
Reusing GEMM Hardware for Efficient Execution of Depthwise
Separable Convolution on ASIC-based DNN Accelerators
Susmita Dey Manasi

University of Minnesota Twin Cities
Minneapolis, MN, USA

Suvadeep Banerjee
Intel Labs

Santa Clara, CA, USA

Abhijit Davare
Intel Labs

Hillsboro, OR, USA

Anton A. Sorokin
Intel Labs

Hillsboro, OR, USA

Steven M. Burns
Intel Labs

Hillsboro, OR, USA

Desmond A. Kirkpatrick
Intel Labs

Hillsboro, OR, USA

Sachin S. Sapatnekar
University of Minnesota Twin Cities

Minneapolis, MN, USA

ABSTRACT
Deep learning (DL) accelerators are optimized for standard convolu-
tion. However, lightweight convolutional neural networks (CNNs)
use depthwise convolution (DwC) in key layers, and the structural
difference between DwC and standard convolution leads to signif-
icant performance bottleneck in executing lightweight CNNs on
such platforms. This work reuses the fast general matrix-vector
multiplication (GEMM) core of DL accelerators by mapping DwC to
channel-wise parallel matrix-vector multiplications. An analytical
framework is developed to guide pre-RTL hardware choices, and
new hardware modules and software support are developed for
end-to-end evaluation of the solution. This GEMM-based DwC exe-
cution strategy offers substantial performance gains for lightweight
CNNs: 7× speedup and 1.8× lower off-chip communication for
MobileNet-v1 over a conventional DL accelerator, and 74× speedup
over a CPU, and even 1.4× speedup over a power-hungry GPU.

CCS CONCEPTS
•Hardware→Application specific integrated circuits; •Com-
puting methodologies → Neural networks.

KEYWORDS
depthwise convolution, lightweight CNN, deep learning accelerator

ACM Reference Format:
Susmita Dey Manasi, Suvadeep Banerjee, Abhijit Davare, Anton A. Sorokin,
Steven M. Burns, Desmond A. Kirkpatrick, and Sachin S. Sapatnekar. 2023.
Reusing GEMM Hardware for Efficient Execution of Depthwise Separable
Convolution on ASIC-based DNN Accelerators. In 28th Asia and South
Pacific Design Automation Conference (ASPDAC ’23), January 16–19, 2023,
Tokyo, Japan. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/
3566097.3567863

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASPDAC ’23, January 16–19, 2023, Tokyo, Japan
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9783-4/23/01. . . $15.00
https://doi.org/10.1145/3566097.3567863

1 INTRODUCTION
Lightweight versions (e.g., MobileNets [1], Xception [2], Efficient-
Net [3], MNasNet [4], ShuffleNet [5]) of deep convolutional/deep
neural networks (CNNs/DNNs) offer competitive accuracy in a wide
range of vision applications, with much lower parameter counts and
computational requirements than memory- and compute-intensive
CNNs such as ResNet, GoogleNet, and VGGNet.

The depthwise convolution (DwC) layer is key to enabling these
lightweight CNNs as it requires orders-of-magnitude lower parame-
ter counts and multiply-accumulate (MAC) operations as compared
to standard convolution (Conv2D) layers [1]. However, DwC offers
limited scope for data reuse and parallelism and maps poorly to
general ASIC-based DNN accelerators [6–9], which are optimized
for Conv2D and do not directly support DwC operations. This poses
a major bottleneck [5, 9, 10] in executing lightweight CNNs on such
platforms. For example, Gemmini [9] executes DwC layers in a host
CPU; VTA [7] replaces DwC with grouped convolutions; an en-
hanced version of VTA [11] executes DwC layers in a generic ALU
core; in [12] numerous wasteful zeros are inserted to transform
DwC into Conv2D. Accelerators for lightweight CNNs use sepa-
rate compute engines for Conv2D and DwC [13, 14], resulting in
high hardware resource requirements. While [15] reuses the same
compute engine for Conv2D and DwC, it supports only a subset of
Conv2D for lightweight CNNs. X-Layer [16] uses cross-layer fusion
and heterogeneous dataflow for DwC, but requires frequent on-chip
tensor formatting to handle inter-layer communication, leading to
large hardware overheads. A customized network-on-chip (NoC)
and dataflow specific to the Eyeriss v2 [17] architecture accelerates
Conv2D and DwC, but does not generalize to mainstream accelera-
tors with systolic or vector dot-product computation in a general
matrix-vector multiplication (GEMM)-based array [6–9, 11].
Contributions: We develop a methodology that performs DwC
and Conv2D (including fully connected (FC) layers) on the same
hardware. The DwC computation is algorithmically manipulated as
a channel-wise parallel matrix-vector multiplication and mapped
to reuse the fast GEMM core (optimized for Conv2D) of a DNN en-
gine. We develop hardware modules, and provide instruction-level
support and testbenches, for end-to-end functional verification and
evaluation of our GEMM-based strategy. Our solution is both simple
and practical: through small hardware changes and instruction set

https://doi.org/10.1145/3566097.3567863
https://doi.org/10.1145/3566097.3567863
https://doi.org/10.1145/3566097.3567863

ASPDAC ’23, January 16–19, 2023, Tokyo, Japan Manasi et al.

modifications that can easily be adapted in standard GEMM-based
DL accelerators, we deliver large improvements in accelerator per-
formance. Note that code-based modulation using front-end DNN
development frameworks such as PyTorch or TensorFlow cannot
achieve this solution for ASIC accelerator platforms.

We evaluate our DwC implementation in the GEMM core on
a full hardware stack performing back-end synthesis, place, and
route in an Intel 22FFL technology. The features of our GEMM-
based DwC execution method are: (i) we reuse existing hard-
ware resources; (ii) we incur very small supplementary hardware
cost to integrate it in a GEMM core: we augment the GEMM core
with image-to-column (Im2Col) hardware and multiplexers to en-
able the computation of DwC along with Conv2D; (iii) we provide
instruction-level support for the new GEMM-based DwC operation;
and (iv) we substantially accelerate the DwC computation, making
it a small fraction of the network runtime (shown later in Fig. 9(a)).

Compared to an ALU-based DwC implementation, we demon-
strate that our approach provides end-to-end improvements inMobile-
Net-v1 execution. For various GEMM array sizes, we achieve
• 5.10× speedup, 1.65× fewer off-chip accesses on a 32×32 array.
• 7.02× speedup, 1.81× fewer off-chip accesses on a 64×64 array.
We compare our GEMM-based strategy with CPU and GPU-based
implementations of MobileNet. We obtain 73.9× speed-up over
an Intel(R) Xeon(R) Gold CPU. We also demonstrate 1.4× speed-
up over a high-performance NVIDIA Tesla V100S-PCI GPU, even
though the GPU has ∼16× more on-chip memory and is signifi-
cantly more power-hungry than our custom accelerator solution.
As compared to Eyeriss v2 [17], a heavily customized lightweight
CNN accelerator, our approach achieves 1.95× performance im-
provement on a variant of MobileNet.
Table 1: (left) Operations per layer type for MobileNet-v1, and
(right) percentage of cycles spent in executing DwC and other lay-
ers with respect to total network cycles on two different hardware
configurations.

Layer #of MAC Parameter ASIC
accelerator

DwC
cycles

Conv2D + Other
cyclesConv2D 96.05% 74.61%

DwC 3.06% 1.06% Hardware1 60.28% 39.72%
FC 0.18% 24.33% Hardware2 62.69% 37.31%

2 THE VALUE OF ACCELERATING DWC
We analyze the impact of DwC layers on the runtime of MobileNet-
v1 [1], a representative lightweight CNN topology that is widely
used in the machine learning (ML) community. In MobileNet, ap-
proximately every other layer is a DwC. Although the DwC layers
together consist of just 3.06% of the total number of MAC opera-
tions and just 1.06% of the DNN parameters (see left part of Table 1),
DwC computations constitute a significant performance bottleneck
in the end-to-end runtime on general ASIC-based DNN accelera-
tors [6–8, 11]. These platforms contain two key compute cores:
(i) a multiplier-rich GEMM core for Conv2D and FC layers,
(ii) a generic ALU core to execute activation, pooling, DwC, etc.
The right part of Table 1 shows the fraction of total network cycles
spent in executing DwC layers on two different hardware configu-
rations of a general DNN accelerator (see Fig. 2 for details) where
DwC is executed in the ALU core by mapping the computation to
multiplication and addition operations. The data is obtained using
our analytical model from Section 5.1. It is clear that despite having
a small number of MAC operations and low parameter counts, DwC

IH

IW
IC
*

𝐾!IC

4D filter

ifmap
OWOC

OH

ofmap

Conv2D

OC

𝐾"

IH

IW
C

*
𝐾!

C

3D filter

ifmap
OWC

OH

ofmap

DwC

𝐾"

(a) Standard convolution (b) Depthwise convolution

Figure 1: Standard convolution vs. depthwise convolution.

layers present significant performance bottleneck (over 60% of the
network runtime) and must be accelerated.

General ASIC-based DL accelerators can evolve with the growing
variety of neural network topologies and have a mature compilation
stack (i.e., TVM [18], XLA [19]) for end-to-end DNN execution, but
are inefficient for DwC. Our economical and efficient DwC solution
reuses the GEMM core of these accelerators, which is hardware-
resource-rich and highly optimized for compute-intensive Conv2D.

3 PRELIMINARIES
Conv2D vs. DwC: Depthwise separable convolution (DwSC) is a
key building block of lightweight CNNs and consists of two types
of layers: (i) pointwise convolution, a special case of Conv2D where
the kernel size is 1×1, and (ii) depthwise convolution (DwC).

Fig. 1 shows differences between DwC and Conv2D. In Conv2D
(Fig. 1(a)), a (Kh × Kw × IC × OC) 4D filter is convolved with
an (IH × IW × IC) 3D input feature map (ifmap) to produce
an (OH ×OW ×OC) output feature map (ofmap). This involves
element-wise multiplication between each 3D filter channel and
an ifmap region (i.e., the purple filter and orange ifmap region).
The intermediate partial sums (psums) are accumulated across all
IC channels to produce one ofmap channel element (purple ofmap
box). The operation is repeated, using all OC 3D filters, to produce
data in all ofmap channels. The full ofmap is built by repeating
the process, sliding the filter through the ifmap with a convolution
stride S . DNN accelerators execute Conv2D as a GEMM operation.

DwC (Fig. 1(b)) uses a (Kh × Kw ×C) 3D filter, with an identi-
cal number, C , of filter/ifmap/ofmap channels. Element-wise MAC
operations between each filter channel (red) and a same-sized sub-
region of the ifmap channel (yellow) produce data in the ofmap
channel (yellow). With a filter stride of S , the full ofmap is produced.

If IC = OC = C , DwC reduces the parameter counts and #of
MAC operations by a factor of C over Conv2D [1]. Unlike Conv2D,
DwC performs no summation across channels and there is only
one 3D filter. It is challenging to efficiently execute DwC layers
in DNN accelerators because (a) the DwC computation cannot be
readily mapped to GEMM (b) there is limited available parallelism.
Target hardware platform: Our target hardware platform, repre-
sented in Fig. 2, is a general ASIC-based DNN inference accelerator,
similar to TPU [6], VTA [7, 11], and GeneSys [8], that is primarily
optimized for standard convolution. The GEMM core has a J × K
array of processing elements (PEs). In every cycle, each column of
the GEMM core performs element-wise MAC operations between
two 1 × J vectors and produces a single output. The K columns
operate in parallel, producing K outputs in each clock cycle. A
single 1 × J ifmap vector is shared among all K columns (i.e., the
ifmap vector is reused horizontally) while the PE array receives a

Reusing GEMM Hardware for Efficient Execution of Depthwise Separable Convolution on ASIC-based DNN Accelerators ASPDAC ’23, January 16–19, 2023, Tokyo, Japan

weight
buffer

ifmap
buffer

output
buffer

2D GEMM Core

1D ALU Core (KALUs)

O
ff-
ch
ip
 D
R
A
M

J

K

PE

Figure 2: Block diagram of the hardware architecture

J × K submatrix of filter weights. The ifmap-weight matrix opera-
tion produces K psum/ofmap data in each cycle where psums are
reduced vertically within each column. The GEMM core has access
to three separate (filter, ifmap, psum/ofmap) on-chip buffers that
communicate with off-chip DRAM. The ALU core is a 1 × K ALU
array. The K ALUs parallelly perform a single type of operation
(×, +, min, max, shift, etc.). The ALU core has access to only the
output buffer.

Our GEMM-based strategy for DwC is applicable to generic ASIC-
based DNN accelerators. We demonstrate a full-stack evaluation on
an open-source [11] VTA+ engine, integrated with Apache TVM.

4 METHODOLOGY FOR GEMM-BASED DWC
4.1 Mapping Conv2D to GEMM
We illustrate how Conv2D is mapped to GEMM in Fig. 3(a). Let
aki j [o

k
i j] denote ifmap [ofmap/psum] element from the kth channel.

For the 4D filter,wk,f n
i j is the element from the kth channel of the

nth 3D filter. The 1 × J ifmap vector uses one element from each of
J ifmap channels. The J × K weight matrix consists of data from
K 3D filters; each matrix column uses data from J channels of one
3D filter. The ifmap-weight operation produces a 1 × K vector of
ofmap/psum (one element in each of K ofmap channels).

Fig. 3(b) shows the translation of this mapping to the J × K PE
array of the GEMM core, where IC-k and OC-n indicate the kth

ifmap/filter channel and nth ofmap channel/3D filter, respectively.
The ifmap vector is shared by the horizontal lines across all PE
array columns. Each PE receives one element of the weight matrix
where one column of the PE array operates on a single 3D filter. The
GEMM operation is then performed in one cycle. Similar operations
are repeated in the array until the full Conv2D layer is computed.
The Conv2D computation as GEMM illustrated in Fig. 3 is applicable
for Conv2D layer with any kernel size (i.e., Kh ,Kw ≥ 1).

𝑎!!! 𝑎!!" 𝑎!!
#

𝑤!!
!,%!

𝑤!!
",%!

𝑤!!
#,%!

𝑜!!!

1 × J

K

J*

ifmap vector

weight matrix

ofmap vector

𝑤!!
!,%"

𝑤!!
",%"

𝑤!!
#,%"

𝑜!!"

𝑤!!
!,%&

𝑤!!
",%&

𝑤!!
#,%&

𝑜!!&

𝑤!!
!,%'

𝑤!!
",%'

𝑤!!
#,%'

𝑜!!'

Data from
J channels

Data from
K filters

(a)

𝑤!!
!,#!

𝑎!!!
𝑤!!
!,#$ 𝑤!!

!,#%IC-1

One Cycle
(Conv2D)

𝑤!!
$,#!

𝑎!!$
𝑤!!
$,#$ 𝑤!!

$,#%IC-2

𝑤!!
&,#!

𝑎!!
&

𝑤!!
&,#$ 𝑤!!

&,#%IC-J

OC-1 OC-2 OC-K

(b)𝑜!!! 𝑜!!$ 𝑜!!%

J

Figure 3: (a) Formulation of Conv2D as GEMM. (b) Illustration of
mapping Conv2D in the J × K PE array of the GEMM core.

4.2 Mapping DwC to GEMM
Elementwise MAC operations in DwC are computed on a per-
channel basis to compute ofmap channel elements using a single 3D
filter. GEMM-based Conv2D cannot be readily extended for DwC
because:

• DwC inherently offers no ifmap data reuse, and so it is not
possible to share an ifmap vector across the array columns.

• No weight matrix can be formed: there is only one 3D filter.
We algorithmically map DwC to GEMM hardware, design support-
ing hardware modules, and devise a hardware mapping strategy.
Algorithmic formulation: We view the computation in each
channel of a DwC layer as multiplication between a matrix of
ifmap data and a vector of filter data. For a single channel, Fig. 4(a)–
(b) shows a stride-1 DwC operation between a Kh×Kw=3×3 fil-
ter channel and an IH×IW=5×5 ifmap channel that produces an
OH×OW=3×3 ofmap channel. For DwC, aki j , o

k
i j , and w

k
i j denote,

respectively, individual ifmap, ofmap, and filter elements from the
kth channel.

In Fig. 4(b), a vector of length (Kh × Kw) is formed from the
2D filter kernel. The ifmap matrix is of dimension (Kh × Kw) ×
(OH ×OW), where each matrix column comes from a 2D spatial
window of ifmap data convolved with the filter kernel, e.g., the
red window in the ifmap channel is vectorized to form the red
column of the ifmap matrix. Other columns are shown by the color-
codes on the ifmap channel and the ifmap matrix. The ifmap-filter
matrix-vector computation produces an (OH ×OW) ofmap vector
using GEMM, which is applied to all channels to compute DwC
channel-wise.
Mapping in the GEMM hardware: Fig. 4(c) shows the computa-
tion in a single PE array column, over multiple cycles, to translate
the channel-wise GEMM mapping of DwC (Fig. 4(b)) to the GEMM
core. PE array columns operate on separate channels in parallel. The
complete mapping of DwC in the 2D PE array, per cycle, is shown
in Fig. 4(d); C-k denotes the kth channel. Each of the K columns of
the GEMM core is equipped with an Im2Col module that sequences
data to perform channel-wise parallel matrix-vector multiplication.

The PE array normally receives ifmap data directly from ifmap
buffer in the natural array sequence for Conv2D GEMM; for DwC,
data from the ifmap buffer must be rearranged in the Im2Col mod-
ules (e.g., in the first window, a131 is needed after a123 [Fig. 4(a)]). In
each cycle, Im2Col supplies a column of the ifmap matrix while the
filter vector is reused over multiple cycles in a weight-stationary
dataflow.

Horizontal lines that share ifmap data across PE columns for
Conv2D are disabled. Simple multiplexers are used to switch the
GEMM core between Conv2D and DwC. The PE array uses the
same datapaths for both modes to receive filter data from the weight
buffer and to write ofmap/psum data to the output buffer.

Our DwC mapping strategy requires a PE array size where J ≥
(Kh × Kw). Standard lightweight CNNs [1–3, 5] consist of DwC
layers with 3×3 kernels. Therefore, the above constraint satisfies
for all reasonable sized PE array (J ≥ 9) sizes in DNN accelerators.

Since the maximum utilization for DwC operation per PE array
column is bounded by (Kh × Kw), J − (Kh × Kw) PEs may remain
unused in each PE array column during the computation of DwC.
These are disabled by inducing zero valued weights: note that there

ASPDAC ’23, January 16–19, 2023, Tokyo, Japan Manasi et al.

𝑤!!! 𝑎!!!

𝑤!"!

𝑤##!

C-1
One Cycle (DwC)

𝑎!"!

𝑎##!

𝑤!!" 𝑎!!"

𝑤!""

𝑤##"

C-2

𝑎!""

𝑎##"

Im2Col-2Im2Col-1

𝑤!!$ 𝑎!!$

𝑤!"$

𝑤##$

C-K

𝑎!"$

𝑎##$

Im2Col-K

𝑤!!! 𝑎##!

𝑤!"! 𝑎#%!

𝑤##! 𝑎&&!

Cycle n
𝑤!!! 𝑎!"!

𝑤!"! 𝑎!#!

𝑤##! 𝑎#%!

Cycle 2
𝑤!!! 𝑎!!!

𝑤!"! 𝑎!"!

𝑤##! 𝑎##!

Cycle 1
One Channel (DwC)

𝐾!×𝐾"
PEs

Unused

(d)(c)

J

𝑜!!! 𝑜!"! 𝑜##! 𝑜!!! 𝑜!!" 𝑜!!$

𝑤!!! 𝑤!"! 𝑤!#!

𝑤"!! 𝑤""! 𝑤"#!

𝑤#!! 𝑤#"! 𝑤##!

𝑎!!! 𝑎!"! 𝑎!#! 𝑎!$! 𝑎!%!

𝑎"!! 𝑎""! 𝑎"#! 𝑎"$! 𝑎"%!

𝑎#!! 𝑎#"! 𝑎##! 𝑎#$! 𝑎#%!

𝑎$!! 𝑎$"! 𝑎$#! 𝑎$$! 𝑎$%!

𝑎%!! 𝑎%"! 𝑎%#! 𝑎%$! 𝑎%%!

𝑜!!! 𝑜!"! 𝑜!#!

𝑜"!! 𝑜""! 𝑜"#!

𝑜#!! 𝑜#"! 𝑜##!
*

filter
ifmap

ofmap

𝐾$

IH

IW

OH

OW𝐾%

𝑤!!! 𝑤!"! 𝑤##!
𝑎!!!

𝑎!"!

𝑎##!

𝑎!"!

𝑎!#!

𝑎#$!

𝑎!#!

𝑎!$!

𝑎#%!

𝑎##!

𝑎#$!

𝑎%%!

𝑜!!!

𝐾$× 𝐾%

OH × OW

𝐾$× 𝐾%

𝑜!"! 𝑜!#! 𝑜##!

*

One Channel

S=1

filter vector ifmap
matrix

ofmap vector

(a)

(b)

DwC

Figure 4: (a)–(b) DwC asmatrix-vectormultiplication. (c)-(d) Mapping of DwC computation in the 2D PE array of the GEMM core: (c) mapping
in one column of the PE array over multiple cycles, (d) mapping in the J × K PE array over a single cycle.

are no such unused PEs for Conv2D. As we will show in Section 5.1,
the cost of additional hardware to keep all PEs busy is not justified
by the small gains in the overall network runtime.
Im2Col module: The data in each column of the ifmap matrix
in Fig. 4(b) are not consecutive elements in the ifmap channel.
Since the ifmap data (ofmap from the previous layer) of a CNN is
generated and stored at runtime, it is not possible to change data
layout to obtain the desired sequencing. The Im2Col module creates
the ifmap matrix from a 2D ifmap channel at runtime, producing
vectorized data from a 2D spatial window of an ifmap channel (i.e.,
one column of the ifmap matrix) every cycle.

We have developed a line buffer and window buffer-based [20]
Im2Col module. Fig. 5 shows our Im2Col hardware module for
stride-one DwC. The module consists of (Kh − 1) line buffers that
store (Kh − 1) rows of the operating ifmap channel at a time and
right shift each data element every cycle. We design each line buffer
using a dual-port SRAM that can read/write data independently in
each cycle. The SRAM read/write addresses are generated to index
the SRAM cells sequentially and create a shift register functionality.

A single Im2Col module receives a single ifmap element every
cycle from the ifmap buffer. After initial stall cycleswhen theGEMM
core waits for Im2Col buffer lines to be filled, the module produces
one column of the ifmap matrix per cycle. The interface between
the ifmap buffer, and all K Im2Col modules together, transfers 1D
ifmap data (i.e., 1 × K) per cycle, similar to the data rate between
the ifmap buffer and PE array for Conv2D.

𝐾!

ifmap element

𝑎!!! 𝑎!"! 𝑎!#! 𝑎!$! 𝑎!%!

𝑎"!! 𝑎""! 𝑎"#! 𝑎"$! 𝑎"%!

𝑎#!! 𝑎#"! 𝑎##! 𝑎#$! 𝑎#%!

𝑎$!! 𝑎$"! 𝑎$#! 𝑎$$! 𝑎$%!

𝑎%!! 𝑎%"! 𝑎%#! 𝑎%$! 𝑎%%!

ifmap channel

𝑎!!! 𝑎!"! 𝑎!#! 𝑎!$! 𝑎!%!

𝑎!""

𝑎#""

𝑎"""

𝑎"!! 𝑎""! 𝑎"#! 𝑎"$! 𝑎"%!

Data are shown
after the initial stall cycles
to fill the buffer lines

SRAM-based
line buffer

Window buffer

𝐾#×𝐾!𝐾# − 1

𝐾#

(Input port)

(O
ut
pu
t p
or
t)

Figure 5: Im2Col hardware, creating vectorized data fromaKh×Kw
ifmapwindowper cycle (dotted rectangles show examplewindows).

Intel Labs 1

16 30 58 114
Size of each Im2Col line buffer (byte)

0.4

0.6

0.8

 %
C

Y fil
l w

rt.
 C

Y N
et

16 16
32 32
64 64

16 × 16
32 × 32
64 × 64

Figure 6: Percentage of stall cycles to fill the Im2Col buffer lines
wrt. total computation cycles of MobileNet-v1.

5 END-TO-END IMPLEMENTATION FLOW
We first develop an analytical performance model that guides our
hardware design choices. We alter the baseline VTA+ hardware en-
gine and its instruction set to provide instruction-level support for
GEMM-based DwC. Finally, we outline our efforts on RTL hardware
implementation and end-to-end functional verification.

5.1 Analytical Model-Guided Design Decisions
In this section, we perform a cost/benefit analysis for optimizations
that superficially appear promising for our GEMM-based strategy.

This process is guided by our analytical framework for the perfor-
mance of a lightweight CNN.We model the execution of (i) Conv2D
and FC in the GEMM core, (ii) our GEMM-based or traditional ALU-
based execution of DwC (iii) ReLU, bias addition, shift, min, and
pooling in the ALU core. The framework takes the layer shape and
the hardware configuration (i.e., GEMM/ALU dimensions, on-chip
buffer sizes/bandwidths, Im2Col line buffer size, data bitwidths)
as inputs and estimates the number of computation cycles. For
this first-order estimate, our analytical prediction model does not
consider stall cycles due to data communication with the off-chip
DRAM. However, we model the stall cycles while the GEMM core
waits for the appropriate ifmap data from the Im2Col modules.
These assumptions are adequate to capture trends and guide the
following pre-RTL design decisions to identify key hardware design
trade-offs for our Im2Col-augmented GEMM core:
(1) Should Im2Col-induced stalls be hidden? Fig. 6 shows the
percentage of stall cycles to fill the Im2Col buffer lines (CYf il l) with
respect to the total compute cycles (CYNet) for MobileNet-v1. For
various size of the Im2Col buffer lines for three different hardware
configurations (i.e., J × K = 16×16, 32×32, 64×64), the number of
stall cycles to fill the Im2Col line buffers is a small (<0.8%) fraction

Reusing GEMM Hardware for Efficient Execution of Depthwise Separable Convolution on ASIC-based DNN Accelerators ASPDAC ’23, January 16–19, 2023, Tokyo, Japan

Table 2: Comparison of network performance on three different
engines for MobileNet-v1 to analyze S2 Im2Col hardware.

Engine specifications*1 E1 E2 E3
ifmap data rate per

GEMM column (bits/cycle)
stride 1 8 8 4
stride 2 32 8 4

Hardware configurations*2 Gain of
E1 wrt. E2

Gain of
E1 wrt. E3J × K ifmap buffer output buffer

16×16 32 kB 64 kB 2.09% 7.24%
32×32 64 kB 128 kB 2.80% 9.54%
64×64 128 kB 256 kB 3.05% 11.10%
*1bitwidth of ifmap = 8 bit; *2Size of each Im2Col line buffer = 58 byte

of the total network cycles. Therefore, we do not add hardware (e.g.,
double-buffering Im2Col lines) to hide these stall cycles.
(2) Should dedicated stride-two Im2Col hardware be built? DwC
layers in lightweight CNNs typically use stride-one (S1) or stride-
two (S2). The design of an Im2Col module for S2 DwC is similar
to the S1 hardware in Fig. 5, with modified connectivity among
the SRAM lines and the shift registers in the window buffer. Be-
tween two consecutive windows in an ifmap channel along the
height/width dimension, there is 2× less overlap of ifmap elements
for S2 as compared to S1: the modified connectivity supports this
lower overlap in the ifmap data. To avoid hardware overheads of
implementing S2, we may reuse the S1 Im2Col hardware to com-
pute S2 DwC, at the cost of stall cycles to handle invalid window
buffer outputs (i.e., not a valid column of the ifmap matrix).

To quantitatively determine the penalty of this choice, we ana-
lyze three different engines (E1, E2, and E3). E1 (with extra hard-
ware) uses the faster dedicated Im2Col module for S2 operation
where a valid window is produced every cycle, while E2 and E3 use
the S1 Im2Col hardware to execute DwC with both strides. S2 DwC
operation in E2 [E3] is approximately 4× [8×] slower than E1.

However, the impact on total network cycles (Table 2) of E1 as
compared to E2 and E3 for MobileNet-v1 is more muted: faster
execution of S2 DwC layers at the expense of more hardware cost
provides small (only 2-11%) performance gain. Achieving this small
gain requires substantial hardware costs (MUXes, a second clock at
half the frequency, and 4× higher memory bandwidth). Therefore,
we use the S1 Im2Col hardware to execute DwC with both strides.

Table 3: Percentage of DwC cycles with respect to total network
computation cycles for MobileNet-v1 on five different hardware
configurations with increasing PE array size.

PE array size 16×16 32×32 64×64 128×128 256×256
DwC cycles 5.6% 7.5% 9.1% 11.4% 14.4%

(3) Should extra hardware be built to increase PE array uti-
lization for DwC? As stated earlier, during the computation of
our GEMM mapped DwC, some PEs may remain unused in the
PE array. For example, for a 32×32 array, only 28% of the PEs are
utilized during the execution of a DwC layer with a kernel size of
3×3. Under our GEMM-executed DwC where a subset of the PE
array is unused, Table 3 shows the percentage of cycles for DwC
computations with respect to the total network computation cycles
for various PE array sizes for MobileNet-v1. DwC constitutes a
small fraction (5–14%) of the network cycles across all array sizes.
Even high-end DNN accelerators (e.g., TPUv2 and TPUv3 [19]) do
not go above 128×128 due to high bandwidth requirements and
low utilization. Thus, for realistic array sizes, the small potential
performance gain by increasing utilization does not justify the high
hardware overhead.

1

Opcode Dept flag Reset 𝜇!"#$% 𝜇"%& 𝐿'() 𝐿$% Unused

𝑓','() 𝑓',$% 𝑓$,'() 𝑓$,$% 𝑓+,'() 𝑓+,$% Unused
0th bit 63rd bit

64th bit 127th bit

GEMM Instruction Fields

Opcode Dept flag Reset 0 1 𝐼𝐻)$," 𝐼𝑊)$," Unused

𝑂𝑊)$," 1 𝐼𝑊)$," 1 0 0 Unused
0th bit 63rd bit

64th bit 127th bit

Arguments for DwC-GEMM Opcode

(a)

(b)

Figure 7: (a) The GEMM instruction fields (128 bit) [7]. (b) Instruc-
tion fields for the new DwC-GEMM opcode.

5.2 Defining a New GEMM Opcode
Due to the differences in mapping Conv2D and DwC to GEMM, a
GEMM instruction defined to walk through the tensors and describe
the data access patterns for Conv2D cannot be directly used for
DwC. For the Im2Col-based DwC GEMM operation, we define a
new GEMM opcode called DwC-GEMM, by modifying a generic
GEMM instruction for Conv2D. We demonstrate this instruction-
level support using the existing ISA of VTA+. The ISA adopts two-
level nested loops to define a deep learning operator (i.e., Conv2D)
where the access indices of the tensor operands (i.e., weight, ifmap,
and ofmap) in their respective buffers are computed via an affine
function [7].

For the GEMM-based DwC, we select a new data layout for the
filter data in memory. In the memory, the filter tensor of DwC layer
is pre-stored using our data layout where Kw and Kh dimensions
are kept in the innermost loops to enable consecutive access of
the filter weight vectors required to perform parallel matrix-vector
multiplication in the GEMM core (Fig. 4(d)). For ifmap/ofmap data,
we use the same layout for Conv2D and DwC, ensuring data layout
compatibility between two consecutive Conv2D and DwC layers.

Fig. 7(a) shows the fields of the VTA+ GEMM instruction. Lout
and Lin are the fields to contain the extent of the two nested loops
(i.e., outer loop and inner loop, respectively). The fields fα,out and
fα,in contain the scaling factors associated with the outer and inner
loop, respectively, that are used in an affine function to compute
the access indices for the data type α in its respective buffer. Here
α ∈ {o, i,w } indicating ofmap, ifmap, and weight data, respectively.
For a tensor operation, µbeдin and µend fields are used to unroll
additional computation loops not covered by these two nested loops.

Instruction fields in our newDwC-GEMMopcode resemble those
of GEMM. The opcode supports stride-1 and stride-2 DwC. Fig. 7(b)
shows the arguments defined for the DwC-GEMM instruction fields.
A subset of instruction fields are populated using tiled dimensions
of ifmap and ofmap. These arguments are used by the opcode
loops that describe the functionality of DwC-GEMM to compute
appropriate indices to access the weight, ifmap, and ofmap data
in their respective buffers. The Im2Col hardware produces invalid
windows during the initial cycles when the Im2Col line buffers
are filled, during the transition between ifmap rows, and between
cycles during the computation of S2 DwC. The opcode definition
skips the ofmap write to the output buffer to handle these invalid
windows. Our new DwC-GEMM opcode uses instruction fields
from the GEMM instruction, and is a fully compatible extension
of the existing GEMM instruction. We verified the functionality of
DwC-GEMM through C++ based behavioral hardware simulation.

ASPDAC ’23, January 16–19, 2023, Tokyo, Japan Manasi et al.

5.3 Hardware Design and Verification
Hardware development: The required hardware modules for our
GEMM-based execution of DwC were implemented using Chisel
HDL, and parameterizable Chisel testbenches were developed to
verify the functionality of each individual hardware unit.

The hardware has an array of Im2Col modules that parallelly op-
erates onmultiple 2D channels of a 3D ifmap tensor. The line buffers
in the Im2Col modules are implemented using dual-port SRAMs.
Due to the variation of data dimensions across layers within a net-
work, the tile sizes of the ifmap tensor can vary from layer to layer,
and the Im2Col hardware unit is designed to operate on different
ifmap tile sizes across different layers of a network. An index gen-
erator module decodes the new DwC-GEMM opcode and generates
appropriate indices to access the ifmap, weight, and ofmap buffers.
The index generator module is equipped with appropriate valid
signals to handle the invalid windows from the Im2Col modules.

The Im2Col and index generator modules were integrated with
the GEMM core of VTA+, with system-level integration of these
hardware modules through additional control logic and pipeline
stages to enable the evaluation on the full hardware stack of VTA+.
System-level testbench:We developed a Python-based testbench
that can run a full DwC layer using our GEMM-based execution
strategy. The testbench tiles and schedules the DwC computation
onto the accelerator hardware. The weight tensor is packed using
our selected data layout to pre-store it in the off-chip DRAM. The
software stack of VTA+ is used to perform JIT (just-in-time) com-
pilation of the instructions and produce the accelerator binaries.
The testbench performs system-level functional verification of the
end-to-end hardware stack against a numpy-based golden reference.

6 RESULTS
6.1 Evaluation of GEMM-based DwC
We evaluate our GEMM-based execution of DwC on VTA+ [11], a
general DNN accelerator platform used by ML developers across in-
dustry. We compare the GEMM-based DwC enabled VTA+ against
the baseline VTA+ where DwC layers are executed in the ALU
core. We also compare our approach against a modern Intel CPU, a
high-performance NVIDIA GPU, and Eyeriss v2 [17], a lightweight
CNN accelerator. CPU/GPU specifications are listed in Table 5.

As a representative lightweight CNN we use MobileNet-v1 that
has both DwC and Conv2D layers. We use a cycle-accurate simula-
tor of VTA+ [21] to obtain the end-to-end performance metrics for
a network (i.e., cycle counts and off-chip DRAM counts). While exe-
cuting a workload, the simulator extracts performance metrics from
the signal traces of the RTL implementation of the hardware. We
report end-to-end cycle counts from the simulator that include both
computation cycles and stall cycles due to off-chip DRAM accesses.
Comparison vs. conventional DwC: We use following nota-
tions:
(i)GEMM-executed DwC (GED), run in the GEMM core (our work).
(ii) ALU-executed DwC (AED), run in the ALU core (baseline).
In both cases, Conv2D and FC are executed in the GEMM core while
operations that follow each layer such as ReLU, shift and min for
ofmap bitwidth conversion, and bias addition are executed in the
ALU core. For all evaluations, the hardware uses 8-bit ifmap/weight
and 32-bit psum/ofmap data. GED Im2Col modules use 58 bytes per

Intel Labs 1

DwC1 DwC9
0

0.5

1

1.5

2

C
yc

le
 C

ou
nt

s

106

DwC in GEMM
DwC in ALU

DwC1 DwC9
0

1

2

3

D
R

A
M

 B
yt

e
Tr

an
sf

er

106

DwC in GEMM
DwC in ALU

20.2×

15.3×

3.5×

2.1×

(a) (b)

Figure 8: GED vs. AED performance for DwC1 and DwC9 layers of
MobileNet-v1 on (a) cycle counts, (b) DRAM accesses.

Intel Labs

16 16 32 32 64 64
0

0.5

1

1.5

2

2.5

C
yc

le
 C

ou
nt

s

107

DwC in GEMM
DwC in ALU
Conv2D + FC

1

(a)

5.10×
4.19×

7.02×

16 16 32 32 64 64
0

1

2

3

4

5

D
R

A
M

 B
yt

e
Tr

an
sf

er

107

DwC in GEMM
DwC in ALU

Conv2D + FC

1.65×1.57× 1.81×

(b)

Figure 9: GED vs. AED overall performance for MobileNet-v1 on
(a) end-to-end network runtime, (b) DRAM accesses.

line buffer. Other specifications (i.e., array dimensions, SRAM sizes,
and off-chip bandwidth) of GED and AED are provided throughout
this section as each configuration is introduced.
Performance comparison: The cycle-accurate simulator shows that
DwC in the GEMM core is very fast, and takes even less time than
the cheap ALU operations (ReLU, shift, min, etc.) that follow each
DwC tile. Fig. 8 shows the performance gain of GED vs. AED for
the first (DwC1, a wide and thin layer) and last (DwC9, a narrow
and fat layer) depthwise convolution layers of MobileNet on a J ×K
= 32×32 hardware configuration (H1). H1 uses 32kB, 32kB, and
128kB for the ifmap, weight, and output buffer sizes, respectively,
and 256 bits/cycle off-chip bandwidth. GED offers 20.2× [15.3×]
speed-up and 3.5× [2.1×] lower off-chip communication over AED
for DwC1 [DwC9]. Similar benefits are seen for other DwC layers.

Fig. 9 shows the gain in the end-to-end network performance
for MobileNet adopting GED as compared to AED. The evaluations
are shown for H1 and for two more hardware configurations, H2
and H3. H2 uses J × K = 16×16, 16kB, 32kB, and 64kB for the
ifmap, weight, and output buffer sizes, respectively, and 64 bits/cycle
off-chip bandwidth. H3 uses J × K = 64×64, 64kB (ifmap), 64kB
(weight), and 256kB (output) of buffer sizes with 512 bits/cycle off-
chip bandwidth. Since VTA+ executes the first Conv2D layer that
takes the RGB input image in the host CPU and offloads the rest of
the network to the accelerator, our evaluation in Fig. 9 excludes the
first Conv2D layer. GED offers substantial speed-up in the network
runtime as compared to AED, with speedups of 5.10× 4.19×, and
7.02× on H1, H2, and H3, respectively. GED is also more efficient
than AED in terms of total off-chip DRAM access count, 1.65×
better on H1, 1.57× better on H2, and 1.81× better on H3.
Area comparison: To determine the area cost of the supplementary
hardware modules in GED, we synthesize, place and route (SP&R)
both GED and AED using Intel 22FFL process technology. Table 4
summarizes the post-SP&R results for two hardware configurations,
normalized to AED, both running at 1GHz clock. The area cost of
the supplementary hardware modules to enable our GEMM-based
execution of DwC is a small (4–6%) fraction of the accelerator area.

Reusing GEMM Hardware for Efficient Execution of Depthwise Separable Convolution on ASIC-based DNN Accelerators ASPDAC ’23, January 16–19, 2023, Tokyo, Japan

Table 4: Post-SP&R results for GED and AED (Intel 22FFL).

DwC in
GEMM vs ALU J × K Total on-chip

buffer size

Normalized wrt. AED
Total
area

Macro
area

Hardware overhead
for GED

AED 16×16 24 kB 1 0.67 6%GED 1.06 0.70
AED 32×32 96 kB 1 0.62 4%GED 1.04 0.65

Energy comparison:We evaluate the energy consumption of GED
as compared to AED. We use the breakdown of various perfor-
mance metrics provided by the simulator and post-SP&R power-
performance characteristics of the hardware to obtain the energy
metric. While executing a network, the performance breakdown
obtained from the simulator are: #of active GEMM cycles, #of active
ALU cycles, #of stall cycles, #of accesses for each of the on-chip
buffers, and #of off-chip DRAM access. We combine data from the
backend run (effective clock frequency, dynamic and leakage power
of GEMM andALU cores, and energy/access for each on-chip buffer)
with simulator data to obtain the energy consumption of GED and
AED. Energy numbers for GED (normalized to AED energy) are
shown in Fig. 10, for MobileNet on H1 and H2. For both, GED
consumes much lower energy than AED: 48.8% lower on H1 and
35.6% lower on H2. Although GED consists of additional hardware
modules (i.e., Im2Col, multiplexer) to enable the execution of DwC
in the GEMM core, they introduce low overhead and speed up GED
substantially over AED, which leads to the reduction in overall
energy consumption of GED.
Comparison with CPU and GPU:We evaluate the performance
of GED by comparing it against a modern Intel CPU and a high-
performance NVIDIA GPU. Table 5 summarizes the specifications
for each hardware platform. We use ONNX Runtime, an industry-
standard DL acceleration framework, to execute MobileNet-v1 on
CPU and GPU. To measure the execution time on CPU and GPU,
we take the average of 10,000 inferences while ignoring the first
100 runs for warm-up. Table 5 shows the runtime per inference
across the three hardware platforms. As demonstrated, our ap-
proach achieves 73.86× speed-up over CPU and 1.41× speed-up
over GPU. It is important to note that the GPU platform we use is a
highly advanced GPU built for ML acceleration. It is equipped with
large on-chip memory (∼16× higher than GED) and therefore, this
is not entirely a fair comparison point for GED. Moreover, GPU
is significantly more power-hungry than ASIC-based accelerators.
Nevertheless, GED outperforms even this powerful GPU.
Comparison with Eyeriss v2: We compare the performance of
GED with Eyeriss v2 under the same area budget. The configura-
tions of the two accelerators with similar on-chip SRAMs are:
• GED: 64×64 PE array with 4096 MACs, 236kB on-chip SRAMs.
• Eyeriss v2: 192 PEs with 384 MACs, 246kB on-chip SRAMs.
The area of Eyeriss v2 in a 65nm node is obtained from [17]. The
area is scaled using the factor s = (η2/η1)

2 to match with the area

Intel Labs

16 16 32 32
0

0.5

1

N
or

m
al

iz
ed

 E
ne

rg
y

GED
AED

1

35.6% lower
48.8% lower

Figure 10: GED vs. AED: Normalized energy (MobileNet-v1).

Table 5: GED vs. {CPU, GPU} Performance for MobileNet-v1.

Hardware Platform Runtime (ms) Speed-up of GED
CPU: Intel(R) Xeon(R) Gold 6132,
@2.60GHz, Memory: 768GB DDR4 64.26 73.86×

GPU: NVIDIA Tesla V100S-PCI,
Memory: 32GB HBM2 1.23 1.41×

GED: 64×64 PE array, 396kB SRAMs,
@1GHz, Off-chip bandwidth: 512 bits/cycle 0.87 1.00×

of GED where η1 and η2 represent the feature sizes from respective
technology nodes. Eyeriss v2 reports performance for MobileNet-
v1 with width multiplier of 0.5 and resolution multiplier of 0.57,
therefore, we also use the same benchmark for GED. As compared to
Eyeriss v2, GED shows 1.95× speed-up for this variant of MobileNet.

Eyeriss v2 uses a heavily customized NoC and dataflow to accel-
erate DNN workloads that require substantial area for control logic
and register storage within each PE. In contrast, the computation
cores of GED do not require local control or register storage within
each PE. GED performs vector operations by directly accessing
on-chip buffers while the compute engines operate under central-
ized control. As a result, the GED architecture can fit more MAC
units than Eyeriss v2 under the same area budget, leading to more
parallelism during the computation, which directly contributes to
its higher performance.

Intel Labs

10 20 30 40 5010 20 30 40 50

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.10

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.10

10

20

30

40

50

10

20

30

40

50

OWtile
O
H
til
e

Anomaly regions

Z axis: increment in
cycle counts wrt.

minimum cycle count

Z axis: increment in
cycle counts wrt.

minimum cycle count

OWtile

O
H
til
e

(a) (b)

Figure 11: Tiling space exploration for DwC1 while executed on
GED: (a) skewed tiling allowed, (b) balanced tiling only.

6.2 Design Space Exploration
Tiling space exploration: Due to limited on-chip storage, CNN
layers are executed by slicing the data tensors into tiles. The sizing
of these tiles in each layer impacts the accelerator performance.
To optimize tile sizes for our new GEMM-based DwC operation,
we performed tiling space exploration to develop an efficient tiling
algorithm for DwC. Fig. 11 illustrates the relative increment in
cycle count with respect to minimum cycle count as we vary tile
sizes for the height/width dimensions of ifmap/ofmap. The tiling
space is shown for a representative layer, DwC1, while executed
on H1 (defined in Section 6.1). The Z axis of the plot is indicated by
the color heatmap: lighter [darker] green indicates smaller [larger]
cycle count for the layer. The gray regions are illegal due to the
size constraints from the on-chip buffers (red curve).

Fig. 11(a) allows any values for the height and width tiles (i.e.,
OHt ile and OWt ile) as long as they do not violate the buffer size
constraints. As indicated by the blue arrows, there are anomaly
regions where the cycle counts are up to 10% worse than the min-
imum cycle count. An example point in such an anomaly region
is OWt ile = 55. Since for DwC1, OW = 112, at this point the width
of ofmap tensor gets split into [55, 55, 2]. Since the last tile is very

ASPDAC ’23, January 16–19, 2023, Tokyo, Japan Manasi et al.

Intel Labs

1 10 20 30 40 50 60
Size of ifmap buffer (kB)

0

0.5

1

1.5

2

2.5

C
yc

le
 C

ou
nt

s

105

D3
D5
D7
D9

1 10 20 30 40 50 60
Size of ifmap buffer (kB)

0

1

2

3

4

5

C
yc

le
 C

ou
nt

s

105

C3
C5
C7
C9

(a) (b)

Onset of saturation Onset of saturation

Figure 12: Cycle counts vs. buffer sizes for (a) DwC layers, (b)
Conv2D layers. (output buffer size = 4 × ifmap buffer size; cycle
count of C3 is very large at ifmap buffer = 1kB and omitted for better
visibility).

narrow (i.e., 2), and while the computation in GEMM and load/store
operation can normally overlap, in this case there is not enough
computation for the GEMM to do. Therefore, the load/store oper-
ations do not get properly overlapped with GEMM computations
resulting in additional stall cycles. Similar trends are seen for other
DwC layers as well. In order to avoid such skewed tilings we impose
constraints to generate a more balanced set of sizing for the tiles.
For example, instead of [55, 55, 2] the tiling generation algorithm
picks the most balanced one with three tiles, which is [38, 37, 37].
Fig. 11(b) shows the tiling space for the balanced tiling scenario
where the space does not contain any anomaly regions.

From the tiling space of Fig. 11(b), it is also evident that themiddle
region of the plot, where OHt ile ≈ OWt ile , provides smaller cycle
counts than other regions: since the weight data is reused across
both the height and width dimensions of ifmap, these dimensions
have equal importance for tiling. Based on these observations, we
choose an integer tiling scheme that maximizes OHt ile ×OWt ile
under the constraints that the values are nearly equal and balanced.
This produces tile sizes for which the cycle counts are very close to
the minimum cycle counts, e.g., for DwC1 on H1, minimum cycle
count over the tiling space is 80351 while the cycle count at the
tiling generated by our approach is 80356.
Requirement of buffer sizes:We analyze the on-chip buffer size
requirement of DwC and compare them with the buffer size re-
quirement of Conv2D since both types of layers are executed in the
GEMM core in GED. We execute individual representative DwC
and Conv2D layers from MobileNet on GED with a 32×32 PE array
and profile the cycle counts as a function of buffer sizes. The weight
buffer requirement for DwC is very small (≤ 1kB to store a filter tile
for this configuration), and increasing the weight buffer size does
not impact DwC cycle counts. Across Conv2D, cycle counts saturate
after 32kB making 32kB an optimal choice. Thus, a weight buffer
optimized for Conv2D also meets the optimal size requirement for
DwC.

Fig. 12 shows the cycle counts of four representative DwC and
Conv2D layers (Di and Ci denote ith DwC and Conv2D layer, re-
spectively) as a function of the ifmap buffer size. The output buffer
size is set to be 4× the ifmap buffer size while 32kB is used for the
weight buffer. As can be seen, the cycle counts of the DwC layers
start to saturate at 8kB which is at the left from the point (i.e., 16kB)
where the saturation starts for Conv2D. Therefore, ifmap and output
buffer sizes that are optimally chosen for Conv2D meet the optimal
buffer size requirements for DwC as well. These demonstrate that

the hardware resources in the GEMM core that are optimized for
Conv2D also work well for our GEMM-based execution of DwC.

7 CONCLUSION
A new methodology is proposed to execute DwC on general ASIC-
based DNN accelerators, reusing the fast GEMM core with minor
hardware augmentations. All hardware modules have been devel-
oped and integrated into the VTA+ DNNaccelerator hardware stack,
including instruction-level support and system-level testbenches.
Our GEMM-based DwC demonstrates large performance gains over
ALU-based, CPU-based, and GPU-based implementations.

ACKNOWLEDGMENTS
This work is supported in part by AFRL under the DARPA RTML
program under award FA8650-20-2-7009 and internship at Intel
Strategic CAD Labs. The U. S. government is authorized to repro-
duce and distribute reprints for governmental purposes notwith-
standing any copyright notation thereon. The views and conclu-
sions contained herein are those of the authors and should not
be interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of AFRL, DARPA, or
the U. S. government. The authors would like to acknowledge the
contribution of Zhiang Wang from UCSD.

REFERENCES
[1] A. G. Howard, et al., “MobileNets: Efficient Convolutional Neural Networks for

Mobile Vision Applications,” arXiv:1704.04861, 2017.
[2] F. Chollet, “Xception: Deep Learning With Depthwise Separable Convolutions,”

in Proc. CVPR, July 2017.
[3] M. Tan and Q. Le, “EfficientNet: Rethinking Model Scaling for Convolutional

Neural Networks,” in Proc. Int. Conf. on Machine Learning, vol. 97, pp. 6105–6114,
June 2019.

[4] M. Tan, et al., “MnasNet: Platform-Aware Neural Architecture Search for Mobile,”
in Proc. CVPR, June 2019.

[5] X. Zhang, et al., “ShuffleNet: An Extremely Efficient Convolutional Neural Net-
work for Mobile Devices,” in Proc. CVPR, June 2018.

[6] N. P. Jouppi et al., “In-datacenter Performance Analysis of a Tensor Processing
Unit,” in Proc. ISCA, pp. 1–12, Jun. 2017.

[7] T. Moreau, et al., “A Hardware-Software Blueprint for Flexible Deep Learning
Specialization,” IEEE Micro, vol. 39, no. 5, pp. 8–16, 2019.

[8] H. Esmaeilzadeh, et al., “VeriGOOD-ML: An Open-Source Flow for Automated
ML Hardware Synthesis,” in Proc. ICCAD, 2021.

[9] H. Genc, et al., “Gemmini: An agile systolic array generator enabling systematic
evaluations of deep-learning architectures,” arXiv:1911.09925, Nov. 2019.

[10] D. Zhang, et al., “A full-stack accelerator search technique for vision applications,”
arXiv:2105.12842, May 2021.

[11] S. Banerjee, et al., “A Highly Configurable Hardware/Software Stack for DNN
Inference Acceleration,” arXiv preprint arXiv:2111.15024, Nov. 2021.

[12] B. Liu, et al., “An FPGA-Based CNN Accelerator Integrating Depthwise Separable
Convolution,” Electronics, vol. 8, Mar. 2019.

[13] M. Baharani, et al., “DeepDive: An Integrative Algorithm/Architecture Co-Design
for Deep Separable Convolutional Neural Networks,” in Proc. GLSVLSI, pp. 247–
252, June 2021.

[14] D. Wu, et al., “A High-Performance CNN Processor Based on FPGA for Mo-
bileNets,” in Proc. FPL, pp. 136–143, 2019.

[15] L. Bai, et al., “A CNN Accelerator on FPGA Using Depthwise Separable Convolu-
tion,” IEEE T. Circuits-II, vol. 65, pp. 1415–1419, Aug. 2018.

[16] N. Vedula, et al., “X-Layer: Building Composable Pipelined Dataflows for Low-
Rank Convolutions,” in Proc. PACT, pp. 103–115, 2021.

[17] Y.-H. Chen, et al., “Eyeriss v2: A Flexible Accelerator for Emerging Deep Neural
Networks on Mobile Devices,” IEEE JETCAS, vol. 9, pp. 292–308, Apr. 2019.

[18] T. Chen, et al., “TVM: An Automated End-to-End Optimizing Compiler for Deep
Learning,” in Proc. OSDI, pp. 578–594, Oct. 2018.

[19] N. P. Jouppi, et al., “A Domain-Specific Supercomputer for Training Deep Neural
Networks,” Communications of the ACM, vol. 63, pp. 67–78, July 2020.

[20] M. Gurel, A Comparative Study between RTL and HLS for Image Processing Appli-
cations with FPGAs. University of California, San Diego, 2016.

[21] “VTA Hardware Design Stack.” https://github.com/pasqoc/incubator-tvm-vta.

https://github.com/pasqoc/incubator-tvm-vta

	Abstract
	1 Introduction
	2 The Value of Accelerating DwC
	3 Preliminaries
	4 Methodology for GEMM-based DwC
	4.1 Mapping Conv2D to GEMM
	4.2 Mapping DwC to GEMM

	5 End-to-end Implementation Flow
	5.1 Analytical Model-Guided Design Decisions
	5.2 Defining a New GEMM Opcode
	5.3 Hardware Design and Verification

	6 Results
	6.1 Evaluation of GEMM-based DwC
	6.2 Design Space Exploration

	7 Conclusion
	Acknowledgments
	References

