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SUMMARY

The genomic positions of nucleosomes are a defining feature of the cell’s epigenomic state, but signal-
dependent transcription factors (SDTFs), upon activation, bind to specific genomic locations and modify
nucleosome positioning. Here we leverage SDTFs as perturbation probes to learn about nucleosome dy-
namics in living cells. We develop Markov models of nucleosome dynamics and fit them to time course
sequencing data of DNA accessibility. We find that (1) the dynamics of DNA unwrapping are significantly
slower in cells than reported from cell-free experiments, (2) only models with cooperativity in wrapping
and unwrapping fit the available data, (3) SDTF activity produces the highest eviction probability when its
binding site is adjacent to but not on the nucleosome dyad, and (4) oscillatory SDTF activity results in high
location variability. Our work uncovers the regulatory rules governing SDTF-induced nucleosome dynamics
in live cells, which can predict chromatin accessibility alterations during inflammation at single-nucleosome

resolution.

INTRODUCTION

Nucleosomes are critical for packaging the eukaryotic genome
into the nucleus: 2 m of human DNA must be packed into a
1-um nucleus (Alberts et al., 2002). As a consequence of pack-
ing, access to the DNA is limited, but selective access is
important for gene expression (Allfrey et al., 1963). Hence, nucle-
osomes have evolved to be highly dynamic. Dynamic nucleo-
some repositioning, including histone assembly, disassembly,
and eviction, are important for generating dynamic chromatin
states that are ultimately permissive or non-permissive to gene
expression (Lee et al., 2004; Shivaswamy et al., 2008).

Early biophysical in vitro studies of histone octamer-DNA inter-
actions focused on high-resolution studies of static interactions
(culminating in X-ray or cryoelectron microscopy [cryo-EM]
structures) as well as dynamic interactions of nucleosomal
DNA sequences bound to reconstituted histones in cell-free
experimental systems (Zhou et al., 2019). High-resolution struc-
tures elucidated the interaction points between the histone oc-
tamer (H2A-H2B pairs and H3-H4 pairs) and the DNA wrapped
around it (Luger et al., 1997). In vitro studies of nucleosome un-
wrapping and rewrapping determined with a variety of methods,
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including fluorescence resonance energy transfer (FRET), re-
vealed quantities such as the average time taken for sponta-
neous DNA unwrapping (Li et al., 2005), the differences in
timescales of dissociation and reassociation of the different
DNA-histone contact regions on the nucleosome (Tims et al.,
2011), and a fundamental asymmetry in the process so that the
unwrapping of one side helped to stabilize the other side (Ngo
et al., 2015).

Mathematical models have explored the dynamic behavior of
nucleosomes and their role in chromatin biology, including the
effect of chromatin remodeling proteins on nucleosome sliding
(Chou, 2007) and the deposition of histone marks along nucleo-
some arrays for epigenetic memory (Dodd et al., 2007). Nucleo-
somes have also been modeled with biophysical accuracy by
incorporating the nucleosomal structure of 14 DNA-histone con-
tact points and describing how DNA unwrapping/rewrapping
depends on particular rate parameters (Cheng et al., 2021; Do-
brovolskaia and Arya, 2012; Mdbius et al., 2006). These theoret-
ical approaches show that mathematical models, especially
those involving Markov chains and Brownian motion, can be
used to reproduce in vitro experimental measurements and to
provide insights such as an analytic form of the mean DNA
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detachment time, DNA bending angles, and bistability in histone
modifications.

However, little is known about nucleosome dynamics as they
occur on native chromatin in living cells. These “in vivo” dynamics
are likely markedly different from dynamics measured in cell-free
systems “in vitro” because the interactions between DNA poly-
mer and histone octamer are constrained and because additional
protein factors that are not present in biochemical studies may
further stabilize or destabilize the nucleosome. For example,
linker histones present in vivo also bind to nucleosomal core par-
ticles close to the DNA entry and exit sites, and enzymatic ma-
chines such as SWI/SNF (SWItch/Sucrose Non-Fermentable)
(Dechassa et al., 2010) or FACT(FAcilitates Chromatin Transcrip-
tion) complexes facilitate nucleosome repositioning (Chen et al.,
2018; Liu et al., 2020). However, we know little about these dy-
namics quantitatively because there has not been a straightfor-
ward way to measure nucleosome positioning in vivo and no
controlled way to perturb steady-state positions.

Two recent advances have allowed us to probe nucleosome
dynamics. First, next-generation sequencing (NGS) has pro-
vided ways to measure nucleosome accessibility and positioning
with DNase1 and, more recently, with the assay for transposase-
accessible chromatin (ATAC-seq). These genome-wide mea-
surements revealed that nucleosome positions in vivo are to a
large degree determined by DNA sequence (Segal and Widom,
2009; Segal et al., 2006). Second, identification of DNA-binding
proteins called pioneer factors, which may displace nucleo-
somes by competing with histones for DNA contacts, provides
a means to perturb nucleosomes. The discovery that stimulus-
induced signal-dependent transcription factors (SDTFs) may
also initiate nucleosome re-positioning now allows them to be
used as a probe to study in vivo dynamics because they provide
a trigger to perturb DNA-histone interactions within the cell at
controllable start times (Ostuni et al., 2013; Sen et al., 2020;
Weinmann et al., 1999). In particular, the dynamics of inflamma-
tion-activated SDTF activity has been shown to determine the
propensity for nucleosome repositioning in macrophages and fi-
broblasts (Cheng et al., 2021; Sen et al., 2020). This suggests
that SDTF activation with stimulus-specific dynamics may be
used as a probe to study the histone-DNA interaction dynamics
in the nucleosome via NGS measurements at stimulus start and
endpoints.

Here we present stochastic models for epigenetic remodeling,
which, in this paper, refers to changes in chromatin accessibility.
These math models are based on structural features of the
nucleosome to investigate the regulatory rules behind nucleo-
some eviction. Using probability theory, we calculated the prob-
ability of histone eviction and the resulting mean chromatin
accessibility under various dynamical SDTF signaling patterns.
We report that oscillatory SDTF signals potentially induce greater
variability of cell fate in heterogeneous cell environments than
constant SDTF signals. Then, by experimentally tracking nucle-
osomes at different genomic locations and counting the number
of nucleosome evictions between two time points, we found that
optimal eviction takes place when the SDTF binds adjacent to
the dyad, defined as the center position of nucleosomal DNA,
rather than directly on top of it, indicative of the cooperativity
of histone-DNA contacts. Thus, our modeling approach allows
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us to derive quantitative insights from NGS chromatin accessi-
bility data; provides a framework for understanding location-
specific, SDTF-induced chromatin accessibility changes in
different cellular contexts; and constitutes a tool to predict evic-
tion probability for single nucleosomes in live cells responding to
inflammation.

RESULTS

A stochastic model accounts for nucleosome dynamics
upon SDTF binding in vivo

When SDTFs bind to DNA, their stimulus-specific temporal dy-
namics disrupt the resting state distribution of nucleosomes,
affecting chromatin accessibility (Figure 1A). Epigenetic dy-
namics can be modeled as a continuous system; for example,
deterministic ordinary differential equation models describing
chromatin accessibility in bulk have been used to describe chro-
matin opening steps that result in enhancer formation (Cheng
etal., 2021). However, DNA unwrapping/rewrapping of individual
nucleosomes is subject to molecular stochasticity. The binding
of SDTFs to DNA can be regarded as a time-dependent on/off
switch dramatically influencing chromatin dynamics; this binding
is discrete and stochastic. To incorporate such noisy behavior
and discreteness, we used a continuous-time, discrete-state
Markov chain to model chromatin accessibility with time-depen-
dent SDTF binding. This model is time inhomogeneous because
the transitions given by SDTF binding/unbinding are time depen-
dent (STAR Methods).

To reflect the biophysical structure of the nucleosome, we
assumed that each nucleosome consists of 14 stepwise un-
wrapping and rewrapping transitions, consistent with structural
data on the number of contact points between the histone and
DNA (Luger et al, 1997), as well as previous nucleosome
unwrapping models (Figure 1B; Cheng et al., 2021; Mobius
et al., 2013). Approximately 147 bp of DNA wrap one and
three-quarter times around the core histone octamer (Luger
et al., 2012), resulting in 14 main non-covalent DNA-histone
contact points (Luger et al., 1997). To fully displace the nucle-
osome from any particular genomic location, multiple steps
may be required. Hence, based on structural and biophysical
measurements performed on single nucleosomes in vitro, we
used a coupled stochastic process (X(t),N(t)), where X(t) rep-
resents the number of disassembled DNA-histone contact re-
gions, and N(t) takes either 0 or 1 to represent the on/off state
of the SDTF binding (Figure 1C). We considered the sponta-
neous, stepwise unwrapping behavior of DNA from a single
histone, which originates at the locations furthest from the
nucleosome dyad (state 7).

Regarding the symmetry of the model, we assumed a one-
sided unwrapping model where DNA unpacks from state 0. Prior
experimental cryo-EM or atomic force microscopy studies have
investigated whether the nucleosome unwraps from one side at
a time or two sides simultaneously. The results suggested that
one-sided unwrapping is more likely because opening of one
nucleosomal end stabilizes the other end (de Bruin et al., 2016;
Konrad et al., 2021; Mauney et al., 2018). In addition, structural
studies of the H1 linker histone have shown that the H1 globular
domain bound directly on the dyad and associated with both
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Figure 1. A stochastic model accounts for nucleosome eviction by dynamic SDTF activity

(A) Immune responses activate SDTFs with different temporal dynamics, ultimately affecting chromatin accessibility.
(B) Schematic for the unwrapping/rewrapping model for nucleosome dynamics under SDTF signaling dynamics.

(C) State configuration of the stochastic nucleosome model, where a;, b;, ¢;, d; represent rate parameters.

See also Figures S1 and S7.

sides of the linker DNA, whereas the H1 C-terminal domain
attached to just one of the two linker DNA segments (Bednar
et al., 2017). We surmised that the asymmetry of linker histones
may also further promote one-sided asymmetrical unwrapping
in vivo. Although unwrapping and wrapping of the nucleosome
is primarily unidirectional (Bilokapic et al., 2018; Li et al., 2005;
Ngo et al., 2015), we also considered and analyzed the possibility
that it takes place simultaneously at both ends of the DNA (STAR
Methods; Figure S1), and we found that the qualitative behavior
of 1-sided and 2-sided stochastic models were similar. Hence,
we settled on using the 1-sided model in the main results of
this paper.

The amount of energy released by re-establishing hydrogen
bonds between histone and DNA is greater than the energy
released by the straightening of the DNA polymer during unwrap-
ping, so the rates of rewrapping exceed that of unwrapping,
which, in our model, corresponds to setting a;<b; (Tims et al.,
2011). We set the unwrapping/rewrapping parameters as a, =
ath"~'[min='] and b, = b1th~"*'[min=1] with a cooperativity
constant h so that DNA unwraps more easily the more unwrap-
ped it already is. Biophysical and structural measurements on
single nucleosomes support the cooperative and multistep tran-
sitions in DNA unwrapping from the histone (Li et al., 2005; Po-
lach and Widom, 1995; Tims et al., 2011), but the extent of
such cooperativity remains a free parameter that can be later
fit to data. We note that evidence of cooperativity in the literature
is measured in isolated nucleosomes in vitro, whereas our mea-
surements were carried out in the full cellular chromatin
environment.

We then considered the effect of a dynamic signaling protein
that competes for DNA binding with the histone core octamer.
Short periods of DNA accessibility may be stabilized by the bind-
ing of transcription factors when their cognate binding sequence
is present in that stretch of DNA and they are present at suffi-
ciently high concentrations (Klemm et al., 2019). Spontaneous
nucleosome dynamics, also known as nucleosome breathing,
allow transient exposure of nucleosomal DNA, and the binding
of SDTFs provides steric hindrance that occludes the rewrap-
ping of DNA-histone contacts in the nucleosome. The on-state
of the SDTF makes the nucleosome rewrapping parameter d,
much less than b, around the SDTF binding site (Figure 1C),
whereas ¢, is set to be identical to a,. When a histone is fully
evicted, it detaches entirely from the DNA and might not dock
again to the same genomic location. Thus, we assumed that
bis = di4 = 0 so that state 14 is an absorbing state of X(t).
That is, if X(s) = 14 for some s, then X(t) = 14 for all t>s. We
also analyzed the alternative assumption that state 14 is non-
absorbing, which represents reattachment of an evicted histone,
and found that the models produced similar behavior (STAR
Methods).

Itis known that transcription factor binding operates at a faster
timescale than DNA wrapping or unwrapping (Callegari et al.,
2019). Hence for a given SDTF concentration f(t), we used the
SDTF binding rate «on(t) = cf(t) with a large constant ¢, and
the unbinding rate . is proportional to ko, (0). Indeed, the sto-
chastic system behaves almost identically with any choice of
large ¢, and this is shown in the STAR Methods using a timescale
decomposition argument. For large values of c, the ratio
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BF = koff/ (Kon + kofr) @approximately determines the fraction of
time the SDTF is unbound. The ratio BF could depend on time
when the SDTF signal is oscillatory, and it can also depend on
the strength of the SDTF input.

In another difference from previous models, we considered
the SDTF binding position in relation to the original nucleosome
dyad. Because the nucleosome encompasses ~147 bp of
DNA, and SDTF binding motifs typically stretch 8-10 bp (Stew-
art et al., 2012), the stochastic binding and unbinding of the
SDTF from DNA at the site of its motif is modeled with genome
location-specific resolution by incorporating the relative loca-
tion of binding motifs from the nucleosome dyad. When the
SDTF binds to its cognate motif, it tends to disrupt DNA-his-
tone contacts in its vicinity. The effect of SDTF binding on
the rewrapping parameter is highest near the SDTF binding
site and decreases with distance. See STAR Methods and
Table S1 for a mathematical derivation of statistical quantities,
the definition of the parameters, and the choice of parameter
values of the stochastic process (X(t), N(t))

Periodicity of SDTF oscillations affects DNA
accessibility

In inflammation signaling, the importance of signaling dynamics
is well appreciated (Behar and Hoffmann, 2010; Purvis and La-
hav, 2013; Werner et al., 2005). A prominent SDTF that is acti-
vated during immune responses is nuclear factor kB (NF-«B).
For NF-kB signaling, the amplitude (Lee et al., 2014) and duration
(Hoffmann et al., 2002; Sen et al., 2020) of the signal controls
which genes are activated. However, only recently has the
importance of oscillatory versus non-oscillatory signaling been
revealed in remodeling the epigenome (Cheng et al., 2021) rather
than in primary response gene expression (Barken et al., 2005).
Previously published experimental systems involving mutations
of NF-kB feedback regulators allowed comparison of oscillatory
(wild-type [WT]) and non-oscillatory (Mut) NF-kB activity after tu-
mor necrosis factor (TNF) stimulation of macrophages (Figure 2A;
Adelaja et al., 2021; Cheng et al., 2021), but there is currently no
experimental system that allows altering the period of NF-kB os-
cillations (Longo et al., 2013). Thus, we used the stochastic
model to examine how the period of SDTF oscillations alters
chromatin accessibility; we analyzed the results of numerical
computations with the probability distribution of the full histone
eviction time.

The period of the oscillation quantitatively affects the time-
course dynamics of chromatin accessibility. We set the cooper-
ativity constant h = 1.3, and we set the unwrapping/rewrapping
parameters asa, = 0.2h" ', b, = 3h~"*" for each state n in the
stochastic nucleosome model. For simplicity, we used zero re-
wrapping rates under the SDTF binding, meaning d, = 0 at
each state n. We considered two oscillatory SDTF inputs of
10 min and 60 min half-periods, respectively, that have the
same aggregate signal within the time interval [0, 500] min (Fig-
ure 2B). We sampled 50 time courses of our stochastic model
under each of these two oscillatory inputs, using the Extrande
method (Voliotis et al., 2016), which is a stochastic simulation al-
gorithm for Markov chains with time-dependent transition rates.
The rapid oscillatory SDTF signal with a half-period of 10 min un-
wrapped the nucleosome completely in 19 of 50 samples within
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500 min, whereas 40 of 50 samples were fully unwrapped by
500 min when the half-period was 60 min (Figure 2C). This result
reflected experimental results where SDTF dynamics of longer
continuous duration resulted in increased nucleosome eviction
(Cheng et al., 2021).

To further analyze this system modeled under the two different
dynamic SDTF signals, we described the DNA wrapping process
as a “success or failure game” (Figures S2A-S2C), which can be
analyzed with a geometric distribution. In the case of a cooper-
ative system with h = 1.3, when X(t) reaches state 6 or above,
the unwrapping parameters a,, , 1 are greater than the rewrapping
parameters b, so that X(t) can easily reach state 14 (state of full
eviction) even without the support of SDTF binding. Hence, suc-
cess of X(t) is reaching state 6, and we used the probability of the
success to analyze the distinct behaviors of DNA under two
oscillatory inputs.

If nucleosomes are exposed to an SDTF signal at amplitude
10 for 10 min, then only about 2. 5% of nucleosomes reach
state 6 (Figure S2C). Hence, during the on-phase (i.e., SDTF
signal at amplitude 10), nearly 2.5% of DNA segments can suc-
cessfully unwrap from the entire histone octamer under this
rapid oscillation. After the first 10 min of oscillation, when the
SDTF signal is turned off, most remaining nucleosomal DNA
that failed to reach state 10 during the previous on-phases,
rapidly rewraps around the histone because the rewrapping
parameter b, is much greater than the unwrapping parameter
an for n<6, likely returning back to state 0. Therefore, in the
next on-phase, about 2.5% of the remaining free DNA can be
fully unwrapped, and DNA undergoes this process 25 times
by 500 min. This “success or failure game” under the oscilla-
tory SDTF signal can be described using the geometric distri-
bution Geo(0.025) with a success probability of 0.025
(Figures S2A and S2B). Similarly, the full eviction probability
by 500 min under the SDTF signal of 60 min half-period can
be estimated with Geo(0.24) because the success probability
is about 24% during the 60 min on-phase. The full eviction
probabilities computed with the geometric distributions
Geo(0.025) and Geo(0.24) are about 0.47 and 0.7, respec-
tively, which closely estimate the actual eviction probabilities
shown in Figure 2D. The detailed computations of the full evic-
tion probabilities using these two geometric distributions are
shown in STAR Methods.

In our simulations, very fast oscillations of the SDTF signal
did not necessarily render the DNA less accessible. Indeed,
when the half-period was 0.3 s, the SDTF signal is interpreted
as a constant signal with half the amplitude. Therefore, despite
the extremely short on-phase of the oscillation, about 50% of
DNA temporal trajectories were fully unwrapped by 500 min
(Figure 2C bottom), which is higher than when the half-period
was 10 min. Intuitively, this phenomenon occurs because the
optimal scenario for the least unwrapping is based on the
SDTF oscillation frequency matching the relative unwrapping/
rewrapping frequency of the nucleosome. The time evolutions
of histone eviction probability under these three different
SDTF signals are displayed in Figure 2D. See STAR Methods
and Figure S2 for more detailed mathematical analysis about
the full eviction probability under different frequencies of the
SDTF signal.
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Figure 2. Periodicity of SDTF oscillations affects DNA accessibility

(A) Experimental knowledge of SDTF signaling dynamics in single cells (left: two individual single cells; right: hundreds of single cells). Color bar represents
fluorescence of nuclear NF-kB. WT and Mut cells activate NF-kB with different temporal dynamics (Adelaja et al., 2021).

(B-D) Chromatin response to oscillatory SDTF dynamics with different frequency.

(B) SDTF dynamics with rapid (top) or slow oscillation (bottom).

(C) 50 sample traces of DNA dynamics under the oscillatory SDTF inputs of half-period = 10 min (top) and 60 min (bottom). Red traces reach the fully evicted state,
and black traces do not.

(D) Time evolution of histone eviction probability.

(E-G) Parameter sensitivity under oscillatory versus constant SDTF signals.

(E) Oscillatory and constant SDTF signal inputs.

(F) Full eviction probability versus unwrap parameter cooperativity (h = 1.3). m represents the fold change increase in unwrapping/rewrapping parameters.
(G) Mean chromatin accessibility distribution at t = 500 min with the oscillatory or constant SDTF dynamics. To model heterogeneous cell environment, we
randomly perturb the system parameters. Coefficient variation (standard deviation/mean) of the distributions under oscillatory SDTF and constant SDTF is 0.35
and 0.12, respectively.

See also Figure S2.

Oscillatory SDTF inputs can lead to heterogeneous negative feedback loop; Longo et al., 2013), we now considered
chromatin accessibility responses that the same oscillatory SDTF dynamics may affect different
Although our computational investigation of different SDTF  nucleosomes in a cell differently because of differences in
oscillatory frequencies cannot be tested in experimental kinetic parameters determined by location-specific molecular
systems (because the period is hardwired by the IkBa-NF-kB  mechanisms.
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To explore the capacity for differential responses of various
chromatin regions to the same dynamic signal, we scanned
the nucleosome unwrapping/rewrapping parameters and
computed the probability of histone eviction using the stochastic
model under non-oscillatory or oscillatory inputs with a fixed
period (Figure 2E). We found that the system was more sensitive
to the unwrapping/rewrapping parameters under oscillatory than
non-oscillatory SDTF dynamics (Figure 2F). We used the same
parameters as used in previous simulations, and they are shown
in Table S1.

Under oscillatory and constant SDTF dynamics, we calculated
the probability of histone eviction at T = 360 min after multiplying
each of the unwrapping/rewrapping parameters a, and b, by a
fold change parameter m (Figure 2F). Under oscillatory SDTF dy-
namics, the full DNA eviction probability rapidly grows for m e

[2,4]. In fact, this graph has a sigmoidal shape, indicative of a
higher sensitivity with respect to fold change increases, so that
the same oscillatory input can lead to widely different responses
for different parameter values. In the STAR Methods, using sim-
ple matrix exponentials, we explored sensitivity analysis with our
stochastic model under constant transition rates and time-
dependent oscillatory transition rates.

We may speculate that the greater variability of chromatin
accessibility under an oscillatory SDTF input allows more cell-
to-cell variability of cell fate decisions. For instance, if the cell
type is determined by a threshold mean accessibility at particular
chromatin regions, then an oscillatory SDTF may produce type A
and type B, whereas a non-oscillatory SDTF may more consis-
tently convert cells to type B (Figure 2G).

Eviction probability profiles characterize the in vivo
nucleosome unwrapping process

We next sought to use the nucleosome model to investigate how
the location of the SDTF binding site relative to each nucleosome
might affect nucleosome eviction. We utilized ATAC-seq data
from an IkBa knockout mutant macrophage experimental sys-
tem (Cheng et al., 2021) at a 0-h baseline and 4 h after NF-xB
had been activated by TNF stimulation. Using paired-end
ATAC-seq to separate nucleosomal read fragments from nucle-
osome-free read fragments, we calculated nucleosome dyad
positions across the genome (Schep et al., 2015; Figure S3).
We assessed nucleosome dyad locations relative to kB sites
before and after stimulation and observed a reduction in the
number of kB site-associated nucleosomes after NF-kB activa-
tion, but this reduction depended on the distance between the
kB site and the nucleosome dyad (Figure 3A).

To understand why the location of the binding motif relative
to nucleosome dyad position affects nucleosome eviction, we
added mechanistic detail to the nucleosome model. We al-
lowed the rewrapping parameters to depend on the SDTF
binding site location along the 147-bp stretch of DNA that en-
compasses the nucleosome. Hence, DNA locations within a
certain range around the SDTF binding site have a rewrapping
parameter d, that is smaller than b,. For simplicity we used a
Gaussian formula, which allowed us to center the effect at
the SDTF binding site and control the range of its influence.
We used the formula d, = b,(1 — exp(— (s — n)® /25?)),
where s is the SDTF binding location, and the standard devia-
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tion o represents the SDTF effect range (Figure 3B). In this way,
dn=b, for a state n far from the binding site s, and d, =0 when
n is close to s (Figure 3C).

In the nucleosome model, the unwrapping and rewrapping pa-
rameters may describe cooperativity within the unwrapping
mechanism, meaning that every unwrapping step facilitates
further unwrapping (i.e., a, increases and b, decreases in n). If
the system is non-cooperative, then each state n has constant
parameters a, and b,,. Prior evidence suggests that the unwrap-
ping process may be highly cooperative, either because of an
inherent cooperativity of contact points within the nucleosome
or because of the collaborative mechanism between DNA bind-
ing proteins that promote nucleosome eviction (Miller and Wi-
dom, 20083). To achieve such behavior, the unwrapping and
rewrapping parameters were modeled as a, =a;h”~' and
bn = byh~"*" for each n with cooperativity constant h. The spe-
cial case of h = 1 indicates non-cooperative behavior.

Although the unwrapping parameters are increasing, the
average timescales for site exposure from state n to state n+1,
or from state O to state n, still become progressively longer, as
observed experimentally (Tims et al., 2011). This is because the
opening process from state n to state n+ 1 could involve multiple
steps of unwrapping and rewrapping. For example, one possible
trajectory of DNA from state 5 to state 6 consists of the path 5 —
4 -3 -4 -5 — 6(STAR Methods).

We then tested which binding location is optimal for nucleo-
some eviction under constant SDTF activity. SDTF binding mo-
tifs were distributed across the DNA strand in the range
[-100 bps, 100 bps] centered at the histone dyad (state 7 in
Figure 3B). We assumed that the SDTF binds at one of the
states s in {-3,-2, ...,16,17}, which is an extended range
from the original state space {0,1, ...,14} (Figure 1C), so that
we can consider SDTF binding motifs lying slightly outside
the nucleosome. Then, for each distance relative to the nucle-
osome dyad, computed as |7 —s|x10 (bp), we calculated the
full eviction probability. The resulting behaviors under various
levels of cooperativity of the parameters a, and b, are distinct
because the optimal binding site is either in the center of the
nucleosome or toward the extremes. Under non-cooperative
rates (h = 1), the optimal binding site is at the nucleosome
dyad so that the full eviction probability is symmetric about
the relative distance between the SDTF binding site and dyad
(Figure 3D). In contrast, when the parameters model coopera-
tive behavior (h > 1), the optimal site is closer to the unwrap-
ping edge, and, hence, the full eviction graph has a peak close
to this edge (Figure 3E left). This is because when the first few
contacts between DNA and histone are unwrapped, the coop-
erativity of the system facilitates unwrapping of the remainder.
After averaging multiple cells, because of the symmetry of nu-
cleosomes unwrapping from either end, the probability-binding
site plot has a center dip (Figure 3E, right). Given such different
patterns of eviction probability versus the distance of the SDTF
binding site from the dyad, we termed the graph the “eviction
probability profile” and concluded that it may be used to char-
acterize the in vivo nucleosome unwrapping process. In STAR
Methods and Figure S4, we provide a mathematical analysis
of the effect of the SDTF binding site on the probability of
nucleosome eviction.
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Figure 3. Modeling SDTF binding sites, range of SDTF effect, and cooperativity in unwrapping steps reveals potential eviction probability

profiles

(A) Summary of NF-kB motifs adjacent to nucleosome dyads. Shown are NF-kB motifs in relation to each nucleosome dyad called by NucleoATAC (Schep et al.,
2015) 0 h and 4 h after TNF stimulation in male mouse bone marrow-derived macrophages (BMDMs) (no replicates used, n = 1 for each time point, validation
experiment performed in Figure 6). Locations shown have an NF-kB motif +100 bp of the nucleosome dyad.

(B) SDTFs locally affects the DNA-histone contact regions near the SDTF binding site.

(C) The range parameter ¢ determines how widely the SDTF affects the rewrapping parameters.

(D) Computation of the full eviction probability via the stochastic model shows that motifs at the dyad promote greater nucleosome unwrapping probability under

a non-oscillatory SDTF signal and non-cooperative open/close parameters.

(E) The full eviction probability is maximal at the SDTF binding location between the edge and dyad under cooperative unwrap/rewrap parameters. Assuming 50%
of right edge unwrapping and 50% of left edge unwrapping, the average full eviction probability displays a center valley.

See also Figures S3, S4, and S6.

The model predicts cooperativity based on eviction
probability profiles
The shape of the eviction probability profile is altered not only by
wrapping cooperativity (parameter h) but also by the range of the
SDTF binding effect (parameter ), which is likely to be SDTF
specific. If the range is wider, then all rewrapping parameters
dn, are equally affected so that the probability plot becomes
more flattened. We first examined computationally how different
values of the cooperativity parameter h and the SDTF range
parameter o could alter chromatin accessibility (Figure 4A). We
tested multiple potential values of this range parameter as well
as cooperativity parameters h = 1 (non-cooperative), 1.1, and
1.2 (high cooperativity). We also used ¢° = 2.5, 10 and 50 for
the range of the SDTF binding effect. It is notable that, for higher
cooperativity and narrower SDTF binding effect range, the plot of
full DNA eviction probability displays a clearer center valley.
Using this relation between the model parameters and the
eviction probability profile, we next compared these computa-
tional results with experimental measurements. We fit model pa-
rameters to data on nucleosome eviction probabilities given the
SDTF binding motif location relative to the dyad. The parameter ¢

corresponds to the standard deviation of the Gaussian curve
describing the influence of the SDTF binding, in units of number
of binding sites. Because these binding sites are approximately
10 base pairs away from each other, a value of ¢ = 2 would
correspond to a standard deviation of around 20 bp or a range
of 40 bp around the SDTF binding site.

We returned to the time-course experimental data from mac-
rophages responding to TNF stimulation (Figure 3A). Because
ATAC-seq data can provide an estimate of the nucleosome po-
sitions, we assigned nucleosomes to their nearest TSS at the
baseline time point 0 h and tracked whether the nucleosomes
matching the same TSS changed in position or disappeared at
the later time point of 4 h, quantified by having fewer or no nucle-
osomes mapping to that TSS (STAR Methods). Using the differ-
ence of the nucleosome counts between two time points, we
computed experimental full nucleosome eviction probability for
each relative motif distance by 240 min after TNF stimulation as

Prob(X(240) = 14) = 1 — Prob(X(240)<14)=1
_# of nucleosome at 4hr
# of nucleosome at Ohr’

Cell Reports 40, 111076, July 12, 2022 7




¢? CellP’ress Cell Reports

OPEN ACCESS

A Average full eviction probability B Initial prediction 09
' I -
Experimental data =
N 2 onz Z: 05 /\ p 08 N\
S o4 a h
P 0 hours
S o) 250 07
S S0 s o % T e o @ o Yo wm 0w w 200 ®
X I 1 1 06 —— Experiment a
"5 o ,'FL ool - 150 < — —— Computation o
g — 2 002 o o8 € w 53 £ 8
c ! 2 oo o4 os/v\ Q 50 - % 0 » 1% o
~ | § /v\ o )
g’ ) % 02 Q o S 0.9 8
'_g \-g/ 9% =0 o 50 00 T w0 om0 10 P o s o0 g -100-80 -60 -40-20 0 20 40 60 80 100 -8 -] 8
£ IS | ! 3 < =1
i T N 2 4 hours X o8 =
& 2 ocy) N o % 3
a - os S 0 2 o7
€N It 02| A~ o /\/\ z o
~ »
° G0 50 0 s0 10 S0 s 0 s w0 o w0 0 s 1o 50 0.6 —Experiment
——Computation
Relative distance to dyad (bps) 0
5
h=1 h = 1.1 h=1.2 0 -100-80 -60 -40 -20 0 20 40 60 80 100 '_10() -50 0 50 100
- i i Relative distance to dyad (bps
Cooperativity:h Relative distance to dyad (bps) yad (bps)
C D Experiment Simulation E Experiment Simulation
0.25
! i - 02 0.25 e
~ , mean =0.88 mean = 0.93 02 wr 02
W08 045 Mut Mut
» Simulation > S
So06 7 £, g 0.15 0.15
° 3 2 01
o4 ’ 3 9] 0.1 0.1
X o/~ Experiment 10 o
EO'Z = 0.05 0.05 0.05
€ o ) - - Lo e | I
0 45 90 135 180 225 06 08 10 12 %5 o085 09 095 1 04 06 08 1 0.4 06 08 1
Duration of NFkB Signal (min) Fold Change at 4 hrs Fold Change at 4 hrs Proportion of maximum Proportion of maximum
(WT/Mut counts) (WT/Mut counts) accessible location at 4 hrs accessible location at 4 hrs

Figure 4. Fitting the model eviction probability profiles to SDTF binding location data provides evidence of cooperativity and estimates
model parameters

(A) Probabilities of full eviction with respect to relative motif position from the nucleosome dyad and SDTF binding effect range for the macrophage system under a
non-oscillatory NF-«B signal. Three different ranges (¢ = 1.5, 10, and 50) and cooperativity parameters (h = 1, 1.1 and 1.2) are chosen.

(B) Left: nucleosome counts from male mouse BMDM ATAC-seq samples under non-oscillatory TNF-induced NF-«B activity at NF-kB motifs at 0 h and 4 h
(no replicates used, n = 1 for each time point, validation experiment performed in Figure 6). Right: full eviction probability versus SDTF binding locations. Shown
are the experiment-based eviction probability profile (red curves) and model-based eviction probability profile before and after parameter fitting by gradient
descent (blue curves).

(C) Full DNA eviction probability under a steady NF-«kB input signal of different durations. Red: experimental measurements shown in Cheng et al. (2021). Blue:
simulated values using the stochastic model with the fitted parameters in Table S1.

(D) Left: fold change (WT/Mut) of resulting chromatin accessibility after activation of SDTFs with different dynamics. Two biological replicates were used for each
genotype (n = 2). Right: reproduction of the experimental measurements using the stochastic nucleosome model under the fitted parameters listed in Table S1.
Counts are converted to proportion because of simulation of a different number of nucleosome locations.

(E) Left: variance in chromatin accessibility across genomic locations at 4 h in WT and Mut cells, as measured by bulk ATAC-seq. Two biological replicates were
used for each genotype (n = 2). Right: reproduction of the experimental measurements using the stochastic nucleosome model.

See also Figure S5.

We used these data to fit values of the different parametersin  1/0.161 = 6.25 min on average. See Figure S5 for an analysis
our model by approximating an initial set of parameters, followed  of the error between the eviction probability profiles of the data
by gradient descent (Courant, 1994) to find the optimal param- and the model. Recent studies have shown that nucleosome
eter set. Fitted parameters included the cooperativity parameter,  eviction is likely to take place under a long NF-«B signal pulse
SDTF range parameter, unwrapping/rewrapping parameters, of approximately 120 min but that it rarely occurs under a shorter
and SDTF binding/unbinding rates. For IkBa. knockout macro-  NF-«B signal pulse of less than 45 min (Cheng et al., 2021), and
phages treated with TNF for 4 h (Cheng et al., 2021), fitting these  similar observations have been made in fibroblasts after 60 min
parameters resulted in the best-fit eviction probability profile and 150 min, respectively (Sen et al., 2020). These observations
(Figure 4B; see STAR Methods for additional details and canbe reproduced with our stochastic model under the fitted pa-
Table S1 for the resulting parameter values.) Based on the rameters (Figure 4C).
shape of the fitted eviction probability profile, we found that To further compare the model with experimental data, we
the nucleosome unwrapping/rewrapping parameters are likely — examined several properties of the chromatin locations. We hy-
cooperative. The range of SDTF effect was fitted at ¢ = 2.1, pothesized that the ATAC-seq distributions across genomic lo-
which corresponds to a radius of around 20 bp from the SDTF  cations in WT and Mut macrophages could be reproduced by
binding site or 40 bp around the binding site. The initial unwrap-  simulating the stochastic model using the fitted parameters.
ping parameter a; = 0.16 indicates that the first DNA unwrap- Indeed, under fitted parameter values (Table S1), simulations
ping from the fully wrapped configuration takes approximately  of the stochastic model reproduced two experimental findings
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Figure 5. Consistency of the eviction probability profiles under more general parameter settings
(A) Generalization of the model where SDTF binding rate ko, (s) is a function of the binding location s.

(B) Resulting eviction probability profiles based on the binding rates illustrated in (A).

(C) Generalization of the model where the SDTF binding rate ko, (n) is a function of the DNA opening state n.
(D) Resulting eviction probability profiles based on the binding rates illustrated in (C).

See also Figure S6.

(Figures 4D and 4E). First, comparing the two systems, WT and
Mut, allowed us to assess the distribution of stimulus-induced
fold changes for each genomic location that are attributable to
differences in signaling dynamics (Figure 4D). Second, the two
experimental systems displayed differences in the amount of
post-stimulation chromatin accessibility among genomic loca-
tions, which was recapitulated by the model (Figure 4E). We
also computed the total variation distance, one of the most com-
mon measurements for similarity of given distributions (Levin and
Peres, 2017), between the two experimentally measured distri-
butions (STAR Methods) and found it to be 0.25. The distance
between the two modeled distributions was 0.22, showing that
modeled difference between the DNA accessibility under WT
and Mut signals was similar to that from experiments. This com-
parison with experimental data helped validate the dynamic
rates of DNA wrapping and unwrapping in the model.

Eviction probability profiles under more general
parameter settings

We next found that the eviction probability profiles showed
consistent shapes even under more biophysically nuanced
SDTF binding parameters ko,. We first allowed «on(s) to vary
as a function of the binding location s. We set kq,(s) to be small-
est at the most inaccessible site, the nucleosome dyad (Fig-
ure 5A). Under such spatially inhomogeneous SDTF binding
rates, the full eviction probability profile has the same character-
istic shape as before; in the cooperative case, one can see two
peaks, and in the non-cooperative case, there is only a single
peak (Figure 5B). Second, we assumed that the SDTF binding
rate kon(n) depends on the state n of the nucleosome for a fixed
SDTF binding location s. It is reasonable to assume that, when
the SDTF binding location is exposed by DNA unwrapping, the

SDTF has a higher binding rate than when the binding site is
buried by wrapped DNA (Figure 5C). Under this general setting,
the eviction probability profile robustly showed the characteristic
shapes for he cooperative and non-cooperative cases (Fig-
ure 5D). The consistency of the model predictions to different
parameter assumptions supports the robustness of the behav-
iors generated by our stochastic epigenome model as shown
in Figure S6 and is mathematically verified in the STAR Methods.

Fitting the model to a different dataset results in
consistent behavior

We hypothesized that the model parameters associated with
nucleosome dynamics should be consistent in a second experi-
ment with the same SDTF activated but by a different ligand.
We thus stimulated wild-type macrophages with lipopolysaccha-
ride (LPS) for 4 h to generate non-oscillatory NF-«xB dynamics
(Figure 6A), analogous to the non-oscillatory NF-kB dynamics
generated by TNF stimulation in IkBa knockout mutant macro-
phages. We again performed paired-end ATAC-seq and identi-
fied the location of NF-kB binding sites relative to the nucleosome
dyad (Figure 6B). Comparing nucleosome positionsatOhand 4 h
resulted in the experimental eviction probability profile, and the
mathematical model was again fit to these data.

All experiments were performed in macrophages, but LPS stim-
ulation may activate greater amounts of NF-«B than TNF. Hence,
we first fit the model to the LPS-stimulated dataset with all of the
same parameters obtained from the previous fit to TNF-simulated
data but slightly adjusted SDTF unbinding fraction (BF) reflecting a
greater amount of NF-kB. Remarkably, the model closely repro-
duced the eviction probability profile given by the LPS-stimulated
dataset (Figure 6C). We next fit the eviction probability profile to the
LPS-stimulated data using gradient descent, and the resulting
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Figure 6. Stimulation of macrophages with LPS leads to consistent modeling results

(A) Schematic of SDTF activation in response to TNF or LPS. TNF stimulation results in NF-«kB activity, whereas LPS stimulation results in NF-xB and IRF activity.
(B) Top: experimental and simulated nucleosome counts after LPS stimulation for NF-kB-associated nucleosome locations after 0 h and 4 h (no replicates used, n
=1 for each time point). Bottom: analogous counts for IRF-associated nucleosome locations (n = 1 for each time point).

(C) Eviction probability profiles associated with LPS-induced NF-«B activity, using the same model parameters as the TNF-induced data (green) and direct
fit (blue). *All parameters are the same as the fitted parameters with the TNF data (Figure 4) except for the SDTF unbinding fraction, BF.

(D) Eviction probability profiles associated with LPS-induced IRF3 activity.
See also Figure S5.

parameters closely matched the parameters obtained from fitting
to the TNF-stimulated dataset (Figure 6C; Table S1). We found a
remarkable similarity in the estimated nucleosome unwrapping
and rewrapping parameters as well as in the range of NF-«B effect.
For example, the cooperativity constant is estimated ath = 1.4
with these new data, whereas it was measured at h = 1.35 with
the previous TNF-stimulated data. This value is exponentiated to
specify the unwrapping parameters at each step, and even at
step 13, this difference gives a fold change in parameters of only
(1.4 x 0.15)/(1.35"® x 0.16) = 1.48.

The unwrapping/rewrapping parameters and the cooperativity
may be specific to a set of nucleosomes, but the range of the
SDTF effect may be SDTF specific. We therefore next asked to
what extent the eviction probability profiles remained consistent
under another SDTF. Interferon-regulatory factors (IRFs) are also
activated by LPS (Figure 6A), affecting chromatin accessibility
and enhancer formation at genomic positions containing IRF
binding motifs (Cheng et al., 2021). We mapped the locations
of IRF motifs in relation to the nucleosome dyads estimated
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from ATAC-seq data (Figure 6B), and we plotted the eviction
probability profile by comparing nucleosomes before stimulation
and 4 h thereafter. We again noted a double-peaked profile sug-
gestive of cooperativity in nucleosome unwrapping/rewrapping
parameters. To quantify this, we fit the stochastic model to the
profile and obtained new parameter estimations for these IRF-
affected epigenomic regions (Figure 6D; Table S1). A key differ-
ence between the parameters previously fit to NF-kB data was
the unwrapping parameter a, = 0.07, compared with a, = 0.15
for the previous model. Because NF-«kB and IRF bind to their mo-
tifs with distinct biophysical characteristics, stereochemistries,
and to different locations of the genome, our results suggest
that such differences also determine their nucleosome eviction
characteristics.

The eviction probability profile is a fingerprint for kinetic
features of nucleosome dynamics

We asked how different model parameters might affect the fea-
tures of the eviction probability profile, and we found that
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Figure 7. The eviction probability profile is a fingerprint for kinetic features of nucleosome dynamics
The geometric characteristics of the eviction probability profile has one-to-one correspondence to the parameters of the stochastic epigenome model. For a
given location-specific nucleosome eviction profile, this correspondence can be used to identify epigenetic features such as the DNA unwrapping parameter, the

SDTF binding fraction, and cooperativity.
See also Figure S5.

changes in model parameters could be directly mapped to
changes in particular geometrical characteristics of the eviction
probability profile (Figure 7). The unwrapping and rewrapping
rates vertically translate the eviction probability profile because
larger unwrapping parameters lead to larger eviction probabili-
ties. Adjusting the SDTF unbinding fraction BF stretches the
peaks up and down because the strength of the SDTF binding ef-
fect is determined by the SDTF binding fraction parameter (see
STAR Methods and Figure S7 for a mathematical proof for this
fact). More DNA-histone contact regions are influenced when
the range of the SDTF binding effect is wide. Hence, the range
parameter ¢ changes the depth of the center dip in the eviction
probability profile. The other parameter, BF, controls the depth
of the center dip as well, but a small ¢ particularly can create pla-
teaus at both ends because the DNA around + 100 relative bp is
never affected by the SDTF binding when the effect range is nar-
row. The optimal SDTF binding location tends to shift toward the
edges under strong cooperativity so that the distance between
two peaks in the eviction probability profile increases as the co-
operativity parameter h increases. Based on this one-to-one cor-
respondence, we can systematically find a good initial prediction
for the parameter fitting to given data, and this prediction can be
used as an initial condition of the gradient descent searching al-
gorithm for finer parameter fitting.

DISCUSSION

Our study pairs stochastic modeling and epigenomic chromatin
accessibility measurements from primary cells to investigate the
biophysical regulatory rules of histone octamer-DNA interactions
that determine nucleosome positioning. Using probability the-
ory, we described nucleosome eviction as a “success or failure
game” scheme because DNA has a chance of full eviction only
under the on-phase of the SDTF signal. This scheme revealed
the role of oscillatory inputs in nucleosome eviction and hetero-
geneity in DNA accessibility under oscillatory SDTF dynamics.
Nucleosome positioning data provided the nucleosome eviction

probability profile as a function of SDTF motif location, and fitting
model parameters to the eviction probability profile revealed
quantitative features of nucleosome dynamics: (1) 30-40 bp of
DNA-histone contacts around the SDTF binding site are disrup-
ted, (2) the expected initial DNA unwrapping time from the fully
wrapped state is about 7 min, and (3) evidence of cooperativity
in the DNA unwrapping steps. Supportive of this model, these
quantitative features of our model are consistent with previous
experimental observations (Cheng et al., 2021).

Naturally, as with all mathematical models, the in vivo cellular
system is more complex than the model describes, and our
model is necessarily an abstraction describing one aspect of
the dynamic epigenome that results when mammalian cells
encounter an inflammatory threat. Nucleosome dynamics at
each location along the genome are influenced by multiple fac-
tors, including, but not limited to, the stiffness of the local
DNA, the histone marks or histone variants that are present,
the density of nucleosomes at that region, and the binding motif
location in relation to the position of the nucleosome (Brahma
and Henikoff, 2020). However, our model is able to assess
several characteristics of nucleosome dynamics that may
govern the rules and parameter rates at which nucleosomes
are evicted across the epigenome. These predictions help
formulate hypotheses that are compared with time course epige-
nomic sequencing data, which allows selection of one of the hy-
potheses or establishment of parameter ranges.

Notably, the model can be used to evaluate numerous
different stimulus-response systems, including those with
different SDTFs activated (Calderon et al., 2019), or different
cell types and genomic locations that may have different kinetic
rates governing the unwrapping and rewrapping of the nucleo-
some. Here we focused on immune responses and the resulting
epigenome of innate immune macrophages, but the modeling
approach can be applied to other contexts as well where cells
encounter an inflammatory signal that produces stimulus-
induced epigenomic changes (for example, cancer cell plasticity
during immunotherapy). For innate immune responses in

Cell Reports 40, 111076, July 12, 2022 11




¢? CellPress

OPEN ACCESS

particular, the variation in the baseline epigenome that results
from a prior exposure, rather than variation in genetically
encoded receptors like for T and B cells, may be a critical
component of innate immune memory and response to future
inflammatory threats (Netea et al., 2016). Thus, a predictive
mechanistic understanding of how SDTF activity can evict nucle-
osomes can guide further investigation into epigenomic reprog-
ramming events induced by inflammation.

The development and parameterization of this mechanistic
model has several implications. First, the model may allow pre-
dictions of nucleosome eviction probabilities in response to
any SDTF and any activation dynamics. Second, because the
relationship of the motif location and nucleosome dyad corre-
lates with eviction probability, the model can make a prediction
on the probability for nucleosome eviction in a location-specific
manner. Third, the model arrives at biological insights related to
the nucleosome parameters themselves; by comparing pre- and
post-stimulation nucleosome distributions, we can calculate
experimental nucleosome eviction probabilities and fit the model
to estimate the degree of cooperativity within the nucleosome
and the range of effect of SDTF binding on disrupting nucleo-
somal contact points.

This stochastic model describes the nucleosome, which is the
fundamental unit of chromatin containing multi-step dynamic
processes, and serves as a starting point for describing other ep-
igenomic features (Bilokapic et al., 2018; Eslami-Mossallam
et al., 2016; Hall et al., 2009; Henikoff, 2016). Future work incor-
porating other key elements of nucleosome dynamics, such as
the structure of nucleosome arrays and the effect of histone
modifications, or behaviors such as nucleosome sliding or roll-
ing, which we have not yet considered here, may reveal further
insights. Although here we use an optimization approach to
analyze this model topology and initial conditions with respect
to the data, model parameters can also be further trained with
machine learning approaches that incorporate additional layers
of epigenomic data as training data for the parameters to incor-
porate more elements of the epigenomic complexity that exists
in vivo. Our modeling framework and these further possibilities
support the feasibility of combining biophysically detailed mech-
anistic models of epigenetic processes, with NGS epigenome-
wide measurements to characterize kinetic rules controlling
cellular responses to inflammation.

Limitations of the study

Our stochastic model describes one process of how epigenomic
states may be altered: through activation of SDTFs and the effect
of their DNA binding in disrupting the positions of nucleosomes.
Within cells, however, other proteins and enzymes also play key
roles in how readily nucleosomes are evicted; for example,
deposition of histone modifications, the presence of histone
chaperones, or histone variants substituting for canonical his-
tone subunits. The activity of these other processes likely varies
across different cell types and different cell states; for example,
in cancer cells versus immune cells versus epithelial cells. The
models we present here, although biophysically detailed, still
represent an abstraction of a more complex interplay among
many chromatin remodeling proteins. In another system, an in-
crease in the estimated cooperativity, or range of SDTF effect,
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may suggest not simply a direct biophysical change in the
modeled components but could also indicate the activity of un-
modeled proteins. Using mathematical models such as those
described here to estimate such parameters across different
experimental systems will suggest further hypotheses that moti-
vate continual inclusion of additional mechanisms in future
models.
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Deposited data
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Macrophage SE ATACseq Cheng et al., 2021 GSE146068

Software and algorithms

MATLAB 2016b https://matlab.mathworks.com/

R (version 4.0.3) https://www.r-project.org/

ENCODE-DCC ATACseq Pipeline https://github.com/ENCODE-DCC/atac-seq-pipeline
Bedtools Quinlan and Hall, 2010 https://bedtools.readthedocs.io/en/latest/
NucleoATAC Schep et al., 2015 https://github.com/GreenleafLab/NucleoATAC
HOMER Heinz et al., 2010 http://homer.ucsd.edu/homer/ngs/peakMotifs.html
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and materials should be directed to and will be fulfilled by the Lead Contact, German
Enciso (enciso@uci.edu).

Materials availability
No materials were generated in this paper.

Data and code availability
ATAC-seq data have been deposited at GEO and are publicly available as of the date of publication. Accession numbers are listed
in the Key resources table.
This paper analyzes existing, publicly available data. These accession numbers for the datasets are listed in the Key resources
table.
Model and analysis code includes MATLAB code for running the stochastic model, and bioinformatic analysis of sequencing data.
All original code has been deposited to Github and is publicly available as of the date of publication. DOlIs are listed in the Key
resources table.
Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Macrophage cell culture

All mouse experiments were approved by the UCLA animal research committee under protocols ARC2014-110 and ARC-2014-126.
Macrophages were obtained via two methods: (1) differentiating bone-marrow-derived monocytes from male C57BL/6 mice in
DMEM/10% FBS +30% L929 supernatant for a total of 7 days, or (2) differentiating immortalized myeloid progenitors (iMPs) originally
derived from male C57BL/6 mice, in DMEM/10% FBS +30% L929 supernatant for a total of 10 days. BMDM data was obtained from
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paired-end resequencing of the same libraries that had been sequenced single-ended in Cheng et al. (2021), so no additional mice
were used for this paper. As described in Cheng et al. (2021), sex-matched bone marrow-derived macrophages (BMDMs) were pre-
pared by culturing bone marrow monocytes from femurs of 8-12-week-old mice in DMEM/10% FBS +30% L929 supernatant me-
dium using standard methods (Cheng et al., 2021; Adelaja et al., 2021). BMDMs were re-plated in experimental dishes on day 4,
and stimulated on day 7 with 10ng/mL murine TNF (Roche 11271156001) for 4 h. For iMP-derived macrophages (iMPDMs), cells
were replated into 6cm plates with new media on day 7, at a density of ~20k cells/cm?. On day 10, cells were stimulated 100ng/
mL lipopolysaccharide (LPS, Sigma Aldrich) for 4 h.

METHOD DETAILS

ATAC sequencing

Control and stimulated immortalized myeloid progenitor derived macrophages (iMPDMs) were dissociated with Accutase (Thermo
Fisher Scientific), and 50,000 cells were used per sample. Cell membranes were lysed using cold lysis buffer (10mM Tris-HCI pH7.5,
32 3mM MgCI2, 10mM NaCl and 0.1% IGEPAL CA-630). Nuclei were pelleted by centrifugation for 10 min at 500 x g and suspended
in transposase reaction mixture (25 pL of 2X TD Buffer (Illumina), 2.5 puL of TD Enzyme 1 (lllumina), and 22.5 uL of nuclease-free water),
and the transposase reaction was performed for 30 min at 37C in a thermomixer shaker. DNA was purified using MinElute PCR pu-
rification kit (QIAGEN, Hilden, Germany). Libraries were prepared for sequencing using Nextera DNA Library Preparation Kit (lllumina,
FC-121). The libraries were purified using MinElute PCR puirification kit (QIAGEN) and quantified using KAPA Library Quantification Kit
(KAPA Biosystems). Libraries were sequenced paired end 2 x 100 on lllumina Novaseq.

Stochastic model for nucleosome accessibility

Stochastic modeling

Chromatin accessibility under a signal dependent transcription factor (SDTF) signal can be modeled as a non homogeneous time
Markov process.

QD

3 Z.x Pl 214
(07 0) 6_1' (170) ;2' ;" (r70) b: E; (1370) (1470)
c c cr crs c c Equation 1
koankoff d:1’ koankoff d:2 d: koankoff d:: ;—_i koankoff _1:‘ koankoff ( a )
1 2 4 1 13
(0,1) (1,1) (r,1) (13,1) (14,1)

where kon = kon(t) is a function of time, which is proportional to the concentration of the SDTF at time t.

Let (X(t),N(t)) be a 2-dimensional Markov process defined on the state spaces shown in (Equation 1). X(t) € {0,1,...,14} models
the chromatin accessibility as state 14 represents the fully unwrapped nucleosome, while state 0 represents the fully wrapped nucle-
osome. The status of SDTF is modeled with N(t) € {0,1} as N(t) = 1 means an SDTF binds to DNA, and otherwise N(t) = 0 means
that no SDTF is bound to DNA at time t. We enumerate the state space as

{(0,0),(1,0),...,(14,0),(0,1), ..., (14, 1)},

sothatfori e {1,2...,15} theithstateis (i —1,0) and/i+ 15thstateis (i — 1,1). The infinitesimal probability change is described as
forn e {1,2,...,14},

P(X(t +At) = nX(t) = n — 1, N(t) = 0) = a,,

P(X(t+ At) = nX(t) =n—-1,N({t) =1) =c,, and
forn e {0,1,...,13},
P(X(t + At) = n —1|X(t) = n, N(t) = 0) = b,

P(X(t + At) = n — 1|X(t) = n, N(t) = 1) = d,.

Probability density function, average, and the full eviction probability. Let f(t) be the SDTF dynamics. Suppose that the SDTF
binding rate xon(t) = cf(t) for some constant ¢ > 0. We first assume that xon (t) = «on is @ constant function. Let Q be the transition rate
matrix of the process (X(t),N(t)). Let states n and m be such thatn = (n1,n2) and m = (my,m,) where the first entry is the state of X
and the second entry is the state of N. Then
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ap, when ny+1=my and n, = my,
b, when ny — 1 =my and n, = my, =0 for ny <14,
dp, when ny —1=my and n; =m, =1,
Qum(t) = Kon when ny =my,n; =0 and my =1, (Equation 2)
Koff when ny =my,n, =1 and m, =0,
- ZQ"J‘ when n = m,
k#n
0 otherwise.

Then the joint probability density p(t) of (X(t), N(t)) satisfies the master equation
p(t) = p(H)Q, (Equation 3)

regarding p(t) as a row vector. Hence p(t) = ue® where u is the initial distribution, and e® is the matrix exponential defined as
e = Y r_ 2L Let U be the matrix each column of which is a right eigenvector of Q and let D be the diagonal matrix such that
D;i = — A where — }; is the i th eigenvalue of Q. By Perron-Frobenius theorem, —1 < — 2, < 0 for each k. Then Q is diagonalized

as Q = UDU-'. Then

p(t) = Ue®U~" = Udiag(e "",e "', ...,e @)U ".

We assume that u = (1,0, ..., 0) as the process is supposed to start at (X(0),N(0)) = (0,0). Then for a state /, the probability den-
sity p(i,t) can be represented as

plit) = > UnUy'e ™ (Equation 4)
k

If kon(t) is a binary oscillation function with the half-period T such as

(t) = kon If t e [2nT,(2n+1)T) for somen
Kol = Y0 if te [(@2n+1)T,(2n+2)T) for some n,

then the transition matrix Q can be defined differently on each period. Let Qo, and Qs be the transition matrix corresponding to the
interval 2nT, (2n +1)T) and [(2n +1)T,(2n +2)T), respectively. Thenfort € [2nT,(2n +1)T), the probability density function p(t) is
given as

,D(t) — #eOonTerﬁT__,eOonTeQOﬂTern(t—ZnT) — 'u(eoonTerffT)"ern(t’2”7—). (Equation 5)
Ift € [(2n +1)T,(2n +2)T), then
,D(t) — luernTeOoffT._,eQQnTeOOﬁ(t—(2n+1)T) — 'u(ernTeOoﬂT)”ernTerﬂ(t—(2n+1)T)_ (Equation 6)

Hence the full eviction probability by time T is P(X(T) = 14) = p(15,T)+p(30, T), and the mean accessibility at time T is
1240 = D(EWLT) +p(i +15.T)).
To incorporate the effect of SDTF binding, we set the rewrapping parameter with SDTF bindingas d, = b, (1 — exp( _(n 73)2)) ,

242
where s is the position of the binding motif and o represents the range of SDTF effect. This similarity between the structure of the
stochastic model and what can be measured in biological experiments allowed us to evaluate theoretical predictions using genomic
sequencing data of in vivo cellular immune response systems.

Since X(t) represents the accessibility state at any time t, the mean nucleosome accessibility can be computed as
,1,4: onProb(X(t) = n). Also, since full eviction is reached at state 14, we could compute the probability of eviction by time T by
calculating Prob (X(T) = 14).
Model reduction. In this section, we show that the behavior of the SDTF binding, N(t), in the stochastic model (1) is almost
determined by BF = o provided that kon and . are much bigger than a, and b,. We assume that xon (t) = kon for some positive

Kon + Koff
constant xon and show that our model can be approximated with a simplified system, which only depends on a,, b, d, and the ratio
BF. With this approximation, we conclude that the original system (1) depends on the ratio BF, not individual values of kon and -
Because of the separation of the timescales, the probability of N(t) is stabilized quickly at a stationary distribution my such that
mn(0) = —rt—and my(1) = e —. Therefore we can reduce the model assuming that the state of N(t) is determined with the prob-
ability rule my. Then the transition probability P(X(t + At) =i —1|X(t) = i) for X(t) can be simply calculated. We prove this rigorously
by using quasi-stationary distribution of the coupled process (X,N).
For a small scaling parameter 0 < ¢ <1, we scale the DNA unwrapping and rewrapping rates as ai, = eap, by, = eb, and d, = edp,
where a,,, b, and d,, are constant in e. We also assume that ko, and k. are constant in . Under this parameter scaling, to approximate
the transition probabilities, we first note that
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P(X(t+At) =n — 1|X(t
=P(X(t) =n — 11X(t) = n,N(t) = 0)
+P(X(t) = n — 1|X(t) = n,N(t) = 1)P(N(t)

= bEAP(N(E) = OIX(t) = n) + dSAtP(N(E) = 11X (t) = i) (Equation 7)

PX(0).N(D) = (0,0)) . P(XD.N() = (n,1))
Pt =n) I () =

= b At

forn € {0,1,2,...,13}. As (4) indicates, the probability vector p(t) is expressed with eigenvalues of Q. By using this fact, we show that
the probabilities

P(X(t),N®)) = (n,0) 4 PX®,NW)) = (n1))
P(X(t) = n) P(X(t) = n)

are approximately BF and 1 — BF, respectively. We first investigate the eigenvalues of Q with respect to e.

Lemma 1.1 Each eigenvalue — A of the transition rate matrix Q in (Equation 2) is either O(1) or O(e).

Proof. Let — A« be the eigenvalues of Q. By definition of the transition rate matrix Q (2), the trace of Q is ae + 8 for some constants
a and 8. Since the trace of a matrix is the sum of all eigenvalues, we have

= == D k= Y ko=ac+b.
k

M =0(1) M#0(1)

This implies that *Zxk;tom)'lk = ae. Since A > 0, the result follows.
We denote — A in O(¢) by — X (€). We assume that 4; is in O(¢) fori = 1,2, ...,m for some m. By Lemma 1.1 and (4), the probability
vector p(t) can be decomposed as

m 29

plt) = m+ Y qunfe M+ N~ yle (Equation 8)
k=1 j=m+1

where 7 and ¢ are the left eigenvectors of Q, gx and u; are some constants, and = is a stationary distribution of (X,N). Note that

since the process (X, N) eventually absorbs at the 15 th and 30 th states (i.e. states (14,0) and (14, 1)), it follows that 7(n) = 0

for each n = (n1,ny) such that ny < 13. Thus to approximate P(X(t) = n1) and P(N(t) = n,) for each (n4,n2) such that ny < 13,

we need to calculate the entries of 7,, which are dominating term in (Equation 8).

To do that, we use a singular perturbation method. In (Al-Radhawi et al., 2019), this approach was employed to study asymptotic of
the stationary distribution of stochastic systems admitting multi-modes. Let Q = Q1 + ¢Q, where Q1 and Q. correspond to the tran-
sitions of N and the transitions of X, respectively. In the following lemma, we approximate the left eigenvector associated with A (¢€) by
using a singular perturbation method.

Lemma 1.2 For each left eigenvector 1 of Q associated with X (¢), we have

e
Iimw = Ko g long as n*(i) = O(1) for i=1,2,...,13. (Equation 9)
—0 k(i) Koff

Furthermore there exists a #* such that #¥ = O(1) for each i.

Proof. For each k = 1,2,...,m, we define ¥ = 7 + €7 + H*(¢) where 7 and 7* are constant in ¢ and h*(¢) represents the higher
order term. Then we have

M(Onf = 1"Q = 7°Q1 + €( Q2 + Q1) +H(¢)
where H¥(¢) also represents the higher order term. Hence we have
7Qi =0 and (7Q + 7Q1) = 477, (Equation 10)

where 3¢ = lim_o™<. This implies that 7 € null(Q1), and hence we have 7* = 1% ,ck»! for some constants ck, where »* ¢ R,
are the basis vectors of null(Q+) such that
v(2+15) = %o ang v'(i) =0 for each i& g, 0 +15. (Equation 11)
v(R) Koff

Hence (9) holds.

Now we show that there exists 7 such that ¢ > 0 for each ¢ so that 7% (i) = O(1) foreachi = 1,2,...,13. Note that the biggest non-
zero eigenvalue should be one of the A« (¢)’s for sufficiently small e because A« (e) — 0, as e — 0 and all the eigenvalues are non-positive.
Since (X, N) admits absorbing states, Theorem 8 in Méléard and Villemonais (2012) implies that the eigenvector n* associated with
the biggest non-zero eigenvalue A (¢) is the quasi-stationary distribution such that n*(15) = 7¥(30) = 0, 32 ,7%(i) = 1, 7*(i))> 0
for each i, and for any initial distribution u
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(i) = JimP,((X(t),N(t)) = n|7>1) fortheithstate n,

where 7 is the first absorption time of (X,N).

Without loss of generality, we let n' be the left eigenvalue of Q associated with the biggest non-zero eigenvalue. Then ' = 7' +
e +h'(e)and 77! = 312 ,clv! for some ¢, as we showed above. To show that ' (i) = O(1) foreachi = 1,2,...,14, itis now sufficient
to prove that c} >0 for each £ becasue of (Equation 11). Let E be a 30%x30 such that for 15x 15 identity matrix /,

11
== (i 1)
Then Q1E = 0. By multiplying E to the second equation in (Equation 10) from right, we have
7' (QE — ATE) = 0.

LetQ = QuE — Ay E. By investigating the entries of 7'Q, it follows that

Q117+ Q217 = 0

_ ; — = ] . (Equation 12)
Qi_1M_ 4 +Qi7; + Q1,7 ; =0 for each i=2,3,...,14,

where Qo1 >0and Q;_1;>0and Q;,1;>0fori = 2,...,14. Suppose 7] = Oforsomei € {1,2,...,14}. Then we can derive recursively
that7 = Oforalli € {1,2,...,14} because of Equation (12), and thus n' = %' +h'(e). This contradicts to n'(15) = '(30) = 0 and
>3 .7 = 1. Consequently, 7/ >0 foralli = 1,2,....,15and inturn ¢} >0 forall ¢ = 1,2,....14.

In the same way, we can prove the same result in Lemma 1.2 for right eigenvectors of Q. This implies that g1 >0 in (Equation 8)
because gy are the first entries of the right eigenvectors of Q as shown in (Equation 4). Therefore, letting 11(e) denote the
biggest non-zero eigenvalue of Q, we apply the result of Lemma 1.2 to the decomposition (8). Then assuming t is large, we have
by (Equation 11) that fori € {1,2,...,14}

PO+ 158 ST Qi+ 18)e M ST gt (i+15)

o plt) e S quk(e WO o Sw g ()

ik Qe OV (i +15) L ST qucfv/(i+15)
SO SR gy 0 Y akctvi (i)

_ Kon
- ’

Koff

where the limit is well-defined because g1 >0 and ¢} >0 for each 2. Forn € {0,1,...,13}, let (n,0) and (n,1) be theithand i + 15 the
states, respectively. Then we finally have that for ¢ small enough

PXWN®) = (0) _ _ pt) 1 g
P(X(t) =n) p(n,t)+p(n+15,1) 1+ ’
and
PX(O.N®) = (1) p+158) 1 o
P(X(t) =n) p(n.t)+p(n+15,8) 1+t '
Therefore, by Equation (7)
P(X(t + At) = n — 1|X(t) = n)=(b,BF + d,(1 — BF))At. (Equation 13)

Note that b,BF +d,(1 — BF) € [dn,bn]. The similarity of the original and the reduced models are exhibited in Figure S7.

Comparison of one-sided and two-sided nucleosome unwrapping models

In the main text, we mainly consider the stochastic nucleosome model with single-sided unwrapping, based on previously reported
evidence in the literature. Here, we analyze a similarity between the original one-sided unwrapping model 1 and the two sided un-
wrapping model (Figures S1A and S1B). Let X(t) and X(t) = (X1(t), X2(t)) be the stochastic DNA dynamics of the one-sided and
two-side unwrapping models, respectively. The entries X1 (t) and X2 (t) represent the number of dissembled DNA-histone contact
sites unpacked from the left edge and the right edge, respectively as X(t) in the one-sided unwrapping model. Recall that for the
one-sided model, when X(t) = n, the unwrapping and the rewrapping rates are a, = ath"~' and b, = bih~"*", respectively. In
the same way, when X; (t) =nand Xg(t) = m, the unwrapping rate from the left edge and the right edge are al*" = a'f“h”‘1 and
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ap™ = al9"pm -1 respectively. Similarly, the rewrapping rate from the left edge and the right edge are b/e"t = bléth—n+1 and pjo™ =

b;ighth*’””, respectively. When the total number of the unwrapped regions is 14, that is X ) + X (t) = 14, the process stops. In
summary,

P(X1(t+At) = n+1[X:(t) = n) = afﬁ1{x1(t>+x2(n<14}
P(Xi(t + At) = n — 1X;(t) = n) = b g .0,
P(Xa(t + At) = m +1X(t) = m) = a;i?ht1{x1(r)+xz(t)<14}

P(Xao(t + At) = m — 1Xz(t) = m) = b™ x50y

See Figures S1A and S1B for a description of the Markov chain associated with the two sided model.
Similarity in qualitative behaviors of the one-sided model and the two-sided model. In this section, we compare the two proposed
models and prove mathematically that the two-sided model has qualitatively the similar behavior to the one-sided model. The main
idea is that the left edge X7 and the right X, are independently unwrapping and rewrapping until the nucleosome is fully evicted. This
implies that X4 (t) +X2(t) behaves in the same way as the one-sided model does given the event of full nucleosome eviction has not
yet occurred.

We prove this idea rigorously by using the random time representation proposed in (Kurtz, 1980). The Markov models X (t), Xi (t)
and Xg(t) can be represented with independent Poisson processes as

t t
Xi(t) = X1(0) + Ys(/o a'fft(sm1{X1<s>+>?z<s)<14>ds> - Y4(/0 b'x??(s>1<i1<s>>0>ds)v

t t
v ight ight
Xa(t) = X2(0) + Y5('/o a;i(S)ﬂ1{X1(S)+Xz(5)<14}ds> - Yﬁ(/o b;§<s>1{iz<s>>0}ds)v

where Y;’s are independent unit Poisson processes. To fairly compare the two models, we set a}?ﬂ = a}?ﬁ =ap/2 as X1 (t) and Xg(t)
can simultaneously unwrap. In the same sense, we set bt = plet = p, /2. By combining two independent Poisson processes we
obtain

t
X1(t) + X2() = X4(0) + X2(0)+Y7(/0 (al)zﬂ(s)ﬂ + a;i?;)ﬂ>1{x1(s)+x2(s)<14}d3)

ot
left - right -
,ys( /0 WBE 15,01 + B 1 {X2(5)>0}ds).

Recall that a, = aih" ' and pn = bih~—"*'. We suppose that h = (1 + €) with a small constant e> 0 to consider mildly cooperative
rates. Then for X1(t) = n and X2(t) = m, we can approximate the sum of two rates as

~n—1+m-1

left =a1+a1(n+m—2)%:a1h

n

a

+glont = @ *am ;am

%:m —byn+m-—2)

€ ~—n+1-m+1

2

where E~ = 1+%. Therefore given (X1(1),Xo(t))&{(n,m) : nm = 0,n +m = 14}, the total number of the dissembled contact sites
X1(t) + X2(t) can be approximated with a one-sided model

left right _
bt + b9™ =

ot t
X(t) = X(0) + Yq (/ 5X(s)+11{X(t)<14)dS> - Yz(/ bX(s)+11{X(s)>0}ds)7
0 0

where the unwrapping rate a, = aﬁnfg and the rewrapping rate b, = b1h~"+2 Thus the two models have a similar qualitative
behavior. Note that if e = 0, the both models have the same representation as long as the nucleosome has not been fully evicted
and either edge is fully wrapped. This similarity is displayed in Figures S1C and 4A in the main text as we can see the similar full evic-
tion probability profiles of both models.

Quantitative difference between the one-sided model and the two-sided model. However, even if two models have similar quali-
tative dynamical behaviors, the mean of X(t) and X(t) are notably different as shown Figure S1D. This difference is mainly caused
by the boundary effect. From the fully wrapped state (X(0) = 0 and X;(0) +X2(0) = 0), two models have the same probability to
unwrap by one step. After one step unwrapping, the one-sided model is at state 1, and the two-sided model is at either (1,0) or (0, 1).
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At those states, the closing probabilities for X and X + X are by and %, respectively. This slight disparity in the closing probability is
present whenever a single edge is closed, and the other side is open for the two-sided wrapping model, i.e. X1 + X» = n with
(X1,X2) = (n,0) or (0,n). This disparity causes a longer time for the one-sided model to fully open than for the two-sided model. Even
for higher fold change between two models such as a, = & and b, = %, the two-sided model has a greater mean accessibility after
t = 500 as shown in Figure S1D.

Mathematical analysis for chromatin responses to different SDTF dynamics

In Section 3.1 and 3.2 of the main text, we described the dynamics of DNA with a success-failure game under oscillatory SDSTF in-
puts to show that various responses of DNA can be induced with different SDTF input dynamics and the system parameters. In this
section, we provide more details of this description and analyze the various responses of the system under different SDTF inputs.
Rapid oscillation vs. slow oscillation. In this section, we study the response of our stochastic nucleosome model to an oscillatory
SDTF signal with different frequencies. As in STAR Methods Section 1.1, we assume that the SDTF dynamics is a binary oscillation
with the half-period Ty as shown in Figure 2B of the main text so that

kon(t) = {Kon if te [2mTy, (2m+1)T,) for some m (Equation 14)

0 ifte [(2m — 1)Ty,2mT,) for some m,

and we set kon = 100 and ko = 42.85 so that BF = Kﬁ“+“x°" = 0.3.
For simplicity, we first consider the case that the cooperativity constanth = 1. We also assume that b, = ca, withc> 1 large and
dn = 0 for each n, which means that DNA rarely unwraps without SDTF binding as b, is much greater than a, for all n. Let Tonm =

(2m —1)Tp and Tosrm = 2mTo form = 1,2,.... Then by considering conditional probabilities, we have

P(Xry(Tottn) = 14) = P(X7,(Totin) = 14|X7,(Torin-1) = 14)P (X7, (Toin-1) = 14)

(Equation 15)
+P (X (Tottn) = 14| X7, (Tottn—1) < 14)P (X7, (Toin—1) < 14)

To simplify (15), we approximate two quantities. First, due to b, >a, the DNA dynamics X7, (t) rarely reaches state 14 during the off-
phase [Tonm, Toftm] Where kon(t) = 0.Hence P(X1,(Toftn—1) = 14)=P(X7,(Tonn-1) = 14). Secondly, for the same reason the DNA
dynamics X7, steps back to state 0 during the off-phases with high probability as described in Figure 2C of the main text. Therefore
we have approximately that

P<XT0(Toff‘n) = 14|XT0(Toff,n—1) < 14)zP(XT0(Toff.n) = 14|XT0(Toff,n—1) = O)

= P(X7,(2To) = 14)=P (X1, (To) = 14).

Finally, since state 14 is an absorbing state, the probability P(Xr, (Tofn) = 14|X7,(Tortn—1) = 14)is 1. Denoting P(X7,(To) = 14)
pr,, therefore, we approximate P(Xr, (Toftn) = 14) as

P(X7o(Toftn) = 14) = P(Xry(Tottn—1) = 14) + pr,P(X7o (Toftn_1) < 14)

= PT0+(1 - pTD)P(XTO(Toff.n—1) = 14)

Hence we inductively derive that
n .
P(Xry(Toin) = 14) = > pr,(1 = pr,) "' = P(Geo(pyr,) < n), (Equation 16)
=1
where Geo(pr,) is arandom variable following the geometric distribution with success probability pr, . Therefore the full eviction prob-
ability can be described as a success-failure game (Figure S2A).
The full eviction probability by 500 min under the rapid oscillation is approximately

25
Prob(X(500) = 14) = Prob(Geo(0.025) < 25) = » 0.025(1 — 0.025) ' = 0.47.
i=1

Hence for an SDTF signal that turned on and off repeatedly every 10 min, about 47% of chromatin became accessible at 500 min
(Figures 2B and 2C).

On the other hand, if the SDTF signal was maintained for 60 min, about 24% of DNA reached state 6 (Figure S2C). Although DNA
rapidly rewraps over the next off-phase of the SDTF signal, once the SDTF is active again for the next 60 min, about 24 % of remain-
ing DNA became unwrapped. Through the success-or-failure game 4 times within [0.500] min, about 70% = Prob(Geo(0.24) < 4)x
100% = 5°7_,0.24(1 — 0.24)"~ 'x100% of DNA became fully unwrapped (Figures 2B and 2C).

For h>1, the rates a, and b, are cooperative so that there exists N such thata, .1 > b, foreachn > N. In this case, we consider the
probability of reaching a state > N by time Ty , instead of state 14 because once X7, reaches state N or goes further, then Xt (t) likely
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reaches state 14 quickly even though N(t) = 0 due to a, . 1 is much bigger than b, forn > N. Hence we let 7y be the first hitting time of
state N, andletalso py 7, = P(7n <To). Thatis, py r, means the probability of hitting state N within [0,T). As shown above, hence, we
approximate the full eviction probability as

P(Xry (Tottn) = 14) =P (X1, (Torin = N) = P(7y < Top)

= P(TN < Toff.n—1) +pN.TgP(TN > Toff,n—1)

n
= Z PN.T, (1 - pN‘T0)171 = P(Geo(pN,To) < n),
i=1

Figure S2B illustrate this approximation under oscillatory inputs with various half-periods. The quantify py 7, can be easily
computed with ue@n "0 as shown in Equation (5). We display the plot of Pn.T, @s a function of Tq in Figure S2C.

The success-failure game scheme is valid due to b, > a,, for most states with large constant ¢ such that by = ca;. Therefore when
the constant c is small, the approximation (16) may be inaccurate as shown in Figure S2D. Furthermore, if the oscillation is too fast,
DNA cannot read the oscillation so that the success-failure game scheme is also invalid because the approximation scheme relies on
the oscillation of ko (t) (Figure S2E). In the same sense, if the rates a, and b, are too small, then the expected transition time of X(t) is
too long so that the success-failure scheme does not accurately approximate the full eviction probability (Figure S2F).

As described in Section 3.1 of the main text, if the SDTF oscillation is extremely fast, the oscillatory input is approximately decoded
as a constant signal. This can be simply shown with the probability density functions. Let Ny(t) and N, (t) be continuous-time Markov
chain defined on {0, 1}. For Ny(t), the transition rate from 0 to 1 is kon(t) defined in (Equation 14) with Ty = 1. For N« (t), the transition
rate from O to 1 is constant at /2. For both processes, the transition rate from 1 to 0 is k. These processes represent the SDTF
binding and unbinding under an oscillatory signal and a constant signal, respectively. Note that the temporal average of the oscillatory

signal is} [é kon(S)ds = k/2. Since the state space consists of only two states, we can explicitly find the probability density function
for Ny(t) and N« (t). Let py(t) and p(t) be the probability of Ny and N., being at state 1 at ¢, respectively. Then assuming both pro-
cesses starting at 0, we have

K

p(t) 1_—e (K/2+Koff)t)’

T 2K+ Kot

1

ek/2+ ko)t

t t
pe(t) = (/ gl/2 ks /2ds + / el/2 ko) (o (s) — K/2)ds)
JOo JO

t
=p(t)+ / elk/2+xot)S (1 (S) — K/ 2)ds,
0

Since the integration fé e(K/2+ka)s (ko (s) — k /2)ds tends to 0, as — o, we have QILnlpg(t) = p(t) for each t. Hence for an extremely

fast oscillation of the SDTF inputs, the SDTF binding/unbinding can be approximated with the constant SDTF signal whose input level
is the temporal average of the oscillation. Figure S2G is the full eviction probability as a function of Ty in a log scale.
Chromatin dynamics with cell heterogeneity under oscillatory SDTF signals. ~ Cells are often heterogeneous so that the same system
in different single cells admits various range of parameters. Depending on the system structure, the outcome can be robust to the
parameters and inputs (Kim and Enciso, 2020; Shinar and Feinberg, 2010; Shoval et al., 2010; Stelling et al., 2004). On the contrary,
the output can be significantly influenced by even tiny change of system parameters or inputs. This refers to sensitivity of the system.
In Section 3.2 of the main text, we showed that the stochastic epigenome model is sensitive to the unwrapping/rewrapping
parameters, and the sensitivity can be amplified by an oscillation of the SDTF input signal. In this section, we show that how this
sensitivity can be caused by oscillation with more detailed analysis.

As in STAR Methods Section 3.1, we set by = cay with ¢ >1 large. We further assume that the cooperativity constant h > 1 is
close to 1. For the given unwrapping/rewrapping parameters a, and b,, we consider x-fold change as a,(x) = anx and b,(x) =
bpx to explore the sensitivity of the system in x. Let X,s(t) be the DNA dynamics under the oscillatory signal kon(t) defined in
Equation (14). Let pos = P(Xos(To) = N) where N is the state such that a,, 1 > b, for all n > N. Then as described in STAR Methods
Section 3.1, for T = 2mT, the full eviction probability is

P(XOS(T) = 14) zpos+i0c15(1 - pos)+"'+pos(1 - pos)m_1 = P(Geo(pos) < m)v

where each term p(1 — ,oc,s)IZ is the probability of X reaching state 14 within the phase [22Tg, (22 + 1)Tg] after £ times failures in the
previous on-phases. On the contrary to the case of oscillatory SDTF signals, for the DNA dynamics Xconst (t) under a constant signal
kon = 50, the probability of reaching state 14 at T = 2mT, can be express as a single success-failure game for a longer time as

P(Xconst(T) = 14) :P(Xconst(T) = N) = Pconst = P(Geo(pconst) = 1)'
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The polynomial fm(p) = 7 1p(1 — p)"’1 have distinct sensitivity to the value of p (Figure S3H) for each m. Note that
P(Xos(T) = 14)=fm(pos) and P(Xconst(T) = 14)=f1(pconst)- This describes how the oscillation causes the sensitive response of
the DNA full eviction to the parameter change.

In Figure 2F of the main text, we showed that the sensitivity is induced by an oscillatory input under cooperativity h = 1.3 when
= 15. If this ratio is not that big, for example % = 7, then although the system is mildly cooperative with h = 1.1 the sensitivity
is still induced with the oscillatory inputs as shown in Figure S2I.

Studying the system parameters with the SDTF binding site effect

In this section, we explore the optimal binding site of SDTF for unwrapping DNA from a nucleosome under different cooperativity
relationship among the unwrapping and rewrapping rates. For simplicity, we assume that the SDTF signal qn(t) is constant.
Binding site effects with cooperative and non-cooperative rates. To study how the full eviction probability varies by the SDTF
binding sites, we simplify the stochastic epigenome system (1) with discrete-time random walks as shown in Figure S4. To intuitively
find the optimal SDTF binding site, we use the expected number of steps to reach state 14 instead of the full eviction probability at a
fixed time T. Let X be an 1-dimensional random walk defined on the state space {0, 1,2, ..., N} with the transition probabilities p and q
of the right-steps and left-steps, respectively. For X, let K, i, be the expected number of transitions to reach state m from state n. Then
we can derive the following recursive relations with Markov properties:

by
a

Kn—1,n =1 +qKn—2,n =1 +q(Kn—2,n—1 + Kn—1,n)~

n-1 n-1
o= @) (st ()
p—-q/) p—-q P p—-q/ p—-q

since Ko1 = 1. Finally we have

This implies that

n n
Kon = ;Kifti =7 2_/’1 ,;’ — 11 - ,(7"(,’_4—1;, (Equation 17)
wherer = g. We use this calculation to derive the expected number of transitions of the random walks in Figures S4A and S4B.

First, we find the optimal SDTF binding site under cooperative rates (i.e. both a, and b, are constants in the stochastic epigenome
model). Under this setting, the stochastic epigenome model can be simplified as the random walks in Figure S4A where the transition
probabilities p and g are constants. Each random walk has a designated state from where the backward transition is prohibited. This
setting is analogous to the SDTF binding sites of our stochastic epigenome model. Let T,, ,, be the expected number of transitions to
reach state m from state n of the random walks in Figure S4 with the designate state. Note that 7, ,, and K,, ,, represent different quan-
tities as T, , indicates the expected number of transitions with the designated state, while K, , is defined for the random walk X
without a designated state. We further assume that r = g = 2 to replicate the assumption that the rewrapping rate is higher than
the unwrapping rate.

The random walk model in Figure S4A top has no backward step from state 4. Then

Toaa = Toa+Ta14 = Kog + Koo = 4110,

where we note that T4 14 = Ko 10 as the transition from state 4 to state 14 is equivalent to the transition from state 0 to state 10 of X. The
random walk in Figure S4A bottom has no backward step from state 7, which corresponds to the SDTF binding at dyad. Then

Tg’14 = T0'7 +T7’14 =2 % Ko] = 974

In the same way, we can compute Ty 14 with different SDTF binding sites as shown in Figure S4C, which indicates that binding at the
center more efficiently help unwrapping DNA than binding at the edge.

Now, we consider the random walks in Figure S4B that estimate the behavior of the stochastic epigenome model under
cooperative parameters. For simplicity, we assume that there are two types of unwrapping and rewrapping rates such that for
some ® € {0,1,2,...,14}

g =m; fori<e and q;=rp; fori>¢e

with some r and r'. To replicate the cooperativity assumed in the main text, we suppose that r = 2 and r’ = 0.5 so that the random
walker steps forward more easily around the right-edge than around the left-edge. As we define previously, for the random walks in
Figure S4B, we define T, ,, as the expected number of transitions to state m from state n. We also assume that ¢ = 7 and hence the
unwrapping rate is greater than the rewrapping rate for all states in {7,8,...,14}.

For the random walk in Figure S4B top, we can compute T 14 by decomposing itas To 14 = Toa + Ta7+ T714. Computing T7 14 is
complicated as we need to consider the mixture of the transition probabilities g; = 2p; and q; = 0.5p;. By using the same recursive
relation shown above, we have

Tre = 1+QeTes =1 +96(Te7 + T7,s)-
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This implies that psT78 = 1+qsT67 and hence T7g = 28, where we note that Tg7 = K>3 = 13. By doing so, we can recursively
compute Tgg = 16, Tg 10 = 9.5, T10,11 = 6.25, T1112 = 4.625, T3 13 = 3.8125 and Ty3 14 = 3.40625 in the same way. Therefore T7 14 =
b gli—1; = 2.59375 and hence

i=

To'14 = To_y4 + T4'7 + T7'14 = K0'4 + K0'3 + T7'14 = 139.59375.
In the same way, we compute Ty 14 of the random walk in Figure S4B bottom as
T0114 = Ko_7 + T7_14 = 50403125,

which is greater than Ty 14 of the SDTF binding site at state 4. On contrary to the case of non-cooperative rates, therefore, when the
unwrapping and rewrapping rates are cooperative as we assumed above, the SDTF binding at dyad is not the optimal binding site for
full eviction.

We can generalize the computation of Ty 14 with different values of ¢, and we can use this to test how the optimal SDTF binding sites
vary with the degree of cooperativity. The solid and dotted plots in Figure S4D show that Ty 14 under highly cooperative rates (2 < 6)
and mildly cooperative rates (2 > 7), respectively. As the plots show, the optimal binding sites are located toward the left-edge when
the rates are more cooperative.

Predict the system parameters. By using the random walk models to simplify the original stochastic epigenome model, we proved in
STAR Methods Section 4.1 that the full eviction probability of DNA varies in the SDTF binding sites so that the full eviction probability
profile exhibits a special pattern as shown in Figure 4A of the main text. We further showed that this pattern can be considerably
varied under different degree of cooperativity and the range of the SDTF binding effect.

This probability profile allows us to predict the system parameter by comparing the computational results to the experimental loca-
tion-specific measurements. Let x be the relative distance between the SDTF binding site and dyad. Let further p(x) be the average
full-eviction probability for the distance x. First of all, as the optimal binding sites vary in different degree of cooperativity, we recog-
nize that the width of the center dip appearing in the probability profile differs in the cooperativity parameter h. Since the optimal
binding sites tend to move to the edges (state O or state 14), the width of the center dip increases as h increases in the plot of
p(x) (Figure S5A the 1st panel).

We can also predict the effects of other parameters. As the opening rate a; increases, p(x) across all the range of the distance x
translates up. Similarly, as the close rate by decreases, p(x) also translates up (Figure S5A the 2nd panel). The parameter BF =

kit the ratio of the SDTF binding and unbinding rates, controls the magnitude of the SDTF binding effect. The rewrapping rates

Koff+kon

lying the range of the SDTF effect decreases when BF increases as shown in (Equation 13), which in turn induces sharper peaks in the

probability profile (Figure S5A the 3rd panel). Range of the SDTF effect, determined with the constantsind, = b, (1 - e%(¥)2> ,is

also one of the critical parameters for special pattern in the plot of p(x). For short range of the SDTF effect, the full eviction probability
dramatically changes for each binding site. This causes that the depth of the center dip becomes dipper as shown in the 4th panel of
Figure S5A. Furthermore, an SDTF binding site with long distance to dyad does not affect the system if the range o is too small. Thus if
o is too small, a plateau appears in the plot of p(x) around x such that |x| is big.

From a given ATAC-seq measurement for the change of the nucleosome counts with a certain SDTF binding motif location (Fig-
ure S5B), we can calculate p(x) and plot it. Then by using the fact that each parameter of the stochastic epigenome system charac-
terizes p(x), we can make an initial guess of the parameter values comparing to the experimentally measured p(x). And then as
described in Figure S5C, we can further tune the parameters for more accurate fitting with the gradient decent searching algorithm,
which is a typical algorithm for searching optimal system parameters. We use L? norm to define the loss function for the gradient
decent algorithm as d = S ,|po(i) — p(i)\g, where i indicates the i SDTF binding location, pg is the experimentally measured
full eviction probability, and p is the full eviction probability computed with the stochastic model. The plots in Figure S5D display
that the fitted parameters are actually global optimization values of the L? distance.

Modeling under generalized parameter sets

Continuity of the stochastic nucleosome model. Here we state that the statistical quantities associated with the stochastic
nucleosome model is almost preserved under small variations to the model parameters since the probability density function is
continuous in the model parameters. To visualize this, we add small noise to the unwrapping/rewrapping parameters, and show how
the full eviction probabilities change.

First of all, to incorporate noise in the unwrapping and rewrapping parameters, a, and b,,, we add a Gaussian noise to the param-
eters so that the new noisy parameters area, = a,+Z1, +a@p = anp+2Zo,, Where Z;, is a normal random variable with mean 0 and
variance a,/10 and b, /10, respectively fori = 1 and 2. In case some parameter becomes negative, we make it zero. Then we obtain
the Eviction Probability Profiles of the stochastic model under both non-cooperative setting and cooperative setting. The noise added
to a, and b, can continuous; y deform the eviction probability profiles (Figure S6A). As the original setting without noise in the pa-
rameters, therefore, the unique characteristic of the Eviction Probability Profiles is preserved with a single peak for the non-cooper-
ative case and double peaks for the cooperative case (Figure S6B). This variability of a, and b, can be associated with the variability of
the DNA-histone affinity caused by DNA sequence. Secondly, we allow an event of rebinding of DNA to a histone after full eviction

e10 Cell Reports 40, 111076, July 12, 2022



Cell Reports ¢? CellP’ress

OPEN ACCESS

with small probability as described in Figure S6C. Then the continuity of the full eviction probability guarantees the geometric
characteristic of the Eviction Probability Profile is preserved with this small variation (Figure S6D).
Dependence of binding/unbinding rates on the binding motif location. Recall that the binding/unbinding rates «on and ko are in-
dependent of the binding location in our original model introduced in the main text. However, one can consider binding/unbinding
rates depending on the binding location as the SDTF may not easily bind at more buried sites on the nucleosomal DNA. Thus we can
use kon(S) and ko (s) for the binding/unbinding rate, respectively as functions of the binding location s € {0,1,...,14}.

First, we can assume that «on (s) follows the upside-down Gaussian curve as shown in the right panel of Figure 5A so that the SDTF

has the lowest binding rate at dyad. We can further assume that the binding and unbinding are equally hard for buried sites so that for

Kon(S) _
Koff(S) T

BF = #(2(8) = ﬁ rather than the individual kon(S) and «(S). Hence although the binding/unbinding rates are varied with the
binding location s, the stochastic nucleosome model under kon(s) and «q(s) has the same behavior as the original model under
the binding location-independent binding/unbinding rates. Despite the ratio between kqn(s) and ko%(S) are not identical across all
the binding sites s, the Eviction Probability Profiles have the same qualitative patterns when the variation of the ratio is not substantial
(Figure 5B). This was theoretically verified with the continuity of the eviction probability described as in STAR Methods Section 5.1.
Alternatively, we can also assume that the binding rate is a function of the DNA opening states, X(t). It is possible that when an
SDTF binding site is exposed by DNA opening, the SDTF binding rate is higher than the binding rate when the binding site is buried
by a wrapped nucleosome status. To model this, we assume that kon(n) and ko(n) are functions of the DNA opening state n as
described in the right panel of Figure 5C. As long as the variability of kon(n) and ke (n) with respect to n is not too big, the Eviction
Probability Profiles possess a consistent shape under both the non-cooperative case and the cooperative case as shown in
Figure 5D.
Mean unwrapping times
InTims et al. (2011), it was shown that the unwrapping time from DNA opening state nton + 1 is increasing as n increases. This means
that the unwrapping rate around the dyad (or more buried sites) is lower than the unwrapping rate around the edges. This conclusion
seems to conflict to our result that the DNA-histone binding affinity is cooperative so the more unwrapped DNA state the easiler
further unwrapping. However, the unwrapping time measured in Tims et al. (2011) is the time for DNA to reach state n+ 1 from n.
Hence there could be multiple unwrapping/rewrapping steps of DNA inbetween the final transition from n to n+1. For exampple,
DNA can go through a sequence of stepsn—n — 1—-n — 2—-n — 3—-n — 2—n — 1—>n—n+1 for a transition fromn ton+ 1.
To check consistency of our work with the previous work, we also simulated our model under the cooperative setting we revealed
in this research to measure the time for unwrapping from state n to state n + 1. As shown in Figure S6F, the time increases as a func-
tion of n (Figure S6F left). Similarly, the first time for rewrapping from state n to state n + 1 can be also measured, and it is shown that
the time increases as n increase, but the increment is not as significant as the unwrapping case (Figure S6F right). These results are
consistent with the results in (Tims et al., 2011).

all s, the ratio

r for some constant r. We showed in STAR Methods Section 1.2 that the model behavior solely depends on

QUANTIFICATION AND STATISTICAL ANALYSIS

Model simulations
Model implementation and simulations were performed in MATLAB 2016b. Further detailed description of the model can be found in
the Method details.

Coefficients variation

The coefficient variation for a probability distribution or a random variable is calculated with the standard deviation divided with the
mean. Since this quantity gives a normalized degree of variation of a given probability distribution, we can use them to compare the
variabilities of two probability distributions as described in Figure 2G.

Total variation distance

We used the total variation distance to measure similarities between the distributions of chromatin accessibilities under an oscillatory
signal and a constant signal shown in Figure 4E. For probability distribution P1 and P, defined on the same finite state space,
the total variation distance is defined as ||[P1 — Pa||,, = maxa|P1(A) — P2(A)| = 1>, |P1(X) — P2(x)|. The usage of this distance
can be found in “Model predicts cooperativity based on Eviction Probability Profiles” in Results.

ATAC-seq data processing

Macrophage ATAC-seq samples were generated as previously described (Buenrostro et al., 2015), and single-end data was obtained
from (Cheng et al., 2021). Macrophage ATAC-seq libraries of the IkBa knockout mouse from Cheng et al. (2021) were re-sequenced
paired-end 2 x 150 on HiSeq4000. Only paired-end sequencing allows the separation of nucleosomal fragments from non-nucleo-
somal fragments, as read fragments with lengths shorter than the nucleosome footprint of ~150 basepairs can be classified as nucle-
osome-free accessible regions, while read fragments of ~150bp, or a multiple of 150bp, can be classified as accessible nucleosomal
genomic regions, with cut sites flanking nucleosome boundaries. ATAC-seq fastgs were processed through the ENCODE-DCC
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ATAC-seq pipeline (https://github.com/ENCODE-DCC/atac-seq-pipeline). The reads were trimmed using cutadapt, and aligned to
mm10 or hg38 using bowtie2. Picard was used to de-duplicate reads, which were then filtered for high quality, paired reads using
samtools. Peak calling was performed using macs2. The optimal Irreproducible Discovery Rate (IDR) thresholded peak output
was used for all downstream analyses, with a threshold p-value of 0.05. Other ENCODE3 parameters were enforced with the flag
—encode3. Reads that mapped to mitochondrial genes or blacklisted regions, as defined by the ENCODE pipeline, were removed.
The peak files were merged using bedtools merge to create a consensus set of peaks across all samples.

ATAC-seq nucleosome analysis

Nucleosome positions were called using the merged regions, from paired-end ATAC-sequencing data, using the published software
NucleoATAC (Schep et al., 2015). An example genomic location Cxc/2, illustrates the information obtained is orthogonal to simply
chromatin accessibility (Figure S6). The output of this software provides putative nucleosomal and nucleosome-free regions of
accessible chromatin, by analyzing the patterns of ATAC-seq read fragment sizes. As described in full detail in Schep et al.
(2015), nucleosome occupancy is called by maximum likelihood estimation, and nucleosome dyad positions are called by consid-
ering the local maxima of candidate nucleosome positions. Genomic locations of nucleosome positions called were annotated,
and NF-«kB motifs were found using the tool HOMER (Heinz et al., 2010). Motif searching was done using the three NF-kB motif po-
sition weight matrices within the HOMER database, for length 9, 10, 11. Motifs were listed if they occurred within +/—200 basepairs of
the nucleosome dyad. Nucleosomes across timepoints were matched by assigning them to their closest transcription start site for
each sample. Nucleosomes assigned to a TSS for the baseline time point, and subsequently not found at that TSS at the later time
point, were considered evicted. For analyses where the model calculated a probability of nucleosome eviction, nucleosomes that
appeared, and matched to a new gene at the second time point but not in the first, were ignored. Probabilities of eviction p with
respect to location of the binding motif and distance from nucleosome dyad were calculated by taking bins of distance from
dyad, and using the following formula for each bin: p = % where n; - p, is the number of nucleosomes at h hours.
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