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Abstract—Numerous characterization techniques have been

developed over the last century, which have advanced progress on

the development of a variety of photovoltaic technologies. How-

ever, this multitude of techniques leads to increasing experimental

costs and complexity. It would be useful to have an approach

that does not require the time commitment or operation costs to

directly learn and implement every new measurement technique.

Herein, we explore several machine learning (ML) models that

output complex materials parameters, such as electronic trap

state density, solely using illuminated current-voltage curves. This

greatly reduces both the complexity and cost of the characteri-

zation process. Current-voltage curves were chosen as the only

input to our models because this type of measurement is relatively

simple to perform and most photovoltaic research labs already

collect this information on all devices. We compare several

different ML network architectures, all of which are trained on

experimental data from PbS colloidal quantum dot thin film solar

cells. We predict values for underlying materials parameters and

compare them to experimentally measured results.

Index Terms—thin film, lead sulfide, machine learning, col-

loidal quantum dots

I. INTRODUCTION

The field of photovoltaics has taken advantage of numerous
experimental techniques to measure the critical underlying
materials parameters which determine solar cell device per-
formance. Techniques such as charge extraction by linearly
increasing voltage (CELIV), time of flight (TOF) measure-
ments, photocurrent transient spectroscopy, and space-charge-
limited current (SCLC) measurements are used to measure
charge mobility while other techniques such as the transient
photovoltage method and deep level transient spectroscopy
(DLTS) can be used to determine mid-gap trap state den-
sities [1]. Determining these parameters is essential in the
development cycle of solar cells as they allow researchers
to compare different devices and fabrication methods, as
well as identify limits to and improve device performance.
However, these techniques often require specialized device
architectures and an experienced researcher to determine the
best underlying analytical or numerical model to fit to the
data. This can not only be time consuming, but complex
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as well. In addition, large upfront costs for equipment and
apparatuses make some measurement techniques inaccessible
to smaller labs. This sometimes leads to labs needing to choose
between measuring one materials parameter versus another.
One possible alternative to conventional methods is to leverage
machine learning (ML) to obtain these materials parameters
by taking advantage of existing datasets and correlating them
with new, simpler measurements.

Herein, we test several machine learning models to aid
in the solar cell development process. The key difference
between our models and others found in the literature is that
our algorithms are trained on experimental data rather than
simulation data. The latter is usually preferred due to the high
cost and complexity of fabricating numerous devices; however,
data extracted from simulations is not as reliable, accurate,
or comprehensive as data collected from real devices. This
is due to errors such as the simulation of thermodynamically
unstable, physically impossible, or idealized structures [2]. We
leveraged our past work on development of a multi-modal op-
toelectronic scanning instrument for solution-processed solar
cells [3] to generate massive training data sets on colloidal
quantum dot photovoltaic devices that can be used to bolster
and diversify existing experimental and computationally gen-
erated datasets.

In general, our models utilize supervised machine learn-
ing methods to predict materials parameters. The goal is
to train an artificial neural network to predict an output
vector t ⌘ [t1, t2, · · · , tN ] from a particular input vector
x ⌘ [x1, x2, · · · , xN ]. In the general case, these vectors could
be of different dimensions. We train the model by providing
numerous examples of input-output pairs, so that it can infer
the underlying relationship between the two variables via
back-propagation and the gradient descent method. Since this
method uses statistical correlations instead of physical laws
[4], it eliminates the need for complex user analysis and the
need to encode data presumptions. There are several feed-
forward network architectures that can be used to solve these
classes of regression problems: the multilayer perceptron,
autoencoders, and the convolutional variants of these networks.
With new data being generated at an exponential rate, ML
offers a time- and memory-efficient way of analyzing large
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(a) Measured photovoltage map
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(b) ML predicted photovoltage map

Fig. 1: a). Experimentally measured transient photovoltage map for a CQD solar cell. This device was used to validate the
machine learning models. b). Predicted transient photovoltage map for the same cell by a convolutional autoencoder.

datasets and a promising alternative to traditional approaches
for determining materials parameters in complex materials
such as colloidal quantum dot thin films that may not behave
like traditional semiconductors in all aspects.

In the following sections, we introduce our device structure
and experimental setup. We explain in detail the materials
parameters studied and how we measure them. Next, we
discuss the inner workings of several ML models, compare
their efficacy, and report their hyperparameters. We also dis-
cuss several ways in which model accuracy can be improved.
Lastly, the predicted materials parameters from our models are
compared to experimentally measured materials parameters.

II. METHODS

A. Experimental Setup

We took measurements from several colloidal quantum dot
(CQD) thin film solar cells. All the devices share the same
structure: a glass substrate, a transparent electrode (fluorine-
doped tin oxide), a n-type zinc oxide electron-extraction layer,
a bulk absorbing layer made up of a PbS CQD film with
PbX2 (X=Br, I) ligands, a p-type hole extraction layer (PbS
CQD thin film with ethanedithiol ligands), and lastly a top
evaporated gold contact [5]. The absorbing layer of our devices
is around 500 nm thick.

A custom optoelectronic scanning setup was used to collect
data on all the devices [3]. The sample is mounted on an
XYZ translation stage, which allows us to create spatially-
resolved materials parameter maps. In contrast to single-point
measurements, this system allows us to resolve macroscopic
physical phenomena such as defect regions and film inho-
mogeneities. We collected illuminated current-voltage curves
using a Keithley 2400 Source Measurement Unit, and we
used an Ocean Optics NIRQuest512 spectrometer to collect
photoluminescence (PL) data. The entire system is automated

to produce parameter maps that are correlated in both space
and time.

To determine the electronic trap state density n in our
photovoltaic CQD thin films, we utilize the iterative tran-
sient photovoltage method [6]. A Thorlabs MCWHL5 White
light emitting diode (LED) was used to provide the steady
state background illumination, and a Thorlabs L520P50 Laser
Diode (� = 520 nm) was used as a perturbation source.
The pulsed laser generates excess electrons which recombine
shortly after each pulse. We can calculate the excess charges
generated (�Q) by integrating the photocurrent transient while
the device is under short circuit conditions:

�Q =

Z
I(t)dt

The photovoltage transient signal can be modeled to fit a
mono-exponential of the following form:

�Voc(t) = �Voc(0) exp

✓
�t

⌧s

◆

where �Voc(0) is the maximum change in the open circuit
voltage caused by the perturbation source and ⌧s is the
small signal lifetime [7]. We perform these measurements at
different light biases corresponding to different open circuit
voltages. Afterwards, a differential capacitance can be calcu-
lated using the following:

C =
�Q

�Voc(0)

Integrating this capacitance up to a particular Voc will give us
an estimation of the midgap trap state density n:

n =
1

Aed

Z Voc

0
CdV (1)
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Fig. 2: Photoluminescence plot for a single point in the scan
fit to a Gaussian curve.

where A is the area of the device, e is the electronic charge,
and d is the thickness of the active layer. The spot size of the
combined laser/LED beam was measured to be approximately
50µm, but the translation stage has the capability of stepping
in increments as small as 10µm. A trade-off is made between
the resolution of the transient signals and the diameter of the
beam spot. Smaller spot sizes allow us to study devices in
greater detail, but this may lead to longer acquisition times
and lower signal-to-noise ratios.

Lastly, the collected photoluminescence data was fit to a
Gaussian curve of the following form.

G = a exp

✓
�(x� b)

c

◆

where a, b, and c are constants. Figure 2 shows an example
photoluminescence plot, from which we can obtain parameters
such as the peak wavelength (�peak), peak intensity, and full
width at half maximum (FWHM) of the intensity.

B. Neural Networks

We predicted materials parameters using a simple multilayer
perceptron, an autoencoder (AE), and convolutional variants
of each [8]. The goal of autoencoders is to learn the identity
function, i.e. the desired output of the network is the input
[9]. By itself, that is not useful, but if we add a bottleneck to
the network, meaning if we add a layer z that has dimensions
smaller than the input layer, then the autoencoder will learn a
way to map the input data onto this lower dimensional space
[2]. It is in this bottleneck layer that we obtain our materials
parameters. We can achieve this by adding an additional term
to the cost function J of the autoencoder [10]:

J =
1

N

NX

i=1

(xi � ti)
2 +

MX

j=1

(kj � zj)
2 (2)
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Fig. 3: Short circuit current density map of one of the CQD
solar cell devices used to train the neural networks with a
visible defect near the center.

where k is the desired materials parameter that we measure
and train the network with. Additional terms may be added
for more materials parameters. Note that there are two parts
to an autoencoder: the encoder and the decoder. The encoder
performs dimensionality reduction and also learns the relation-
ship between the input space and latent space. The decoder
can be used alongside a Gaussian noise generator to create
a generative adversarial network (GAN). This is one possible
method of using ML to generate datasets for future use.

III. DISCUSSION/RESULTS

Four different networks were used in our study: a simple
multilayer perceptron (MLP) with six hidden layers, one
convolutional MLP network, one autoencoder (AE) network,
and lastly a convolutional AE network [8]. All models were
trained for 20 epochs with a learning rate of ⌘ = 2.5⇥ 10�3.
The Rectified Linear Unit (ReLU) activation function was used
between each layer. The input to each model was a 28 ⇥ 2
vector which is the illuminated current-voltage curve. For
preprocessing, the input current-voltage curve and materials
parameters were scaled to the range of 0 to 1 and zero-
centered. We scale the data to make the problem bounded and
because of the properties of the sigmoid and ReLU activation
functions [11]. The data is zero centered in order to help
convergence to a solution during gradient descent. In a typical
solar cell device, the current is negative from zero volts all the
way to the open-circuit voltage. This is undesirable because
then the gradients will all have the same sign and be limited
to either the negative or positive direction during training [11].

The MLP models are based on a network with six layers that
have 200, 150, 150, 50, 50, and 50 neurons respectively [1].
Both convolutional MLP and AE models used a filter of size
7⇥ 2 with stride length of 1. AE networks had a hidden layer
of size 1⇥ 1, which is equal to the materials parameter being
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TABLE I: Mean Squared Errors for Predicted Materials Pa-
rameters from Different ML Networks

MLP Conv. MLP AE Conv. AE

Trap State
Density 0.065 0.063 0.058 0.057

Peak PL
Wavelength 0.026 0.022 0.019 0.018

Transient
Photocurrent

Decay
0.071 0.069 0.062 0.060

TABLE II: Mean Squared Errors While Predicting Multiple
Materials Parameters

No. of
Variables 1 2 3

Trap State
Density 0.057 0.054 0.053

Peak PL
Wavelength - 0.017 0.017

Transient
Photocurrent

Decay
- - 0.073

trained. We plotted these various hyperparameters against the
mean squared error (MSE) for several materials parameters,
and picked the values that minimized MSE across all variables.

To test our networks, we used data maps from four different
devices. In total, we measured 18,124 unique points on the
devices within the maps. Three of the devices were used for
training, and the remaining device was used for validation.
An image of one of the training devices is given in Figure
3, and an image of the validation device is given in Figure
1. Table I summarizes the results of the various ML models.
Overall, we find that convolutional networks out perform their
non-convolutional counterparts.

We took the best performing network (convolutional AE)
and added additional hidden neurons to the bottleneck layer.
The results are tabulated in Table II. Surprisingly, MSE
decreased for both the peak PL wavelength as well as the
electronic trap state density as we increased the number of
latent variables. This result is counter-intuitive because the
form of the cost function given in Equation 2 includes a trade-
off between the optimization of different parameters.

From this fact, we point out that ML models can only find
dependencies if they are actually provided in the dataset. For
example, the bandgap of some semiconductors is a function of
both interatomic spacing and temperature. If we train a model
to find the bandgap, but only provide interatomic spacing data,
then we would be worse off than if we combined both spacing
and temperature data. We find that the increase or decrease of
MSE can be used as a proxy to determine which variables are
physically correlated and not just statistically correlated.

Lastly, qualitative results from our model training is shown
in Figure 1. We plot both the measured and predicted values of
�Voc(0). There is strong agreement between the two values,
and because the values are of the same order of magnitude,

we conclude that the system was able to properly learn the
mapping function for this particular device. These preliminary
results demonstrate that this method holds promise for simpli-
fying photovoltaic materials parameter measurements.

IV. CONCLUSION

We demonstrated several simple machine learning meth-
ods to approximate key materials parameters in PbS CQD
solar cells. These models not only enable faster device op-
timization, but also shed insight on the underlying physics
and relationships between materials parameters. Compared to
conventional methods, ML models are time- and cost-effective.
This work is not only applicable to photovoltaic devices, but
could be extended to other types of optoelectronic devices
such as photodetectors and light emitting diodes. Future work
will incorporate unsupervised machine learning methods (e.g.
self-organizing maps) to automatically characterize different
regions of devices. In addition, we plan to build a GAN in
conjunction with the decoder of the AE model to allow for the
creation of large and physically-motivated datasets. Because
our training data is spatially resolved, we will be able to
simulate non-uniform devices with features and defects such as
spin-casting streaks and hairline cracks and predict their effects
on device performance. We plan to eventually extend this
work to other photovoltaic technologies, and encourage the
field to make experimentally correlated data publicly available.
This work paves the way for simplifying measurements in
photovoltaics and could lead to a faster development cycle for
new solar cell technologies.
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