shape and the fidelity of the nuclear envelope, increases the susceptibil-
ity of cardiomyocyte nuclei to collapse, and this disruption is associ-
ated with impaired cardiomyocyte function. Thus, the nuclear shape
can be an indirect measure of the proper state of cardiomyocytes and
other cells.

As the characterization of nuclear morphology is an important
part of many biological fields, there is an abundance of software
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designed to segment nuclei in images using a large variety of image
processing and deep learning approaches.”’ '”* Once nuclei have been
segmented, there is also a need for robust, quantitative metrics to com-
pare and classify their morphology as normal or containing
defects.””"” While the variability and complexity in biological pheno-
types and the associated noise in signal quality make it challenging to
segment the nuclei, there are multiple approaches to do so.”
However, an important challenge is selecting the correct metrics to
characterize the nuclei, including geometry as well as a relative loca-
tion both of which are important to tissue function. Regarding the
nuclear geometry, there is evidence of changes in size and eccentricity,
as well as the presence of nuclear blebs or invaginations in pathological
conditions such as cardiomyopathies and laminopathies.'”” """

A. Additional metrics: Nuclear shape descriptors

Defining which geometric properties should be used to character-
ize striated myocyte nuclei, requires further investigation into the
mechanisms by which their morphology impacts their function, as
well as understanding these mechanisms in the context of changes to
the cytoskeleton.”””'"> Further, expanding nuclear morphology
assessment to better characterize malformations through the use of
additional shape descriptors'””'""'*!"” could yield more insight into
the morphological changes in cardiomyocytes from patients with
disease-causing mutations. Additionally, to more fully characterize
nuclear morphology, it may be beneficial to evaluate the cytoskeletal
architecture surrounding each nucleus and determine the cell type or
cell state to which a nucleus belongs.

V. EVALUATING ARCHITECTURAL METRICS
IN THICKER TISSUES AND 3D ORGANOIDS

Traditional studies on hiPSC-CMs cultures are usually performed
on a variety of culture plastic and two-dimensional (2D) substrates.''*
However, hiPSC-CMs tend to aggregate and self-assemble into a
thicker tissue as opposed to forming a flat monolayer like primary car-
diomyocytes,”*>""” which imposes challenges in imaging and analy-
sis. While these samples are thicker, there is still a dominant planar
structure, which implies that mathematically the parameters that have
been described thus far in this review should still be applicable. For
example, if the tissue is almost flat [Fig. 3(a)], it is best to calculate the
OOP [Fig. 2(b)] in the horizontal plane using the standard equations

sarcomeres
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normally utilized for 2D constructs, such as actin myofibrils”’ [Eq.
(1)]. The OOP in 2D can be calculated using:

OO0P,p = {cos (20)) = (2 cos*(0) — 1), (1)

where 0 is the angle between each construct and the director, i.e., main
direction of all constructs. However, to accurately apply the parame-
ters, the pipelines of imaging and feature extraction need to be appro-
priately adjusted for each feature and parameter of interest. Imaging
somewhat thick specimens is possible using confocal microscopy and
optical sectioning [Figs. 3(b)-3(d)].%

In the long run, moving from cell monolayers to true three-
dimensional (3D) cultures is one of the pathways that is being pursued
to more accurately mimic the function of living tissues.”’
Subsequently, the need for dynamic quantitative analysis of 3D biolog-
ical structures with excellent optical sectioning capability is an emerg-
ing necessity. "’ Furthermore, as such imaging becomes realistic, it
will be necessary to adjust the suite of architectural parameters to true
3D representation.

A. Thicker tissue: Nuclei

Automated segmentation of confocal images is challenging
because characteristics that are obvious to the human eye are fre-
quently difficult to translate into quantitative results that can be used
by a computer. One challenge in analyzing thicker tissues is separating
individual DAPI stained nuclei that appeared in multiple z-slices [Fig.
3(a)]. This can be achieved by using Deepsynth, a modified version of
a 3D convolutional neural network that uses machine-learning techni-
ques,(” the 3D Iterative Thresholding (IT), an algorithm impeded in
3D Image] Suite of Image]/Fiji,'”" Lines-of-Sight (LoS), an automated
method to segment 3D fluorescent images,”” or OpenSegSPIM, a 3D
automatic quantitative analysis tool for confocal data (Table 1).°°
Nuclear segmentation can also be performed in several steps that
break the images apart for analysis that can be achieved with prior
pipelines.” First, each z-slice needs to be segmented and nuclei should
be grouped after comparing the segmentation results for each neigh-
boring z-slice, such that continuity is maintained for each nucleus.
Then, the maximum projection of each single nucleus can be sepa-
rately saved after verification from the user [Fig. 3(b)].”" As long as
one of these methods successfully isolates and concatenates each
nucleus from each z-slice where it exists, the nuclei can be analyzed for

actin orientation

FIG. 3. Analysis of thicker tissues engineered from iPSC-derived cardiomyocytes. (a) Merge maximum projection of a confocal stack showing DAPI, green—actin, red—
o-actinin. (b) DAPI stain showing multiple overlaid nuclei with segmentation results. (c) One confocal slice with sarcomere detection results. (d) One confocal slice with actin

orientation detection. Scale bar: 20 um.
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their morphological properties even if in a classical maximum projec-
tion image, the nuclei overlap. The power of such methods is that they
reduce the imaging pipeline for use with any previous method and can
be applied to many organelles that span multiple optical slices.

B. Thicker tissue: Sarcomeres

For some structures, the imaging is not yet at a level where it is
possible to reconstruct the 3D organelle. For example, sarcomeres,
even in 2D, are analyzed pixel by pixel. Thus, a completely different
approach can be taken when working with analyzing sarcomere archi-
tecture in thicker tissues. Namely, the sarcomere structure can be
reconstructed using confocal microscopy and optical sectioning. After
sectioning the tissue into slices, each slice’s sarcomeres can then be
analyzed using developed algorithms such as SarcTrack (Sec. 111 B),”’
Sarcomere Texture Analysis (SOTA),””*" and ZlineDetection.”’ Even
though each algorithm is theoretically capable of assessing sarcomeres
on its own, the current state-of-the-art method is to combine a few of
these algorithms because hiPSC-CMs often lack striations, the charac-
teristics of mature cardiac myocytes,” which makes the images
extremely noisy for analysis. As a result of the hiPSC-CMs sarcomeres
immaturity and non-linearity”” [Figs. 3(a) and 3(c)], the shear amount
of inherent noise overwhelms any of the existing image processing
pipelines if used alone.

To take full advantage of the filtering capability of the
ZlineDetection method,” it is also necessary to reconstruct the actin
architecture in a thicker sample, and couple it with the sarcomere loca-
tion and orientation. If the orientation of actin in thicker tissues is cal-
culated, the distribution can be visualized by plotting the angle
frequency as a function of its distribution Han et al.'** Alternatively,
the orientation of actin in thicker tissue can be evaluated with many
existing metrics such as the 3D directional variance algorithm, which
is based on the extension of a previously established 2D weighted vec-
tor summation technique Liu et al."” or the curvelet-based alignment
analysis software where the orientation can be quantified by measuring
its angle relative to the axis direction. Another method to measure the
orientation in each 3D slice is by first enhancing the contrast of each
actin stained optical slice. Second, each image is filtered with a
Gaussian kernel and normalized from which the orientation vectors
can be calculated. Third, the orientation vectors for each optical slice
are concatenated for the field of view and then for the entire sample.
The information on actin orientation can be useful on its own, by
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calculating the orientation order of actin in the sample [Eq. (1)]*" of
all of the vectors in the whole volume of the tissue [Fig. 3(d)].
Alternatively, the detailed information on actin directions for each
optical slice can be used to eliminate some of the noise inherent in the
ZlineDetection pipe-lines when applied to highly noisy images”” [Fig.
3(c)]. Once these constructs, i.e., z-lines, sarcomere edges, or actin,
have been identified the OOP for any of these [Fig. 2(b)] can be calcu-
lated for each experimental condition.”’

C. 3D organoids

Because the actin cytoskeleton ensures the structural and
mechanical integrity of cells'** and is essential to the mechanosensitiv-
ity and mechanical response of adhering cells to their environ-
ment,'”” ** it may be important to characterize 3D actin organization
in true 3D organoids. Other constructs, such as z-lines and extracellu-
lar matrix might also be important to evaluate in true 3D organoids.

While this has not yet been tackled, it is possible to adapt existing
algorithms to output a 3D vector for each construct pixel. Then, con-
struct organization in 3D could be measured by computing a 3D ori-
entation vector for each pixel, and using the 3D nematic order
parameter (3D OOP) to quantify the organization, which can be calcu-
lated using'*’

00P,p — <3cosz(29) -1 >7 2)

where 0 is the angle between the construct of interest and the
“average” direction, i.e., director.

VI. MUSCLE TISSUE WITH MULTIPLE CELL-TYPES

Studying interactions between morphologically or phenotypically
distinct cells is a vital aspect of understanding biological processes, ™’
such as the role of smooth and skeletal muscle in esophageal func-
tion,"”" the cardiac remodeling response of cardiomyocytes and car-
diac fibroblasts [Figs. 4(a)-4(c)],"* " and the variability in the cell
types and functionality produced from cardiac differentiation from
induced pluripotent stem cells.”*”'*> Therefore, in order to study
interactions or differences between morphologically distinct cells, it is
necessary to accurately and reliably separate them in images, which
can be extremely challenging to do by hand in a high-throughput
manner, particularly in confluent tissues. To combat this issue, image-
based cell profiling commonly makes use of machine learning

FIG. 4. Images of neonatal rat cardiomyocytes and fibroblasts stained for (a) o-actinin [(c), red], (b) actin [(c), green], and DAPI [(c), blue]. The arrowheads in (a)—(c) point to a
fibroblast (green), a cardiomyocyte (red), and a cell with no identifiable sarcomere striations (cyan). Scale bars: 20 um.
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classifiers and feature extraction, as well as deep learning
approaches.” #0103 130507142 e the cell type or cell state seg-
mentation has been achieved, it can be combined with other analysis
to unlock even more biological information, including studying inter-
actions between different cells.”’ However, it is extremely difficult to
create a classifier that can correctly account for the large spread of bio-
logical and experimental variability, especially while considering the
unique morphology of striated myocytes, which makes this the next
challenge in the field.

VIl. ANALYSIS OF DYNAMIC DATA

Striated muscle is inherently dynamic during the contraction
process, and the dynamic deformations result in rhythmically evolving
cytoskeleton architecture and nuclei geometry. With the advent of
multi-photon microscopy, stem-cell derived muscle that can be fluo-
rescently tagged for specific constructs such as z-lines, and fast cam-
eras, it is now possible to collect serial images, i.e., movies, of muscle
cytoskeleton and organelles. Therefore, image analysis pipelines that
are capable of tracking the cellular features dynamically **”*”°" are
important to the future of the field (indicated in Table I). The first step
in converting static analysis to analyze dynamic data are to automate
the analysis of each image in the movie, which can be easily applied to
many of the static codes in Table I. For example, Z-Line detection®’
can be easily looped to analyze previously published data”' of beating
sarcomeres. However, true dynamical analysis also requires continu-
ous tracking of the structures of interest during the movement. While
this presents an added challenge, the future benefits to the field are
essential as for example, dynamics of sarcomeres”' can be directly tied
to function such as local strains and developed force directions.

VIll. FUTURE DIRECTIONS

Biological 3D image stacks contain rich data that require
well-developed, automated digital analysis methods. Using machine
learning approaches is efficient when a specific repetitive task or classi-
fication is needed if an appropriated training set can be created. For
example, machine learning has already been applied to the task of
nuclei segmentation. In the study of Dunn et al.,”" the tedious process
of manually training the algorithm to outline individual nuclei was
performed successfully. Challenges that still remain are, for example,
creating training datasets of cell boundary to develop algorithms to
automate the process. Another such challenge is in analyzing heteroge-
neous cell architecture, such as sarcomeres because, it is incredibly
hard to define a large enough training set manually. The techniques
and metrics in this review might be the future if they are coupled with
machine learning algorithms. This is especially true if the analysis of
the data gathered by the algorithms is coupled with machine learning
techniques, which has been done with some structural aspects of cardi-
omyocytes.” Still, if machine learning algorithms can be trained to
detect cell border or individual sarcomeres, a lot of data can be
extracted from 3D biological image stacks and high throughput data,
which will enrich both the classical and machine learning analysis of
healthy vs pathological tissues.

IX. CONCLUSION

Here, we presented an overview of image processing and analysis
techniques for the assessment of striated myocytes. The unique nature
of these cells necessitates the use of advanced image analysis techni-
ques. While there have been many advances in computer vision and
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biological image analysis,"*’ many tools are not applicable for charac-
terizing striated myocytes™ architecture without further modification.
The specialized pipelines designed for striated myocytes have yielded
great insight into the structure-function relationship and architectural
changes during pathology. As this review demonstrates, widespread
adaptation and additional development of these computational techni-
ques will enable further advances in the field of striated myocyte
morphology.
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